understanding and optimizing the h2/br2 r edox flow...

34
Understanding and Optimizing the H2/Br2 R edox Flow Battery for Grid-Scale Energy Sto rage Michael Tucker, Kyu Taek Cho, Vincent Battaglia, Venkat Sr inivsan, and Adam Z. Weber Environmental Energy Technologies Division Lawrence Berkeley National Laboratory 2 nd MRES Northeastern, August 19, 2014

Upload: lamdan

Post on 10-May-2018

218 views

Category:

Documents


1 download

TRANSCRIPT

Understanding and Optimizing the H2/Br2 Redox Flow Battery for Grid-Scale Energy Sto

rage

Michael Tucker, Kyu Taek Cho, Vincent Battaglia, Venkat Sr

inivsan, and Adam Z. Weber

Environmental Energy Technologies Division Lawrence Berkeley National Laboratory

2nd MRES Northeastern, August 19, 2014

Outline  •  Introduc.on  

–  Performance  –  Cost  

•  Bromide  crossover  –  Efficiency  –  Degrada.on  

•  Flow  ba?ery  performance  –  Bromide  and  water  return  –  Cycling  behavior    

•  Summary  

Br2-­‐H2  Flow  Ba?ery  Overview  

$/kgVanadium  (V2O5) 18Hydrogen 4-­‐10Bromine 1

Porous    Carbon  Media  (GDL)   Catalyst  Layer  (CL)  

           1mm                    

High-­‐power,  low-­‐cost  system  e-­‐  

H2  HBr/Br2  

H2  à  2H+  +  2e      (0.00V)  Br2  +  2H+  +  2e  à  2HBr      (+  1.09V)  

Nega.ve  Posi.ve  

Aqueous  Gas  

Membrane  

Porous  Carbon  Media  Catalyst  Layer  Porous  Carbon  Media  

H+  

Br  

-­‐Porous  electrode    -­‐Flow-­‐Field  Geometry  -­‐Cell  Compression    -­‐Opera.ng  pressure  

Ecell  =  E0  -­‐ηact    -­‐ηohm  -­‐ηmass  

-­‐Electrode  material  -­‐Electrode  ac.va.on  -­‐Electrode  op.miza.on    

-­‐Membrane  thickness  -­‐Electrolyte  composi.on    

-­‐Electrolyte  concentra.on  -­‐Opera.ng  temperature  and          pressure  

Cell  Performance  Cell  Performance  

Performance  •  Greatly  improved  performance  with  op.miza.on  of  cell  components  

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.00.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

Cel

l vol

tage

(V)

Current Density (A/cm2)

Ambient  temperature  and  pressure  0.9  M  Br2  /  1  M  HBr  

 Voltaic  efficiency   PD  (W/cm2)  

80  %   0.99  90  %   0.60  

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.00.0

0.2

0.4

0.6

0.8

1.0

1.2

GEN.1: Conventional cell (flow-by) GEN.2: Multi-layered electrode (flow-thru) GEN.3: Activated multi-layered electrode (flow-thru) GEN.4: With thinner (15µm) membrane

(flow-thru+activated multi-layered electrode)

Cel

l vol

tage

(V)

Current Density (A/cm2)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Pow

er D

ensi

ty (W

/cm

2 )

K.Cho et al, Energy Technology, 1 (2013)  596  –  608

Performance  

•  Trade-­‐off  between  efficiency  and  rate  capability  as  a  func.on  of  membrane  thickness  

100 10000.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N117

NR211

NR212

Energy

Voltage

Effi

cien

cy

Current (mA/cm2)

Coulombic

2.8MPH2 = 30psi

0 20 40 60 80 100 120 140 160 180 2000

5

10

15

20

25

30

Membrane Thickness (µm)

Sel

f-Dis

char

ge C

urre

nt (m

A/c

m2 )

2.8MPH2 = 30psi

Performance  

Electrodes  -­‐  Br-­‐  adsorp.on  on  Pt  (-­‐)  -­‐  Op.miza.on  of  (-­‐)  and  (+)  electrodes    

100 10000.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Energy

Voltage

Effi

cien

cy

Current Density (mA/cm2)

