unit 2 enzymes used in genetic engineering · polymerases •polymerase enzymes synthesise copies...

98
UNIT – 2 Enzymes used in Genetic Engineering

Upload: others

Post on 07-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

UNIT – 2Enzymes used in

Genetic Engineering

Page 2: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

• Cutting and pasting are two of the first skills children learn, and the tools they use are scissors and glue.

Page 3: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

• Similarly, cutting DNA and pasting DNAfragments together typically are amongthe first techniques learned in themolecular biology lab and arefundamental to all recombinant DNAwork.

Page 4: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

Such manipulations of DNA are conducted by a toolkit of enzymes:

restriction endonucleases are used as molecular scissors,

DNA ligase functions to bond pieces of DNA together, and

a variety of additional enzymes that modify DNA are used to facilitate the process.

Page 5: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

DNA modifying enzymes• Restriction enzymes and DNA ligases represent

the cutting and joining functions in DNA manipulation.

• All other enzymes involved in genetic engineering fall under the broad category of enzymes known as DNA modifying enzymes.

• These enzymes are involved in the degradation, synthesis and alteration of the nucleic acids.

Page 6: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When
Page 7: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

Types of Modifying Enzymes

Page 8: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

Nucleases• Nuclease enzymes degrade nucleic acids by

breaking the phosphodiester bond that holds the nucleotides together.

• Restriction enzymes are good examples of endonucleases, which cut within a DNA strand.

• A second group of nucleases, which degrade DNA from the termini of the molecule, are known as exonucleases.

Page 9: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

• Apart from restriction enzymes, there are four useful nucleases that are often used in genetic engineering.

• These are – Bal 31 and

– Exonuclease III (exonucleases), and

– Deoxyribonuclease I (DNase I) and

– S1-nuclease (endonucleases).

• These enzymes differ in their precise mode of action and provide the genetic engineer with a variety of strategies for attacking DNA.

Page 10: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

Mode of action

(a) Nuclease Bal 31 is a complex enzyme. Its primary activity is a fast-acting 3’ exonuclease, which is coupled with a slow-acting endonuclease. When Bal31 is present at a high concentration these activities effectively shorten DNA molecules from both termini.

(b) Exonuclease III is a 3’ exonuclease that generates molecules with protruding 5’ termini.

(c) DNase I cuts either single-stranded or double-stranded DNA at essentially random sites.

(d) Nuclease S1 is specific for single-stranded RNA or DNA.

Page 11: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

Mode of action of various nucleases.

(a)Nuclease Bal 31 is a complex enzyme.

Its primary activity is a fast-acting 3’ exonuclease, which is coupled with a slow-acting endonuclease. When Bal 31 is present at a high concentration these activities effectively shorten DNA molecules from both termini.

Page 12: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

(b) Exonuclease III is a 3’ exonuclease that generates molecules with protruding 5’ termini.

(c) DNase I cuts either single-stranded or double-stranded DNA at essentially random sites.

(d) Nuclease S1 is specific for single-stranded RNA or DNA.

Page 13: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

• In addition to DNA-specific nucleases, there are ribonucleases (RNases), which act on RNA.

• These may be required for many of the stages in the preparation and analysis of recombinants and are usually used to get rid of unwanted RNA in the preparation.

• However, as well as being useful, ribonucleases can pose some unwanted problems.

• They are remarkably difficult to inactivate and can be secreted in sweat.

Page 14: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

Polymerases• Polymerase enzymes synthesise copies of nucleic acid

molecules and are used in many genetic engineering procedures.

• When describing a polymerase enzyme, the terms ‘DNA-dependent’ or ‘RNA-dependent’ may be used to indicate the type of nucleic acid template that the enzyme uses.

• Thus, a

– DNA-dependent DNA polymerase copies DNA into DNA, – an RNA-dependent DNA polymerase copies RNA into

DNA, and – a DNA-dependent RNA polymerase transcribes DNA into

RNA.

Page 15: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

• These enzymes synthesise nucleic acids by joining together nucleotides whose bases are complementary to the template strand bases.

• The synthesis proceeds in a 5’→3’ direction, as each subsequent nucleotide addition requires a free 3’-OH group for the formation of the phosphodiester bond.

• This requirement also means that a short double-stranded region with an exposed 3’-OH (a primer) is necessary for synthesis to begin.

Page 16: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

• Polymerases are the copying enzymes of the cell;

• These enzymes are template-dependent and can be used to copy long stretches of DNA or RNA.

