zer o-chr omatic ff a gs for m uon acceleration. planche , e. yamaka wa, j-b. lagrange ,t. uesugi,...

34
T. Planche, E. Yamakawa, J-B. Lagrange,T. Uesugi,Y. Kuriyama,Y. Ishi,Y. Mori: Kyoto University, Japan. J. Pasternak : Imperial College London/RAL STFC, UK. Zero-chromatic FFAGs for muon acceleration

Upload: dangkien

Post on 11-Mar-2018

220 views

Category:

Documents


7 download

TRANSCRIPT

Page 1: Zer o-chr omatic FF A Gs for m uon acceleration. Planche , E. Yamaka wa, J-B. Lagrange ,T. Uesugi, Y. K uriyama, Y. Ishi, Y. Mori: K yoto Univ ersity , Japan. J. Pasternak : Imperial

T. Planche, E. Yamakawa, J-B. Lagrange,T. Uesugi, Y. Kuriyama, Y. Ishi, Y. Mori: Kyoto University, Japan.J. Pasternak : Imperial College London/RAL STFC, UK.

Zero-chromatic FFAGsfor muon acceleration

Page 2: Zer o-chr omatic FF A Gs for m uon acceleration. Planche , E. Yamaka wa, J-B. Lagrange ,T. Uesugi, Y. K uriyama, Y. Ishi, Y. Mori: K yoto Univ ersity , Japan. J. Pasternak : Imperial

EUROnu - June 2010 T. Planche

MotivationsFeatures of the scaling type of fixed field alternating gradient (FFAG) rings:

(i) free from resonance crossing issues, large transverse acceptances can be achieved once the working point is chosen far enough from harmful resonances;

(ii) free from the issue of time-of-flight dependence on the transverse amplitude(*). This limits the longitudinal emittance degradation when beams with large transverse emittances are accelerated.

2

(*) see S. Berg, Nucl. Instr. and Meth. A 570, p.~15, (2007).

Page 3: Zer o-chr omatic FF A Gs for m uon acceleration. Planche , E. Yamaka wa, J-B. Lagrange ,T. Uesugi, Y. K uriyama, Y. Ishi, Y. Mori: K yoto Univ ersity , Japan. J. Pasternak : Imperial

EUROnu - June 2010 T. Planche

Aim

Develop scaling FFAG lattices:

(i) with > 30 ! mm-rad of normalized transverse acceptance for both horizontal and vertical plane, and > 150 mm of normalized longitudinal acceptance,

(ii) using 200 MHz constant frequency rf cavities

(iii) to accelerate simultaneously and beams.

3

µ+ µ−

Page 4: Zer o-chr omatic FF A Gs for m uon acceleration. Planche , E. Yamaka wa, J-B. Lagrange ,T. Uesugi, Y. K uriyama, Y. Ishi, Y. Mori: K yoto Univ ersity , Japan. J. Pasternak : Imperial

EUROnu - June 2010 T. Planche

Contents

1 - Acceleration inside a stationary rf bucket

2 - Example of 3.6 to 12.6 GeV muon ring parameters

3 - Tracking simulations

3.1 - 4D & 6D tracking results

3.2 - Study with errors

3.3 - Preliminary beam injection/extraction (from J. Pasternak)

6 - Summary and discussions

4

Page 5: Zer o-chr omatic FF A Gs for m uon acceleration. Planche , E. Yamaka wa, J-B. Lagrange ,T. Uesugi, Y. K uriyama, Y. Ishi, Y. Mori: K yoto Univ ersity , Japan. J. Pasternak : Imperial

EUROnu - June 2010 T. Planche

Acceleration inside the stationary rf bucketof a scaling FFAG ring

!"#

!$#

!%#

!&#

!'##

!'"#

!# !#(" !#($ !#(% !#(& !'

!

)*!+,-./0""

Figure 1 - Longitudinal phase space showing the acceleration of a muon beam (red) inside the stationary rf bucket of a scaling FFAG ring. Hamiltonian contour are shown in black.

Principle: use the synchrotron motion to accelerate beam going from the low energy to the high energy part of a stationary rf bucket.

Case of scaling FFAGs: since the momentum compaction is constant with energy, the longitudinal dynamics can be analytically described without

assuming small(*).!p

p(*)

see E. Yamakawa and Y. Mori’s paper to appear

in proceedings of FFAG’09 conference.