Coulombic

Baseline    

Improved    

Membrane  -­‐  Pretreatment  -­‐  Crossover  -­‐  Type  

Cycling  -­‐  closed  hydrogen  

 Total  U.liza.on  

0 1 2 3 4 50.20

0.40

0.60

0.80

1.00

Br2

HBr

0.9 M Br2/ 1 M HBr at 300ml/minConst.Current: 3.5A (80% efficiency)

Cell: SPFF|25BC||Pt/C|N211||GFD-3|FLTHRUC

ell v

olta

ge (V

)

Discharge duration (hrs)

0.0

0.4

0.8

1.2

1.6

2.0

2.4

Con

cent

ratio

n (B

r 2 and

HB

r), m

ol/li

ter

4.597  hrs  (Br2:  0.058  M    HBr:  2.32  M)  

Br2:  0.9  M  HBr:  1.0  M  

Bromine  uBlizaBon:  ~93%  

Cost  Model  

Note:  The  cost  model  results  shown  here  do  not  include  components  that  may  eventually  be  required  to  handle  species  crossover.  

1200

1000

800

600

400

200

0

Bat

tery

sys

tem

cap

ital c

ost (

$/kW

h)

86420

Discharge time (hours)

Gen1 (ASR 0.50 Ohm-cm2) Gen2 (ASR 0.40 Ohm-cm2) Gen3 (ASR 0.32 Ohm-cm2) Gen4 (ASR 0.23 Ohm-cm2)

BOP costs: 37%

Stack costs: 37%

Assembly: 27%

Battery system capital cost = 737 $/kWh

Membrane: 38%

H2 electrode catal.: 3%

Electrodes (no catal): 12% GDL/Flow field: 5%

Bipolar plates: 33%

Gasket & sealing: 5%Endplates & tie rods: 3%

Stack cost = 270 $/kWh

Br liq. pump: 18%

Br tank: 14%

H2 tank: 16%Active matls.: 19%

Cooling: 19%

Other: 15%

BOP cost = 270 $/kWh

Cost  Model  •  Full-cell area-specific resistance (ASR) as a functions of HBr

concentration at 0% SOC and membrane thickness –  Ohmic losses are quite important to overall cost –  Do not want to operate at high HBr concentrations

•  Lower conductivity due to membrane dehydration •  Higher crossover

1000

800

600

400

200

0

Batte

ry s

yste

m c

apita

l cos

t ($/

kWh)

86420

HBr concentration at 0% SOC (M)

4h discharge

1h discharge

Cost minimum: 3.1 M HBr

Cost minimum: 4.8 M HBr

00.5

11.5

x 10-40

24

68

0

500

1000

1500

2000

Membrane Thickness (cm)HBr conc at 0% SOC (M)

Batte

ry s

yste

m c

apita

l cos

t ($/

kWh)

K.Cho et al, Energy Technology, 1 (2013)  596  –  608

•  Membrane  characteriza.on  

–  Conduc.vity  decreases  at  higher  HBr  concentra.on  –  Membrane  dehydra.on    

‘H’-­‐glass  cell    

Membrane  

Reference  electrode  

Conduc.vity  

Ohmic  Losses  

Ahmet  Kusoglu,  Kyu  Taek  Cho,  Rafael  A.  Prato,  and  Adam  Z.  Weber,  Solid  State  Ionics,  252,  68-­‐74  (2013).    

Morphology  

Outline  •  Introduc.on  

–  Performance  –  Cost  

•  Bromide  crossover  –  Efficiency  –  DegradaBon  

•  Flow  ba?ery  performance  –  Bromide  and  water  return  –  Cycling  behavior    

•  Summary  

Membrane  Transport  Proper.es  Charge   Discharge  

-­‐  Ionic  conduc.vity  (H+)  -­‐  Electronic  resistance    -­‐  Water  permeability  -­‐  Br  permeability  -­‐  Electro-­‐osmo.c  drag  coeff.    -­‐  H2  permeability  -­‐  Br  uptake    

Br2-­‐HBr  (+)  

H2  (-­‐)  

H+  

H2O  

Br-­‐  Br3-­‐  Br2  

Br2-­‐HBr  (+)  

H2  (-­‐)  

250-­‐500mA/cm2  

Crossover  at  OCV  

0 20 40 60 80 1000

20

40

60

80

100

120

State of Charge (%)

Wat

er o

r Bro

min

e C

ross

over

Rat

e

(mg/

h/cm

2 )

