use of ap203 cad data for engineering analysis hans peter de koning - esa/estec - the netherlands...

20
Use of AP203 CAD Data for Engineering Analysis Hans Peter de Koning - ESA/ESTEC - The Netherlands [email protected] Sandrine Fagot - Simulog - France [email protected] STEP for Aerospace Workshop, NASA-JPL, 16-19 January 2001

Upload: clarissa-reed

Post on 18-Jan-2018

214 views

Category:

Documents


0 download

DESCRIPTION

Sheet Jan 2001STEP for Aerospace Workshop - NASA-JPL Recap: Why use CAD geometry to construct CAE models? Main objectives: –To reduce CAE model construction effort –To improve CAE model accuracy and fidelity –To transfer and retain product structure and part identification information –To improve consistency between CAE models for different engineering disciplines -- CAD model as ‘master digital mock-up’ Avoid duplication of effort –If it has been modelled in CAD already, why do it again? –CAD modeller is probably richer in shape creation functionality than the CAE modeller

TRANSCRIPT

Page 1: Use of AP203 CAD Data for Engineering Analysis Hans Peter de Koning - ESA/ESTEC - The Netherlands Sandrine Fagot - Simulog

Use of AP203 CAD Data for Engineering Analysis

Hans Peter de Koning - ESA/ESTEC - The [email protected]

Sandrine Fagot - Simulog - [email protected]

STEP for Aerospace Workshop, NASA-JPL, 16-19 January 2001

Page 2: Use of AP203 CAD Data for Engineering Analysis Hans Peter de Koning - ESA/ESTEC - The Netherlands Sandrine Fagot - Simulog

Sheet 216-19 Jan 2001 STEP for Aerospace Workshop - NASA-JPL

Agenda

• Recap: Usage of CAD to create CAE model• Use of AP203 as input• Specific application for thermal-radiative CAE (ESARAD)• Real world example• Further plans

Page 3: Use of AP203 CAD Data for Engineering Analysis Hans Peter de Koning - ESA/ESTEC - The Netherlands Sandrine Fagot - Simulog

Sheet 316-19 Jan 2001 STEP for Aerospace Workshop - NASA-JPL

Recap: Why use CAD geometry to construct CAE models?

• Main objectives:– To reduce CAE model construction effort– To improve CAE model accuracy and fidelity– To transfer and retain product structure and part identification

information– To improve consistency between CAE models for different

engineering disciplines -- CAD model as ‘master digital mock-up’

• Avoid duplication of effort– If it has been modelled in CAD already, why do it again?– CAD modeller is probably richer in shape creation functionality

than the CAE modeller

Page 4: Use of AP203 CAD Data for Engineering Analysis Hans Peter de Koning - ESA/ESTEC - The Netherlands Sandrine Fagot - Simulog

Sheet 416-19 Jan 2001 STEP for Aerospace Workshop - NASA-JPL

Potential pitfalls with usage of CAD for CAE

• CAE virtually always needs idealised shape• Idealised shape =

geometric represention of the object under analysiswhich is appropriate, adequate and sufficiently detailedfor the analysis task at hand

• Who said engineering is a hard science?– Lot of engineering judgement involved– Depends on environmental conditions, operational context– Depends on engineering life cycle stage

• Nevertheless, still serious benefits from automated transfer of CAD models to CAE when used with caution

Page 5: Use of AP203 CAD Data for Engineering Analysis Hans Peter de Koning - ESA/ESTEC - The Netherlands Sandrine Fagot - Simulog

Sheet 516-19 Jan 2001 STEP for Aerospace Workshop - NASA-JPL

Use of AP203 for CAD - CAE model transfer

• Nearly all CAD tools now have reliable, good quality AP203 import/export functionality

• Very attractive for CAE tools to support AP203– Good investment: one interface supports all CAD tools– First import of AP203 models, later perhaps also export

• But also problems– Most CAE tools can not directly handle all AP203 shapes

• NURB curves and surfaces, trimming loops, general surface of revolution, etc.

