tutorial les 2010 meneveau

Upload: manu-chakkingal

Post on 03-Jun-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 Tutorial LES 2010 Meneveau

    1/43

    Large Eddy Simulation, DynamicModel, and Applications

    Charles Meneveau

    Department of Mechanical EngineeringCenter for Environmental and Applied Fluid Mechanics

    Johns Hopkins University

    Mechanical Engineering

    Turbulence Summer SchoolMay 2010

  • 8/12/2019 Tutorial LES 2010 Meneveau

    2/43

    Turbulence modeling:

    Large-eddy-simulation (LES)

  • 8/12/2019 Tutorial LES 2010 Meneveau

    3/43

    !

    !

    G(x): Filter

    Large-eddy-simulation (LES) and fil tering:

    N-S equations:

    ! !u j!

    t

    + !u k ! !u j! x k

    = " 1

    #

    ! ! p! x j

    + $ %2 !u j "

    !

    ! x k

    & jk

    Filtered N-S equations:

    ! u j! t

    +! u k u j

    ! x k = "

    1

    #

    ! p! x j

    + $ %2u j

    ! !u j! t

    +! u k u j"

    ! x k = "

    1

    #

    ! ! p! x j

    + $ %2 !u j

    where SGS stress tensor is:

    ! ij = uiu j!

    " "ui "

    u j

    ! u j! x j

    = 0

  • 8/12/2019 Tutorial LES 2010 Meneveau

    4/43

    !

    !

    G(x): Filter

    Energetics (kinetic energy):

    ! 12 u j u j! t

    + u k

    ! 12 u j u j! x k

    = " !

    ! x j....

    ( )" 2 #

    S jk

    S jk " " $

    jk

    S jk ( )

    !"

    = # $ jk S jk

    Inertial-range flux

    Effects of ij upon resolved motions:

    E(k)

    k LES resolved SGS

    !"

    !

    "

    ! =

    "u 3

    L

    !S ij =1

    2

    ! !u i! x j

    +! !u j! xi

    " # $

    % & '

  • 8/12/2019 Tutorial LES 2010 Meneveau

    5/43

    SGS energy dissipation :

    !"

    = # $ jk S jk

    If we wish to controldissipation of energy we canset ij proportional to -S ij

    E.g. Smagorinsky-Lilly model:

    ! ijd = "# sgs

    $!u i

    $ x

    j

    +$!u j

    $ x

    i

    %

    & '

    (

    ) * = "2 # sgs

    !S ij

    ! sgs

    = ?? = (velocity " scale ) # (length " scale )

  • 8/12/2019 Tutorial LES 2010 Meneveau

    6/43

    !

    ij

    d =

    "#

    sgs

    $!u i$ x j

    +$!u j$ xi

    % & '

    ( ) *

    =

    "2 #

    sgs

    !S ij

    ! sgs

    = cs"

    ( )

    2| S |

    Length-scale: ~ " (instead of L),Velocity-scale ~ " |S|

    ! sgs ~ "2 | !S |

    c s : Smagorinsky constant

  • 8/12/2019 Tutorial LES 2010 Meneveau

    7/43

    Theoretical calibration of c s (D.K. Li lly, 1967):

    E(k)

    k LES resolved SGS

    !"

    !

    "

    ! =

    "u 3

    L

    E (k ) = c K ! 2 / 3 k " 5 /3

    ! " = # = $ % ij !S ij

    # = cs2

    "2

    2 | !S |

    !S ij

    !S ij

    # & cs2" 2 2 3/ 2 !S ij !S ij3/ 2

    !S ij!S ij =

    1

    2

    ' !u i

    ' x j' !u i

    ' x j+

    ' !u j

    ' xi(

    ) *

    +

    , - =

    =1

    2[k j

    2. ii (k ) + k i k j. ij (k )]d 3k =|k |< / / "000 12 [k

    2 ( E (k )4 / k 2

    (1 ii $ k 2

    k 2 )) + 0] d 3k

    |k |< / / "000

    = cK # 2 /3 1

    2k $5 / 3 + 2

    3 $14 / k 2

    4 / k 2dk 0

    / / "

    0 = cK # 2 /3 k 1/ 3 dk 0

    / / "

    0 = cK # 2 /3 34/

    "

    ( ) *

    + , -

    4 / 3

    # & cs2" 2 2 3/ 2 cK # 2 /3 3

    4

    /

    "( ) *

    + , -

    4 / 3( ) *

    + , -

    3/ 2

    ! 1 " c s2 # 2 3 c

    K

    2

    $ % &

    ' ( )

    3/ 2

    ! c s =3 c

    K

    2

    $ % &

    ' ( )

    *3/ 4

    # *1

    cK

    = 1.6 ! c s " 0.16

    ! ij = " 2( c s # )2 | !S | !S ij

  • 8/12/2019 Tutorial LES 2010 Meneveau

    8/43

    Theoretical calibration of c s (D.K. Li lly, 1967):

    E(k)

    k LES resolved SGS

    !"