0

20

40

60

H2O

Br

Br/H

2O C

ross

over

Rat

io (m

mol

/mol

)

Br/H2O

At OCV

Crossover  Under  Opera.on  

•  Significant  Br-­‐  flux  during  charge  •  Propor.onal  to  HBr  concentra.on  •  Correlated  to  water  crossover  

–  Should  be  returned  to  other  electrode  tank  

15  

0

10

20

30

40

50

60

70

5M HBr3M HBr1M HBr

Discharge

Charge

Discharge

Charge

Discharge

Charge

Cros

sove

r rat

e of

Br- (m

g/hr

)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

5M HBr3M HBr1M HBr

Cro

ssov

er ra

te o

f H2O

dra

gged

by

H+

(mol

/mol

)

KT  Cho,  MC  Tucker,  et  al,  ChemPlusChem,  accepted    

NR212  

During  Charge  

Br-­‐    Crossover   H2O    Crossover  

Collected  during  charge  During  discharge  

IniBal  level  of  water  

Br-  Crossover  Causes  Self-­‐Discharge    

𝐻↓2 (𝑔)⇄2𝐻↑+ (𝑎𝑞)+2𝑒↑−                   𝐸↑0 =0.00  𝑉    

   𝐵𝑟↓3↑− (𝑎𝑞)+2𝑒↑− →3𝐵𝑟↑− (𝑎𝑞)         𝐸↑0 =1.06  𝑉      

𝐵𝑟↓2 (𝑎𝑞)+2𝑒↑−   ⇄  2𝐵𝑟↑− (𝑎𝑞)       𝐸↑0 =1.09𝑉  

Crossover  Br-­‐  species  are  reduced  at  (-)  electrode  

KT  Cho,  MC  Tucker,  et  al,  ChemPlusChem,  accepted  

Self-­‐Discharge  Limits  Efficiency  

H2  pressure  effect  

Self-­‐discharge  is  propor.onal  to  Br  concentra.on                -­‐  10-­‐25mA/cm2  equivalent  current  for  useful  concentra.ons  

Not  affected  by  H2  concentra.on  

Limits  overall  Energy  Efficiency  at  low  current  

Self-­‐discharge  appears  as  Coulombic  inefficiency  

 

 à  Desire  membrane  with  high  proton  conduc.vity  and  low  Br-­‐crossover  

KT  Cho,  MC  Tucker,  et  al,  ChemPlusChem,  accepted  

Thickness  (mm)  

Self-­‐discharge  rate  (mA/cm2)  

N117   180   3  NR212   50   13  NR211   25   35  

Effect  of  Membrane  Pretreatment  

100 1000

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Water 70°CBoiled

Energy

PH2 = 30psi

Voltage

Effi

cien

cy

Current Density (mA/cm2)

Coulombic

2.8M

As-received

Pretreat  Self-­‐discharge  mA/cm2  

As-­‐received        1.7  70°C  water        3.4  Boiled  13.1  

Thermal  treatment:  -­‐  improves  conduc.vity  -­‐  increases  Br-­‐crossover  and  self-­‐discharge      Good  tradeoff  with  70°C  water  soak    

0 500 1000 15000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Current Density (mA/cm2)V

olta

ge (V

)

70°C Water

As-Received

BoiledNR212

(a)

0.0 0.1 0.2 0.30.0

0.1

ReZ(Ohm-cm2)

-ImZ

(Ohm

-cm

2 ) (b)

70°C Water

BoiledAs-Received

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Current Density (mA/cm2)

Cel

l Vol

tage

(V)

Cell  Polariza.on  -­‐  Limi.ng  Current  

0 1000 1500 500

Cell  Poten.al  

-­‐  Symmetric  charge/discharge    -­‐  ohmic-­‐dominated  

 -­‐  Sharp  limi.ng  current  on  discharge  

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Current Density (mA/cm2)

Cel

l Vol

tage

(V)

-0.4 0.0 0.4 0.8

H2 electrode vs. DHE (V)

V-­‐steps  1mV/s  

(-­‐)  Electrode  

-­‐  Br-­‐/Br2  crossover  to  Pt  H2  (-­‐)  electrode    -­‐  Br-­‐  adsorbs  on  Pt  at  >  0.1V  vs.  DHE  