– Different CAD tools generate different AP203 models• For example: many different ways to define a cylindrical surface

NURB = Non-Uniform

Rational B-spline

Page 6: Use of AP203 CAD Data for Engineering Analysis Hans Peter de Koning - ESA/ESTEC - The Netherlands Sandrine Fagot - Simulog

Sheet 616-19 Jan 2001 STEP for Aerospace Workshop - NASA-JPL

Specific Application: Thermal-radiative CAE

• STEP AP203 model import and NURB processing capability for ESARAD– R&D activity in 2000 under ESA contract– ALSTOM Power Technology Centre (UK)

• ESARAD tool vendor• Management, integration and test

– Simulog (France)• AP203 to ESARAD import translator

– Formal Software Construction Ltd. (UK)• ESARAD NURB surface processing

ESARAD = Thermal-radiative analysis tool

(Monte-Carlo raytracer)

Page 7: Use of AP203 CAD Data for Engineering Analysis Hans Peter de Koning - ESA/ESTEC - The Netherlands Sandrine Fagot - Simulog

Sheet 716-19 Jan 2001 STEP for Aerospace Workshop - NASA-JPL

Usage scenario: Construct CAD/AP203 to ESARAD

• Identify CAD model for export• Optionally prepare ‘CAE view’ in CAD tool

– Suppress features, filter small details, flatten hierarchy, remove irrelevant parts

• Export to STEP AP203 part 21 file• Translate AP203 model to native ESARAD model• Clean-up and adapt model in ESARAD modeller• Add thermal-radiative features

– meshing, properties, environmental conditions, kinematics, ... Ready to run ESARAD analysis

Page 8: Use of AP203 CAD Data for Engineering Analysis Hans Peter de Koning - ESA/ESTEC - The Netherlands Sandrine Fagot - Simulog

Sheet 816-19 Jan 2001 STEP for Aerospace Workshop - NASA-JPL

Translate AP203 model to native ESARAD model (1)

• Problem: Mapping of AP203 shapes to ESARAD shapes– ESARAD is a surface modeller

• primitive surface shapes– triangular, rectangular, quadrilateral plate– disc (-sector, -annulus)– cylinder (-segment)– cone, sphere, paraboloid (-segment, truncated-)

• compound surfaces (union of primitive or compound surfaces)• boolean cut surfaces (e.g. plate with circular hole)

– Most CAD tools export AP203 evaluated BREP solid models• AP203 CC4, CC5, CC6 models with lots of advanced shapes using

NURB, trimming loops, etc.

Page 9: Use of AP203 CAD Data for Engineering Analysis Hans Peter de Koning - ESA/ESTEC - The Netherlands Sandrine Fagot - Simulog

Sheet 916-19 Jan 2001 STEP for Aerospace Workshop - NASA-JPL

Translate AP203 model to native ESARAD model (2)

• Approach– Develop heuristic algorithm to recognise / deduct as much as

possible primitive shapes in the CAD AP203 export– Transfer any remaining shapes as NURB surfaces (with trimming

loops)– Retain model hierarchy and axis placements– Retain shape identification labels, etc.– Translator is a stand-alone Unix filter type tool

• Simple, maintainable, easily extendible to support new output formats

• Upgrade ESARAD to accept NURB surfaces– In shape definition, but also in ray-tracing algorithm!

Page 10: Use of AP203 CAD Data for Engineering Analysis Hans Peter de Koning - ESA/ESTEC - The Netherlands Sandrine Fagot - Simulog

Sheet 1016-19 Jan 2001 STEP for Aerospace Workshop - NASA-JPL

Translate AP203 model to native ESARAD model (3)

• Target Catia v4 as first CAD export tool for testing– Is most used CAD tool in European space industry– Developed Catia generated AP203 test suite

• Artificial little CAD models containing different ways to construct the primitive shapes (also asking different engineers)

• Replicated the STEP-TAS test suite using Catia• Real world CAD models, including a complete detailed spacecraft CAD

model (generates more than 220,000 instances in Part 21 file)

• Developed heuristic algorithm• As much as possible works on generic STEP p42 concepts• As little as possible tuned to Catia specific constructs / oddities

• Outcome is a translator that works!