5

Page 6: Zer o-chr omatic FF A Gs for m uon acceleration. Planche , E. Yamaka wa, J-B. Lagrange ,T. Uesugi, Y. K uriyama, Y. Ishi, Y. Mori: K yoto Univ ersity , Japan. J. Pasternak : Imperial

EUROnu - June 2010 T. Planche

Choice of the working point

Figure 2a - Horizontal acceptance scan.

6

!"#

!$#

!%#

!&#

!&# !'# !(# !)#*+

*,

!"#

!$#

!%#

!&#

!&# !'# !(# !)#*+

*,

!"#

!$#

!%#

!&#

!&# !'# !(# !)#*+

*,

!"#

!$#

!%#

!&#

!&# !'# !(# !)#*+

*,

!"#

!$#

!%#

!&#

!&# !'# !(# !)#*+

*,

!"#

!$#

!%#

!&#

!&# !'# !(# !)#*+

*,

!"#

!$#

!%#

!&#

!&# !'# !(# !)#*+

*,

!"#

!$#

!%#

!&#

!&# !'# !(# !)#

*+

*,

!"#

!$#

!%#

!&#

!&# !'# !(# !)#

*+

*,

!"#

!$#

!%#

!&#

!&# !'# !(# !)#

*+

*,

!"#

!$#

!%#

!&#

!&# !'# !(# !)#

*+

*,

!"#

!$#

!%#

!&#

!&# !'# !(# !)#

*+

*,

!"#

!$#

!%#

!&#

!&# !'# !(# !)#

*+

*,

!"#

!$#

!%#

!&#

!&# !'# !(# !)#

*+

*,

!""!

#!$%%&'()*

+"!

,!

!""!

#!$%%&'()*

+"!

,!

Figure 2b - Vertical acceptance scan.

Emittance scan in the case of a ring made of 225 identical FDF triplet FFAG cells. Legends in the top left corner of each diagram give values of acceptances normalized in the case of 3.6 GeV muons. Normal structure resonances lines, plotted up to the octupole, are superimposed.

Page 7: Zer o-chr omatic FF A Gs for m uon acceleration. Planche , E. Yamaka wa, J-B. Lagrange ,T. Uesugi, Y. K uriyama, Y. Ishi, Y. Mori: K yoto Univ ersity , Japan. J. Pasternak : Imperial

EUROnu - June 2010 T. Planche

Choice of the working point

Figure 2a - Horizontal acceptance scan.

7

!"#

!$#

!%#

!&#

!&# !'# !(# !)#*+

*,

!"#

!$#

!%#

!&#

!&# !'# !(# !)#*+

*,

!"#

!$#

!%#

!&#

!&# !'# !(# !)#*+

*,

!"#

!$#

!%#

!&#

!&# !'# !(# !)#*+

*,

!"#

!$#

!%#

!&#

!&# !'# !(# !)#*+

*,

!"#

!$#

!%#

!&#

!&# !'# !(# !)#*+

*,

!"#

!$#

!%#

!&#

!&# !'# !(# !)#*+

*,

!"#

!$#

!%#

!&#

!&# !'# !(# !)#

*+

*,

!"#

!$#

!%#

!&#

!&# !'# !(# !)#

*+

*,

!"#

!$#

!%#

!&#

!&# !'# !(# !)#

*+

*,

!"#

!$#

!%#

!&#

!&# !'# !(# !)#

*+

*,

!"#

!$#

!%#

!&#

!&# !'# !(# !)#

*+

*,

!"#

!$#

!%#

!&#

!&# !'# !(# !)#

*+

*,

!"#

!$#

!%#

!&#

!&# !'# !(# !)#

*+

*,

!""!

#!$%%&'()*

+"!

,!

!""!

#!$%%&'()*

+"!

,!

Figure 2b - Vertical acceptance scan.

Emittance scan in the case of a ring made of 225 identical FDF triplet FFAG cells. Legends in the top left corner of each diagram give values of acceptances normalized in the case of 3.6 GeV muons. Normal structure resonances lines, plotted up to the octupole, are superimposed.

Page 8: Zer o-chr omatic FF A Gs for m uon acceleration. Planche , E. Yamaka wa, J-B. Lagrange ,T. Uesugi, Y. K uriyama, Y. Ishi, Y. Mori: K yoto Univ ersity , Japan. J. Pasternak : Imperial

EUROnu - June 2010 T. Planche

Parameters of a 3.6 to 12.6 GeV muon ring

158

159

160

161

162

163

164

-6 -4 -2 0 2 4 6

y [m]

x [m]

Figure 3 - Ring layout.

