umt presentation

70
Synthetic Development of Novel Silica Polyamine Composites and Reclamation of Hazardous Mining Wastewater

Upload: dannielsen14

Post on 04-Jul-2015

552 views

Category:

Documents


2 download

DESCRIPTION

Presentation summary of research conducted in partial fulfillment of PhD in chemistry at the University of Montana.

TRANSCRIPT

Page 1: UMT Presentation

Synthetic Development of Novel Silica Polyamine Composites

and Reclamation of Hazardous Mining Wastewater

Page 2: UMT Presentation

Acknowledgments

Page 3: UMT Presentation

Acknowledgments

Dr. Bob Fischer

Carolyn Hart

Dr. Ed Rosenberg

Joel Clancey

Jeff McKenzie

Rosenberg Research Group

Pacific Northwest National Laboratory

Purity Systems, Inc.

Montana Board of Research & Commercialization Technology

Department of Energy

Page 4: UMT Presentation

Outline

• Synthesis, Characterization, and Testing of Composites

• Mixed Silane Gel

• Phosphorous Based Ligand Composites

• Rare Earth Element Recovery

• Berkeley Pit Lake Metal Recovery

Page 5: UMT Presentation

Advantages Over Competing Technologies

Crick, D.W.; Alexandratos, S.D. Magn. Reson. Chem. 1994, 32, S40-S44.

Fryxell, G.E.; Lin, Y.; Fiskum, S.; Birnbaum, J.C.; Wu, H. Environ. Sci. Technol. 2005, 39, 1324-1331.

Crosslinked Polystyrene

Self-Assembled Monolayers

on Mesoporous Supports

• Faster capture kinetics

• Lower back-pressures

• No shrink/swell upon load/strip cycles

• Longer material lifetimes

• Higher metal capacities

• More stable to radiolytic decomposition

Page 6: UMT Presentation

Silica Gels

Supplier Diameter Pore Diameter Pore Volume Porosity Surface Area

µm Å mL/g % m2/g

Crosfield 90 - 105 267 2.82 84.7 422

Qingdao Haiyang 150 - 250 194 2.39 85.0 493

Qingdao Meigao 180 - 250 378 2.86 85.3 303

Nanjing 180 - 250 164 2.30 85.8 561

Nanjing Tianyi 80 - 250 150 2.28 85.6 526

Page 7: UMT Presentation

Synthesis of Silica Polyamine Composite

O- Na

+

O- Na

+

OH

O- Na

+

OH

OH

OH

OH

(a) Raw Silica Surface (b) Cleaned Silica Surface (c) Hydrated Silica Surface

1. Acid Wash2. Dry Humidify

OHO

H

H

OH

OH H

OH

H

OH

OH

Hydration of Crosfield Silica Gel

0

1

2

3

4

5

6

7

0 40 80 120 160 200

Hydration Time (hr)

% H

2O

(m

/m)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

H2O

: S

i-O

H

% H2O

H2O : Si-OH

3 Foot Column:

Top Foot: 6.1%

Middle Foot: 6.3%

Bottom Foot: 6.1%

Page 8: UMT Presentation

O- Na

+

O- Na

+

OH

O- Na

+

OH

OH

OH

OH

(a) Raw Silica Surface (b) Cleaned Silica Surface (c) Hydrated Silica Surface

1. Acid Wash2. Dry Humidify

OHO

H

H

OH

OH H

OH

H

OH

OH

OSi Cl

O

O

Si

Si

O

O

Si

O

O

O

O

Cl

Cl

Cl

Cl3Si(CH2)3Cl

(d) Lateral Polymerization

Synthesis of Silica Polyamine Composite

Page 9: UMT Presentation

Synthesis of Silica Polyamine Composite

O- Na

+

O- Na

+

OH

O- Na

+

OH

OH

OH

OH

(a) Raw Silica Surface (b) Cleaned Silica Surface (c) Hydrated Silica Surface

1. Acid Wash2. Dry Humidify

OHO

H

H

OH

OH H

OH

H

OH

OH

OSi Cl

O

O

Si

Si

O

O

Si

O

O

O

O

Cl

Cl

Cl

Cl3Si(CH2)3Cl

Poly(allylamine)

(e) Silica-Polyamine Composite (d) Lateral Polymerization

N

N N

OSi N

O

O

Si

Si

O

O

Si

O

O

O

O

N

N

N

N

N

P

P

Page 10: UMT Presentation

Synthesis of Silica Polyamine Composite

O- Na

+

O- Na

+

OH

O- Na

+

OH

OH

OH

OH

(a) Raw Silica Surface (b) Cleaned Silica Surface (c) Hydrated Silica Surface

1. Acid Wash2. Dry Humidify

OHO

H

H

OH

OH H

OH

H

OH

OH

OSi Cl

O

O

Si

Si

O

O

Si

O

O

O

O

Cl

Cl

Cl

Cl3Si(CH2)3Cl

Poly(ethyleneimine)

P

P

N

N

N

NH

H

N

N

N

N

OSi

O

O

Si

Si

O

O

Si

O

O

O

O N

H

N

H H

H

Page 11: UMT Presentation

Ligand Modification

NH

POHO

H

NH

POHO

OH

NH

OP

OOMe

OMe

R = H/Me (1.2:1) (2.5:1)

NH

P OMe

OR

O

NH

O

O HO

NH

ON

OHO

N

HO

O

NO

HO

HO

O

Page 12: UMT Presentation

excess

+

NH2

n

NN

O

HO

N O

O

O

O

O

O

DMSO, 75 C, 24 hr.