 à  blocks  H2  reac.on    -­‐  High  Br-­‐  coverage  at  high  Pt  poten.als  

   à  No  current    -­‐  Br-­‐  reversible  desorp.on  

I-­‐steps  

(-­‐)  Pt  Surface  Coverage:  H2  vs.  Br-­‐  

0 100 200 300 4000.0

0.2

0.4

0.6

0.8

1.0

1.2

(-) vs DHE

H2 flowstopped 5sec

OCV

Charge200mA/cm2

Discharge200mA/cm2

OCV

Time (sec)

Vol

tage

(V)

OCV

CELL V

Increase  Pt  poten.al  by  H2  starva.on    OCV  and  performance    recover  aner  charge  à  complete  Br-­‐  stripping  

Hydrogen  Interrup.on  

0 100 200 300 400 500 600 7000.0

0.2

0.4

0.6

0.8

1.0

1.2

D D D

OCVOCVOCV

(-) vs. DHE

Br2/HBr added to H2 bubbler

OCV

C

D

OCV

Time (sec)

Vol

tage

(V)

OCVCELL V

Increase  Pt  poten.al  by  Br-­‐  poisoning    OCV  recovers  aner  charge  Performance  does  not  à  irreversible  Br-­‐  adsorp.on  

Br-­‐dosing    

Br  Crossover  à  (-)  Pt  Deac.va.on/Dissolu.on  

0 5 10 15 20 25 30 35 40 450.0

0.2

0.4

0.6

0.8

1.0

1.2

2mA/cm2

Time (h)

Vol

tage

(V)

0.2mA/cm2

No  H2  flow,  small  cathodic  current  Hydrogen  interrup.on  -­‐  no  problem  if  Br  flow  off  -­‐  kills  cell  if  Br  flow  on    Crossover  Br  a?acks  Pt  -­‐  increases  Pt  poten.al  above  dissolu.on  threshold    Protect  with  cathodic  current    -­‐  generate  H2  at  Pt  sites  -­‐  maintain  low  anode  poten.al    à  prevent  Pt  dissolu.on  

Effec.ve  if:    Cathodic  current    >    Br  crossover  current  

0 500 1000 15000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

After 0.2mA/cm2 hold

Current Density (mA/cm2)

Vol

tage

(V)

After 2mA/cm2 hold

Fresh

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

FreshMEA

SPL ESPL DSPL CSPL B

Pt in fresh MEA Sample A: after 230 cycles Sample B: after 100 cycles Sample C: after 50-60 cycles Sample D: after 40-50 cycles Sample E: after 40-50 cycels

SPL A

Am

ount

of P

latin

um (m

g)

Pt  dissolved  in  each  electrolyte  

Outline  •  Introduc.on  

–  Performance  –  Cost  

•  Bromide  crossover  –  Efficiency  –  Degrada.on  

•  Flow  baQery  performance  –  Bromide  and  water  return  –  Cycling  behavior    

•  Summary  

Bromine  Reten.on  

0 5 10 15 20 25 30 35 400.00

0.25

0.50

0.75

1.00Condenser/pump

Batch collection - no condenser

Nor

mal

ized

Dis

char

ge C

apac

ity (m

Ah)

Cycle Number

Condenser/drain

Condenser/Drain    

-­‐  Possible  to  retain  ~all  Br  

Condenser/Pump    

Closed-­‐Loop  Experimental  Setup  

gas  

Liq  1L  

C   A  

Peristal.c    Pump  

H2  gas  reservoir  5L  

200  sccm  

Diaphragm    pump  

130  mL/min  

H2  

5psi  H2  Inlet  regulator  

10psi  H2  

Overpressure    relief  

Syringe  pump  

Match  X-­‐over  

Liquid    Recapture  (op.onal)  

Inlet  valve  

Cell:  Fuel  Cell  Technologies  housing  Treadstone  coated-­‐steel  flow  fields  

 -­‐  Serpen.ne  anode    -­‐  Flow-­‐through  cathode  

Hydrogen    RecirculaBon  

Cathode    CirculaBon  

Cycling  with  Liquid  Return  and  Closed  H2  Storage  

0 25 50 75 100 1250

20

40

60

80

100

Cycle Number

Dis

char

ge C

apac

ity (A

h/L)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.5-1.2V400mA/cm2

Energy Efficiency

Voltage Efficiency

Effi

cien

cy

Capacity

Coulombic Efficiency

Hydrogen  tank  at  ±5psi  

Closed  Bromine  and  Hydrogen  loops    Stable  capacity  -­‐  Minimal  loss  of  bromine    High  efficiency  >75%  energy  efficiency  at  400mA/cm2    

