veronica nieves civil and environmental engineering university of california, irvine jpl-nasa,...

28
Veronica Nieves Civil and Environmental Engineering University of California, Irvine JPL-NASA, Pasadena, March 2 nd , 2011 vnieves@uci. edu Maximum Entropy Principle Maximum Entropy Principle Reveals Simplicity Behind Reveals Simplicity Behind Complexity Complexity

Upload: howard-farmer

Post on 13-Dec-2015

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Veronica Nieves Civil and Environmental Engineering University of California, Irvine JPL-NASA, Pasadena, March 2 nd, 2011 vnieves@uci.edu

Veronica NievesCivil and Environmental Engineering

University of California, Irvine

JPL-NASA, Pasadena, March 2nd, 2011

[email protected]

Maximum Entropy Principle Reveals Maximum Entropy Principle Reveals

Simplicity Behind ComplexitySimplicity Behind Complexity

Maximum Entropy Principle Reveals Maximum Entropy Principle Reveals

Simplicity Behind ComplexitySimplicity Behind Complexity

Page 2: Veronica Nieves Civil and Environmental Engineering University of California, Irvine JPL-NASA, Pasadena, March 2 nd, 2011 vnieves@uci.edu

Ma

xim

um

E

ntr

opy

M

axi

mu

m

En

tro

py

Ma

xim

um

E

ntr

opy

M

axi

mu

m

En

tro

py

MaxEnt OverviewMaxEnt Overview

MAXIMUM ENTROPYMAXIMUM ENTROPY(MaxEnt) PRINCIPLE(MaxEnt) PRINCIPLE

APPLICATIONSAPPLICATIONS

FUTURE RESEARCHFUTURE RESEARCH

SUMMARYSUMMARY

APPLICATIONSAPPLICATIONS

FUTURE RESEARCHFUTURE RESEARCH

SUMMARYSUMMARY

2

Page 3: Veronica Nieves Civil and Environmental Engineering University of California, Irvine JPL-NASA, Pasadena, March 2 nd, 2011 vnieves@uci.edu

Ma

xim

um

E

ntr

opy

M

axi

mu

m

En

tro

py

Ma

xim

um

E

ntr

opy

M

axi

mu

m

En

tro

py

Identification of Identification of

ESSENTIAL PHYSICS.ESSENTIAL PHYSICS.

MaxEnt MaxEnt PrincipleMaxEnt MaxEnt Principle

GUESS -

PHYSICAL ASSUMPTIONS

Testable information given by

experimental results or conserved quantities.

ENTROPY -

MISSING INFORMATION

Measure of average amount of missing

information (or uncertainty) of random variable.

STATISTICS STATISTICS of random variable.of random variable.

MaxEnt: the probability distribution best representing the current state

of knowledge is the one associated to the largest entropy - subject to

physical constraints.

(Jaynes, 2003; Gregory, 2005).

(Dewar, 2009).

3

Page 4: Veronica Nieves Civil and Environmental Engineering University of California, Irvine JPL-NASA, Pasadena, March 2 nd, 2011 vnieves@uci.edu

Ma

xim

um

E

ntr

opy

M

axi

mu

m

En

tro

py

Ma

xim

um

E

ntr

opy

M

axi

mu

m

En

tro

py

MaxEnt MaxEnt PrincipleMaxEnt MaxEnt Principle

MaxEnt allows to identify the essential information, isolate it from the rest

and still describe the whole system.

Why is MaxEnt important?

MaxEnt is useful when complete information is not available or when the

computational efficiency is important.

