understanding minimal unsatisfiability (extended abstract on …csoliver/artikel/2016_leeds.pdf ·...

22
Understanding minimal unsatisfiability (Extended Abstract on some recent developments) Oliver Kullmann Computer Science Department Swansea University Logic Colloquium 2016 August 1, 2016 O Kullmann (Swansea) Understanding MU 1/8/2016 1 / 17

Upload: others

Post on 23-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Understanding minimal unsatisfiability (Extended Abstract on …csoliver/Artikel/2016_Leeds.pdf · (Extended Abstract on some recent developments) Oliver Kullmann Computer Science

Understanding minimal unsatisfiability(Extended Abstract on some recent developments)

Oliver Kullmann

Computer Science DepartmentSwansea University

Logic Colloquium 2016August 1, 2016

O Kullmann (Swansea) Understanding MU 1/8/2016 1 / 17

Page 2: Understanding minimal unsatisfiability (Extended Abstract on …csoliver/Artikel/2016_Leeds.pdf · (Extended Abstract on some recent developments) Oliver Kullmann Computer Science

Basics

MU

A literal is a variable or a negated variable.A clause is a finite set of literals, as their disjunction; we disallowcomplementary literals here.A clause-set is a set of clauses, as their conjunction; only finiteclause-sets considered here.MU is the set of clause-sets, which are unsatisfiable, whileremoval of any clause renders them satisfiable.n(F ) is the number of (occurring) variables.c(F ) is the number of clauses.δ(F ) := c(F )− n(F ) ∈ Z is the deficiency.

See Handbook Chapter Kleine Büning and Kullmann [8].

O Kullmann (Swansea) Understanding MU 1/8/2016 2 / 17

Page 3: Understanding minimal unsatisfiability (Extended Abstract on …csoliver/Artikel/2016_Leeds.pdf · (Extended Abstract on some recent developments) Oliver Kullmann Computer Science

Basics

“Tarsi’s Lemma”

For example {{a}, {a,b}, {a,b, c}, {a,b, c}

}∈MU

with δ(F ) = 4− 3 = 1.

∀F ∈MU : δ(F ) ≥ 1.

Best known proof Aharoni and Linial [1].For an overview see the introduction of [12].

Deficiency for MU yields a complexity parameter.

MU decision poly-time for fixed k (Fleischner, Kullmann, andSzeider [3]).Indeed fpt (Szeider [13]).

O Kullmann (Swansea) Understanding MU 1/8/2016 3 / 17

Page 4: Understanding minimal unsatisfiability (Extended Abstract on …csoliver/Artikel/2016_Leeds.pdf · (Extended Abstract on some recent developments) Oliver Kullmann Computer Science

The main conjecture

Degrees

The most basic information about MU is givenby some knowledge on the degrees.

Literal degrees:ldF (x) := |{C ∈ F : x ∈ C}|

Variable degrees:vdF (v) := ldF (v) + ldF (v).

O Kullmann (Swansea) Understanding MU 1/8/2016 4 / 17

Page 5: Understanding minimal unsatisfiability (Extended Abstract on …csoliver/Artikel/2016_Leeds.pdf · (Extended Abstract on some recent developments) Oliver Kullmann Computer Science

The main conjecture

MU(1) I

MUδ=1 = {F ∈MU : δ(F ) = 1}

These are nice formulas, with a surprising number of applications.In the SAT world, classification due to Aharoni and Linial [1],Davydov, Davydova, and Kleine Büning [2].Indeed, independently equivalent classifications in different areashave been obtained; see [12].

Complete generation process:1 Start with F = {⊥} ∈ MUδ=1.2 For F ∈MUδ=1:

1 choose C ∈ F and a variable v /∈ var(F ),2 choose D1,D2 with D1 ∪ D2 = C,3 replace C by D1 ∪ {v}, D2 ∪ {v}.

O Kullmann (Swansea) Understanding MU 1/8/2016 5 / 17

Page 6: Understanding minimal unsatisfiability (Extended Abstract on …csoliver/Artikel/2016_Leeds.pdf · (Extended Abstract on some recent developments) Oliver Kullmann Computer Science

The main conjecture

MU(1) II

Characterisation becomes MUCH easier, once you know thatfor all F ∈MUδ=1, n(F ) 6= 0, there exists

v ∈ var(F ) with vdF (v) ≤ 2.