    !

    "

    ! =

    "u 3

    L

    E (k ) = c K ! 2 / 3 k " 5 /3

    ! " = # = $ % ij !S ij

    # = cs2

    "2

    2 | !S |

    !S ij

    !S ij

    # & cs2" 2 2 3/ 2 !S ij !S ij3/ 2

    !S ij!S ij =

    1

    2

    ' !u i

    ' x j' !u i

    ' x j+

    ' !u j

    ' xi(

    ) *

    +

    , - =

    =1

    2[k j

    2. ii (k ) + k i k j. ij (k )]d 3k =|k |< / / "000 12 [k

    2 ( E (k )4 / k 2

    (1 ii $ k 2

    k 2 )) + 0] d 3k

    |k |< / / "000

    = cK # 2 /3 1

    2k $5 / 3 + 2

    3 $14 / k 2

    4 / k 2dk 0

    / / "

    0 = cK # 2 /3 k 1/ 3 dk 0

    / / "

    0 = cK # 2 /3 34/

    "

    ( ) *

    + , -

    4 / 3

    # & cs2" 2 2 3/ 2 cK # 2 /3 3

    4

    /

    "( ) *

    + , -

    4 / 3( ) *

    + , -

    3/ 2

    ! 1 " c s2 # 2 3 c

    K

    2

    $ % &

    ' ( )

    3/ 2

    ! c s =3 c

    K

    2

    $ % &

    ' ( )

    *3/ 4

    # *1

    cK

    = 1.6 ! c s " 0.16

    ! ij = " 2( c s # )2 | !S | !S ij

  • 8/12/2019 Tutorial LES 2010 Meneveau

    9/43

    Theoretical calibration of c s (D.K. Li lly, 1967):

    E(k)

    k LES resolved SGS

    !"

    !

    "

    ! =

    "u 3

    L

    E (k ) = c K ! 2 / 3 k " 5 /3

    ! " = # = $ % ij !S ij

    # = cs2

    "2

    2 | !S |

    !S ij

    !S ij

    # & cs2" 2 2 3/ 2 !S ij !S ij3/ 2

    !S ij!S ij =

    1

    2

    ' !u i

    ' x j' !u i

    ' x j+

    ' !u j

    ' xi(

    ) *

    +

    , - =

    =1

    2[k j

    2. ii (k ) + k i k j. ij (k )]d 3k =|k |< / / "000 12 [k

    2 ( E (k )4 / k 2

    (1 ii $ k 2

    k 2 )) + 0] d 3k

    |k |< / / "000

    = cK # 2 /3 1

    2k $5 / 3 + 2

    3 $14 / k 2

    4 / k 2dk 0

    / / "

    0 = cK # 2 /3 k 1/ 3 dk 0

    / / "

    0 = cK # 2 /3 34/

    "

    ( ) *

    + , -

    4 / 3

    # & cs2" 2 2 3/ 2 cK # 2 /3 3

    4

    /

    "( ) *

    + , -

    4 / 3( ) *

    + , -

    3/ 2

    ! 1 " c s2 # 2 3 c

    K

    2

    $ % &

    ' ( )

    3/ 2

    ! c s =3 c

    K

    2

    $ % &

    ' ( )

    *3/ 4

    # *1

    cK

    = 1.6 ! c s " 0.16

    ! ij = " 2( c s # )2 | !S | !S ij

  • 8/12/2019 Tutorial LES 2010 Meneveau

    10/43

    Theoretical calibration of c s (D.K. Li lly, 1967):

    E(k)

    k LES resolved SGS

    !"

    !