4

Page 5: Veronica Nieves Civil and Environmental Engineering University of California, Irvine JPL-NASA, Pasadena, March 2 nd, 2011 vnieves@uci.edu

GUESS - PHYSICAL ASSUMPTIONS:

ENTROPY - MISSING INFORMATION:

p(x)

Ma

xim

um

E

ntr

opy

M

axi

mu

m

En

tro

py

Ma

xim

um

E

ntr

opy

M

axi

mu

m

En

tro

py

MaxEnt MaxEnt FormulationMaxEnt MaxEnt Formulation

* Lagrangian Multipliers *

5

Page 6: Veronica Nieves Civil and Environmental Engineering University of California, Irvine JPL-NASA, Pasadena, March 2 nd, 2011 vnieves@uci.edu

Ma

xim

um

E

ntr

opy

M

axi

mu

m

En

tro

py

Ma

xim

um

E

ntr

opy

M

axi

mu

m

En

tro

py

MaxEnt Example: closed system in thermal equilibriumMaxEnt Example: closed system in thermal equilibrium

p(x)

ENTROPY - MISSING INFORMATION

Gibbs’ canonical distribution:

GUESS - PHYSICAL ASSUMPTIONS:

(Tribus, 1961).

6

Page 7: Veronica Nieves Civil and Environmental Engineering University of California, Irvine JPL-NASA, Pasadena, March 2 nd, 2011 vnieves@uci.edu

Ma

xim

um

E

ntr

opy

M

axi

mu

m

En

tro

py

Ma

xim

um

E

ntr

opy

M

axi

mu

m

En

tro

py

MaxEntMaxEnt

APPLICATIONSAPPLICATIONS

FUTURE RESEARCHFUTURE RESEARCH

SUMMARYSUMMARY

MAXIMUM ENTROPYMAXIMUM ENTROPY(MaxEnt) PRINCIPLE(MaxEnt) PRINCIPLE

7

Page 8: Veronica Nieves Civil and Environmental Engineering University of California, Irvine JPL-NASA, Pasadena, March 2 nd, 2011 vnieves@uci.edu

Ma

xim

um

E

ntr

opy

M

axi

mu

m

En

tro

py

Ma

xim

um

E

ntr

opy

M

axi

mu

m

En

tro

py

MaxEnt Application: drainage areaMaxEnt Application: drainage area

* Kapur, 1989:

“When the geometric mean is prescribed, the MaxEnt probability distribution is the power-function distribution.”

* Tarboton et al., 1989:

“Contributing area shows a power law relationship”.

Drainage area: the geographical area drained by a river and its tributaries.

p(x)

ENTROPY - MISSING INFORMATION

GUESS - PHYSICAL ASSUMPTIONS:

Geometrical mean

8

Page 9: Veronica Nieves Civil and Environmental Engineering University of California, Irvine JPL-NASA, Pasadena, March 2 nd, 2011 vnieves@uci.edu

Ma

xim

um

E

ntr

opy

M

axi

mu

m

En

tro

py

Ma

xim

um

E

ntr

opy

M

axi

mu

m

En

tro

py

MaxEnt Empirical vs. MaxEnt scaling exponentsMaxEnt Empirical vs. MaxEnt scaling exponents

=

9

Page 10: Veronica Nieves Civil and Environmental Engineering University of California, Irvine JPL-NASA, Pasadena, March 2 nd, 2011 vnieves@uci.edu

River networks in Puerto Rico derived from USGS DEM data.

“Predicted” refers to (log(Ag/A1))-1, and “fitted” to their curve-fitting values.

Ma

xim

um

E

ntr

opy

M

axi

mu

m

En

tro

py

Ma

xim

um

E

ntr

opy

M

axi

mu

m

En

tro

py

MaxEnt Empirical vs. MaxEnt scaling exponentsMaxEnt Empirical vs. MaxEnt scaling exponents

10

Page 11: Veronica Nieves Civil and Environmental Engineering University of California, Irvine JPL-NASA, Pasadena, March 2 nd, 2011 vnieves@uci.edu

Ma

xim

um

E

ntr

opy

M

axi

mu

m

En

tro

py

Ma

xim

um

E

ntr

opy

M

axi

mu

m

En

tro

py

MaxEnt Application: scale-invariant processesMaxEnt Application: scale-invariant processes

Similar scaling relation found for different separation distances on a large enough landscape (Rodriguez-Iturbe, 1997; Peters-Lidard et al., 2001).