We express this asVDM(1) = 2.

Of course, there are relevant open problems already here!

For example concerning the uniform elements ofMUδ=1; Hooryand Szeider [6], Gebauer, Szabo, and Tardos [4].

Uniformity (constant clause-length) features a lot in hypergraphtheory, while we work mostly in the unrestricted setting.

O Kullmann (Swansea) Understanding MU 1/8/2016 6 / 17

Page 7: Understanding minimal unsatisfiability (Extended Abstract on …csoliver/Artikel/2016_Leeds.pdf · (Extended Abstract on some recent developments) Oliver Kullmann Computer Science

The main conjecture

MU(2) I

MUδ=2 = {F ∈MU : δ(F ) = 2}

The basic characterisation is due to Kleine Büning [7].

This concerns nonsingular elements ofMUδ=2 — every variableoccurs at least twice positively as well as negatively.

{{v1 → v2}, . . . , {vn−1 → vn}, {vn → v1}

{v1, . . . , vn}, {v1, . . . , vn}}

O Kullmann (Swansea) Understanding MU 1/8/2016 7 / 17

Page 8: Understanding minimal unsatisfiability (Extended Abstract on …csoliver/Artikel/2016_Leeds.pdf · (Extended Abstract on some recent developments) Oliver Kullmann Computer Science

The main conjecture

MU(2) II

The main open question here is:

Extend the generalisation to all ofMUδ=2 —in a sense fusing the characterisations obtained for δ = 1,2.

This is needed for a better understanding of higher deficiencies.

Again, a fundamental step is to to show∀F ∈MUδ=2,n(F ) 6= 0 ∃v ∈ var(F ) : vdF (v) ≤ 4.

I.e., VDM(2) = 4.

O Kullmann (Swansea) Understanding MU 1/8/2016 8 / 17

Page 9: Understanding minimal unsatisfiability (Extended Abstract on …csoliver/Artikel/2016_Leeds.pdf · (Extended Abstract on some recent developments) Oliver Kullmann Computer Science

The main conjecture

Finite Patterns Conjecture

For every k ,MUδ=k can be characterised by

finitely many patterns.The next frontier isMUδ=3.

O Kullmann (Swansea) Understanding MU 1/8/2016 9 / 17

Page 10: Understanding minimal unsatisfiability (Extended Abstract on …csoliver/Artikel/2016_Leeds.pdf · (Extended Abstract on some recent developments) Oliver Kullmann Computer Science

Minimum var-degree

Min-var-degree

In general (F a clause-set, C a class of clause-sets):

µvd(F ) := minv∈var(F )

vdF (v)

µvd(C) := maxF∈C

µvd(F )

VDM(k) := µvd(MUδ=k ).

In [9] the fundamental bound

∀ k ≥ 1 : VDM(k) ≤ 2k

was shown.

O Kullmann (Swansea) Understanding MU 1/8/2016 10 / 17

Page 11: Understanding minimal unsatisfiability (Extended Abstract on …csoliver/Artikel/2016_Leeds.pdf · (Extended Abstract on some recent developments) Oliver Kullmann Computer Science

Minimum var-degree

Improving the bound

In [10] the upper bound VDM(k) ≤ 2k was improved to

VDM(k) ≤ 1 + k + log2(k).

Indeed a precise number-theoretical function nM(k) yields theupper bound.This upper bound is not sharp, and the first deficiency needing acorrection is k = 6.

The main open problem here is theprecise determination of VDM(k).

The sharpenings we produced unearth interesting aspects of MU; see[12] for further information.

O Kullmann (Swansea) Understanding MU 1/8/2016 11 / 17

Page 12: Understanding minimal unsatisfiability (Extended Abstract on …csoliver/Artikel/2016_Leeds.pdf · (Extended Abstract on some recent developments) Oliver Kullmann Computer Science

Full clauses

Full clauses

An interesting combinatorial quantity for a clause-set F is the numberof full clauses:

fc(F ) := |{C ∈ F : var(C) = var(F )}| ∈ N0.

We havefc(F ) ≤ µvd(F ).

So maximising the number of full clauses yields lower bounds onVDM(k).

Let FCM(k) be the maximum of fc(F ) for F ∈MUδ=k .

Thus FCM ≤ VDM.

