yoni nazarathy gideon weiss university of haifa

37
Yoni Nazarathy Gideon Weiss University of Haifa The Asymptotic Variance of the Output Process of Finite Capacity Queues Meeting of the euro working group on stochastic modeling. Koc university, Istanbul. June 23-25, 2008

Upload: gannon

Post on 03-Feb-2016

28 views

Category:

Documents


0 download

DESCRIPTION

The Asymptotic Variance of the Output Process of Finite Capacity Queues. Yoni Nazarathy Gideon Weiss University of Haifa. Meeting of the euro working group on stochastic modeling. Koc university, Istanbul. June 23-25, 2008. Typical Queueing Performance Measures. Sojourn Times. Queue Sizes. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni NazarathyGideon Weiss

University of Haifa

Yoni NazarathyGideon Weiss

University of Haifa

The Asymptotic Variance of the

Output Process of Finite Capacity Queues

The Asymptotic Variance of the

Output Process of Finite Capacity Queues

Meeting of the euro working group on stochastic modeling.Koc university, Istanbul. June 23-25, 2008

Meeting of the euro working group on stochastic modeling.Koc university, Istanbul. June 23-25, 2008

Page 2: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 2

Sojourn Times

Queue Sizes

Server Idleness

Lost Job Rates

Variability of Outputs

Typical Queueing Performance MeasuresTypical Queueing Performance Measures

Page 3: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 3

Variability of OutputsVariability of Outputs

Sometimes related to

down-stream queue sizes

Aim for little

variability over [0,T]

Var ( )D t V

Queueing Networks Setting

Manufacturing Setting

( )Vt o t Asymptotic

Variance Rate of Outputs

t

Page 4: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 4

Previous work – Asymptotic Variance Rate of OutputsPrevious work – Asymptotic Variance Rate of Outputs

Baris Tan, Asymptotic variance rate of the output in production lines with finite buffers, Annals of Operations Research, 2000.

Page 5: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 5

In this work…In this work…

Analyze for simple finite queueing systems

• A surprising phenomenon

• Simple formula for

• Extensions

V

V

Results:e.g. M/M/1/K

Page 6: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 6

The M/M/1/K QueueThe M/M/1/K Queue

K

* (1 )K

1

11

1

11

1

iK

i

K

KFiniteBuffer

0,...,i K

NOTE: output process D(t) is non-renewal.

Page 7: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 7

What values do we expect for ?V

?

( )V

Keep and fixed.K

Page 8: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 8

?

( )V

K / / 1( )M M

What values do we expect for ?VKeep and fixed.K

Page 9: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 9

?

( )V 40K

?* (1 )KV

Similar to Poisson:

What values do we expect for ?VKeep and fixed.K

Page 10: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 10

?

( )V

40K

What values do we expect for ?VKeep and fixed.K

Page 11: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 11

( )V

40K

2

3

Balancing

Reduces

Asymptotic

Variance of

Outputs

What values do we expect for ?VKeep and fixed.K

Page 12: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 12

**

* *

VV

V V

Output from M/M/1/KOutput from M/M/1/K

Page 13: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 13

Calculating Using MAPs

Calculating Using MAPs

V

Page 14: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 14

C DMAP (Markovian Arrival Process)(Neuts, Lucantoni et al.)MAP (Markovian Arrival Process)(Neuts, Lucantoni et al.)

* * 2 * 2 3 2Var ( ) 2( ) 2 2( ) 2 ( )r btD t D De t De O t e

0 0

1 1 1 1

1 1 1 1

( )

( )K K K K

K K

1

1

0 0

0 0

0

0K

K

* De *E[ ( )]D t t

0 0

1 1 1

1 1 1

0 ( )

0 ( )

0K K K

K

Generator Transitions without events Transitions with events

1( )e

, 0r b

Asymptotic Variance Rate

Birth-Death Process

Page 15: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 15

Attempting to evaluate directlyAttempting to evaluate directly* * 2 12( ) 2 ( )V D e De

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

10K

1 10 20 30 40

1

10

20

30

40

1 10 20 30 40

1

10

20

30

40

40K

1 50 100 150 201

1

50

100

150

201

1 50 100 150 201

1

50

100

150

201

200K

For , there is a nice structure to the inverse.