Z1

Z2

r

Z1

Z2

r

Z1

Z2 r

GUESS - PHYSICAL ASSUMPTIONS:

Z1

Z2

r

ENTROPY - MISSING INFORMATION

p(x)

Geometrical mean

Multiscaling moments

11

Page 12: Veronica Nieves Civil and Environmental Engineering University of California, Irvine JPL-NASA, Pasadena, March 2 nd, 2011 vnieves@uci.edu

Ma

xim

um

E

ntr

opy

M

axi

mu

m

En

tro

py

Ma

xim

um

E

ntr

opy

M

axi

mu

m

En

tro

py

MaxEnt DataMaxEnt Data

AMSR-E SSM for October 18th, 2009.

- Input brightness temp. at 10.7 GHz.

- Soil moisture in the top ~1 cm

(vertical sampling depth and averaged over 60 km horizontal spatial extent).

- Accuracy ~ 0.06 g/cm3.

- Typical day is of 28 half-orbits coverage.

- Swath width is 1445 km.

- 25 km EASE-grid cell spacing.

NED Shaded Relief Map (1 arc-second).

- Raster elevation data by USGS.

- Updated on a two month cycle and derived from diverse sources.

- Elevation values in meters referenced to NAD83 (horizontal

datum) and NAVD88 (vertical datum).

- Vertical accuracy ~ 7-15 m (depending on source DEM).

- Resolution of ~ 30 m (1 arc-second).

* http://nsidc.org/data/amsre

* http://ned.usgs.gov

12

Page 13: Veronica Nieves Civil and Environmental Engineering University of California, Irvine JPL-NASA, Pasadena, March 2 nd, 2011 vnieves@uci.edu

Empirical

Theoretical q=2

Ma

xim

um

E

ntr

opy

M

axi

mu

m

En

tro

py

Ma

xim

um

E

ntr

opy

M

axi

mu

m

En

tro

py

MaxEnt Empirical vs. MaxEnt distributionsMaxEnt Empirical vs. MaxEnt distributions

Nieves et al., Phys. Rev. Lett., 105 (2010). This paper was highlighted in the CEE UCI news: http://www.eng.uci.edu/news/2010/11/cee-paper-published-physical-review-letters 13

Page 14: Veronica Nieves Civil and Environmental Engineering University of California, Irvine JPL-NASA, Pasadena, March 2 nd, 2011 vnieves@uci.edu

Ma

xim

um

E

ntr

opy

M

axi

mu

m

En

tro

py

Ma

xim

um

E

ntr

opy

M

axi

mu

m

En

tro

py

MaxEnt Empirical vs. MaxEnt distributionsMaxEnt Empirical vs. MaxEnt distributions

Empirical

Theoretical q=2

Nieves et al., Phys. Rev. Lett., 105 (2010). This paper was highlighted in the CEE UCI news: http://www.eng.uci.edu/news/2010/11/cee-paper-published-physical-review-letters 14

Page 15: Veronica Nieves Civil and Environmental Engineering University of California, Irvine JPL-NASA, Pasadena, March 2 nd, 2011 vnieves@uci.edu

Ma

xim

um

E

ntr

opy

M

axi

mu

m

En

tro

py

Ma

xim

um

E

ntr

opy

M

axi

mu

m

En

tro

py

MaxEntMaxEnt

APPLICATIONSAPPLICATIONS

FUTURE RESEARCHFUTURE RESEARCH

SUMMARYSUMMARY

MAXIMUM ENTROPYMAXIMUM ENTROPY(MaxEnt) PRINCIPLE(MaxEnt) PRINCIPLE

20

Page 16: Veronica Nieves Civil and Environmental Engineering University of California, Irvine JPL-NASA, Pasadena, March 2 nd, 2011 vnieves@uci.edu

- MaxEnt is an inference algorithm that reveals essential information of complex

systems such as river networks, soil moisture, and topography.

Ma

xim

um

E

ntr

opy

M

axi

mu

m

En

tro

py

Ma

xim

um

E

ntr

opy

M

axi

mu

m

En

tro

py

MaxEnt SummaryMaxEnt Summary

Observable parameters.