No  degrada.on  of  cell  components  

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.350.00

0.05

Cycle 122

ReZ(Ohm-cm2)

-ImZ

(Ohm

-cm

2)

Fresh

Selected  cell  materials  and  configura.on  à High  power  density  1.4W/cm2  à Possible  high  energy  efficiency    

Limi.ng  current  behavior  due  to  (-)  polariza.on  (flooding,  H2  consump.on,  Br  crossover)  à  Alleviate  with  appropriate  H2  pressure,  (-)  catalyst  layer,  compression      Membrane  allows  water  and  Br-  crossover  à  Mechanical  return  of  crossover  liquid  enables  stable  cycling    Br-  crossover  limits  system  efficiency  via  self-­‐discharge  à Appropriate  pretreatment  curtails  crossover;  >75%  efficiency  at  400mA/cm2  

à Minimize  impact  on  catalyst  dissolu.on  by  cathodic  protec.on    

Very  sensi.ve  to:  -­‐  (-)  Catalyst  layer  -­‐  H2  pressure  -­‐  Membrane  proper.es  

Moderately  or  not  sensi.ve  to:  -­‐  (-)  GDL  type  -­‐  (+)  catalyst  surface  area  -­‐  Compression  

à  Suggests  (-)  catalyst  layer  and  membrane  transport  proper.es  are  most  fruitul  areas  for  further  work    

Summary  

Tradeoff  between  coloumbic  and  voltaic  efficiencies,  in.mately  related  to  the  membrane  

Acknowledgements  •  Membrane  characteriza.on  

–  Rafael  A.  Prato  (UC  Santa  Barbara),  Ahmet  Kusoglu  (LBNL)    •  Durability  

–  Markus  Ding,  Karen  Sugano  •  Kine.c  Measurements  

–  Paul  Ridgway  (LBNL)  •  Cost  Model  

–  Paul  Albertus  (Bosch)  •  Funding  

–  US  DOE  ARPA-­‐E  •  Robert  Bosch  Corp.  •  TVN  Systems   K.T. Cho et al., J. Electrochem. Soc. 159 (2012) A1806

A. Kusoglu et al., Solid State Ionics, 252, 68-74 (2013)

K.T. Cho et al., Chempluschem, doi: 10.1002/cplu.201402043

K.T. Cho et al., Energy Technology 1 (2013) 557-557

M.C. Tucker, et al., J. Appl. Electrochem., under review

Understanding and Optimizing the H2/Br2 Redox Flow Battery for Grid-Scale Energy Sto

rage

Michael Tucker, Kyu Taek Cho, Vincent Battaglia, Venkat Sr

inivsan, and Adam Z. Weber

Environmental Energy Technologies Division Lawrence Berkeley National Laboratory

2nd MRES Northeastern, August 19, 2014

Back-­‐up  Slides  

0 500 1000 1500 20000.0

0.2

0.4

0.6

0.8

1.0

1.2

3020105

Current Density (mA/cm2)

Vol

tage

(V)

PH2 = 0psi

Hydrogen  Pressure  

With  H2  Backpressure:  

-­‐  OCV  goes  up  –  H2  Nernst  effect  

-­‐  Minimal  change  in  slope  (ASR)  

-­‐  Large  increase  in  limi.ng  current  

 

Flow-­‐through  (+)  Liquid  

Flow-­‐By    (-­‐)  

H2  Gas  

0  psig  

30  psig  

0-­‐30  psig  

(-­‐)Electrode  polariza.on  affected  by:  -­‐  (+)  electrode  pressure  -­‐  Hydrogen  pressure  (concentra.on)  -­‐  Electrode  architecture    

Typical:  200sccm  H2  100mL/min  Br2/HBr  0.9M:1M  

0200400600800

Pow

er D

ensi

ty

(mW

/cm

2 )

PH2 = 30psiPH2 = 0psi

0 5 10 15 20 25 300.0

0.4

0.8

1.2

1.6

Lim

iting

Cur

rent

(A/c

m2 )

Hydrogen Pressure (psig)

(c)