-150

-100

-50

0

50

100

150

-150-100 -50 0 50 100 150

y [m]

x [m]

Lattice type FDF tripletInjection/extraction energy 3.6/12.6 GeVRF frequency 200 MHzNumber of turns 6RF peak voltage (per turn) 1.8 GVSynchronous energy 8.04 GeVMean radius !160.9 mBmax(@ 12.6 GeV) 3.9 TField index k 1390Total orbit excursion 14.3 cmHarmonic number h 675Number of cells 225Long drift length !1.5 mHoriz. phase adv. per cell 85.86 deg.Vert. phase adv. per cell 33.81 deg.

Table 1 - Example of 3.6 to 12.6 GeV muon scaling FFAG ring parameters.

8

Page 9: Zer o-chr omatic FF A Gs for m uon acceleration. Planche , E. Yamaka wa, J-B. Lagrange ,T. Uesugi, Y. K uriyama, Y. Ishi, Y. Mori: K yoto Univ ersity , Japan. J. Pasternak : Imperial

EUROnu - June 2010 T. Planche

Parameters of a 3.6 to 12.6 GeV muon ring

158

159

160

161

162

163

164

-6 -4 -2 0 2 4 6

y [m]

x [m]

Figure 3 - Ring layout.

-150

-100

-50

0

50

100

150

-150-100 -50 0 50 100 150

y [m]

x [m]

Lattice type FDF tripletInjection/extraction energy 3.6/12.6 GeVRF frequency 200 MHzNumber of turns 6RF peak voltage (per turn) 1.8 GVSynchronous energy 8.04 GeVMean radius !160.9 mBmax(@ 12.6 GeV) 3.9 TField index k 1390Total orbit excursion 14.3 cmHarmonic number h 675Number of cells 225Long drift length !1.5 mHoriz. phase adv. per cell 85.86 deg.Vert. phase adv. per cell 33.81 deg.

9

Table 1 - Example of 3.6 to 12.6!GeV muon scaling FFAG ring parameters.

Page 10: Zer o-chr omatic FF A Gs for m uon acceleration. Planche , E. Yamaka wa, J-B. Lagrange ,T. Uesugi, Y. K uriyama, Y. Ishi, Y. Mori: K yoto Univ ersity , Japan. J. Pasternak : Imperial

EUROnu - June 2010 T. Planche

Parameters of a 3.6 to 12.6 GeV muon ring

158

159

160

161

162

163

164

-6 -4 -2 0 2 4 6

y [m]

x [m]

Figure 3 - Ring layout.

-150

-100

-50

0

50

100

150

-150-100 -50 0 50 100 150

y [m]

x [m]

Lattice type FDF tripletInjection/extraction energy 3.6/12.6 GeVRF frequency 200 MHzNumber of turns 6RF peak voltage (per turn) 1.8 GVSynchronous energy 8.04 GeVMean radius !160.9 mBmax(@ 12.6 GeV) 3.9 TField index k 1390Total orbit excursion 14.3 cmHarmonic number h 675Number of cells 225Long drift length !1.5 mHoriz. phase adv. per cell 85.86 deg.Vert. phase adv. per cell 33.81 deg.

10

Table 1 - Example of 3.6 to 12.6!GeV muon scaling FFAG ring parameters.

Page 11: Zer o-chr omatic FF A Gs for m uon acceleration. Planche , E. Yamaka wa, J-B. Lagrange ,T. Uesugi, Y. K uriyama, Y. Ishi, Y. Mori: K yoto Univ ersity , Japan. J. Pasternak : Imperial

EUROnu - June 2010 T. Planche

Parameters of a 3.6 to 12.6 GeV muon ring

Table 1 - Example of 3.6 to 12.6!GeV muon scaling FFAG ring parameters.

Lattice type FDF tripletInjection/extraction energy 3.6/12.6 GeVRF frequency 200 MHzNumber of turns 6RF peak voltage (per turn) 1.8 GVSynchronous energy 8.04 GeVMean radius !160.9 mBmax(@ 12.6 GeV) 3.9 TField index k 1390Total orbit excursion 14.3 cmHarmonic number h 675Number of cells 225Long drift length !1.5 mHoriz. phase adv. per cell 85.86 deg.Vert. phase adv. per cell 33.81 deg.

