treatment planning - aapm

13
1 7/28/2008 1 Acquisition of imaging data Acquisition of imaging data Delineation of regions of interest Delineation of regions of interest Selection of beam directions Selection of beam directions Dose calculation Dose calculation Optimization of the plan Optimization of the plan Treatment Planning 7/28/2008 2 Proton Planning System HU versus rel. stopping power Photon Planning System HU versus electron density Hounsfield Units (HU) HU 0 500 1000 1500 2000 2500 3000 ? Treatment Planning (Protons vs. Photons) 7/28/2008 3 Proton beams (fields) have an end of range (i.e. pointing to critical structures is an option) Treatment Planning (Protons vs. Photons) 7/28/2008 4 Treatment Planning (Protons vs. Photons) Dose versus time 20 50 80 95 100 Isodose levels Planned to the PTV © Martijn Engelsman, MGH The PTV concept is not applicable in proton therapy

Upload: others

Post on 16-Oct-2021

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Treatment Planning - AAPM

1

7/28/2008 1

�� Acquisition of imagingdataAcquisitionof imaging data

�� Delineationof regionsof interestDelineationof regionsof interest

�� Selectionof beamdirectionsSelection of beamdirections

�� DosecalculationDosecalculation

�� Optimizationof theplanOptimizationof theplan

TreatmentPlanning

7/28/2008 2

Proton Planni ng SystemHU versus rel . stopping power

Photon Planning SystemHU versus electron density

Hounsfield Units (HU)

HU

0 500 1000 1500 2000 2500 3000

?

TreatmentPlanning (Protonsvs.Photons)

7/28/2008 3

Protonbeams (fields)haveanendof range(i.e. pointing to critical structuresis anoption)

TreatmentPlanning(Protonsvs.Photons)

7/28/2008 4

TreatmentPlanning (Protonsvs.Photons)

Dose versus time

20508095100

Isodoselevels

Planned to the PTV

© Martijn Engelsman, MGH

The PTV conceptis not applicable in proton therapy

Page 2: Treatment Planning - AAPM

2

7/28/2008 5

Treatment Planning

• Passivescatteredproton beams• Scannedproton beams• Intensity modulatedproton beams• Comparativetreatmentplans

7/28/2008 6

High-DensityStructu re

BodySurface

CriticalStructure

TargetVolume

Beam

Aperture

Doublescatteringsystem

© HanneKooy, MGH

Doseshaping for passive scatteredprotons

7/28/2008 7

SOBP ModulationSOBP Modulation

Apert ure

High- DensityStru cture

BodySurface

Crit icalStructure

TargetVolume

Beam

© HanneKooy, MGH

Prescription:• Range• Modulation• Compensator• Aperture

7/28/2008 8

+ =

Aperture andRangeCompensator

To be‘designed’ by theplanningsystem !

© HanneKooy, MGH

Page 3: Treatment Planning - AAPM

3

7/28/2008 9

Dosimetry andQA for SOBP protonfields

Beam rang e: 17.19 cmModulat ion width: 6.78 cm

Depth [mm]

0 50 100 150 200

Do

se[%

]

0

20

40

60

80

100

120

Beam range: 13.47 cmModulat ion width: 8.65 cm

Depth [mm]

0 20 40 60 80 100 120 140 160

Do

se[%

]

0

20

40

60

80

100

120

Beam rang e: 12.0 cmModulati on wid th: 4.0 cm

Depth [mm]

0 20 40 60 80 100 120 140

Do

se[%

]

0

20

40

60

80

100

120

1. RangeandModulation Widthfor each field

7/28/2008 10

MUcGy

iFactorOutput

ic

calD

Volumefor absolutedosimetry

2. Absolutedosimetryfor each field

7/28/2008 11

10 Gy15 Gy20 Gy25 Gy30 Gy35 Gy40 Gy45 Gy46 Gy

A SIMPLE EXAMPLE: Para-spinal caseusing 3 fields

CTV

brainstem

7/28/2008 12

Field PatchingField Patching

• Usefulif targetis closetocritical structures

• Not necessarilyhomogeneousdoseto thetarget for eachbeam(IM!)