Characterization of river basin properties.

Testable information: experimental results or conserved quantities.

E.T Jaynes, 1982.

- Microscopic physics can be avoided and the computational efficiency improved.

* Description of the whole system using a reduced data set that carry enough physical information to “mimic” nature behavior.

21

Page 17: Veronica Nieves Civil and Environmental Engineering University of California, Irvine JPL-NASA, Pasadena, March 2 nd, 2011 vnieves@uci.edu

Ma

xim

um

E

ntr

opy

M

axi

mu

m

En

tro

py

Ma

xim

um

E

ntr

opy

M

axi

mu

m

En

tro

py

MaxEntMaxEnt

APPLICATIONSAPPLICATIONS

FUTURE RESEARCHFUTURE RESEARCH

SUMMARYSUMMARY

MAXIMUM ENTROPYMAXIMUM ENTROPY(MaxEnt) PRINCIPLE(MaxEnt) PRINCIPLE

22

Page 18: Veronica Nieves Civil and Environmental Engineering University of California, Irvine JPL-NASA, Pasadena, March 2 nd, 2011 vnieves@uci.edu

Ma

xim

um

E

ntr

opy

M

axi

mu

m

En

tro

py

Ma

xim

um

E

ntr

opy

M

axi

mu

m

En

tro

py

MaxEnt Future ResearchMaxEnt Future Research

* Acknowledgements: Acknowledgements: This work was supported by the postdoctoral research Balsells - Generalitat de

Catalunya Fellowship and the U.S. Army RDECOM ARL Army Research Office under Grants No. W911NF-07-

1-0126 and W911NF-10-1-0236.

- Design of a MaxEnt-based monitoring networkDesign of a MaxEnt-based monitoring network:: MaxEnt helps to select optimal observation sites by

providing a measure of information gaininformation gain (Nieves et al.,

in preparation).

- Generation of heat fluxes over landmasses, Generation of heat fluxes over landmasses,

oceans and snow/ice caps using the oceans and snow/ice caps using the MaxEnt MaxEnt

Production (MEP)Production (MEP): : only three variables (radiation,

temperature, and humidity) are needed (J. Wang et al.

2009 and 2011).

23

Page 19: Veronica Nieves Civil and Environmental Engineering University of California, Irvine JPL-NASA, Pasadena, March 2 nd, 2011 vnieves@uci.edu

Ma

xim

um

E

ntr

opy

M

axi

mu

m

En

tro

py

Ma

xim

um

E

ntr

opy

M

axi

mu

m

En

tro

py

MaxEnt Future ResearchMaxEnt Future Research

[email protected]

Page 20: Veronica Nieves Civil and Environmental Engineering University of California, Irvine JPL-NASA, Pasadena, March 2 nd, 2011 vnieves@uci.edu

Ma

xim

um

E

ntr

opy

M

axi

mu

m

En

tro

py

Ma

xim

um

E

ntr

opy

M

axi

mu

m

En

tro

py

MaxEnt ReferencesMaxEnt References

E.T. Jaynes, Probability Theory: The Logic of Science, Cambridge Univ. Press, 2003.

P.C. Gregory, Bayesian logical data analysis for the physical sciences, Cambridge Univ. Press, 2005.

J.N. Kapur, Maximum entropy models in science and engineering, John Wiley & Sons, New York, 1989.

V. Nieves, J. Wang, R. Bras, and E. Wood, Maximum Entropy Distributions of Scale-Invariant Processes, Phys. Rev. Lett., 105 (2010), pp. 118701.

B.B. Mandelbrot, The fractal geometry of nature, W H Freeman and Co., New York, 1983.

D. Veneziano and J.D. Niemann, Self-similarity and multifractality of fluvial erosion topography 1. Mathematical conditions and physical origin, Water Resour. Res., 36 (2000), pp. 1923.

D. Veneziano and J.D. Niemann, Self-similarity and multifractality of fluvial erosion topography 2. Scaling properties, Water Resour. Res., 36 (2000), pp. 1937.