Figure 4 - Horizontal (red) and vertical (purple) beta function at 3.6 GeV, calculated using set-wise tracking in soft-edge field model from small amplitude motion around the closed orbit. Position of the magnets effective field boundaries are shown with rectangles.

!"

!#

!$

!%

!&

!'"

!'#

!'$

!'%

!" !"() !' !'() !# !#() !* !*() !$ !$()

!!+,-

.!+,-

11

Page 12: Zer o-chr omatic FF A Gs for m uon acceleration. Planche , E. Yamaka wa, J-B. Lagrange ,T. Uesugi, Y. K uriyama, Y. Ishi, Y. Mori: K yoto Univ ersity , Japan. J. Pasternak : Imperial

EUROnu - June 2010 T. Planche

In order to allow the simultaneous acceleration of and beams, the synchronous particle orbit length is adjusted to a multiple of .

Parameters of a 3.6 to 12.6 GeV muon ring

158

159

160

161

162

163

164

-6 -4 -2 0 2 4 6

y [m]

x [m]

Simultaneous acceleration of and beams:

µ+

12!s"rf

3!s"rf

µ−

12

µ−µ+

Page 13: Zer o-chr omatic FF A Gs for m uon acceleration. Planche , E. Yamaka wa, J-B. Lagrange ,T. Uesugi, Y. K uriyama, Y. Ishi, Y. Mori: K yoto Univ ersity , Japan. J. Pasternak : Imperial

EUROnu - June 2010 T. Planche

Simulation toolsWe use step-wise particle tracking in geometrical field model to determine the lattice linear parameters and study the beam dynamics.

Mid-plane field distribution follows:

Bz(r, !) = B0

!r

r0

"k

F(!).

The azimuthal field law is softened using Enge type of field fall-off.

F(!)

Field off the mid-plane is obtained, following the Maxwell’s equations, from a 4th order Taylor expansion.

Figure 5 - Vertical B field distribution the mid-plane of a triplet cell.

160.8

160.9

161

0 0.4 0.8 1.2 1.6-4

-3

-2

-1

0

1

2

3

4

Bz [T]

r [m]

! [deg]

Bz [T]

13

Page 14: Zer o-chr omatic FF A Gs for m uon acceleration. Planche , E. Yamaka wa, J-B. Lagrange ,T. Uesugi, Y. K uriyama, Y. Ishi, Y. Mori: K yoto Univ ersity , Japan. J. Pasternak : Imperial

EUROnu - June 2010 T. Planche

Transverse acceptance at fixed energy

Figure 6 - (r, r') plane (@ middle of the long drift) showing a multi-turn tracking of 2 particles with different initial horizontal amplitudes, with an initial vertical displacement = 1 mm.

Using a Runge-Kutta based tracking code (developed at Kyoto university)

Using ‘FFAG’ procedure ofZgoubi

Horizontal acceptance > 30 ! mm-rad normalized at 3.6 GeV

14

-25

-20

-15

-10

-5

0

5

10

15

20

25

160.76 160.8 160.84 160.88 160.92 160.96

r' [mrad]

r [m]

-25

-20

-15

-10

-5

0

5

10

15

20

25

160.76 160.8 160.84 160.88 160.92 160.96

r' [mrad]

r [m]

Page 15: Zer o-chr omatic FF A Gs for m uon acceleration. Planche , E. Yamaka wa, J-B. Lagrange ,T. Uesugi, Y. K uriyama, Y. Ishi, Y. Mori: K yoto Univ ersity , Japan. J. Pasternak : Imperial

EUROnu - June 2010 T. Planche

Transverse acceptance at fixed energy

-15

-10

-5

0

5

10

15

-120 -80 -40 0 40 80 120

z' [mrad]

z [mm]

Vertical acceptance is also > 30 ! mm-rad normalized at 3.6!GeV

15

Using a Runge-Kutta based tracking code (developed at Kyoto university)

Using ‘FFAG’ procedure ofZgoubi

-15

-10

-5

0

5

10

15

-120 -80 -40 0 40 80 120

z' [mrad]

z [mm]

Figure 7 - (z, z') plane (@ middle of the long drift) showing a multi-turn tracking of 2 particles with different initial vertical amplitudes, with an initial horizontal displacement = 1 mm.