Triethylamine

NH

O N

O

HO

N

HO

O

NO

HO

OH

O

n

Anhydride Synthesis

excess

+

NH2

n

THF, reflux, 24 hr.O

OO

NH

O

O HO

n

Page 13: UMT Presentation

• Mass/density gains

• Elemental analysis (Schwartzkopf Microanalytical Laboratory)

• Solid state NMR (Pacific Northwest National Laboratory)

Composite Characterization

Page 14: UMT Presentation

Variable Amplitude of Contact Time – Used to accommodate for the variable spin temperatures of each carbon type (& orientation).

Cross Polarization – Enhances the sensitivity by using the large proton magnetization to polarize 13C.

Magic Angle Spinning (54.7 1º) – Eliminates the peak broadening caused by chemical shift anisotropy (CSA).

Proton Decoupling – Removes the proton dipolar broadening.

Variable Amplitude - Cross Polarization Magic Angle Spinning

Schafer and Stejskal (1976)

Page 15: UMT Presentation

• Batch Capacity pH Profile

• Breakthrough Performance

Composite Performance Testing

Page 16: UMT Presentation

• Batch Capacity pH Profile

Composite Performance Testing

C = v ( [c] - [e] )

m

C = composite metal capacity (mg/g) v = volume challenge solution (L) c = conc. challenge solution (mg/L)e = conc. extraction solution (mg/L)m = mass of composite (g)

BPAP-CF 041504-DN

0

10

20

30

40

50

60

70

80

-2 -1 0 1 2 3 4 5 6

pH (H2SO4)

Me

tal C

ap

ac

ity

(m

g/g

)

Fe(III)

Eu(III)

Page 17: UMT Presentation

• Batch Capacity pH Profile

Composite Performance Testing

C = v ( [c] - [e] )

m

C = composite metal capacity (mg/g) v = volume challenge solution (L) c = conc. challenge solution (mg/L)e = conc. extraction solution (mg/L)m = mass of composite (g)

BPAP-CF 041504-DN

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

-2 -1 0 1 2 3 4 5 6

pH (H2SO4)

Meta

l C

ap

acit

y (

mm

ol/

g)

Fe(III)

Eu(III)

Page 18: UMT Presentation

• Breakthrough Performance

Composite Performance Testing

Pump5

10

100

BPAP-CF 041504-DN Precision Study

0.50 CV/min., Feed pH 1.0, Eu(III) FT Capacity 50 ± 2 mg/g

0

500

1000

1500

2000

2500

3000

0 5 10 15 20

Column Volume (CV = 5.0 mL)

Eu

(III)

mg

/L

Ave.

Page 19: UMT Presentation

Composite Performance Testing

BPAP-CF 041504-DN Precision Study

0.50 CV/min., Feed pH 1.0, Eu(III) FT Capacity 50 ± 2 mg/g

0

500

1000

1500

2000

2500

3000

0 5 10 15 20

Column Volume (CV = 5.0 mL)

Eu

(III)

mg

/LBT#1

BT#2

BT#3

Pump5

10

100

• Breakthrough Performance

Page 20: UMT Presentation

Outline

• Synthesis, Characterization, and Testing of Composites

• Mixed Silane Gel

• Phosphorous Based Ligand Composites

• Rare Earth Element Recovery

• Berkeley Pit Lake Metal Recovery

Page 21: UMT Presentation

Mixed Silane Gels

CPTCS (66:33) 58:42 (33:66) 28:72 MTCS

Cl3Si(CH2)3Cl

Cl3SiCH3

+

OH

OH

H

OHO

H

H

OH

H

OH

OH

OH

H

OH

OSi Cl

O

O

Si

Si

O

O

Si

O

O

O

O

Cl

Si

OO

Cl

OSi

O

O

Si

Si

O

O

Si

O

O

O

O

Cl

Si

OO

Cl

OSi

O

O

Si

Si

O

O

Si

O

O

O

O

Si

OO

A B C D

OSi Cl

O

O

Si

Si

O

O

Si

O

O

O

O

Cl

Si

OO

Cl

Cl

Cl

Page 22: UMT Presentation

Mixed Silane Gels

OSi Cl

O

OH

Si

O

OCl

Si

OH

OCl

OH

OH

OH

OH

Gel Silane O3SiR O2Si(OH)R OSi(OH)2R

Coverage

(umol/m2) (%) (%) (%)