    "

    ! =

    "u 3

    L

    E (k ) = c K ! 2 / 3 k " 5 /3

    ! " = # = $ % ij !S ij

    # =

    cs2

    "2

    2 | !S |

    !S ij

    !S ij

    # & cs2" 2 2 3/ 2 !S ij !S ij3/ 2

    !S ij!S ij =

    1

    2

    ' !u i

    ' x j' !u i

    ' x j+

    ' !u j

    ' xi(

    ) *

    +

    , - =

    =1

    2[k j

    2. ii (k ) + k i k j. ij (k )]d 3k =|k |< / / "000 12 [k

    2 ( E (k )4 / k 2

    (1 ii $ k 2

    k 2 )) + 0] d 3k

    |k |< / / "000

    = cK # 2 /3 1

    2k $5 / 3 + 2

    3 $14 / k 2

    4 / k 2dk 0

    / / "

    0 = cK # 2 /3 k 1/ 3 dk 0

    / / "

    0 = cK # 2 /3 34/

    "( ) *

    + , -

    4 / 3

    # & cs2" 2 2 3/ 2 cK # 2 /3 3

    4

    /

    "( ) *

    + , -

    4 / 3( ) *

    + , -

    3/ 2

    ! 1 " c s2 # 2 3 c

    K

    2

    $ % &

    ' ( )

    3/ 2

    ! c s =3 c

    K

    2

    $ % &

    ' ( )

    *3/ 4

    # *1

    cK

    = 1.6 ! c s " 0.16

    ! ij = " 2( c s # )2 | !S | !S ij

  • 8/12/2019 Tutorial LES 2010 Meneveau

    11/43

    But in practice(complex flows)

    cs

    = cs (

    x

    ,t

    ) Ad-hoc tuning?

    c s =0.16 works well for isotropic,high Reynolds number turbulence

    Examples: Transit ional p ipe flow: from 0 to 0.16

    Near wall damping for wall boundary layers (Piomelli et al 1989)

    c s =

    c s ( y )

    yc

    s = 0.16

  • 8/12/2019 Tutorial LES 2010 Meneveau

    12/43

    Measure: ! " = # $ jk S jk

    How does c s vary under realist ic condi tions?Interrogate data:

    Measure:

    Obtain empirical Smagorinsky coefficient = f(x,conditions):

    c s =! " jk S jk

    2 #2

    |S |

    Sij

    Sij

    $

    % &

    &

    '

    ( )

    )

    1/ 2

    An example result f rom atmospheric turbulence:

    !"Smag

    c s2

    = 2"2

    | S | SijSij

  • 8/12/2019 Tutorial LES 2010 Meneveau

    13/43

    Measure empirical Smagorinsky coefficient for atmospheric surface layer as function of height and stability (thermal forcing or damping):

    c s =! " jk S jk

    2 #2 | S | Sij Sij

    $

    %

    & &

    '

    (

    ) )

    1/ 2

    Example result: effect of atmosphericstability on coefficient from sonic

    anemometer measurements inatmospheric su rface layer (Kleissl et al., J. Atmos. Sci. 2003)

    HATS - 2000(with NCARresearchers:

    Horst, Sullivan)Kettleman City

    (Central Valley, CA)

    Stable stratifi cation

    N e u

    t r a

    l s

    t r a

    t i f i c a

    t i o n

    cs

    = cs (x , t )

  • 8/12/2019 Tutorial LES 2010 Meneveau

    14/43

    How to avoid tuning and case-by-caseadjustments of model coefficient in LES?

    The Dynamic Model(Germano et al. Physics of Fluids, 1991)

  • 8/12/2019 Tutorial LES 2010 Meneveau

    15/43

    E(k)

    k

    LES resolved SGS

    Germano identity and dynamic model(Germano et al. 1991):

    Exact (rare in turbulence):

    ui u j ! u i u j = u iu j ! u iu j

  • 8/12/2019 Tutorial LES 2010 Meneveau

    16/43

    E(k)

    k

    LES resolved SGS

    Germano identity and dynamic model(Germano et al. 1991):

    Exact (rare in turbulence):

    ui u j ! u i u j = u iu j - u iu j + u iu j ! u iu j

  • 8/12/2019 Tutorial LES 2010 Meneveau

    17/43

    E(k)

    k

    LES resolved SGS

    L

    T

    Germano identity and dynamic model(Germano et al. 1991):

    Exact (rare in turbulence):

    T ij = ! ij + Lij

    ui u j ! u i u j = u iu j - u iu j + u iu j ! u iu j

    Lij ! (T ij ! " ij ) = 0

  • 8/12/2019 Tutorial LES 2010 Meneveau

    18/43

    E(k)

    k

    LES resolved SGS

    L

    T

    Germano identity and dynamic model(Germano et al. 1991):

