wesep 594 research seminar -...

35
WESEP 594 Research Seminar Aaron J Rosenberg Department of Aerospace Engineering Iowa State University Major: WESEP Co-major: Aerospace Engineering

Upload: others

Post on 04-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: WESEP 594 Research Seminar - home.engineering.iastate.eduhome.engineering.iastate.edu/~jdm/wesep594/ResearchSeminar.pdf · Primary Rotor – NREL 5 MW offshore •Conceptual design

WESEP 594 Research Seminar

Aaron J Rosenberg

Department of Aerospace Engineering

Iowa State University

Major: WESEP

Co-major: Aerospace Engineering

Page 2: WESEP 594 Research Seminar - home.engineering.iastate.eduhome.engineering.iastate.edu/~jdm/wesep594/ResearchSeminar.pdf · Primary Rotor – NREL 5 MW offshore •Conceptual design

Motivation

• Increase Wind Energy Capture • Betz limit:

– 59.3% of energy capture – Modern HAWTs operate well below

this

• Root loss (≈5%)

– Inner 25% of rotor … … designed for structural integrity Poor root aerodynamics

• Wake loss (≈8−40%)

– Not operating in isolation

Qualifying Exam Aaron Rosenberg 2

Page 3: WESEP 594 Research Seminar - home.engineering.iastate.eduhome.engineering.iastate.edu/~jdm/wesep594/ResearchSeminar.pdf · Primary Rotor – NREL 5 MW offshore •Conceptual design

Novel Turbine Concept

• Dual Rotor Wind Turbine (DRWT) – Add a secondary, co-axial rotor – Rotors rotate independently – Co- or counter rotating

• Aims: – Reduce root loss – Reduce wake loss

• Enhance wake mixing

• Secondary rotor inversely designed using BEM

– Betz optimal rotor

• Analyzed design using RANS and LES

Qualifying Exam Aaron Rosenberg 3

Dual rotor wind turbine (DRWT) concept

Lab models (courtesy Dr. Hui Hu)

Page 4: WESEP 594 Research Seminar - home.engineering.iastate.eduhome.engineering.iastate.edu/~jdm/wesep594/ResearchSeminar.pdf · Primary Rotor – NREL 5 MW offshore •Conceptual design

DUAL ROTOR DESIGN

Qualifying Exam Aaron Rosenberg 4

Page 5: WESEP 594 Research Seminar - home.engineering.iastate.eduhome.engineering.iastate.edu/~jdm/wesep594/ResearchSeminar.pdf · Primary Rotor – NREL 5 MW offshore •Conceptual design

Primary Rotor – NREL 5 MW offshore

• Conceptual design

• 𝐷 = 126.0 m

• Constraints:

– Transportation (chord)

– Manufacturability (twist)

– Loads (thickness)

Aero losses

Qualifying Exam Aaron Rosenberg 5

Applies to all utility-scale HAWTs

Page 6: WESEP 594 Research Seminar - home.engineering.iastate.eduhome.engineering.iastate.edu/~jdm/wesep594/ResearchSeminar.pdf · Primary Rotor – NREL 5 MW offshore •Conceptual design

Secondary Rotor Design

Input

• Chord distribution

• Twist distribution

• Non-dimensional

Qualifying Exam Aaron Rosenberg 6

• DU 96 airfoil

• Betz optimum rotor • 𝑎 = 1/3

Output

Page 7: WESEP 594 Research Seminar - home.engineering.iastate.eduhome.engineering.iastate.edu/~jdm/wesep594/ResearchSeminar.pdf · Primary Rotor – NREL 5 MW offshore •Conceptual design

NUMERICAL METHODS 1. RANS + Actuator Disk

2. LES + Actuator Line

Aaron Rosenberg Qualifying Exam 7

Page 8: WESEP 594 Research Seminar - home.engineering.iastate.eduhome.engineering.iastate.edu/~jdm/wesep594/ResearchSeminar.pdf · Primary Rotor – NREL 5 MW offshore •Conceptual design

CFD: RANS + Actuator Disk

• Selvaraj, 2014 (M.S. thesis)

• Reynold’s Averaged Navier-Stokes + Actuator Disk – Incompressible flow

• Axisymmetric computations • Implemented in OpenFOAM (SimpleFOAM)

Qualifying Exam Aaron Rosenberg 8

Page 9: WESEP 594 Research Seminar - home.engineering.iastate.eduhome.engineering.iastate.edu/~jdm/wesep594/ResearchSeminar.pdf · Primary Rotor – NREL 5 MW offshore •Conceptual design