2 2 3

2 3

( 2 ) ( 2 ) ( 1) 7( 1),

2( 1) 2( 1)ij

i i K j K j K Kr i j

K K

ijr

But This doesn’t get us far…

V

Page 16: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 16

Main TheoremMain Theorem

Page 17: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 17

1*

0

K

ii

V v

2

2 ii i

i

Mv M

d

*1i i iM D P

1

i

i jj

P

0

i

i jj

D d

Main Theorem

i i id

Part (i)

Part (ii)

0iv

1 2 ... K

0 1 1... K

*1

V

0 0

1 1 1 1

1 1 1 1

( )

( )K K K K

K K

*1KD

Scope: Finite, irreducible, stationary,birth-death CTMC that represents a queue.

0 10

1

ii

i

0 1

0 0 1

1iK

j

i j i

and

If

Then

Calculation of iv

(Asymptotic Variance Rate of Output Process)

Page 18: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 18

Explicit Formula for M/M/1/KExplicit Formula for M/M/1/K

2

2

1 2 1

1 3

21

3 6 3

(1 )(1 (1 2 ) (1 ) )1

(1 )

K K K

K

K K

K KV

K

2lim

3KV

Page 19: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 19

Idea of Proof Idea of Proof 1

*

0

K

ii

V v

Page 20: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 20

Counts of TransitionsCounts of Transitions 1*

0

K

ii

V v

Book: 2001 - Stochastic Process Limits,.

Paper: 1992 - Asymptotic Formulas for Markov Processes…

1) Use above Lemma: Look at M(t) instead of D(t).

2) Use Proposition: The “Fully Counting” MAP of M(t) has associated MMPP with same variance.

3) Use Results of Ward Whitt: An explicit expression of asymptotic variance rate of birth-death MMPP.

( ) ( ) ( )M t E t D t

Var ( ) ( )M t M t o t

Lemma: 4M V

Asymptotic Variance Rate of M(t): ,MBirths Deaths

Observe: MAP of M(t) is “Fully Counting” – all transitions result in counts of events.

Proof OutlineProof Outline

Page 21: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 21

More On BRAVO More On

BRAVOBalancing

Reduces

Asymptotic

Variance of

Outputs

Page 22: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 22

0 1 KK – 1

Some intuition for M/M/1/KSome intuition for M/M/1/K

Use Lemma: 4M V

Page 23: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 23

Intuition for M/M/1/K doesn’t carry over to M/M/c/KIntuition for M/M/1/K doesn’t carry over to M/M/c/KV

c

But BRAVO doesBut BRAVO does

c

M/M/40/40

M/M/10/10

M/M/1/40

1

K=20K=30

c=30

c=20

Page 24: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 24

BRAVO also occurs in GI/G/1/KBRAVO also occurs in GI/G/1/KMAP used for PH/PH/1/40 with Erlang

and Hyper-Exp distributions

1

Page 25: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 25

The “2/3 property”The “2/3 property”

• GI/G/1/K

• SCV of arrival = SCV of service

1

Page 26: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 26

M/M/1+ Impatient Customers - SimulationM/M/1+ Impatient Customers - Simulation

( 1, 1)

( )D t

( )L t

( )E t( )A t

V* *,

Page 27: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 27

Thank YouThank You

Page 28: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 28

ExtensionsExtensions

Page 29: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 29

Page 30: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 30

Counts of point processes:

• - Arrivals during

• - Entrances

• - Outputs

• - Lost jobs

Traffic ProcessesTraffic Processes

{ ( ), 0}A t t

{ ( ), 0}E t t

{ ( ), 0}D t t

{ ( ), 0}L t t

[0, ]t

1 K

( )A t

( )L t

( )E t

Poisson

K 1K

0 Renewal Renewal

( )D t

( ) ( )D t L t

( )A t

Non-RenewalPoisson

Poisson Poisson Poisson

Non-Renewal Renewal

( / /1)M M

K

( )D t

( )L t

( )E t( )A t

M/M/1/KM/M/1/K

Renewal

( ) ( ) ( )

( ) ( ) ( )

A t L t E t

E t Q t D t

Book: Traffic Processes in Queueing Networks, Disney, Kiessler 1987.