    Exact (rare in turbulence):

    T ij = ! ij + Lij

    ui u j ! u i u j = u iu j - u iu j + u iu j ! u iu j

    ! 2 c s 2 "( )2

    | S | Sij! 2 c s"( )

    2| S | Sij

    Assumes scale-invariance:

    Lij ! (T ij ! " ij ) = 0

    where

    Lij ! c s2 M ij = 0

    M ij = 2 !2

    | S | Sij " 4 |S | Sij

    ( )

  • 8/12/2019 Tutorial LES 2010 Meneveau

    19/43

    Germano identity and dynamic model(Germano et al. 1991):

    Minimized when:Averaging over regions of statistical homogeneityor fluid trajectories

    Lij ! c s2

    M ij = 0

    Over-determined system:solve in some average sense(minimize error, Lilly 1992):

    ! = Lij

    "c s

    2

    M ij( )2

    c s2

    =

    Lij M ij M ij M ij

  • 8/12/2019 Tutorial LES 2010 Meneveau

    20/43

    Germano identity and dynamic model(Germano et al. 1991):

    Minimized when:Averaging over regions of statistical homogeneityor fluid trajectories

    Lij ! c s2

    M ij = 0

    Over-determined system:solve in some average sense(minimize error, Lilly 1992):

    ! = Lij

    "c s

    2

    M ij( )2

    c s2

    =

    Lij M ij M ij M ij

    Exercise:

    (a) Prove the above equation, and

    (b) repeat entire formulation for the SGS heat flux vector

    modeled using an SGS diffusivity (find C scalar )

    q i = u iT ! ! "u i "T

    qi = C scalar !

    2 | !S | " !T

    " xi

  • 8/12/2019 Tutorial LES 2010 Meneveau

    21/43

    Mixed tensor Eddy Viscosity Model: Taylor-series expansion of similarity (Bardina 1980) model (Clark 1980, Liu, Katz & Meneveau (1994), ) Deconvolution:

    (Leonard 1997, Geurts et al, Stolz & Adams, Winckelmans etc..)

    Significant d irect empirical evidence, experiments: Liu et al. (JFM 1999, 2-D PIV) Tao, Katz & CM (J. Fluid Mech. 2002):

    tensor alignments from 3-D HPIV data Higgins, Parlange & CM (Bound Layer Met. 2003):

    tensor alignments from ABL data From DNS: Horiuti 2002, Vreman et al (LES), etc

    ( )k

    j

    k

    inlijS ij x

    u

    xu

    C S S C T !

    !

    !

    !"+"#=

    ~~2

    ~~)2(2

    22

    ijS k

    j

    k

    inl

    mnlij S S C x

    u xuC ~~)(2

    ~~22 !"

    #

    #

    ##!=$

    Two-parameter dynamic mixed model ji jiijijij uuuuT L

    ~~~~

    !=!" #

    ! " ijd

    Sij

    Similarity, tensor eddy-viscosity, and mixed models

  • 8/12/2019 Tutorial LES 2010 Meneveau

    22/43

    Reality check:

    Do simulations with these closures producerealistic statistics of u i(x,t)?

    Need good data Need good simulations

    Next: Summary of results from Kang et al. (JFM 2003)

    Smagorinsky model, Dynamic Smagorinsky model, Dynamic 2-parameter mixed model

  • 8/12/2019 Tutorial LES 2010 Meneveau

    23/43

    Remake of Comte-Bellot & Corrsin (1967) decaying isotropic turbulence experiment

    at high Reynolds number

    Contractions

    Active Grid M = 6 "

    1 x

    2 x

    M 20 M 30 M 40 M 48

    Test Section

    1u

    2u X-wire probe array!

    1 = 0.01m!

    2 = 0.02m!3 = 0.04m

    !4 = 0.08m

    0.91mFlow

    h1 = 0.005m! 1 = 0.01m

    h3 = 0.02m! 3 = 0.04m

    !