A 4.6 28 59 13

B 5.3 30 56 14

C 5.8 - - -

D 6.6 48 44 7.3

CPTCS (66:33) 58:42 (33:66) 28:72 MTCS

Cl3Si(CH2)3Cl

Cl3SiCH3

+

OH

OH

H

OHO

H

H

OH

H

OH

OH

OH

H

OH

OSi Cl

O

O

Si

Si

O

O

Si

O

O

O

O

Cl

Si

OO

Cl

OSi

O

O

Si

Si

O

O

Si

O

O

O

O

Cl

Si

OO

Cl

OSi

O

O

Si

Si

O

O

Si

O

O

O

O

Si

OO

A B C D

OSi Cl

O

O

Si

Si

O

O

Si

O

O

O

O

Cl

Si

OO

Cl

Cl

Cl

Page 23: UMT Presentation

Mixed Silane Gels

CPTCS (66:33) 58:42 (33:66) 28:72 MTCS

Cl3Si(CH2)3Cl

Cl3SiCH3

+

OH

OH

H

OHO

H

H

OH

H

OH

OH

OH

H

OH

OSi Cl

O

O

Si

Si

O

O

Si

O

O

O

O

Cl

Si

OO

Cl

OSi

O

O

Si

Si

O

O

Si

O

O

O

O

Cl

Si

OO

Cl

OSi

O

O

Si

Si

O

O

Si

O

O

O

O

Si

OO

A B C D

OSi Cl

O

O

Si

Si

O

O

Si

O

O

O

O

Cl

Si

OO

Cl

Cl

Cl

BPAP-QH (Mixed Anchor Study)

0

500

1000

1500

2000

2500

3000

0 2 4 6 8 10 12 14 16 18 20

Column Volume (CV = 5.0 mL)

Fe(I

II)

mg

/L

BPAP-QH 041104-DN A

BPAP-QH 041404-DN B

BPAP-QH 042004-DN C

BPAP-QH (Mixed Anchor Study)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1 2 3 4 5 6 7 8 9 10

Column Volume (CV = 5.0 mL)

Fe(I

II)

mg

/L

BPAP-QH 041104-DN A

BPAP-QH 041404-DN B

BPAP-QH 042004-DN C

Page 24: UMT Presentation

Outline

• Synthesis, Characterization, and Testing of Composites

• Mixed Silane Gel

• Phosphorous Based Ligand Composites

• Rare Earth Element Recovery

• Berkeley Pit Lake Metal Recovery

Page 25: UMT Presentation

Boduszek, B. Phosphorus, Sulfur, and Silicon 1996, 113, 209-218.

PCl

Cl

O

Cl HO+ PO

O

O

Cl +

NH2

n

n

6 M HCl 6 hrs.

O

NH

P

O

O

OH

NH

P

O

OH

n

THF (0.5% DMSO)

reflux, 24 hrs.

4 hrs. neatambient

Chloromethylphosphonic Dichloride Pathway

Elemental analysis: N*/P = 10

Page 26: UMT Presentation

Chloromethylphosphonic Dichloride Pathway

N

N N

OSi N

O

O

Si

Si

O

O

Si

O

O

O

O

N

N

N

N

N

P

P

Elemental analysis: N*/P = 10

Page 27: UMT Presentation

Bhattacharya, A.K.; Thyagarajan, G. Chemical Reviews, 1981, 81, 415-430.

MeOP

OMeOMe

+ POMe

OMe

O

OCl +

NH2

n

dry C2H3N

CH3OH

pH 9 (NaOH)80 C, 24 hrs.

Cl

O

Cl

ice bath1 hr.

Si

Br

MeMe

Me

NH

OP

OOH

OH

n n

NH

OP

OOMe

OMe

Michaelis-Arbuzov Rearrangement

Elemental analysis: N*/P = 5.9

Page 28: UMT Presentation

Dimethyl(3-bromopropyl)phosphonate

Br P

O

OMe

OMe

OMe

P

MeOOMe

Br Br +

4 eq. eq.

150oC

45 min.

15 mmHg

65oC

Maguire, A.R. et al. Bioorg. Med. Chem. 2001, 9, 745-762.

Michaelis-Arbuzov Rearrangement

Page 29: UMT Presentation

Michaelis-Arbuzov Rearrangement

ppm (t1) 30.035.0

31P

ppm (t1) 1.502.002.503.003.50

1H

ppm (t1) 1020304050

13C

1H

Br P

O

OMe

OMe

a

b

c

d

e

f

a

b/c

e/f

e/f b a

c

d

b/c

ppm (t1) 30.035.0

31P

ppm (t1) 1.502.002.503.003.50

1H

ppm (t1) 1020304050

13C

1H

Br P

O

OMe

OMe

a

b

c

d

e

f

a

b/c

e/f

e/f b a

c

d

b/c

Maguire, A.R. et al. Bioorg. Med. Chem. 2001, 9, 745-762.

Page 30: UMT Presentation

Phosphonate Composite (BP-6)

Br P

O

OMe

OMe

60oC

pH 9 (NaOH)24 hrs.

+

NH2

n R = H/Me (1.9:1)

NH P OMe

OR

O

n

Elemental analysis: N*/P = 1.5

Page 31: UMT Presentation

Phosphonate Composite (BP-7)

Elemental analysis: N*/P = 1.7

Br P

O

OMe

OMe+

NH2

n

60oC

TEA, EtOH22 hrs.

R = H/Me (1:1.5)

NH P OMe

OR

O

n

Page 32: UMT Presentation

The Mannich Reaction (Acid Catalyzed)

+

. .

. .