Page 17: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

• The enzyme DNA polymerase I has, in addition

to its polymerase function, 5’→3’ and 3’→5’ exonuclease activities.

• A major use of this enzyme is in the nick translation procedure for radiolabelling DNA.

Page 18: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

• Nick translation (or Head Translation) wasdeveloped in 1977 by Rigby and Paul Berg.

• It is a tagging technique in molecular biology inwhich DNA Polymerase I is used to replace some ofthe nucleotides of a DNA sequence with theirlabelled analogues, creating a tagged DNA sequencewhich can be used as a probe in Fluorescent in situhybridization or blotting techniques.

• It can also be used for radiolabeling

Page 19: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

• The 5’→3’ exonuclease function of DNApolymerase I can be removed by cleaving the enzyme to produce what is known as the Klenow fragment.

• This retains the polymerase and 3’→5’ exonuclease activities.

Page 20: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

• The Klenow fragment is used where a single-stranded DNA molecule needs to be copied; because the 5’→3’ exonuclease function is missing, the enzyme cannot degrade the non-template strand of dsDNA during synthesis of the new DNA.

• Therefore, the large or klenow fragment of DNA Polymerase I has DNA Ploymerase & 3’→5’ Exonuclease activities, and is widely used in molecular biology

Page 21: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When
Page 22: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

DNA Polymerase I

• DNA Polymerase I, a template-dependent DNA polymerase, catalyzes 5'→3' synthesis of DNA.

• The enzyme also exhibits 3'→5' exonuclease (proofreading) activity, 5'→3' exonuclease activity.

Page 23: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

Klenow Fragment

• Klenow Fragment is the large fragment of DNA polymerase I.

• It exhibits 5'→3' polymerase activity and 3'→5' exonuclease (proofreading) activity, but lacks 5'→3' exonuclease activity of DNA polymerase I.

Page 24: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

Synthesis of double-stranded DNA from single-stranded templates:

Page 25: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

T4 DNA Polymerase

• T4 DNA Polymerase, a template-dependent DNA polymerase, catalyzes 5'-3' synthesis from primed single-stranded DNA.

• The enzyme has a 3'-5' exonuclease activity, but lacks 5'-3' exonuclease activity.

Page 26: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

T4 DNA Polymerase

Highlights:

• Stronger 3'-5' exonuclease activity on single-stranded than on double-stranded DNA and greater (more than 200 times) than DNA polymerase I and Klenow fragment

• Active in restriction enzyme, PCR, RT and T4 DNA Ligase buffers

Page 27: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

Applications

• Blunting of DNA ends: fill-in of 5'-overhangs or/and removal of 3'-overhangs

• Synthesis of labelled DNA probes by the replacement reaction

Page 28: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

T7 DNA Polymerase

• T7 DNA Polymerase, a template dependent DNA polymerase, catalyzes DNA synthesis in the 5'=>3' direction.

• It is a highly processive DNA polymerase allowing continuous synthesis of long stretches of DNA.

Page 29: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

• The enzyme also exhibits a high 3'=>5' exonuclease activity towards single and double-stranded DNA.

• Assays at 37°C require only short incubation times

Page 30: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

Highlights:

• Strong 3’=>5’ exonuclease activity, approximately 1000-fold greater than Klenow Fragment.

• Active in restriction enzyme buffers

Page 31: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

Terminal DeoxynucleotidylTransferase

• Terminal Deoxynucleotidyl Transferase (TdT),

• Template-independent DNA polymerase, catalyzesthe repetitive addition of deoxyribonucleotides tothe 3'-OH of oligodeoxyribonucleotides and single-stranded and double-stranded DNA .

Page 32: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

• TdT requires an oligonucleotide of at least three nucleotides to serve as a primer.

Page 33: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

Reverse transcriptase

• (RTase) is an RNA-dependent DNA polymerase, and therefore produces a DNA strand from an RNA template.

• It has no associated exonuclease activity.

Page 34: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

• The enzyme is used mainly for copying mRNA molecules in the preparation of cDNA(complementary or copy DNA) for cloning, although it will also act on DNA templates.

• Reverse transcriptase is a key enzyme in the generation of cDNA; the enzyme is an RNA-dependent DNA polymerase, which produces a DNA copy of an mRNA molecule.

Page 35: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

Enzymes that modify the ends of DNA molecules

• The enzymes alkaline phosphatase,polynucleotide kinase (T4 polynucleotidekinase), and terminal transferase act onthe termini of DNA molecules and provideimportant functions that are used in avariety of ways.