Page 16: Zer o-chr omatic FF A Gs for m uon acceleration. Planche , E. Yamaka wa, J-B. Lagrange ,T. Uesugi, Y. K uriyama, Y. Ishi, Y. Mori: K yoto Univ ersity , Japan. J. Pasternak : Imperial

EUROnu - June 2010 T. Planche

Full acceleration cycle - 6D tracking

1000 particles are uniformly distributed inside a transverse 4D ellipsoid (Waterbag distribution); these particles are then independently distributed uniformly inside an ellipse in the longitudinal plane. Initial normalized bunch emittances are 30 ! mm-rad in both horizontal and vertical planes and 150 mm in the longitudinal plane.

16

Page 17: Zer o-chr omatic FF A Gs for m uon acceleration. Planche , E. Yamaka wa, J-B. Lagrange ,T. Uesugi, Y. K uriyama, Y. Ishi, Y. Mori: K yoto Univ ersity , Japan. J. Pasternak : Imperial

EUROnu - June 2010 T. Planche

Full acceleration cycle - 6D tracking

Figures 9 - longitudinal phase space plot showing a 6-turn acceleration cycle . Hamiltonian contours are superimposed.

Figures 8 - Initial (blue) and final (red) particles distribution in the horizontal (top), and vertical (bottom) phase space.

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1

Ekin [GeV]

rf phase/2!

- Tracking results -

17

-15

-10

-5

0

5

10

15

160.8 160.9 161 161.1

r' [mrad]

r [m]

-15

-10

-5

0

5

10

15

-80 -40 0 40 80

z' [mrad]

z [mm]

Page 18: Zer o-chr omatic FF A Gs for m uon acceleration. Planche , E. Yamaka wa, J-B. Lagrange ,T. Uesugi, Y. K uriyama, Y. Ishi, Y. Mori: K yoto Univ ersity , Japan. J. Pasternak : Imperial

EUROnu - June 2010 T. Planche

Full acceleration cycle - 6D tracking

6D tracking results:- No beam loss.- No significant transverse emittance degradation. - No significant longitudinal emittance degradation.- Efficient use of the rf!

18

Page 19: Zer o-chr omatic FF A Gs for m uon acceleration. Planche , E. Yamaka wa, J-B. Lagrange ,T. Uesugi, Y. K uriyama, Y. Ishi, Y. Mori: K yoto Univ ersity , Japan. J. Pasternak : Imperial

EUROnu - June 2010 T. Planche

Study with errorsWe consider two types of errors, in the form of:

(i) translation of each triplet cell,(ii) rotation around an axis passing by the triplet center.

The direction of the translation or rotation axis is randomly and uniformly chosen in the 3D space. The amplitude of the displacement is chosen following a Gaussian distribution with null mean.

200 particles are tracked over a whole acceleration cycle (6 turns). Collimators placed in the middle of every long s t ra i gh t sec t ion to s top par t i c l e s go ing a t 160.7!<!r!<!161.1!m, and!|z|!>!90 mm.

19

Page 20: Zer o-chr omatic FF A Gs for m uon acceleration. Planche , E. Yamaka wa, J-B. Lagrange ,T. Uesugi, Y. K uriyama, Y. Ishi, Y. Mori: K yoto Univ ersity , Japan. J. Pasternak : Imperial

EUROnu - June 2010 T. Planche

Study with errors

0

50

100

150

200

0.01 0.1 1 10

number of surviving particles

rms alignment error [mm]

0

50

100

150

200

0.01 0.1 1 10number of surviving particles

rms angular positioning error [mrad]

Figures 10 - Number of surviving particles depending on the rms error. 20 different lattices have been generated and tested for each value of rms error.

Errors in translation Errors in rotation

20

More tolerant to errors than the NS-FFAG!

Page 21: Zer o-chr omatic FF A Gs for m uon acceleration. Planche , E. Yamaka wa, J-B. Lagrange ,T. Uesugi, Y. K uriyama, Y. Ishi, Y. Mori: K yoto Univ ersity , Japan. J. Pasternak : Imperial

EUROnu - June 2010 T. Planche

Preliminary horizontal beam extraction

21

(from J. Pasternak, Imperial College London/RAL STFC)

• 4 main kickers 0.2 T, 0.96 m (0.3 m space between the kicker and the magnet)• 3 correction kickers (sitting between main kickers) (0.0345, -0.145, and 0.12 T)• Beam separation about 1 cm• Septum 0.96 m, 4 T, beam separation of about 8 cm at the magnet.