H

C

O

H

P

P

P

N

P

OOH

OH

H

- H+

+ H+

- H2O

N

H

C

H

H

+

PHO

HOH

O

P

OHHO OH

BPAP

N

H

OH

+

HCl Activated BP-1

PN

H

H

H

PN

H

H

. .

Smith, M.B. and March, J., March’s Advanced Organic Chemistry, 5th ed. 2001, 1189-1190.

Blicke, F.F., The Mannich Reaction, Organic Reactions, Chapter 10, 1942, 303-341.

Page 33: UMT Presentation

Smith, M.B. and March, J., March’s Advanced Organic Chemistry, 5th ed. 2001, 1189-1190.

Blicke, F.F., The Mannich Reaction, Organic Reactions, Chapter 10, 1942, 303-341.

Elemental analysis: N*/P = 0.75

Phosphonic Acid Composite (BPAP)

+

. .

. .

H

C

O

H

P

P

P

N

P

OOH

OH

H

- H+

+ H+

- H2O

N

H

C

H

H

+

PHO

HOH

O

P

OHHO OH

BPAP

N

H

OH

+

HCl Activated BP-1

PN

H

H

H

PN

H

H

. .P

P

N

H

P

O

OH

OH

N

H

P

OHHO

N

OSi N

O

O

Si

H

O

OH

O

N

POH

OH

P

O

OH

OH

O

Page 34: UMT Presentation

BPAP 1H - 31P HETCOR NMR

CH

2

NH

N((CH2P(O)(OH)2)2

NH(CH2P(O)(OH)2)

CH

2

NH

N((CH2P(O)(OH)2)2

NH(CH2P(O)(OH)2)

P

P

N

H

P

O

OH

OH

N

H

P

OHHO

N

OSi N

O

O

Si

H

O

OH

O

N

P

OH

P

O

OH

O

HO

HO

Crick, D.W.; Alexandratos, S.D. Magn. Reson. Chem. 1994, 32, S40-S44.

1H

(ppm)

31P

31P

Page 35: UMT Presentation

Phosphinic Acid Composite (BP-5)

excess excess

+ CH2O + H3PO2

NH2

n

2.0 N HCl, reflux, 20 hr.

NH

POHO

H

n

Elemental analysis: N*/P = 0.58

Varga, T.R. Synthetic Communications 1997, 27, 2899-2903.

Page 36: UMT Presentation
Page 37: UMT Presentation

BPAP-QH 121403-DN Strip Profile of BT#'s 1, 2, 10, 20 & 309 N H2SO4 (25%), 0.42 slowing to 0.27 CV/min. at 70 psi (4.7 bar)

0

500

1000

1500

2000

2500

3000

3500

4000

0 1 2 3 4 5 6

Column Volume (CV = 490 mL)

Fe(I

II)

mg

/L

SP#1

SP#2

SP#10

SP#20

SP#30

BPAP-QH 121403-DN BT#'s 1, 2, 10, 20 & 303.1 g/L Fe(III), pH 1.5, 0.32 CV/min. at 33 psi (2.2 bar)

0

500

1000

1500

2000

2500

3000

3500

4000

0 2 4 6 8 10 12 14 16

Column Volume (CV = 490 mL)

Fe(I

II)

mg

/L

BT#1

BT#2

BT#10

BT#20

BT#30

BPAP-QH 121403-DN Pilot Scale Cycle Testing Results

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Cycle Number

Cap

cit

y (

g/k

g)

Flowthrough Capacity

Strip Capacity

Page 38: UMT Presentation

Fe3+ Removal – Copper Electrowinning Solutions

BPAP-CF 041504-DN0.050 CV/min., 1.5 M EDTA (pH 10.6), 5.0 M H3PO3, 5.0 M H3PO4

0

1000

2000

3000

4000

5000

6000

7000

S-1-2 S-3-4 S-5-6 S-7-8 S-9-10

Fe(I

II)

mg

/L

1.5 M EDTA (99% stripped)

5.0 M H3PO3 (94% stripped)

5.0 M H3PO4 (78% stripped)

Page 39: UMT Presentation

Fe3+ Removal – Copper Electrowinning Solutions

BPAP-CF 041504-DN0.050 CV/min., 1.5 M EDTA pH 10.6, 99% Stripped

0

1000

2000

3000

4000

5000

6000

7000

S-1-2 S-3-4 S-5-6 S-7-8 S-9-10 S-11-12 S-13-14

Fe(I

II)

mg

/LFe(III) #1 (30 mg/g)

Fe(III) #2 (30 mg/g)

BPAP-CF 041504-DN0.50 CV/min., Feed Solution = 4 N H2SO4, 30 mg/g Fe(III) Capacity

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90

Column Volume (CV = 5.0 mL)

Fe(I

II)

mg

/L

0

2000

4000

6000

8000

10000

12000

Cu

(II)

mg

/L

Fe(III) #1 Feed = 407 mg/L

Fe(III) #2 Feed = 407 mg/L

Cu(II) #1 Feed = 10.3 g/L

Cu(II) #2 Feed = 10.3 g/L

P

P

N

H

P

O

OH

OH

N

H

P

OHHO

N

OSi N

O

O

Si

H

O

OH

O

N

POH

OH

P

O

OH

OH

O

Page 40: UMT Presentation

Fe3+ Removal – Copper Electrowinning Solutions

BPAP-CF 041504-DN0.050 CV/min., 1.5 M EDTA pH 10.6, 99% Stripped

0

1000

2000

3000

4000

5000

6000

7000

S-1-2 S-3-4 S-5-6 S-7-8 S-9-10 S-11-12 S-13-14

Fe(I

II)

mg

/LFe(III) #1 (30 mg/g)