  • 8/12/2019 Tutorial LES 2010 Meneveau

    24/43

    1 x 2 x

    M 20 M 30 M 40 M 48

    1u

    2u

    Flow

    10 -7

    10 -6

    10 -5

    10 -4

    10 -3

    10 -2

    10 -1

    10 0

    10 0 10 1 10 2 10 3 10 4

    E( ! )

    !

    x1/M=20

    x1/M=48

    Initial condition for LES

    (m3s-2)

    (m -1)

    R e s u

    l t s

  • 8/12/2019 Tutorial LES 2010 Meneveau

    25/43

  • 8/12/2019 Tutorial LES 2010 Meneveau

    26/43

    Results: Dynamic Model Coefficients

    ! Dynamic Smagorinsky ! Dynamic Mixed tensor eddy visc:

    ijS k

    j

    k

    inl

    mnnlij S S C x

    u

    xu

    C ~~

    )(2~~

    22 !"#

    #

    #

    #!=$

    0

    0.05

    0.1

    0.15

    0.2

    0 10 20 30 40 50

    Cs

    x1

    /M

    Cs

    0

    0.05

    0.1

    0.15

    0.2

    0 10 20 30 40 50

    Cs

    Cnl

    x1

    /M

    Cnl

    Cs

    Cnl

    Cs

    1/12 from the first order approximation of " ij

    ! ijdyn " Smag

    = " 2 Lij M ij

    M ij M ij#

    2 S Sij

  • 8/12/2019 Tutorial LES 2010 Meneveau

    27/43

    3-D Energy Spectra (LES vs experiment)

    ! Dynamic Smagorinsky

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    100

    101

    102

    103

    E( ! )

    !

    x1/M=20

    x1/M=48

    cutoff grid filter (! = 0.04 m)

    cutoff test filter

    at 2 !

    Exp.

  • 8/12/2019 Tutorial LES 2010 Meneveau

    28/43

    ! Dynamic Mixed tensor eddy-visc. model

    10-5

    10 -4

    10 -3

    10 -2

    10 -1

    100

    100

    101

    102

    103

    E( ! )

    !

    x1/M=20

    x1/M=48

    cutoff grid filter (! = 0.04 m)

    cutoff test filter at 2 !

    3-D Energy Spectra (LES vs experiment)

  • 8/12/2019 Tutorial LES 2010 Meneveau

    29/43

    PDF of SGS Stress

    ! SGS Stress

    0

    5

    10

    15

    20

    25

    -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

    PDF

    x1/M=48

    Exp.

    Dynamic Mixed Nonlinear

    Smagorisnky

    DynamicSmagorisnky

    2

    112

    ~/rms

    u!

    Dynamic mixed tensor ed d y-visc mod el pr ed icts PDF of theSGS str ess accurately.

    212112~~ uuuu !"#

    (LES vs experiment)

  • 8/12/2019 Tutorial LES 2010 Meneveau

    30/43

    E(k)

    k

    LES resolved SGS

    L

    T

    Germano identity and dynamic model(Germano et al. 1991):

    Exact (rare in turbulence):

    T ij = ! ij + Lij

    ui u j ! u i u j = u iu j - u iu j + u iu j ! u iu j

    ! 2 c s 2 "( )2

    | S | Sij! 2 c s"( )

    2| S | Sij

    Assumes scale-invariance:

    Lij ! (T ij ! " ij ) = 0

    where

    Lij ! c s2 M ij = 0

    M ij = 2 !2

    | S | Sij " 4 |S | Sij( )

  • 8/12/2019 Tutorial LES 2010 Meneveau

    31/43

    Germano identity and dynamic model(Germano et al. 1991):

    Minimized when:Averaging over regions of statistical homogeneityor fluid trajectories

    Lij ! c s2

    M ij = 0Over-determined system:solve in some average sense(minimize error, Lilly 1992):

    ! =

    Lij "

    c s2

    M ij( )

    2

    c s2

    =

    Lij M ij M ij M ij

    Problem: what to do for non-homogeneous flowswithout directions over which to average( learn , or assimilate larger-scale statistics?)

  • 8/12/2019 Tutorial LES 2010 Meneveau

    32/43

    Lagrangian dynamic model (M, Lund & Cabot, JFM 1996):

    Average in time, following fluid particles for Galilean invariance:

    E = Lij ! C s2 M ij( )

    2

    !"

    t

    # 1T e! (t -t')

    T dt '

  • 8/12/2019 Tutorial LES 2010 Meneveau

    33/43

    Lagrangian dynamic model (M, Lund & Cabot, JFM 1996):

    Average in time, following fluid particles for Galilean invariance:

    ! E = 0 " C s2

    =

    Lij M ij #$

    t

    % 1T e# (t-t')

    T dt '