• Rangeand penumbrauncertaintiesneedto beconsidered

A

B

C

5050

PTV

CriticalStructure

Page 4: Treatment Planning - AAPM

4

7/28/2008 13© Marc Bussiere, MGH 7/28/2008 14

CTV-2

25 Gy30 Gy35 Gy40 Gy45 Gy50 Gy55 Gy60 Gy67 Gy

A COMPLICATED EXAMPLE: Nasopharynx case using14 fields (plus additional photon fields to the lower neck)

7/28/2008 15

CTV-1CTV-2

ParotidBrainstem

SpinalCord

• GTV 76 Gy– CTV1 60-66 Gy– CTV2 60 Gy

• Nodes54 Gy7/28/2008 16

Treating moving targetswith protons

Page 5: Treatment Planning - AAPM

5

7/28/2008 17

• posterior view

• posterior cut

LR

Effect of respiration on dose

© EikeRietzel

• Rescanning• Beam Gating• Real time tumor trackin g with marker s

© ShinishiroMori, MGH 7/28/2008 18

FH Burr Proton Therapy Center (2001FH Burr Proton Therapy Center (2001--))Patient PopulationPatient Population

�� BrainBrain 32%32%�� Spine Spine 23%23%�� ProstateProstate 12%12%�� Skull BaseSkull Base 12%12%�� Head & NeckHead & Neck 7%7%�� Trunk/Extremity Sarcomas Trunk/Extremity Sarcomas

6%6%�� Gastrointestinal Gastrointestinal 6% 6% �� Lung Lung 1%1%

© ThomasDeLaney, MGH

In general,1-3 fields / day/ patientCurrently ~ 45 patients/ day

7/28/2008 19

TreatmentPlanning

• Passivescatteredprotonbeams• Scannedprotonbeams• Intensity modulatedproton beams• Comparativetreatment plans

7/28/2008 20

BeamScanningBeamScanning

Beammonitor

IntensityModulated

BeamZ

X

Y

Fast Slow

ScanningMagnets

Pair ofQuads

VacuumChamber

0.8 m

0.6 m

No double scattering systemNo modulator wheelsNo apertureNo range compensator

Page 6: Treatment Planning - AAPM

6

7/28/2008 21

Typical SpotBeamin Water

© ErosPedroni, PSI

BeamScanningBeamScanning

7/28/2008 22

1

2 3

1. Evenly spaced/wei ghted spots

to achieve uniform field

2. 1mm spot erro r due to del ivery

erro r or patie nt moti on.

3. Optimum spaci ng/weighting to

achieve sharper penumbra

Pedroni

© ErosPedroni, PSI

7/28/2008 23© Alf red Smith,MDACC

Dosimetry and QA of pencil beams

• Energy/Range• largenumberof energies required• energyspacingmustprovidedoseuniformity

overall depths• Spot sizeandshape

• spotsize/shapemaydependon energy• spotposition accuracy

• Measurementsrequire methodsfor rapid collectionlargeamounts of data

• Real-timebeaminformation

7/28/2008 24

Ortho gonal IC array measurem ents performed at different waterdepths using a computer controll ed water column and

compared with calculations.

‘Beam’s-eye-view’ of dosein water

U axis profile

T axis profile

Pedroni, PSI, Switzerlan d

PTCOG 46 Educati onal Worksho p

Ionization Chamber Arra yWater column with 26 smallionization chambers of 0.1 cm3

Dose box

Pedroni, PSI, Swi tzerland

Beam

Mirror

CCDCamera

Scintillating Plate

Scintillating Plate, Mirror andCCD Camera used for pencilbeam scan ning QA.

Spot Pattern Test Uniform Field Scanning Test

M D Ander son Cancer Center

PTCOG 46 Educational Workshop

Scintillating screen viewed with aCCD through a 45° mi rror

– ideal for non ho mogeneousdose dis tribut ions

WER6.65CM

WER7.82CM

W= 6.65 cm

W= 7.82 cm

CalculationMeasurement vs.

Pedroni , PSI, Switzerl and© Alfred Smith,MDACC

Page 7: Treatment Planning - AAPM

7

7/28/2008 25

TreatmentPlanning

• Passivescatteredprotonbeams• Scannedprotonbeams• Intensity modulatedprotonbeams• Comparativetreatment plans

7/28/2008 26

IMPT Treatment PlanningIMPT Treatment Planning

• Braggpeaksof pencil beams aredistributedthroughouttheplanningvolume

• Pencilbeam weights are optimizedfor severalbeamdirectionssimultaneously(inverseplanning)

© Alex Trofimov, MGH

7/28/2008 27

Intensity-ModulatedProtonTherapy–IMPT

© Alex Trofimov, MGH 7/28/2008 28

TreatmentPlanning

• Passivescatteredprotonbeams• Scannedprotonbeams• Intensity modulatedprotonbeams• Comparativetreatmentplans

Page 8: Treatment Planning - AAPM

8

7/28/2008 29

Example(passivescattered protons

vs.photons)

Medulloblastoma

7/28/2008 30

MedulloblastomaMedulloblastomaProtons Photons

Copyright© MGH/NPTC 2003

7/28/2008 31

Example(protonsvs. IM photons)