Fe(III) #2 (30 mg/g)

BPAP-CF 041504-DN0.50 CV/min., Feed Solution = 4 N H2SO4, 30 mg/g Fe(III) Capacity

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90

Column Volume (CV = 5.0 mL)

Fe(I

II)

mg

/L

0

2000

4000

6000

8000

10000

12000

Cu

(II)

mg

/L

Fe(III) #1 Feed = 407 mg/L

Fe(III) #2 Feed = 407 mg/L

Cu(II) #1 Feed = 10.3 g/L

Cu(II) #2 Feed = 10.3 g/L

P

P

N

H

P

O

OH

OH

N

H

P

OHHO

N

OSi N

O

O

Si

H

O

OH

O

N

POH

OH

P

O

OH

OH

O

93% Fe3+ Recovery

87% EDTA Recovery

10 mL + 50 mL 3 M H2SO4

Page 41: UMT Presentation

BPAP-CF 041504-DN Breakthrough Curve0.50 CV/min., pH 1.0

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30

Column Volume (CV = 5.0 mL)

Meta

l C

on

c. (m

g/L

)

Ga(III) Feed = 2,140 mg/L

Al(III) Feed = 1,840 mg/L

BPAP-CF 041504-DN Breakthrough Curve0.50 CV/min., 1 M EDTA pH 10.5, 92% Ga(III) Purity

0

1000

2000

3000

4000

5000

6000

S-1-2 S-3-4 S-5-6 S-7-8 S-9-10

Meta

l C

on

c. (m

g/L

)

Ga(III) 25 mg/g

Al(III) 2 mg/g

Phosphorous Based Ligand Composites (Ga3+)Ga(III) Batch Testing

0

10

20

30

40

50

60

BPAP BP-5 BP-6 BP-7

Ga(I

II)

mg

/g

pH 1.0 (HNO3)

pH 2.1 (HNO3)

Page 42: UMT Presentation

Th4+ Batch Capacity TestingTh(IV) Batch Capacities

0

20

40

60

80

100

120

140

160

0 1 2 3

pH (HNO3)

Th

(IV

) C

ap

acit

y (

mg

/g)

BPAP

BP-5

BPSU

BP-1

WP-2

WP-4

BP-7

BP-6

Page 43: UMT Presentation

Th4+ Breakthrough Testing

Breakthrough Curves 0.50 CV/min., Feed pH 2.9

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 5 10 15 20 25 30 35 40 45

Column Volume (CV = 5.0 mL)

Th

(IV

) C

on

c.

(mg

/L)

BPAP 131 mg/g

BP-5 123 mg/g

BPSU 117 mg/g

BP-7 68 mg/g

Strip Profiles at 0.20 CV/min. using 2 M H3PO3 Strip Solution

0

5000

10000

15000

20000

25000

30000

S-1-2 S-3-4 S-5-6 S-7-8 S-9-10

Th

(IV

) m

g/L

BPSU (99% Stripped)

BP-7 (34% Stripped)

BPAP (7% Stripped)

BP-5 (3% Stripped)

Page 44: UMT Presentation

• Very low affinity towards divalent metals such as Cu2+

• High affinity towards metals in the 3+ and 4+ oxidation states:

Fe3+, Ga3+, Al3+, Ln3+, Th4+, Zr4+ (In3+, Co3+, UO22+)

• Strip 3+ metals using either H3PO3 or EDTA (pH 10.5)

• Does not strip well using H2SO4, HCl, HNO3; Fe3+ sulfite redox strip

solutions do not work

Phosphonic/Phosphinic Acid Composites

Phosphonic Acid Phosphinic Acid

NH

POHO

OH

n

NH

POHO

H

n

(BPAP) (BP-5)

Page 45: UMT Presentation

• Moderate (Ga3+) to very low (Eu3+) affinity towards 3+ metals

• Moderate affinity towards metals in the 4+ oxidation state (Th4+)

• Possibly strip metal using 1 M EDTA (pH 10.5)

• Does not strip well using 2 M H3PO3

• Difficulties obtaining the diester due to hydrolysis

Phosphonate Composites

R = H/Me (2.5:1)

NH P OMe

OR

O

n

BP-6 BP-7

R = H/Me (1.2:1)

NH P OMe

OR

O

n

Page 46: UMT Presentation

Outline

• Synthesis, Characterization, and Testing of Composites

• Mixed Silane Gel

• Phosphorous Based Ligand Composites

• Rare Earth Element Recovery

• Berkeley Pit Lake Metal Recovery

Page 47: UMT Presentation

Rare Earth Element (REE) Sulfuric Acid Leach SolutionWestern Australia

Rare Earth Element Purification87% to 99% Ln(III) Purity [ <1% Al(III), <<1% Ca(II), Fe(III), Ti(IV)]

0

1000

2000

3000

4000

5000

6000

Ce(III) La(III) Nd(III) Sm(III) Pr(III) Fe(III) Mn(II) Ca(II) Mg(II) Al(III) Zn(II) Ti(IV)

Meta

l C

on

c.