Page 11: Use of AP203 CAD Data for Engineering Analysis Hans Peter de Koning - ESA/ESTEC - The Netherlands Sandrine Fagot - Simulog

Sheet 1116-19 Jan 2001 STEP for Aerospace Workshop - NASA-JPL

Translate AP203 model to native ESARAD model (4)Example from test-suite

Page 12: Use of AP203 CAD Data for Engineering Analysis Hans Peter de Koning - ESA/ESTEC - The Netherlands Sandrine Fagot - Simulog

Sheet 1216-19 Jan 2001 STEP for Aerospace Workshop - NASA-JPL

Real World Example: Test jig for METOP spacecraft

• METOP: earth observation satellite for Eumetsat– Sun-synchronous polar orbit - similar to ERS, Envisat, NASA-EOS– Modelled in detail in ESARAD (more than 4000 surfaces)– Currently in Phase C/D - Starting thermal balance test predictions

• Task: Create ESARAD model of test jig– Test jig for thermal test, containing cold targets and guard heaters– Complicated shape - geometry available in Catia v4

Page 13: Use of AP203 CAD Data for Engineering Analysis Hans Peter de Koning - ESA/ESTEC - The Netherlands Sandrine Fagot - Simulog

Sheet 1316-19 Jan 2001 STEP for Aerospace Workshop - NASA-JPL

ISO-10303-21;HEADER;FILE_DESCRIPTION((''), '1');FILE_NAME('METOP FRAME UPPER ', '2000-09-25T09:11:38+02:00', (''), (''), 'CATIA.STEP INTERFACE', 'CATIA SOLUTIONS V4 RELEASE 2.0 FR 4.2.0', '');FILE_SCHEMA(('CONFIG_CONTROL_DESIGN'));ENDSEC;

DATA;#1=APPLICATION_CONTEXT('configuration controlled 3D designs of mechanical parts and

assemblies');#2=APPLICATION_PROTOCOL_DEFINITION('international standard','config_control_design',1994,#1);#3=PERSON('111111','Last_Name','First_Name',$,$,$);...#650=VERTEX_POINT('NONE',#649);#651=B_SPLINE_CURVE_WITH_KNOTS('*CRV273',1,(#652,#653),.UNSPECIFIED.,.U.,.U.,(2,2),

(0.00000000000,1.00000000000),.UNSPECIFIED.);#652=CARTESIAN_POINT('NONE',(-6663.00000000,2.51588360813,-18.6521285509));…#16704=TRIMMED_CURVE('*CRV558',#16703,(90.0000000000),(108.628958036),.T.,.UNSPECIFIED.);#16705=B_SPLINE_CURVE_WITH_KNOTS('*CRV559',5,

(#16706,#16707,#16708,#16709,#16710,#16711,#16712,#16713,#16714,#16715,#16716,#16717),.UNSPECIFIED.,.U.,.U.,(6,3,3,6),(0.00000000000,1.00000000000,1.70960642440,2.31910764281),.UNSPECIFIED.);

Real World Example: Test jig for METOP spacecraftAP203 export from Catia

Page 14: Use of AP203 CAD Data for Engineering Analysis Hans Peter de Koning - ESA/ESTEC - The Netherlands Sandrine Fagot - Simulog

Sheet 1416-19 Jan 2001 STEP for Aerospace Workshop - NASA-JPL

Real World Example: Test jig for METOP spacecraftTranslation into ESARAD definition language

/* ESARAD GENERATED FILE FROM STEP AP203 FILE */

/* ------------------------------------------ */ /* INFORMATION ON STEP AP203 FILE :

*/ /* COMPANY : */ /* LOCATION : location */ /* SERVICE : service name */ /* PERSON : */ /* PROJECT : project name */ /* PREPROCESSOR_VERSION : CATIA.STEP INTERFACE */ /* ORIGINATING_SYSTEM : CATIA SOLUTIONS V4 RELEASE 2.0 FR 4.2.0

*/ /* DATE : 25/9/2000 */

BEGIN_MODEL MetopFrameUpper

SHELL generated_id_1;generated_id_1 = SHELL_DISC( point1 = [ -6.763000, 1.125000, 0.160000], point2 = [ -6.762765, 1.125882, 0.159592], point3 = [ -6.763000, 1.127516, 0.165447], point5 = [ -6.763000, 1.122903, 0.155461]);