O Kullmann (Swansea) Understanding MU 1/8/2016 12 / 17

Page 13: Understanding minimal unsatisfiability (Extended Abstract on …csoliver/Artikel/2016_Leeds.pdf · (Extended Abstract on some recent developments) Oliver Kullmann Computer Science

Full clauses

Hitting clause-sets

Indeed it helps a lot to consider hitting clause-sets here:

Every two clauses have a clash.

If a hitting clause-set is unsatisfiable, it is automatically MU.

VDH(k),FCH(k) denote themaximal min-var-degree resp. number of full clauses

for hitting MU.

We conjecture VDH = VDM.But definitely only FCH ≤ FCM.

O Kullmann (Swansea) Understanding MU 1/8/2016 13 / 17

Page 14: Understanding minimal unsatisfiability (Extended Abstract on …csoliver/Artikel/2016_Leeds.pdf · (Extended Abstract on some recent developments) Oliver Kullmann Computer Science

Full clauses

Meta-Fibonacci

We showS2 ≤ FCH

for the number-theoretic function S2 ([11]).

And indeed we conjecture equality.

Interesting recursion-theoretic phenomena show up (at themicroscopic level).Belong to the field of “meta-Fibonacci” functions (nested recursivecalls), as introduced by Hofstadter [5].

O Kullmann (Swansea) Understanding MU 1/8/2016 14 / 17

Page 15: Understanding minimal unsatisfiability (Extended Abstract on …csoliver/Artikel/2016_Leeds.pdf · (Extended Abstract on some recent developments) Oliver Kullmann Computer Science

Full clauses

The four fundamental quantities

To summarise:

The quantities VDM(k),FCM(k),VDH(k),FCH(k)seem interesting beasts: offering a lot of depth

— and good attack points!

The precise quantities matter here, and relevant number-theoreticalfunctions appear.

O Kullmann (Swansea) Understanding MU 1/8/2016 15 / 17

Page 16: Understanding minimal unsatisfiability (Extended Abstract on …csoliver/Artikel/2016_Leeds.pdf · (Extended Abstract on some recent developments) Oliver Kullmann Computer Science

Conclusion

Summary and outlook

I The main conjecture is the Finite Patterns Conjecture. Once wesettled δ = 3, we hopefully see better.

II Studying the “four fundamental quantities” reveals surprisingstructures — if you go for the exact determination.

Outlook (no time to discuss in this talk):I Reductions are an important tool for understanding MU (for

example eliminating singular variables).II First you concentrate on understanding (only) reduced cases, and

then you extend.III The reductions have good properties, and likely there is much

more to come.

O Kullmann (Swansea) Understanding MU 1/8/2016 16 / 17

Page 17: Understanding minimal unsatisfiability (Extended Abstract on …csoliver/Artikel/2016_Leeds.pdf · (Extended Abstract on some recent developments) Oliver Kullmann Computer Science

Conclusion

End

(references on the remaining slides).

For my papers seehttp://cs.swan.ac.uk/~csoliver/papers.html.

O Kullmann (Swansea) Understanding MU 1/8/2016 17 / 17

Page 18: Understanding minimal unsatisfiability (Extended Abstract on …csoliver/Artikel/2016_Leeds.pdf · (Extended Abstract on some recent developments) Oliver Kullmann Computer Science

Conclusion

Bibliography I

[1] Ron Aharoni and Nathan Linial. Minimal non-two-colorablehypergraphs and minimal unsatisfiable formulas. Journal ofCombinatorial Theory, Series A, 43(2):196–204, November 1986.doi:10.1016/0097-3165(86)90060-9.

[2] Gennady Davydov, Inna Davydova, and Hans Kleine Büning. Anefficient algorithm for the minimal unsatisfiability problem for asubclass of CNF. Annals of Mathematics and ArtificialIntelligence, 23(3-4):229–245, 1998.doi:10.1023/A:1018924526592.

[3] Herbert Fleischner, Oliver Kullmann, and Stefan Szeider.Polynomial–time recognition of minimal unsatisfiable formulaswith fixed clause–variable difference. Theoretical ComputerScience, 289(1):503–516, November 2002.doi:10.1016/S0304-3975(01)00337-1.