(mg

/L)

REE Feed (50%)

WP-4 Flowthrough

BPAP Recovery Sol.

Page 48: UMT Presentation

WP-4-CF 101205-DN Breakthough Curve0.50 CV/min., Feed pH 1.30

0

200

400

600

800

1000

1200

0 5 10 15 20 25

Column Volume (CV = 12.0 mL)

Fe(I

II)

Co

nc.

(mg

/L)

BT #1

BT #2

WP-4-CF 101205-DN Strip Profile0.50 CV/min., 9 N H2SO4, 26 mg/g Strip Capacity, 100% Stripped

0

2000

4000

6000

8000

10000

12000

14000

16000

S-1 S-2 S-3 S-4 S-5 S-6

Column Volume (CV = 12.0 mL)

Fe(I

II)

Co

nc.

(mg

/L)

SP #1

SP #2

P

P

NH

N

H

N

H

N

OSi N

O

O

Si

H

O

O

H

H

N

OH

NHO

Page 49: UMT Presentation

WP-4-CF 101205-DN Breakthough Curve0.50 CV/min., Feed pH 1.30

0

1000

2000

3000

4000

5000

6000

0 5 10 15 20 25

Column Volume (CV = 12.0 mL)

Fe(I

II)

Co

nc.

(mg

/L)

Ce(III)

La(III)

Nd(III)

Sm(III)

Pr(III)

Fe(III)

WP-4-CF 101205-DN Breakthough Curve0.50 CV/min., Feed pH 1.30

0

50

100

150

200

250

300

350

0 5 10 15 20 25

Column Volume (CV = 12.0 mL)

Me

tal

Co

nc

. (m

g/L

)

0

200

400

600

800

1000

Fe

(III

) C

on

c.

(mg

/L)

Mn(II)

Ca(II)

Mg(II)

Al(III)

Zn(II)

Ti(IV)

Fe(III)

P

P

NH

N

H

N

H

N

OSi N

O

O

Si

H

O

O

H

H

N

OH

NHO

Page 50: UMT Presentation

WP-4-CF 101205-DN Breakthough Curve0.50 CV/min., Feed pH 1.30

0

1000

2000

3000

4000

5000

6000

0 5 10 15 20 25

Column Volume (CV = 12.0 mL)

Fe(I

II)

Co

nc.

(mg

/L)

Ce(III)

La(III)

Nd(III)

Sm(III)

Pr(III)

Fe(III)

WP-4-CF 101205-DN Strip Profile0.50 CV/min., 9 N H2SO4, 25 mg/g Fe(III) Capacity

0

2000

4000

6000

8000

10000

12000

14000

S-1 S-2 S-3 S-4

Me

tal

Co

nc

. (m

g/L

)Fe(III)

Ti(IV)

Ce(III)

Nd(III)

La(III)

P

P

NH

N

H

N

H

N

OSi N

O

O

Si

H

O

O

H

H

N

OH

NHO

Page 51: UMT Presentation

BPAP-CF 041504-DN Breakthrough Curve #10.50 CV/min., Feed pH = 1.31

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1 2 3 4 5 6 7 8

Column Volume (CV = 9.0 mL)

Me

tal

Co

nc

. (m

g/L

)

Ce(III)

La(III)

Nd(III)

Sm(III)

Pr(III)

Ca(II)

Mn(II)

Al(III)

BPAP-CF 041504-DN Strip Profile #10.50 CV/min., 2 M H3PO3, 59 mg/g Ln(III) Capacity,

99% Ln(III) Purity [< 1% Al(III), << 1% Ca(II), Fe(III), Ti(IV)]

0

500

1000

1500

2000

2500

3000

3500

4000

4500

S-1-2 S-3-4 S-5-6 S-7-8 S-9-10

Column Volume (CV = 9.0 mL)

Meta

l C

on

c. (m

g/L

)

Ce(III)

La(III)

Nd(III)

Sm(III)

Pr(III)

Al(III)

P

P

N

H

P

O

OH

OH

N

H

P

OHHO

N

OSi N

O

O

Si

H

O

OH

O

N

POH

OH

P

O

OH

OH

O

Page 52: UMT Presentation

BPAP-CF 041504-DN Breakthrough Curve #20.50 CV/min., Feed pH = 1.31

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1 2 3 4 5 6 7 8

Column Volume (CV = 9.0 mL)

Me

tal

Co

nc

. (m

g/L

)

Ce(III)

La(III)

Nd(III)

Sm(III)

Pr(III)

Ca(II)

Mn(II)

Al(III)

BPAP-CF 041504-DN Strip Profile #20.50 CV/min., 2 M H3PO3, 59 mg/g Ln(III) Capacity

99% Ln(III) Purity [< 1% Al(III), << 1% Ca(II), Fe(III), Ti(IV)]

0

500

1000

1500

2000

2500

3000

3500

4000

4500

S-1-2 S-3-4 S-5-6 S-7-8 S-9-10

Column Volume (CV = 9.0 mL)

Meta

l C

on

c. (m

g/L

)