12.6 GeV beam, 3 cm normalizedacceptance

11.423 GeV beam, 3 cm normalizedacceptance

Page 22: Zer o-chr omatic FF A Gs for m uon acceleration. Planche , E. Yamaka wa, J-B. Lagrange ,T. Uesugi, Y. K uriyama, Y. Ishi, Y. Mori: K yoto Univ ersity , Japan. J. Pasternak : Imperial

EUROnu - June 2010 T. Planche

Summary

22

Many advantages:- Large 6D acceptance and no emittance degradation.- Simple scheme : only one type of cell.- Good tolerance to errors.- Relatively compact: 1 km in circumference.- Efficient use of the rf cavities: 6 turns with this design,

Still to be done:- Injection/extraction,- Detailed magnet design,

remarks: (i) we assumed < 4T max, small beam size (very strong focusing), relatively small excursion (< 15 cm). (ii) Research program on superconducting FFAG magnets already approved will start at Kyoto University. (iii) Combined function magnets used in the neutrino beam line at J-Parc look very much like(*).

(*) see T. Nakamoto et al. ,Transactions on Applied Superconductivity, vol. 15-2, (June 2005).

Page 23: Zer o-chr omatic FF A Gs for m uon acceleration. Planche , E. Yamaka wa, J-B. Lagrange ,T. Uesugi, Y. K uriyama, Y. Ishi, Y. Mori: K yoto Univ ersity , Japan. J. Pasternak : Imperial

Thank you!

Page 24: Zer o-chr omatic FF A Gs for m uon acceleration. Planche , E. Yamaka wa, J-B. Lagrange ,T. Uesugi, Y. K uriyama, Y. Ishi, Y. Mori: K yoto Univ ersity , Japan. J. Pasternak : Imperial

Appendix:

And this is not all what we can do for muon acceleration

with scaling FFAGs!!

24

Page 25: Zer o-chr omatic FF A Gs for m uon acceleration. Planche , E. Yamaka wa, J-B. Lagrange ,T. Uesugi, Y. K uriyama, Y. Ishi, Y. Mori: K yoto Univ ersity , Japan. J. Pasternak : Imperial

EUROnu - June 2010 T. Planche

Acceleration between rf buckets(slide from E. Yamakawa, look at the

proceedings of FFAG’09 for all details)

4.8.2 ミュオン加速の応用例続いて、数十MeVから数 GeVまでのミュオン加速を想定し、コンピューター上で加速

リングを作る。加速リングの模式図は、図 4.39と同様とする。用いたパラメータは表 4.5で示す。

表 4.5: ミュオン加速の入射パラメータ

Injection phase 0.35-0.4 2!radInjection Kinetic Energy @!=0.375 2!rad 44-45 MeV

Final Kinetic Energy @!=0.5 2!rad 1805-1905 MeV

Stationary Kinetic Energy @under Et 844.8 MeV

k値 6

Mean Radius @"s 10 m

VRF / turn 250 MV

FRF 4.7 MHz

Number of cavity 10

Number of turn 9 turn

毎周回の粒子の軌道を、図 4.41で示す。

図 4.41: ミュオンビーム加速 一周ごとにビームの軌跡を図示する。

数十MeVから数GeVのように、低エネルギーから高エネルギーまで、1台の加速器でまかなうことが出来る。加速にかかる時間も、わずか 1.9 μ sec程度である。ミュオンの寿命は 2.2 μ secであるが、粒子のエネルギーが、光速と同等の速さにまで加速されると、ローレンツファクターにより寿命が "倍に延びる。今回の仮想リングによるミュオン加速では、数GeVまで加速するため、大凡寿命が 3倍程度延びる。従って、ミュオンの寿命内での加速