O Kullmann (Swansea) Understanding MU 1/8/2016 18 / 17

Page 19: Understanding minimal unsatisfiability (Extended Abstract on …csoliver/Artikel/2016_Leeds.pdf · (Extended Abstract on some recent developments) Oliver Kullmann Computer Science

Conclusion

Bibliography II

[4] Heidi Gebauer, Tibor Szabo, and Gabor Tardos. The LocalLemma is asymptotically tight for SAT. Technical ReportarXiv:1006.0744v3 [math.CO], arXiv.org, April 2016. URLhttp://arxiv.org/abs/1006.0744.

[5] Douglas R. Hofstadter. Gödel, Escher, Bach: An eternal goldenbraid. Basic Books, 1979. ISBN 0140055797. URL http://www.physixfan.com/wp-content/files/GEBen.pdf.Pdf version with 801 pages,md5sum=“0cb32e8ea5dd2485f63842f5acffb3f0 GEBen.pdf”.

[6] Shlomo Hoory and Stefan Szeider. Computing unsatisfiablek -SAT instances with few occurrences per variable. TheoreticalComputer Science, 337(1-3):347–359, June 2005.doi:10.1016/j.tcs.2005.02.004.

O Kullmann (Swansea) Understanding MU 1/8/2016 19 / 17

Page 20: Understanding minimal unsatisfiability (Extended Abstract on …csoliver/Artikel/2016_Leeds.pdf · (Extended Abstract on some recent developments) Oliver Kullmann Computer Science

Conclusion

Bibliography III

[7] Hans Kleine Büning. On subclasses of minimal unsatisfiableformulas. Discrete Applied Mathematics, 107(1-3):83–98, 2000.doi:10.1016/S0166-218X(00)00245-6.

[8] Hans Kleine Büning and Oliver Kullmann. Minimal unsatisfiabilityand autarkies. In Armin Biere, Marijn J.H. Heule, Hans vanMaaren, and Toby Walsh, editors, Handbook of Satisfiability,volume 185 of Frontiers in Artificial Intelligence and Applications,chapter 11, pages 339–401. IOS Press, February 2009. ISBN978-1-58603-929-5. doi:10.3233/978-1-58603-929-5-339.

[9] Oliver Kullmann. An application of matroid theory to the SATproblem. In Proceedings of the 15th Annual IEEE Conference onComputational Complexity, pages 116–124, July 2000.doi:10.1109/CCC.2000.856741. See also TR00-018, ElectronicColloquium on Computational Complexity (ECCC), March 2000.

O Kullmann (Swansea) Understanding MU 1/8/2016 20 / 17

Page 21: Understanding minimal unsatisfiability (Extended Abstract on …csoliver/Artikel/2016_Leeds.pdf · (Extended Abstract on some recent developments) Oliver Kullmann Computer Science

Conclusion

Bibliography IV

[10] Oliver Kullmann and Xishun Zhao. On variables with fewoccurrences in conjunctive normal forms. In Laurent Simon andKarem Sakallah, editors, Theory and Applications of SatisfiabilityTesting - SAT 2011, volume 6695 of Lecture Notes in ComputerScience, pages 33–46. Springer, 2011. ISBN 978-3-642-14185-0.doi:10.1007/978-3-642-21581-0_5.

[11] Oliver Kullmann and Xishun Zhao. Parameters for minimalunsatisfiability: Smarandache primitive numbers and full clauses.Technical Report arXiv:1505.02318v2 [cs.DM], arXiv, July 2015.URL http://arxiv.org/abs/1505.02318.

[12] Oliver Kullmann and Xishun Zhao. Bounds for variables with fewoccurrences in conjunctive normal forms. Technical ReportarXiv:1408.0629 [math.CO], arXiv, April 2016. URLhttp://arxiv.org/abs/1408.0629.

O Kullmann (Swansea) Understanding MU 1/8/2016 21 / 17

Page 22: Understanding minimal unsatisfiability (Extended Abstract on …csoliver/Artikel/2016_Leeds.pdf · (Extended Abstract on some recent developments) Oliver Kullmann Computer Science

Conclusion

Bibliography V

[13] Stefan Szeider. Minimal unsatisfiable formulas with boundedclause-variable difference are fixed-parameter tractable. Journalof Computer and System Sciences, 69(4):656–674, December2004. doi:10.1016/j.jcss.2004.04.009.

O Kullmann (Swansea) Understanding MU 1/8/2016 22 / 17