R.C. Dewar, Maximum Entropy Production as an Inference Algorithm that Translates Physical Assumptions into Macroscopic Predictions: Don't Shoot the Messenger, Entropy, 11 (2009), pp. 931.

S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, 1999.

D.G. Tarboton, R.L. Bras, and I. Rodriguez-Iturbe, Scaling and elevation in river networks, Water Resour. Res., 25 (1989), pp. 2037.

V. Nieves and A. Turiel, Analysis of ocean turbulence using adaptive CVE on altimetry maps, J. Marine Syst., 77 (2009), pp. 482.

B. Lashermes, E. Foufoula-Georgiou, and W. Dietrich, Channel network extraction from high resolution topography using wavelets, Geophys. Res. Lett., 34 (2007), pp. L23S04.

A. Turiel and N. Parga, Multifractal wavelet fillter of natural images, Phys. Rev. Lett., 85 (2000), pp. 3325.

A. Arneodo, G. Grasseau, and M. Holschneider, Wavelet Transform of Multifractals, Phys. Rev. Lett., 61 (1988), pp. 2281.

A. Arneodo, Wavelet analysis of fractals: from the mathematical concepts to experimental reality, Wavelets. Theory and applications, Oxford Univ. Press, 1996.

M. Vergassola and U. Frisch, Wavelet transforms of self-similar processes, Physica D, 54 (1991), pp. 58.

I. Rodriguez-Iturbe and A. Rinaldo, Fractal River Basins: Chance and Self-Organization, Cambridge Univ. Press, New York, 1997.

J. Wang and R.L. Bras, A model of surface heat fluxes based on the theory of maximum entropy production, Water Resour. Res., 45 (2009), W11422.

J. Wang and R.L. Bras, A model of evapotranspiration based on the theory of maximum entropy production, Water Resour. Res., 47 (2011), XXXXXX.

M. Tribus, Thermostatics and thermodynamics; an introduction to energy, information and states of matter, with engineering applications, Princeton, N.J., Van Nostrand, 1961.

C.D Peters-Lidard, F. Pan, A.Y. Hsu, and P.E. O’Neill, ESTAR and model-derived multiscaling characteristics of soil moisture during SGP’97 Washita ‘92 and Washita ‘94, IEEE Proceedings, (2001), pp. 1297-1299. 25

Page 21: Veronica Nieves Civil and Environmental Engineering University of California, Irvine JPL-NASA, Pasadena, March 2 nd, 2011 vnieves@uci.edu

Additional MaterialAdditional Material

Page 22: Veronica Nieves Civil and Environmental Engineering University of California, Irvine JPL-NASA, Pasadena, March 2 nd, 2011 vnieves@uci.edu

27

128

64

3216

WV AnalysisWV Analysis

Page 23: Veronica Nieves Civil and Environmental Engineering University of California, Irvine JPL-NASA, Pasadena, March 2 nd, 2011 vnieves@uci.edu

28

128

128

Page 24: Veronica Nieves Civil and Environmental Engineering University of California, Irvine JPL-NASA, Pasadena, March 2 nd, 2011 vnieves@uci.edu

29

64

64

Page 25: Veronica Nieves Civil and Environmental Engineering University of California, Irvine JPL-NASA, Pasadena, March 2 nd, 2011 vnieves@uci.edu

30

32

32

Page 26: Veronica Nieves Civil and Environmental Engineering University of California, Irvine JPL-NASA, Pasadena, March 2 nd, 2011 vnieves@uci.edu

31

16

16

Page 27: Veronica Nieves Civil and Environmental Engineering University of California, Irvine JPL-NASA, Pasadena, March 2 nd, 2011 vnieves@uci.edu

32

Page 28: Veronica Nieves Civil and Environmental Engineering University of California, Irvine JPL-NASA, Pasadena, March 2 nd, 2011 vnieves@uci.edu

Daubechies, p=6

33

Haar

. Haar

. Daubechies, p=3,6

. Coiflet, p=1

. Symmlet, p=4

. Battle-Lemarie, p=3