Page 36: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

• The phosphatase and kinase enzymes, as their names suggest, are involved in the removal or addition of phosphate groups respectively.

• Bacterial alkaline phosphatase (there is also a similar enzyme, calf intestinal alkaline

phosphatase) removes phosphate groups from the 5’ ends of DNA.

Page 37: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

• The enzyme is used to prevent unwantedligation of DNA molecules, which can be aproblem in certain cloning procedures.

• Terminal transferase (terminal deoxynucleotidyltransferase) repeatedly adds nucleotides to anyavailable 3 terminus.

Page 38: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

• The enzyme is mainly used to addhomopolymer tails to DNA molecules prior tothe construction of recombinants.

• In many applications it is often necessary tomodify the ends of DNA molecules usingenzymes such as phosphatases, kinases, andtransferases.

Page 39: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

DNA ligase – joining DNA molecules

• DNA ligase is an important cellular enzyme, as its function is to repair broken phosphodiester bonds that may occur at random or as a consequence of DNA replication or recombination.

Page 40: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

• In genetic engineering it is used to seal discontinuities in the sugar—phosphate chains that arise when recombinant DNA is made by joining DNA molecules from different sources.

• It can therefore be thought of as molecular glue, which is used to stick pieces of DNA together.

Page 41: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

• This function is crucial to the success of many experiments, and DNA ligase is therefore a key enzyme in genetic engineering.

• The enzyme used most often in experiments is T4 DNA ligase, which is purified from E. coli cells infected with bacteriophage T4

• Although the enzyme is most efficient when sealing gaps in fragments that are held together by cohesive ends, it will also join blunt-ended DNA molecules together under appropriate conditions.

Page 42: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

• The enzyme works best at 37◦C, but is often used at much lower temperatures (4--15◦C) to prevent thermal denaturation of the short base-paired regions that hold the cohesive ends of DNA molecules together.

• The ability to cut, modify, and join DNA molecules gives the genetic engineer the freedom to create recombinant DNA molecules.

• However, once a recombinant DNA fragment has been generated in vitro, it usually has to be amplified so that enough material is available for subsequent manipulation and analysis.

Page 43: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

• Amplification usually requires a biological system, unless the polymerase chain reaction (PCR) is used.

• We must, therefore, examine the types of living systems that can be used for the propagation of recombinant DNA molecules.

• DNA ligase is essentially ‘molecular glue’; with restriction enzymes, it provides the tools for cutting and joining DNA molecules.

Page 44: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

Ligases

• Fast and efficient ligation of DNA and RNA.

– T4 DNA Ligase

– T4 RNA Ligase

Page 45: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

T4 DNA Ligase• T4 DNA Ligase catalyzes the formation of a

phosphodiester bond between 5'-phosphate and 3'-hydroxyl termini in duplex DNA or RNA.

• The enzyme repairs single-strand nicks in duplex DNA, RNA, or DNA/RNA hybrids.

• It also joins DNA fragments with either cohesive or blunt termini, but has no activity on single-stranded nucleic acids.

• The T4 DNA Ligase requires ATP as a cofactor.

Page 46: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

T4 RNA Ligase• T4 RNA Ligase catalyzes the ATP-dependent

intra- and intermolecular formation of phosphodiester bonds between 5'-phosphate and 3'-hydroxyl termini of oligonucleotides, single-stranded RNA and DNA.

Page 47: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

Conclusion

• These are the modifying enzymes represent the cutting and joining functions in DNA manipulation and genetic engineering.

Page 48: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

WHAT IS AN ENZYME?

• Enzymes are proteins and certain class of RNA (ribozymes) which enhance the rate of a thermodynamically feasible reaction and are not permanently altered in the process.

Page 49: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

Molecular Scissors

Restriction enzymes are molecular scissors

Page 50: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

RESTRICTION ENZYMES

• A restriction enzyme (or restrictionendonuclease) is an enzyme that cuts double-stranded or single stranded DNA at specificrecognition nucleotide sequences known as

restriction sites.

Page 51: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

Property of restriction enzymes

• Theythat link adjacent nucleotides in DNAmolecules.

Page 52: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

HOW RESTRICTION ENZYMES WORKS?

• Restriction enzymes recognize a specific sequence of nucleotides, and produce a double-stranded cut in the DNA, these cuts are of two types:

• BLUNT ENDS.

• STICKY ENDS.

Page 53: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

Blunt end

Sticky end

Page 54: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

BLUNT ENDS

• These blunt ended fragments can be joined to any other DNA fragment with blunt ends.

