voladura de rocas

26
VOLADURA DE ROCAS APLICADA A LA NUEVA MINERÍA CAPÍTULO I: NUEVAS IDEAS SOBRE FRAGMENTACIÓN ISEE Ing. Rómulo Mucho Presidente IIMP Lima, 8 de abril, 2013

Upload: sandro-arratia

Post on 09-Dec-2015

36 views

Category:

Documents


5 download

DESCRIPTION

VOLADURA DE ROCAS APLICADAA LA NUEVA MINERÍACapítulo i: NUEVAS IDEAS SOBRE FRAGMENTACIÓN ISEE

TRANSCRIPT

Page 1: VOLADURA DE ROCAS

VOLADURA DE ROCAS APLICADA

A LA NUEVA MINERÍA

CAPÍTULO I: NUEVAS IDEAS SOBRE FRAGMENTACIÓN ISEE

Ing. Rómulo MuchoPresidente IIMP

Lima, 8 de abril, 2013

Page 2: VOLADURA DE ROCAS

Peter Cundall

Maurilio Torres

Marc Ruest

Ewan Sellers

Sandy Etchells

Italo Onederra

Page 3: VOLADURA DE ROCAS

SIMPLE MODELHSBM/BLO-UP MODEL

Page 4: VOLADURA DE ROCAS

• Heterogeneous Mixtures

• VoD Dependent on Confinment

• VoD Dependent on Diameter

• Incomplete Reaction

• Curved Shock Front

• Large DDZ

Vixen 2009 Calculates Ideal Detonation State: Ideal VoD + Q

Non-Ideal Corrections are Made: Q1D and DSD

Output is VoD and Reaction Extent

NON-IDEAL DETONATION

Page 5: VOLADURA DE ROCAS

TWO-PART SIMPLE MODEL

Page 6: VOLADURA DE ROCAS
Page 7: VOLADURA DE ROCAS

200 μs tensile hoop stresses

at 3-5 borehole radii

400 μs tensile stresses occur

at the borehole wall

Page 8: VOLADURA DE ROCAS

TWO-PART SIMPLE MODEL

Page 9: VOLADURA DE ROCAS

ENERGY PARTITION

Page 10: VOLADURA DE ROCAS
Page 11: VOLADURA DE ROCAS

EXPLOSIVE ISENTROPE

Page 12: VOLADURA DE ROCAS

PARAMETER STUDY

Page 13: VOLADURA DE ROCAS

ENERGY BALANCE OF PRODUCTION BLASTS AT

NORDKALK’S KLINTHAGEN QUARRY

Henrik Grind

Nordkalk Storugns AB

F Ouchterlony

U Nyberg

M Olsson

Swebrec

at LTU

I Bergqvist

L Granlund

Dyno Nobel

Page 14: VOLADURA DE ROCAS

BLAST ENERGY BALANCE - 3

Components of blast energy balance:

• Losses in hole 60 - 30 %

• Losses in rock 20 - 40 %

• Kinetic energy 10 - 20 %

• Seismic energy 5 - 10 %

• Fragm. energy 0.1 - 2 %

SveBeFo

Swebrec

Page 15: VOLADURA DE ROCAS

• Specifics of explosive behavior are important

• Equilibrium pressure controls movement

• Blastability

• Time-scales and energy

1 µs Detonation

500 µs Equilibrium

10 ms Gas venting

1 s Muckpile

SIMPLE MODEL CONCLUSIONS

Page 16: VOLADURA DE ROCAS

OVERVIEW

Near-fielddetonationcrushing

Brittle latticestress wavefragmentationmovement and muckpile

Gas productthrowgas venting

Page 17: VOLADURA DE ROCAS

Overview

Page 18: VOLADURA DE ROCAS

INPUT

Rock Propertieselasticshear and tensile strength

Jointing and LayeringDFN importgeological seams

Calibration Parametersequilibrium pressuretensile strength scale

Page 19: VOLADURA DE ROCAS

INPUT

Blast geometryblasthole layoutBench or drift shape

Explosivetypenon-ideal data

Stress conditionsorientationmagnitude

Page 20: VOLADURA DE ROCAS

OUTPUT

Page 21: VOLADURA DE ROCAS

UNDERGROUND BLASTING – SLC CONFINED BLASTING

Page 22: VOLADURA DE ROCAS

SMALL SCALE VALIDATION

University of Leoben (Reichholf 2003)

Italo Onederra, University of Queensland

Page 23: VOLADURA DE ROCAS

LKAB, Swebrec, Finn Ouchterlony, Danial Johansson

SMALL SCALE VALIDATION

Page 24: VOLADURA DE ROCAS

Steve Iverson and Bill Hustrulid

NIOSH COLLABORATIONItalo Onederra, University of Queensland

Page 25: VOLADURA DE ROCAS

FIELD SCALE MODELING

Page 26: VOLADURA DE ROCAS

MODELO FÍSICO DE UNA REACCIÓN DE DETONACIÓN DE UN

EXPLOSIVO EN UN MACIZO ROCOSO