SHELL generated_id_3;generated_id_3 = SHELL_NURB_SURFACE( u_dim = 9, v_dim = 2, points = {[-6.727706, 1.254837, 0.093422], [-6.698294, 1.365131, 0.042479], [-6.733537, 1.256119, 0.092830], [-6.704126, 1.366413, 0.041887], [-6.733537, 1.258635, 0.098277], [-6.704126, 1.368929, 0.047334], [-6.733537, 1.261150, 0.103724], [-6.704126, 1.371445, 0.052781], [-6.727706, 1.259869, 0.104316], [-6.698294, 1.370163, 0.053373], [-6.721874, 1.258587, 0.104908], [-6.692463, 1.368881, 0.053965], [-6.721874, 1.256071, 0.099461], [-6.692463, 1.366365, 0.048518], [-6.721874, 1.253555, 0.094014], [-6.692463, 1.363850, 0.043071], [-6.727706, 1.254837, 0.093422], [-6.698294, 1.365131, 0.042479]}, weights = {1.000000, 1.000000, 0.707107, 0.707107, 1.000000, 1.000000, 0.707107, 0.707107, 1.000000, 1.000000, 0.707107, 0.707107, 1.000000, 1.000000, 0.707107, 0.707107, 1.000000, 1.000000}, u_degree = 2, v_degree = 1, u_knots = {0.000000, 0.000000, 0.000000, 1.570796, 1.570796, 3.141593, 3.141593,

4.712389, 4.712389, 6.283185, 6.283185, 6.283185}, v_knots = {0.150000, 0.150000, 0.275000, 0.275000}, num_loops = 1, loops = {

DEFINE_NURB_TRIM_LOOP ( num_curves = 4, curves = {

Page 15: Use of AP203 CAD Data for Engineering Analysis Hans Peter de Koning - ESA/ESTEC - The Netherlands Sandrine Fagot - Simulog

Sheet 1516-19 Jan 2001 STEP for Aerospace Workshop - NASA-JPL

Real World Example: Test jig for METOP spacecraftRaw AP203 export in ESARAD

• Produced with first beta version of translator Sep-2000

• All NURB-related shapes removed, because at that stage not yet supported in ESARAD visualisation and ray-tracing

• Still a large amount of useful reference surfaces and points

Page 16: Use of AP203 CAD Data for Engineering Analysis Hans Peter de Koning - ESA/ESTEC - The Netherlands Sandrine Fagot - Simulog

Sheet 1616-19 Jan 2001 STEP for Aerospace Workshop - NASA-JPL

Real World Example: Test jig for METOP spacecraftFinal jig model positioned on spacecraft

• After adaptation in ESARAD modeller and adding thermal features

• Estimated 25% reduction in model construction effort

• So, even without NURB support already significant savings

Page 17: Use of AP203 CAD Data for Engineering Analysis Hans Peter de Koning - ESA/ESTEC - The Netherlands Sandrine Fagot - Simulog

Sheet 1716-19 Jan 2001 STEP for Aerospace Workshop - NASA-JPL

Ray-tracing with NURB surfaces

• Status:– Algorithm works functionally– First round of performance tuning done– Just before workshop delivered to ESA for acceptance testing

• Functionality will be incorporated in next industrial release of ESARAD

Page 18: Use of AP203 CAD Data for Engineering Analysis Hans Peter de Koning - ESA/ESTEC - The Netherlands Sandrine Fagot - Simulog

Sheet 1816-19 Jan 2001 STEP for Aerospace Workshop - NASA-JPL

Example NURB shapes now supported in ESARAD ray-tracing

Some X-38-like concept -- no status -- just a test model

Page 19: Use of AP203 CAD Data for Engineering Analysis Hans Peter de Koning - ESA/ESTEC - The Netherlands Sandrine Fagot - Simulog

Sheet 1916-19 Jan 2001 STEP for Aerospace Workshop - NASA-JPL

Conclusions

• Import from CAD to ESARAD is working well• Could not have been done sensibly without STEP• Very promising development

• Emphasis is on improving the engineering analysis cycle• NURB support in ESARAD is for most cases not really needed from the

thermal analysis point of view• Striving to increase the efficiency and effectivity of the engineer, not

optimising on CPU or other computer resource usage

• However, high-fidelity NURB surfaces can be appropriate in some special cases thermal or thermal/optical analysis

• Mirror optics• Parasitic heatloads infra-red sensors, passive cooler baffles

Page 20: Use of AP203 CAD Data for Engineering Analysis Hans Peter de Koning - ESA/ESTEC - The Netherlands Sandrine Fagot - Simulog

Sheet 2016-19 Jan 2001 STEP for Aerospace Workshop - NASA-JPL

Future

• Complete testing• Testing with exports from other CAD packages -

enhancement of heuristic shape recognition• Improve transfer of product and part info (meta data)• AP203 to STEP-TAS converter?• AP203 import and NURB ray-tracing in next major

industrial release of ESARAD