    M ij M ij #$

    t

    % 1T e# (t-t')

    T dt '

    E = Lij ! C s2 M ij( )

    2

    !"

    t

    # 1T e! (t -t')

    T dt '

    ! MM

    = M ij M ij "#

    t

    $ 1T e" (t-t ')

    T dt '

    ! LM

    = Lij M ij "#

    t

    $ 1T e" (t-t')

    T dt '

  • 8/12/2019 Tutorial LES 2010 Meneveau

    34/43

    Lagrangian dynamic model (M, Lund & Cabot, JFM 1996):

    Average in time, following fluid particles for Galilean invariance:

    ! E = 0 " C s2

    =

    Lij M ij #$

    t

    % 1T e# (t-t')

    T dt '

    M ij M ij #$

    t

    % 1T e# (t-t')

    T dt '

    E = Lij ! C s2 M ij( )

    2

    !"

    t

    # 1T e! (t -t')

    T dt '

    With exponential weight-function, equivalent to relaxation forward equations:

    ! MM

    = M ij M ij "#

    t

    $ 1T e" (t-t ')

    T dt '

    ! LM

    = Lij M ij "#

    t

    $ 1T e" (t-t')

    T dt '

    !" LM ! t

    + uk !" LM

    ! xk = 1

    T ( L ij M ij # " LM )

    !" MM

    ! t + uk

    !" MM

    ! xk =

    1

    T ( M ij M ij # " MM )

    cs

    2=

    ! LM (x , t )

    ! MM (x , t )

  • 8/12/2019 Tutorial LES 2010 Meneveau

    35/43

    Lagrangian dynamic model has allowed applying the Germano-identity to a number of complex-geometry engineering problems

    LES of flows in internal combustion engines :Haworth & Jansen (2000)Computers & Fluids 29 .

  • 8/12/2019 Tutorial LES 2010 Meneveau

    36/43

    LES of structure of impinging jets :Tsubokura et al. (2003)Int Heat Fluid Flow 24 .

    LES of flow over wavy walls Armenio & Piomelli (2000)Flow, Turb. & Combustion.

    Examples:

  • 8/12/2019 Tutorial LES 2010 Meneveau

    37/43

    LES of flow in thrust -reversers Blin, Hadjadi & Vervisch (2002)J. of Turbulence.

    Examples:

  • 8/12/2019 Tutorial LES 2010 Meneveau

    38/43

    LES of flow in tur bomachinery Zou, Wang, Moin, Mittal. (2007)Journal of Fluid Mechanics.

    Examples:

  • 8/12/2019 Tutorial LES 2010 Meneveau

    39/43

    Examples:

    LES of convective atmospheric boundary l ayer: Kumar, M. & Parlange (Water Resources Research, 2006)

    Transport equation for temperature Boussinesq approximation Coriolis forcing Lagrangian dynamic model with assumed # =C s (2 " )/C s(" ) Constant (non-dynamic) SGS Prandtl number Pr sgs =0.4 Imposed surface flux of sensible heat on ground Diurnal cycle: start stably stratified, then heating.

    Imposed groundheat flux during day:

  • 8/12/2019 Tutorial LES 2010 Meneveau

    40/43

    Diurnal cycle: start stably stratified, then heating.

    Examples:

    Resulting dynamic

    coeffi cient (averaged):

    Consistent wi th HATSfield measurements:

  • 8/12/2019 Tutorial LES 2010 Meneveau

    41/43

    Large-eddy-Simulation of atmospheric flow over fractal trees:

  • 8/12/2019 Tutorial LES 2010 Meneveau

    42/43

    Downtown Baltimore:

    URBAN CONTAMINATIONAND TRANSPORT

    Yu-Heng Tseng, C. Meneveau & M. Parlange, 2006 (Env. Sci & Tech. 40 , 2653-2662)

    Momentum and scalar transport equations solved using LES andLagrangian dynamic subgrid model. Buildings are simulated usingimmersed boundary method.

    wind

  • 8/12/2019 Tutorial LES 2010 Meneveau

    43/43

    Useful references on LES and SGS modeling:

    P. Sagaut: Large Eddy Simulation of Incompressible Flow (Springer, 3rd ed., 2006)

    U. Piomelli, Progr. Aerospace Sci., 1999

    C. Meneveau & J. Katz, Annu Rev. Fluid Mech. 32 , 1-32 (2000)

    C. Meneveau, Scholarpedia 5, 9489 (2010).