Prostate

7/28/2008 32

(a)

Dose [Gy]

(b)

Dose [CGE]

(c)

Dose [CGE]

Pass.Sc.Protons

IMRT

IMPT

Prostatecarcinoma:

(GTV + 5mm)to 79.2 Gy

(CTV + 5mm) to 50.4 Gy

© Alex Trofimov, MGH

Page 9: Treatment Planning - AAPM

9

7/28/2008 33© Alex Trofimov, MGH 7/28/2008 34

Example(protons/ IM protons/ IM photons)

Nasopharynx(caseshown earlier)

7/28/2008 35

�� protonfieldsprotonfieldsCTV to 59.4CTV to 59.4 GyEGyE (33 x 1.8(33 x 1.8 GyGy))GTV to 70.2GTV to 70.2 GyEGyE (+ 6 x 1.8(+ 6 x 1.8 GyGy))

�� PhotonfieldsPhotonfieldslower neck, nodeslower neck,nodes to 60to 60 GyGy

NN

G

G

A Passive scattered protons(14 proton fields,4 photonfields)

© Alex Trofimov, MGH 7/28/2008 36

B Photon IMRT plan(7 coplanarphotonbeams)

© Alex Trofimov, MGH

Page 10: Treatment Planning - AAPM

10

7/28/2008 37

C IMPT plan(4 coplanarproton beams)

© Alex Trofimov, MGH 7/28/2008 38

DVH for target structuresDVH for target structures

Comparable targetcoverage

© Alex Trofimov, MGH

7/28/2008 39

DVH for somecritical structures

© Alex Trofimov, MGH 7/28/2008 40

Summary

• Proton planningoffers moreoptionsin termsof beamdirectionsandfield shaping thanphotonplanning

• IMRT and 3D protonscanbecomparable interms of doseconformality

• Protonsareableto reducethedoseto mostcritical structurescomparedto photons

• Proton therapyis ableto reducetheintegraldosecomparedto photonsby up to afactor of 3

• IMPT is themethodof choice

Page 11: Treatment Planning - AAPM

11

7/28/2008 41

Some remarks on biology

• Neutronsin proton therapy• Theproton RBE

7/28/2008 42

In tegral dose(protons vs.photons)

Advantage protons !!! Dis-advantage protons ???

7/28/2008 43

Neutron doseasa function of lateral distance

ZacharatouJarlskogandPaganetti: Int. J. Radiat. Biol. Phys. 2008, in press 7/28/2008 44

Field 1Field 2Field 3

Zacharatou JarlskogandPaganetti:Int. J. Radiat. Biol. Phys. 2008,in press

Page 12: Treatment Planning - AAPM

12

7/28/2008 45

From:Annalsof theICRP; ICRP Publication 92; RelativeBiologicalEffectiveness(RBE), QualityFactor (Q), andRadiation Weighting Factor (wR)

Neutron radiation weighting factor

7/28/2008 46

NCRP Report No. 104,The RelativeBiological EffectivenessNCRP Report No. 104,The RelativeBiological Effectivenessof Radiations of Dif ferent Qualityof Radiations of Diff erent Quality

Neutron RBE asa function of endpoint

Estimates of RBEM for neutron carcinogenesis in mice

7/28/2008 47

* Basedon experiments at theHarvardcyclotron donein the70’s

RBE in proton therapy:

Clini cal (generic)RBE = 1.1*

7/28/2008 48

Dose per fractio n [Gy]

1 10

RB

E

0.5

1.0

1.5

2.0

2.5

RBE valuesin vivo (centerof SOBP; relative to 60Co)

Mice data:L ung tolerance,Crypt regeneration,Acute skin reactions,Fibr osarcoma NFSa

1.07 0.12

Paganetti et al.: Int. J. Radiat. Oncol. Biol. Phys.2002; 53, 407-421

Page 13: Treatment Planning - AAPM

13

7/28/2008 49

• RBE asa function of LET• becarefulwhenusing theendof rangenext to a critical

structure

• RBE asa function of dose• dosedependency seemsto besmall

• RBE asa function of biological endpoint• variationseems to besmall• Note: RBE for cell kil l canbedifferentthanfor

mutation/carcinogenesis

7/28/2008 50 M.K

räm

er,W

.K.W

eyra

ther

,M.S

chol

z:T

echn

.Can

cer

Res

.Tre

atm

.2,4

27-4

36,2

003

Radiationis moreeffectivewhenenergydepositionsare moreconcentratedin space

RBE asa function of particle energy/ LET

p+

7/28/2008 51

Thanksto

HanneKooyAlex TrofimovGeorgeChenMartijn EngelsmanJudyAdams

for providing some slidesandfigures