Page 31: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 31

Require:

• Stable Queues

Push-Pull Queueing Network(Weiss, Kopzon 2002,2006)Push-Pull Queueing Network(Weiss, Kopzon 2002,2006)

1 1

22

Server 2Server 1

PUSH

PULL

PULL

PUSH

0,0 1,0 2,0 3,0 4,0 5,0

0,1

0,2

0,3

0,4

n1

n2

1 1 1 1 1 1

1 1 1 1 1 1

2

2

2

2

2 2

2

2

2

2

0,0

1,3

2,0 3,0 4,0 5,0

0,1

0,2

0,3

0,4

n1

n2

11 1 1 1 1

1 1

1 1 1 1

2

2

2

2

2

2,1

2,2

2,3

2

2

22

2

2

3,1

3,2

3,3

2

2

2

2

2

2

4,1

4,2

4,3

2

2

2

2

2

2

5,1

5,2

5,3

2

2

22

2

2

1 1

1,0

1,4

1

1 1

2,4

0,5

2

1,5

1

1 1

2,5

2

2

2

1

1 1

4,5

2

Positive Recurrent Policies Exist!!!

* 1 1 2 21

1 2 1 2

( )

* 2 2 1 12

1 2 1 2

( )

1 2 1

Asymptotic Variance Rate of the

output processes?

i i i i

Page 32: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 32

Other Phenomena at Other Phenomena at 1

Page 33: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 33

Asymptotic Correlation Between Outputs and OverflowsAsymptotic Correlation Between Outputs and Overflows

,

2 3

,

1

11

lim Corr( ( ), ( )) 15 5 3

4 12 2 4

1

K

t

K

R

KD t L t

K K K

R

1 1

2,

1 2 1 2 2 1

(1 )(1 3 ) (1 )(3 )

(1 )(1 (2 1)(1 ) )((1 )(1 ) 4( 1)(1 ) )

K K K K

KK K K K K

KR

K

0.139772 1

1lim Corr( ( ), ( )) 1

41

12

tD t L t

For Large K

( )D t

( )L t

M/M/1/KM/M/1/K

Page 34: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 34

Proposition: For ,

The y-intercept of the Linear AsymptoteThe y-intercept of the Linear Asymptote

4 3 2

2

7 28 37 18

180 360 180D

K K K KB

K K

M/M/1/K1

* * 2 * 2 3 2Var ( ) 2( ) 2 2( ) 2 ( )

D

r bt

BV

D t D De t De O t e , 0r b

1

Page 35: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 35

The variance function in the short rangeThe variance function in the short range

/ /1/ 40M M

Page 36: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 36

Lemma: 4M V

Proof:

( ) 2 ( ) ( )M t D t Q t

Var ( ) 4Var ( ) Var ( ) 4Cov ( ), ( )M t D t Q t D t Q t

Cov ( ), ( )1

Var ( ) Var ( )

D t Q t

D t Q t

Var ( ) (1)Q t O

Var ( ) ( )D t O t Cov ( ), ( )D t Q t O t

Q.E.D

Page 37: Yoni Nazarathy Gideon Weiss University of Haifa

Yoni Nazarathy, Gideon Weiss, University of Haifa, 2008 37

t

3 2 1

2 4 2

1 1 2

a b c

a

b

c

Fully Counting MAP and associated MMPPFully Counting MAP and associated MMPP

MMPP (Markov Modulated Poisson Process)

Example:

0 ( )N t

tabc

( )Q t

rate 4Poisson Process

rate 2

rate 3

rate 4

rate 2

rate 4

rate 3

rate 2

rate 3

rate 4

rate 2

1 0

1 0

E[ ( )] E[ ( )]

Var( ( )) Var( ( ))

N t N t

N t N t

Proposition

3 0 0 0 2 1

0 4 0 2 0 2

0 0 2 1 1 0

6 2 1 3 0 0

2 8 2 0 4 0

1 1 4 0 0 2

Transitions without events Transitions with events

1( )N tFully Counting MAP

1( ),N t

( )Q t

0 ( )N t