CFD Validation: Single Rotor HAWTs

Aaron Rosenberg Qualifying Exam 9

Risø Turbine: • Conventional, single-rotor design • 100 kW • Fixed Pitch, Stall Regulated • 𝐷 = 19.0 m

@ TSR = 7

Page 10: WESEP 594 Research Seminar - home.engineering.iastate.eduhome.engineering.iastate.edu/~jdm/wesep594/ResearchSeminar.pdf · Primary Rotor – NREL 5 MW offshore •Conceptual design

Multiple Actuator Disk Validation

Aaron Rosenberg Qualifying Exam 10

• Newman (1985)* extended 1-D theory to multiple disks

• Equal-size, uniformly-loaded disks in tandem

• Validate against analytical solutions for 2, 3, & 4 disks

• Specify CT, compute CT and CP

*Newman, B 1986 Journal of Wind Engineering and Industrial Aerodynamics 24 pp. 215–225

Page 11: WESEP 594 Research Seminar - home.engineering.iastate.eduhome.engineering.iastate.edu/~jdm/wesep594/ResearchSeminar.pdf · Primary Rotor – NREL 5 MW offshore •Conceptual design

RANS Validation: Two Disks

Qualifying Exam Aaron Rosenberg 11

Thrust force coefficient Power coefficient

Page 12: WESEP 594 Research Seminar - home.engineering.iastate.eduhome.engineering.iastate.edu/~jdm/wesep594/ResearchSeminar.pdf · Primary Rotor – NREL 5 MW offshore •Conceptual design

RANS Validation: Three Disks

Qualifying Exam Aaron Rosenberg 12

Thrust force coefficient Power coefficient

Page 13: WESEP 594 Research Seminar - home.engineering.iastate.eduhome.engineering.iastate.edu/~jdm/wesep594/ResearchSeminar.pdf · Primary Rotor – NREL 5 MW offshore •Conceptual design

RANS Validation: Four Disks

Qualifying Exam Aaron Rosenberg 13

Thrust force coefficient Power coefficient

Page 14: WESEP 594 Research Seminar - home.engineering.iastate.eduhome.engineering.iastate.edu/~jdm/wesep594/ResearchSeminar.pdf · Primary Rotor – NREL 5 MW offshore •Conceptual design

Optimization Study (RANS)

Qualifying Exam Aaron Rosenberg 14

• Optimum Betz rotor design for secondary rotor ignores rotor-rotor interaction effects not optimum for DRWT use

• Optimize secondary rotor for DRWT performance – Still isolated turbine … not wind plant

• Parametric sweeps; vary: – #1: Secondary rotor size & TSR

Hold rotor-rotor separation:

– #2: Rotor-rotor separation & TSR Hold secondary rotor size:

Page 15: WESEP 594 Research Seminar - home.engineering.iastate.eduhome.engineering.iastate.edu/~jdm/wesep594/ResearchSeminar.pdf · Primary Rotor – NREL 5 MW offshore •Conceptual design

Rotor Size

TSR

Se

co

nd

ary

ro

tor

ra

diu

s

2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

% C p

7

5

3

1

-1

-3

-5

-7

Qualifying Exam Aaron Rosenberg 15

Percent Change in Power Coefficient

Size of the secondary rotor varied

Page 16: WESEP 594 Research Seminar - home.engineering.iastate.eduhome.engineering.iastate.edu/~jdm/wesep594/ResearchSeminar.pdf · Primary Rotor – NREL 5 MW offshore •Conceptual design

Rotor Spacing

TSR

Ax

ial

se

pa

ra

tio

nb

etw

ee

nro

tors

2 4 6 8 10 12

0.2

0.4

0.6

0.8

% C p

7

6

5

4

3

2

1

0

Qualifying Exam Aaron Rosenberg 16

Percent Change in Power Coefficient

Axial spacing between primary & secondary rotors varied

Page 17: WESEP 594 Research Seminar - home.engineering.iastate.eduhome.engineering.iastate.edu/~jdm/wesep594/ResearchSeminar.pdf · Primary Rotor – NREL 5 MW offshore •Conceptual design

Co- Versus Counter-Rotation

Qualifying Exam Aaron Rosenberg 17

Co-rotation Counter-rotation

• Little influence of rotation direction

• Counter-rotation gives slightly better performance

Page 18: WESEP 594 Research Seminar - home.engineering.iastate.eduhome.engineering.iastate.edu/~jdm/wesep594/ResearchSeminar.pdf · Primary Rotor – NREL 5 MW offshore •Conceptual design

Results: • Secondary rotor:

– Optimal size:

– Optimal spacing:

– Optimal TSR = 6

• DRWT design:

– Reasonable AoA

– Efficient torque (power) generation in root region

Optimization Study

Qualifying Exam Aaron Rosenberg 18

7% increase in CP observed

Page 19: WESEP 594 Research Seminar - home.engineering.iastate.eduhome.engineering.iastate.edu/~jdm/wesep594/ResearchSeminar.pdf · Primary Rotor – NREL 5 MW offshore •Conceptual design

NUMERICAL METHODS 1. RANS + Actuator Disk

2. LES + Actuator Line

Aaron Rosenberg Qualifying Exam 19

Page 20: WESEP 594 Research Seminar - home.engineering.iastate.eduhome.engineering.iastate.edu/~jdm/wesep594/ResearchSeminar.pdf · Primary Rotor – NREL 5 MW offshore •Conceptual design

Large Eddy Simulations

• Motivation – Analyze wake mixing

– Unsteady features

– Unsteady loading

• RANS optimized DRWT config – Counter-rotating

• Compare with SRWT

• SOWFA – LES + Actuator Line

– SGS model: Smagorinsky

Qualifying Exam Aaron Rosenberg 20

Page 21: WESEP 594 Research Seminar - home.engineering.iastate.eduhome.engineering.iastate.edu/~jdm/wesep594/ResearchSeminar.pdf · Primary Rotor – NREL 5 MW offshore •Conceptual design

LES + Actuator Line

Aaron Rosenberg Qualifying Exam 21

• Governing eqs.: unsteady, incompressible N-S

• Spatially filtering resolve variable denoted by (~)

• Assumptions:

• Neutral atmosphere buoyancy ignored • Small domain Coriolis plays little role • Zero inflow & background turbulence • Turbines represented w/ body forces (Actuator line)

Page 22: WESEP 594 Research Seminar - home.engineering.iastate.eduhome.engineering.iastate.edu/~jdm/wesep594/ResearchSeminar.pdf · Primary Rotor – NREL 5 MW offshore •Conceptual design

DRWT LES

Qualifying Exam Aaron Rosenberg 22

Inflow

Outflow

Periodic

Periodic

2D 6D

4D 1D

• Simulated 200 sec – Averaged from 150 – 200 s for

performance comparisons

• U∞= 8 m/s

• Periodic BCs (side & top): – Infinite array in cross stream dir… … but large separation isolated

• Nacelle & tower ignored

• Uniform flow, no turb, no buoyancy, no Coriolis

• 1 simulation ~ 6K core hours (~24 hrs on 256 cores)

Page 23: WESEP 594 Research Seminar - home.engineering.iastate.eduhome.engineering.iastate.edu/~jdm/wesep594/ResearchSeminar.pdf · Primary Rotor – NREL 5 MW offshore •Conceptual design

DRWT LES

Qualifying Exam Aaron Rosenberg 23

~5% increase in CP observed

<INSERT ANIMATION HERE>

Page 24: WESEP 594 Research Seminar - home.engineering.iastate.eduhome.engineering.iastate.edu/~jdm/wesep594/ResearchSeminar.pdf · Primary Rotor – NREL 5 MW offshore •Conceptual design

DRWT LES Results: Wake Evolution

Qualifying Exam Aaron Rosenberg 24

• Secondary rotor extracting energy higher deficit near root • Insignificant difference in wake deficit near tip

X = 2D X = 4D

Page 25: WESEP 594 Research Seminar - home.engineering.iastate.eduhome.engineering.iastate.edu/~jdm/wesep594/ResearchSeminar.pdf · Primary Rotor – NREL 5 MW offshore •Conceptual design

DRWT LES Results: Wake Evolution

Qualifying Exam Aaron Rosenberg 25

• Root: higher turbulence intensity • Tip: Insignificant difference

Absence of background turbulence, ABL, tower wake /vortex systems of the 2 rotors not interacting

X = 2D X = 4D

Page 26: WESEP 594 Research Seminar - home.engineering.iastate.eduhome.engineering.iastate.edu/~jdm/wesep594/ResearchSeminar.pdf · Primary Rotor – NREL 5 MW offshore •Conceptual design

Conclusions

Qualifying Exam Aaron Rosenberg 26

• Designed a DRWT using inverse BEM

• Validated RANS + Actuator disk

– Single and multi-rotor turbines

• Optimized DRWT using RANS + AD

• Performance analysis using LES

– CP increase of ~5% (RANS: 7%)

Page 27: WESEP 594 Research Seminar - home.engineering.iastate.eduhome.engineering.iastate.edu/~jdm/wesep594/ResearchSeminar.pdf · Primary Rotor – NREL 5 MW offshore •Conceptual design