• Enzymes useful for certain types of DNA cloning experiments

Page 55: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

“STICKY ENDS” ARE USEFUL

DNA fragments with complimentary sticky ends can be combined to create

new molecules which allows the creation and manipulation of DNA

sequences from different sources.

Page 56: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

• While recognition sequences varywidely , with lengths between 4 and8 nucleotides, many of them arepalindromic.

Page 57: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

PALINDROMES IN DNA SEQUENCES

Genetic palindromes are similar to verbal

palindromes. A palindromic sequence

in DNA is one in which the 5’ to 3’

base pair sequence is identical on both

strands (the 5’ and 3’ ends refers to the

chemical structure of the DNA).

Page 58: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

PALINDROME SEQUENCES

• The mirror like palindrome in which the same forward and backwards are on a single strand of DNA strand, as in GTAATG

• The Inverted repeat palindromes is also a sequence that reads the same forward and backwards, but the forward and backward sequences are found in complementary DNA strands (GTATAC being complementary to CATATG)

• Inverted repeat palindromes are more common and have greater biological importance than mirror-like palindromes.

Page 59: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

Star effect

• Optimum conditions are necessary for theexpected result.

• Under extreme conditions such as elevated pH or low ionic strength, RE are capable of cleaving sequences which are similar but not identical to their recognition sequence.

Page 60: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

NOMENCLATURE OF RESTRICTION ENZYME

• Each enzyme is named after the bacterium from which it was isolated using a naming system based

on bacterial genus, species and strain.

For e.g EcoRI

Page 61: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

Derivation of the EcoRI name

Abbreviation Meaning Description

E Escherichia genus

co coli species

R RY13 strain

I First identifiedorder of identification

in the bacterium

Page 62: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

TYPES OF RESTRICTION ENZYMES

• Restriction endonucleases are categorized into three general groups.

• Type I

• Type II

• Type III

Page 63: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

TYPES OF RESTRICTION ENZYMES

Type I Type II Type III

Type IVArtificial

restriction enzymes

Page 64: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

continue…..

These types are categorization based on:

• Their composition.

• Enzyme co-factor requirement.

• The nature of their target sequence.

• Position of their DNA cleavage site relative to the target sequence.

Page 65: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

Type I• Capable of both restriction and modification

activities

• The co factors S-Adenosyl Methionine(AdoMet), ATP, and mg++are required for their full activity

• Contain:

two R(restriction) subunits

two M(methylation) subunits

one S(specifity) subunits

• Cleave DNA at random length from recognition sites

Page 66: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

Type II• These are the most commonly available and used

restriction enzymes

• They are composed of only one subunit.

• Their recognition sites are usually undivided and palindromic and 4-8 nucleotides in length,

• They recognize and cleave DNA at the same site.

• They do not use ATP for their activity

• They usually require only mg2+ as a cofactor.

Page 67: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

Type III

• Type III restriction enzymes cut DNA about 20-30 base pairs after the recognition site.

• These enzymes contain more than one subunit.

• And require AdoMet and ATP cofactors for their roles in DNA methylation and restriction

Page 68: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

Type IV

• Cleave only normal and modified DNA (methylated, hydroxymethylated and glucosyl-hydroxymethylated bases).

• Recognition sequences have not been well defined

• Cleavage takes place ~30 bp away from one of the sites

Page 69: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

ARTIFICIAL RESTRICTION ENZYMES

• Generated by fusing a natural or engineered DNA binding domain to a nuclease domain

• can target large DNA sites (up to 36 bp)

• can be engineered to bind to desired DNA sequences

Page 70: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

Examples of Type II restriction enzymes

EcoRI E = genus Escherichia

co = species coli

R = strain RY13

I= first endonucleaseisolated

Page 71: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

BamHI B = genus Bacillus

am = species

amyloliquefaciens

H = strain H

I = first endonuclease

isolated

Page 72: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

HindIII H = genus Haemophilus

in = species influenzae

d = strain Rd

III = third endonuclease isolated

Page 73: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

Isoschizomer

• Restriction enzymes specific to thesame recognition sequence. Forexample, SphI (CGTAC/G) and BbuI(CGTAC/G) are isoschizomers of eachother.

Page 74: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

Neoschizomer

• Enzyme that recognizes the samesequence but cuts it differently isa neoschizomer.

• For example, SmaI(CCC/GGG) and XmaI(C/CCGGG) are neoschizomers of eachother.

Page 75: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

APPLICATIONS

They are used in gene cloning and protein expression

experiments

Detection of RFLPs

Restriction enzymes are

most widely used in recombinant

DNA technology.