48

4.8.2 ミュオン加速の応用例続いて、数十MeVから数 GeVまでのミュオン加速を想定し、コンピューター上で加速

リングを作る。加速リングの模式図は、図 4.39と同様とする。用いたパラメータは表 4.5で示す。

表 4.5: ミュオン加速の入射パラメータ

Injection phase 0.35-0.4 2!radInjection Kinetic Energy @!=0.375 2!rad 44-45 MeV

Final Kinetic Energy @!=0.5 2!rad 1805-1905 MeV

Stationary Kinetic Energy @under Et 844.8 MeV

k値 6

Mean Radius @"s 10 m

VRF / turn 250 MV

FRF 4.7 MHz

Number of cavity 10

Number of turn 9 turn

毎周回の粒子の軌道を、図 4.41で示す。

図 4.41: ミュオンビーム加速 一周ごとにビームの軌跡を図示する。

数十MeVから数GeVのように、低エネルギーから高エネルギーまで、1台の加速器でまかなうことが出来る。加速にかかる時間も、わずか 1.9 μ sec程度である。ミュオンの寿命は 2.2 μ secであるが、粒子のエネルギーが、光速と同等の速さにまで加速されると、ローレンツファクターにより寿命が "倍に延びる。今回の仮想リングによるミュオン加速では、数GeVまで加速するため、大凡寿命が 3倍程度延びる。従って、ミュオンの寿命内での加速

48

Example of ~40 MeV to ~1.85 GeV muon scaling FFAG ring parameters.

Longitudinal phase space plot showing a 9-turn acceleration cycle. Hamiltonian contours are plotted in black.

25

Page 26: Zer o-chr omatic FF A Gs for m uon acceleration. Planche , E. Yamaka wa, J-B. Lagrange ,T. Uesugi, Y. K uriyama, Y. Ishi, Y. Mori: K yoto Univ ersity , Japan. J. Pasternak : Imperial

EUROnu - June 2010 T. Planche

Using harmonic number jump acceleration

We recently proposed a 3.6 to 12.6 GeV lattice made of scaling FFAG cells using ~400!MHz rf frequency (see proceedings of FFAG’09 for all details). In few words:

- Cavity are placed in excursion reduced insertions.- Both and beams can be accelerated simultaneously.- Large 6D acceptance has been confirmed by tracking.

26

!"#$

!"%$

!&$$

!&$ !'$ !#$ !%$ !"$$

(!)*+

,!)*+

!"#$

!"%$

!&$$

!&$ !'$ !#$ !%$ !"$$

(!)*+

,!)*+

!"#$

!"%$

!&$$

(!)*+

!"#$

!"%$

!&$$

(!)*+

!"#$%

%&'(#)*+,

"#%" -*#).

%&'(#)*+,

)(//#%))+#

0%'+,1

%&'(#)*+,

)(//#%))+#02"33

%&'(#)*+,

"#%"

!"##

!$##

%#

%$##

%"##

!"## !$## %# %$## %"##

&%'()

*%'()

This scheme is not as simple and as compact as the ring for stationary bucket acceleration. Could be preferable for acceleration from lower energies.

Figures A2 - Schematic view of a 3.6 to 12.6! GeV muon ring, made of scaling FFAG cells, with excursion reduced insertions.

µ+ µ−

Page 27: Zer o-chr omatic FF A Gs for m uon acceleration. Planche , E. Yamaka wa, J-B. Lagrange ,T. Uesugi, Y. K uriyama, Y. Ishi, Y. Mori: K yoto Univ ersity , Japan. J. Pasternak : Imperial

EUROnu - June 2010 T. Planche

Principle and constraints of the HNJ acceleration

27

To jump one harmonic every turn:

Energy gain per turn must follow:

Figure A3 - Revolution time as a function of particle energy in the case of a 3 to 10!GeV scaling FFAG ring, with k = 145 and average radius = 120 m.

!Ei = 1frf ·[!T

!E ]Ei

Ti+1 ! Ti =1

frf

Page 28: Zer o-chr omatic FF A Gs for m uon acceleration. Planche , E. Yamaka wa, J-B. Lagrange ,T. Uesugi, Y. K uriyama, Y. Ishi, Y. Mori: K yoto Univ ersity , Japan. J. Pasternak : Imperial

EUROnu - June 2010 T. Planche

Need for dispersion suppressor insertions:

28

Ti+1 ! Ti =1

fRFHarmonic jump condition:

In the same time:!Ci

!c= Ti+1 ! Ti

In case of highly relativistic particles:

average excursion = !RF · Nturns

2"

!Ri !c

2!fRF=

"RF

2!

Need for excursion reduced areas!