FUTURE WORK

Aaron Rosenberg Qualifying Exam 27

Page 28: WESEP 594 Research Seminar - home.engineering.iastate.eduhome.engineering.iastate.edu/~jdm/wesep594/ResearchSeminar.pdf · Primary Rotor – NREL 5 MW offshore •Conceptual design

Future Work

1. ABL Simulations

2. Wind Farm Simulations

3. Enhance Wake Mixing

4. Acoustic Study

5. Cost Analysis

6. Experimental Validation

Aaron Rosenberg Qualifying Exam 28

Page 29: WESEP 594 Research Seminar - home.engineering.iastate.eduhome.engineering.iastate.edu/~jdm/wesep594/ResearchSeminar.pdf · Primary Rotor – NREL 5 MW offshore •Conceptual design

Atmospheric Boundary Layer Simulations

• Uniform inflow is not realistic

• What are the effects of a fully turbulent ABL? – Power Production

– Acoustics

– Stochastic Loading

• SOWFA Precursor ABL – Wall model for ground

– Potential temperature profile • Unstable vs Neutral vs Stable

Aaron Rosenberg Qualifying Exam 29

From SOWFA webinar

Page 30: WESEP 594 Research Seminar - home.engineering.iastate.eduhome.engineering.iastate.edu/~jdm/wesep594/ResearchSeminar.pdf · Primary Rotor – NREL 5 MW offshore •Conceptual design

Wind Farm Simulations

• DRWT vs SRWT – Do DRWT arrays act more efficiently?

• Full vs partial wake effects • Fully turbulent ABL

– Coriolis & buoyancy included

Aaron Rosenberg Qualifying Exam 30

Page 31: WESEP 594 Research Seminar - home.engineering.iastate.eduhome.engineering.iastate.edu/~jdm/wesep594/ResearchSeminar.pdf · Primary Rotor – NREL 5 MW offshore •Conceptual design

Enhance Wake Mixing

Aaron Rosenberg Qualifying Exam 31

• Wake Loss > Root Loss • Instigate excitation of vortex-

pair instability • Re-energize wake • Wake Control

• Secondary blade size/design?

• Control Algorithm?

• 𝜃, 𝜆1,2 = 𝑓 𝑈∞,𝜕𝜃𝑡

𝜕𝑧, ?

D(x)?

Co-rotating Vortex pair

Page 32: WESEP 594 Research Seminar - home.engineering.iastate.eduhome.engineering.iastate.edu/~jdm/wesep594/ResearchSeminar.pdf · Primary Rotor – NREL 5 MW offshore •Conceptual design

Acoustic Study

• Airfoil-Rod interaction – Leading edge noise from

primary rotor • Thin airfoil of secondary

rotor • Thick root section of

primary rotor

• Potential Field – Trailing edge noise from

secondary rotor

• Semi-analytical models – Sears (1941) – Cascade Response

• A lot to learn here!

Aaron Rosenberg Qualifying Exam 32

Courtesy Bharat Agrawal

Page 33: WESEP 594 Research Seminar - home.engineering.iastate.eduhome.engineering.iastate.edu/~jdm/wesep594/ResearchSeminar.pdf · Primary Rotor – NREL 5 MW offshore •Conceptual design

Cost Analysis

• Wind Turbine Design Cost and Scaling Model (2006)

– Calculates LCOE

– Function of turbine size

• Extended to DRWT

– Refine analysis

• Drivetrain Costs?

– Collaborate w/ industry

SRWT DRWT

Onshore $0.0464/kWh $0.0438/kWh

Offshore $0.0807/kWh $0.0767/kWh

Aaron Rosenberg Qualifying Exam 33

Page 34: WESEP 594 Research Seminar - home.engineering.iastate.eduhome.engineering.iastate.edu/~jdm/wesep594/ResearchSeminar.pdf · Primary Rotor – NREL 5 MW offshore •Conceptual design

Experimental Validation

• Validate CFD results w/ Dr. Hu’s research group

– Replicate previous wind tunnel experiments

• AABL + Model Turbines

– Fabricate DRWT models

• Isolated and Array

Aaron Rosenberg Qualifying Exam 34

From Hu et al. (2012)

Page 35: WESEP 594 Research Seminar - home.engineering.iastate.eduhome.engineering.iastate.edu/~jdm/wesep594/ResearchSeminar.pdf · Primary Rotor – NREL 5 MW offshore •Conceptual design

QUESTIONS?

Aaron Rosenberg Qualifying Exam 35