Ce(III)

La(III)

Nd(III)

Sm(III)

Pr(III)

Al(III)

P

P

N

H

P

O

OH

OH

N

H

P

OHHO

N

OSi N

O

O

Si

H

O

OH

O

N

POH

OH

P

O

OH

OH

O

Page 53: UMT Presentation

BPAP-CF 041504-DN Eu(III) Strip Profile ComparisonVarious Strip Solutions (percent strip)

0

2000

4000

6000

8000

10000

12000

14000

16000

S-1-2 S-3-4 S-5-6 S-7-8 S-9-10

Eu

(III)

mg

/L

EDTA (100%)

H3PO3 (100%)

H3PO4 (99%)

HNO3 (92%)

H2SO4 (80%)

HCl (39%)

Page 54: UMT Presentation

Outline

• Synthesis, Characterization, and Testing of Composites

• Mixed Silane Gel

• Phosphorous Based Ligand Composites

• Rare Earth Element Recovery

• Berkeley Pit Lake Metal Recovery

Page 55: UMT Presentation

Empire Mill - 1888

Page 56: UMT Presentation

Abandoned Hardrock Mines in the Western U.S.

Montana State’s High Priority Cleanup Sites

The Berkeley Pit 1981 (top), & Lake 1999 (bottom)

Page 57: UMT Presentation

Depth Dissolved Species and Elements

(feet) SO4 Fe Zn Mg Ca Al Mn Cu Cd As

0 6345 270 378 430 512 195 179 86.8 1.84 <0.22

50 8994 892 578 538 494 281 212 145 2.39 0.34

500 9105 986 580 536 494 281 209 177 2.43 0.78

Page 58: UMT Presentation

Depth Dissolved Species and Elements

(feet) SO4 Fe Zn Mg Ca Al Mn Cu Cd As

0 6345 270 378 430 512 195 179 86.8 1.84 <0.22

50 8994 892 578 538 494 281 212 145 2.39 0.34

500 9105 986 580 536 494 281 209 177 2.43 0.78

Page 59: UMT Presentation

Pump

Berkeley Pit

Feed Reservoir

Treated Solution

pH

Meter

Settling

Tank

Mixer

Sludge to Dump

pH Adjustment & Floculation Chamber

- Raise pH to 5.2 (using base)

- Add ~0.1% (by volume) floculant

Recycle Filtrate Filter Press

Pump

Sludge to Dump

C

u

Z

nM

n

Pump

Pump

Holding

Tank

Cu(II) Zn(II) Mn(II)

Berkeley Pit (% purity) 5.0 18 6.0

Recovery (% purity) 97 99.98 83

Berkeley Pit (g/L) 0.17 0.58 0.21

Recovery (g/L) 10 6.5 9.0

Page 60: UMT Presentation

CuWRAM-CF Breakthrough Curve0.50 CV/min., pH 2.2, 32 mg/g FT capacity

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350 400

Column Volume (CV = 5.0 mL)

Meta

l C

on

c. (m

g/L

)

Cu(II) Feed = 193 mg/L

Fe(III) Feed = 300 mg/L

Al(III) Feed = 253 mg/L

Zn(II) Feed = 602 mg/L

Mn(II) Feed = 172 mg/L

CuWRAM-CF Strip Fractions0.50 CV/min., 9 N H 2 SO 4 , 97% Cu(II) Purity, 3% Fe(III)

0

2000

4000

6000

8000

10000

12000

1-2 3-4 5-6 7-8

Column Volume (CV = 5.0 mL)

Meta

l C

on

c. (m

g/L

)

Cu(II) 32 mg/g

Fe(III) 1 mg/g

Al(III) 0 mg/g

Zn(II) 0 mg/g

Mn(II) 0 mg/g

Cu2+

P

P

N

H

N

H

N

OSi N

O

O

Si

H

O

O

H N

N

H

N

H

Page 61: UMT Presentation

NaOH pH Adjustment of Berkeley Pit Water

0

100

200

300

400

500

600

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

pH

Meta

l C

on

c. (m

g/L

)

Zn

Fe

Al

Mn

Page 62: UMT Presentation

WP-2-CF Strip Fractions0.50 CV/min., 9 N H2SO4, 99.98% Zn(II) Purity

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 2 3 4 5 6

Column Volume (CV = 5.0 mL)

Meta

l C

on

c. (m

g/L

)Zn(II) 22 mg/g

Mn(II) 0 mg/g

WP-2-CF Breakthrough Curve (4 CV 0.010 M NaOH to pH 1.9)

0.50 CV/min., pH 5.3, 26 mg/g Zn(II) FT Capacity

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60 70

Column Volume (CV = 5.0 mL)

Me

tal

Co

nc

. (m

g/L

)

Zn(II) Feed = 620 mg/L

Mn(II) Feed = 248 mg/L

P

P

O

OHNN

OSi N

O

O

Si

O

O

H

NNN

O

HO

H

H

O

HO

P

Page 63: UMT Presentation

BP-2-CF Breakthrough Curve0.50 CV/min., pH 4.9, 23 mg/g FT capacity

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60 70 80 90 100

Column Volume (CV = 5.0 mL)

Meta

l C

on

c. (m

g/L

)