DNA Mapping

Genotype a DNA sample

by SNP

Page 76: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

Genetic Engineering

Vectors

Page 77: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

• The second step in molecular cloning is to jointhe passenger DNA to the DNA of a suitable cloning vehicle.

• These vehicles (or vectors) have the property that they replicate themselves and any attached passenger DNA so that the passenger is amplified and can be eventually isolated.

Page 78: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

Plasmids

Page 79: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

Relatively Small

Double-stranded, closed-circular DNA moleculesthat exist apart from the chromosomes of theirhosts

Naturally occurring plasmids carry one or moregenes

For example, some plasmids carry genes whichconfer resistance to certain antibiotics. Someplasmids may bear genes that code for therestriction and modification enzymes that werediscussed previously

Page 80: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

• Some may carry genes that direct thesynthesis of enzymes that aid in theproduction of bacterial poisons or antibiotics.

• The most important property of plasmids isthat they bear a special region of DNA called

an origin of replication, or more simply

an origin.

Page 81: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

Desirable properties of plasmids

• It should be small

(small plasmids replicate faster and require less energy for replication than large ones.

Finally, small plasmids are easier to purify than large ones because they are less fragile.)

Page 82: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

• Its DNA sequence should be known

• It should grow to high copy number in the host cell.

• It should contain a selectable marker that allows cells containing the plasmid to be isolated

• There should be a large number of uniquerestriction sites

Page 83: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

Plasmid purification

The most common method for purifying plasmid DNA involves three steps:

• First, the bacteria are broken open and then it’s DNA isolated.

• Then the DNA is denatured.

• Finally, the DNA is renatured and centrifuged.

Page 84: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

Some popular plasmids

• pBR 322: The first really useful plasmid for genetic engineering.

• The "B" stands for Bolivar and the "R" for Rodriguez, another scientist in Boyer's laboratory).

• It contains an ampicillin resistance gene and a tetracycline resistance gene

Page 85: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

• In addition it has a relaxed origin ofreplication

Page 86: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

• pUC Plasmid:

• About 2.7 kilobase pairs.

• These pUC (pronounced PUCK) plasmids

• Carry an ampicillin resistance gene and an origin of replication, both from pBR322

Page 87: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

• They also bear a multiple cloning site -- asequence of DNA that carries many restrictionsites (13, in the case of pUC18)

• Multiple cloning site of the pUC plasmids is

special because it also codes for a smallpeptide. This peptide will correct a specificmutation in the chromosomal gene that codesfor the enzyme beta-galactosidase.

Page 88: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

• Cells that harbor an active beta-galactosidase

enzyme can be made to turn blue in the presence of certain substrates.

Page 89: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

Bacteriophages

Page 90: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

Bacteriophages• Viruses that infect bacterial cells by injecting

their genetic material into the bacterial cell

• Lysis and lysogeny

Page 91: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

Reasons why bacteriophage lambda is a good cloning vehicle

• It can accept very large pieces of foreign DNA. About 20kb of DNA

• It has been extensively reworked over the years

Page 92: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

Why lambda?• Large pieces of DNA (up to about 20 kilobase

pairs) can be easily cloned in bacteriophagelambda substitution vectors.

• Plasmid vectors are less useful for cloning big passengers.

Page 93: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

• But why clone large pieces of DNA in the first place?

• One obvious reason is that some genes are very big and it is advantageous to have them all in one piece

• Another reason for cloning in lambda is the

efficiency it offers in DNA transformation.

Page 94: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

.

DNA cloning using phages as vectors

Page 95: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

MODE OF REPLICATION IN PHAGE M13 VECTOR

Page 96: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

Cosmid vector

Combine parts of the lambda with parts of plasmids.

an origin of replication (ori).

a cos site(a sequence yield cohesive end) .

an ampicillin resistance gene (amp),

restriction sites for cloning

Cosmids can carry up to 50 kb of inserted DNA.

Page 97: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

Cloning by using Cosmid vectors

Page 98: UNIT 2 Enzymes used in Genetic Engineering · Polymerases •Polymerase enzymes synthesise copies of nucleic acid molecules and are used in many genetic engineering procedures. •When

APPLICATION

• A particular gene can be isolated and its nucleotide sequence determined

• Control sequences of DNA can be identified & analyzed

• Protein/enzyme/RNA function can be investigated

• Mutations can be identified, e.g. gene defects related to specific diseases

• Organisms can be ‘engineered’ for specific purposes, e.g. insulin production.