0 500 1000 1500 2000 2500 30000.0

0.2

0.4

0.6

0.8

1.0

1.2

Current Density (mA/cm2)

Vol

tage

(V)

BareCarbonBlack(+)

0 500 1000 1500 2000 25000

250

500

750

1000

1250

1500

Current Density (mA/cm2)

Pow

er D

ensi

ty (m

W/c

m2 )

BareCarbonBlack (+)

0.0 0.1 0.2 0.30.00

0.05

ReZ(Ohm-cm2)

-ImZ(Ohm-cm2 )

Bare

Carbon(b)

0 500 1000 1500 2000 2500 30000.0

0.2

0.4

0.6

0.8

1.0

1.2

Current Density (mA/cm2)

Vol

tage

(V)

BareCarbonBlack(+)

Pt/C(-)

0.0 0.1 0.2 0.30.00

0.05

ReZ(Ohm-cm2)

-ImZ(Ohm-cm2 )

Bare

CarbonPt/C(b)

Minimal  effect  on        -­‐  contact  resistance          -­‐  Nafion  conduc.vity    

   

0 500 1000 1500 2000 25000

250

500

750

1000

1250

1500

Current Density (mA/cm2)

Pow

er D

ensi

ty (m

W/c

m2 )

BareCarbonBlack (+)

Pt/C(-)

Catalyst  Layers  Bonded  to  Membrane  (+)   (-­‐)  

High  S.A.  carbon  (+)  does  not  help  either  ASR  or  limi.ng  current    -­‐  (+)  does  not  limit  performance  for  bare  membrane  

         

   Pt/C  improves  (-­‐)  polariza.on  and  ASR                      -­‐  Peak  power  1.27  W/cm2    (1.4  W/cm2    with  30psi  backpressure)  

 -­‐  no  pooling  between  membrane  and  Pt/C    -­‐  ejects  water  be?er    -­‐  ion  transfer  at  CL/Membrane  improves  

Effect  of  Compression  and  (+)  Thickness  

ASR  improves  with  compression              <77%  needed  for  good  contact  resistance    Pressure  drop  increases  with  compression                  -­‐  mi.gated  by  more  layers  (or  flow  field  design)  

 -­‐  very  high  P  for  66%  -­‐  low  limi.ng  current  

(3)  83%  

(4)  66%  

0.0 0.5 1.0 1.50.0

0.2

0.4

0.6

0.8

1.0

1.2

(6) 77%(4) 79%(5) 76%(4) 66%

(3) 74%(3) 83%

Current Density (A/cm2)

Vol

tage

(V)

Long-­‐Term  Cycling  Single-­‐Pass  H2  

Closed-­‐Loop  H2  (Br  accumulates)  

KT  Cho  et  al,  ChemPlusChem,  accepted  

Stable  cycling  achieved    -­‐  H2  and  Br2  retained    -­‐  Cell  components  durable  

 >70%  efficiency  at  350mA/cm2  

350mA/cm2  

0.5-­‐1.2V  

33  

0 10 20 30 40 50 60 70 80 900

20

40

60

80

100

120

Cycle Number

Dis

char

ge C

apac

ity (A

h/L)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

92%

Energy Efficiency

Voltage Efficiency

Effi

cien

cy

Capacity

Coulombic Efficiency

100% *

* pump dead volume corrected

Thickness  (µm)  

Water  Flux  (mg/h/cm2)  

Electro-­‐osmo.c  Drag  Coefficient  H2O/H+  (mol/

mol)  Br  Flux  (mg/

h/cm2)  

Selec.vity  Br/H+  

(mmol/mol)  Br/H2O  

(mmol/mol)  

Self-­‐Discharge  from  Coulombic  Inefficiency  (mA/

cm2)  

Conduc.vity  from  AC  impedance  (S/

cm)  NR212  Boiled   50   1040   3.1   228   153   49   13.1   0.08  NR212  70°C   50   790   2.4   41   28   12   3.4   0.07  NR212  AR   50   428   1.3   12   8   6   0.8   0.05  

Aquivion  E87-­‐05S  AR   50   469   1.4   16   11   8   1.0   0.07  Aquivion  E98-­‐05  AR   50   428   1.3   11   7   6   1.2   0.05  Gore  60111PC  AR   60   469   1.4   12   8   6   0.9   0.04  3M  825EW  AR   70   478   1.4   14   9   7   0.7   0.08