Mn(II) Feed = 255 mg/L

Ca(II) Feed = 407 mg/L

Mg(II) Feed = 501 mg/L

BP-2-CF Strip Fractions0.50 CV/min., 9 N H2SO4, 83% Mn(II) Purity

0

2000

4000

6000

8000

10000

1 2 3 4 5 6

Column Volume (CV = 5.0 mL)

Meta

l C

on

c. (m

g/L

)

Mn(II) 30 mg/g

Ca(II) 4 mg/g

Mg(II) 2 mg/g

P

P

N

HO

N

H

O

N

H

N

OSi N

O

O

Si

H

O

O

O

O-

O-

O-

H

Page 64: UMT Presentation

Proposed large-scale columns = 10,000 L

Flow rate per unit (3 columns) = 5,000 L/min

Flow rate of water to be treated = 11,000 L/min

Units required = 2.2

Cu cap. CuWRAM = 0.55 mmol/g

Cu cap. CuWRAM = 35 mg/g

density CuWRAM = 0.69 g/mL

mass CuWRAM/column = 6.9E+06 g

Cu cap./column = 2.4E+08 mg

[Cu] in BP H2O = 175 mg/L

Cap. BP H2O/column = 1.4E+06 L

Zn cap. WP-2 = 0.38 mmol/g

Zn cap. WP-2 = 25 mg/g

density WP-2 = 0.64 g/mL

mass WP-2/column = 6.4E+06 g

Zn cap./column = 1.6E+08 mg

[Zn] in BP H2O = 575 mg/L

Cap. BP H2O/column = 2.8E+05 L

Rotate CuWRAM column every = 2.8E+02 min

Rotate WP-2 column every = 5.6E+01 min

Cu mass gain as CuSO4 · 5H2O = 393 %

Zn mass gain as ZnSO4 · 7H2O = 440 %

Cu from each strip = 9.5E+02 kg

Zn from each strip = 7.1E+02 kg

Cu recovered per day = 1.1E+01 mt

Zn recovered per day = 4.0E+01 mt

CuSO4 · 5H2O market price = 590 US$/mt

ZnSO4 · 7H2O market price = 180 US$/mt

Gross profit from copper/day = 6.4E+03 US$

Gross profit from zinc/day = 7.2E+03 US$

Total gross profit/day = 1.4E+04 US$

Total gross profit/year = 5.0E+06 US$

Page 65: UMT Presentation

Conclusions

• BPAP and BP-5 show very high capacities towards 3+/4+ metals,

even from highly acidic media

• BPAP exhibits greater metal capacity than BP-5

• BPAP and BP-5 have an extremely low affinity towards divalent

metals such as Cu2+

• Phosphonate ligands show moderate affinity towards metals in

the 4+ oxidation state

• Phosphorous acid and EDTA can strip 3+ metals from BPAP

• Cu2+, Zn2+ and Mn2+ can be separated from acid mine drainage

• REEs can be separated from an authentic acid leach solution

• Actinides can be sequestered using BPAP with extremely high

formation constants

Page 66: UMT Presentation

Future Directions

• BPAP and BP-5

– BP-5 studies with Eu3+ using H3PO3 and EDTA

– Copper electrowinning applications

– Arsenic and selenium extraction (BPAP-Zr4+)

– Investigate stripping Th4+ using EDTA

– BPAP has been used for biochemistry applications to selectively

remove Fe(III) from bacterial (Sulfolobus solfataricus) growth

media

Wiedenheft, B.; Willits, D.; Mosolf, J.; Yeager, M.; Dryden, K.; Young, M.; Douglas, T.

Proceedings of the National Academy of Sciences 2005, 102(30), 10551-10556

Page 67: UMT Presentation

Future Directions

Phosphonates

– Does not appear to offer increased stripping kinetics

– Diesters may not be stable under strong acid or base

regeneration

– May try carboxylate activation using carbonyl diimidazole (CDI)

coupled with a primary amine

Fryxell, G.E.; Wu, H.; Lin, Y.; Shaw, W.J.; Birnbaum, J.C., Linehan, J.C.; Nie, Z.;

Kemer, K.; Kelly, S. J. Mater. Chem. 2004, 14, 3356-3363

Page 68: UMT Presentation

Future Directions

Mixed Anchor Studies

– Increase the ratio of MTCS:CPTCS

– Investigate capacity and kinetic improvements on composites

such as CuWRAM and WP-4

– Possibly try propyltrichlorosilane

(longevity testing using EDTA strip)

Page 69: UMT Presentation

Future Directions

Mixed Anchor Studies

– Increase the ratio of MTCS:CPTCS

– Investigate capacity and kinetic improvements on composites

such as CuWRAM and WP-4

– Possibly try propyltrichlorosilane

(longevity testing using EDTA strip)

OSi

O

O

Si

Si

O

O

Si

O

O

O

O

Si

OO

N

N

H

H

NH

H

N

H

H

N

H

H

P

P

OSi

O

O

Si

Si

O

O

Si

O

O

O

O

Si

OO

N

N

H

H

NH

H

N

H

H

N

H

H

P

P

Page 70: UMT Presentation

Synthetic Development of Novel Silica Polyamine Composites

and Reclamation of Hazardous Mining Wastewater