Principle and constraints of the HNJ acceleration

Page 29: Zer o-chr omatic FF A Gs for m uon acceleration. Planche , E. Yamaka wa, J-B. Lagrange ,T. Uesugi, Y. K uriyama, Y. Ishi, Y. Mori: K yoto Univ ersity , Japan. J. Pasternak : Imperial

EUROnu - June 2010 T. Planche

Dispersion suppressor with FFAG magnets

29

k1 k2 k3 k2 k1

with2

k2 + 1=

1k1 + 1

+1

k3 + 1

Page 30: Zer o-chr omatic FF A Gs for m uon acceleration. Planche , E. Yamaka wa, J-B. Lagrange ,T. Uesugi, Y. K uriyama, Y. Ishi, Y. Mori: K yoto Univ ersity , Japan. J. Pasternak : Imperial

EUROnu - June 2010 T. Planche

Principle and constraints of the HNJ acceleration

30

Figure A5 - N cavities homogeneously distributed

around the ring.

Assuming that the initial number of harmonic h0 is large we get(*):

fk ! f0(1"1h0

· k

N)

Every cavity working at a constant frequency fk but the frequency has to be tuned to a slightly different value!

"+ and "- beams cannot be accelerated simultaneously if they circulated in opposite directions...

(*)look at the proceedings of PAC’09 for all details.

Need for a double beam lattice:

Page 31: Zer o-chr omatic FF A Gs for m uon acceleration. Planche , E. Yamaka wa, J-B. Lagrange ,T. Uesugi, Y. K uriyama, Y. Ishi, Y. Mori: K yoto Univ ersity , Japan. J. Pasternak : Imperial

EUROnu - June 2010 T. Planche

Appendix - 3.6 to 12.6 GeV muon ring using harmonic number jump acceleration

31

Use of quadruplet type of two-beam scaling FFAG cells:

138

140

142

-6 -4 -2 0 2 4 6

y [m]

x [m]

138

140

142

-6 -4 -2 0 2 4 6

y [m]

x [m]

138

140

142

-6 -4 -2 0 2 4 6

y [m]

x [m]

138

140

142

y [m]

138

140

142

y [m]

138

140

142

y [m]

Figure A6 - Closed orbit of "+ and "- beams circulating in the same direction in a two-beam doublet (upper part) and quadruplet (lower part) scaling FFAG cell.

Page 32: Zer o-chr omatic FF A Gs for m uon acceleration. Planche , E. Yamaka wa, J-B. Lagrange ,T. Uesugi, Y. K uriyama, Y. Ishi, Y. Mori: K yoto Univ ersity , Japan. J. Pasternak : Imperial

EUROnu - June 2010 T. Planche

Appendix - 3.6 to 12.6 GeV muon ring using harmonic number jump acceleration

32

!"#$

!"%$

!&$$

!&$ !'$ !#$ !%$ !"$$

(!)*+

,!)*+

!"#$

!"%$

!&$$

!&$ !'$ !#$ !%$ !"$$

(!)*+

,!)*+

!"#$

!"%$

!&$$

(!)*+

!"#$

!"%$

!&$$

(!)*+

!"#$%

%&'(#)*+,

"#%" -*#).

%&'(#)*+,

)(//#%))+#

0%'+,1

%&'(#)*+,

)(//#%))+#02"33

%&'(#)*+,

"#%"

!"##

!$##

%#

%$##

%"##

!"## !$## %# %$## %"##

&%'()

*%'()

Ring Reduced First Secondmain part excursion section dispersion suppressor dispersion suppressor

Cell opening angle [deg.] 5 2.5 4.3 3.2Mean radius [m] 140 295 178 240Field index k 130 508.5 186.4 339.6Horizontal phase adv./cell [deg.] 87.4 85.8 90.0 90.0Vertical phase adv./cell [deg.] 50.7 30.1 42.4 31.4Number of these cells in the ring 8!4 8!4 4!4 4!4

Page 33: Zer o-chr omatic FF A Gs for m uon acceleration. Planche , E. Yamaka wa, J-B. Lagrange ,T. Uesugi, Y. K uriyama, Y. Ishi, Y. Mori: K yoto Univ ersity , Japan. J. Pasternak : Imperial

EUROnu - June 2010 T. Planche

Appendix - 3.6 to 12.6 GeV muon ring using harmonic number jump acceleration

33

Ring Reduced First Secondmain part excursion section dispersion suppressor dispersion suppressor

Cell opening angle [deg.] 5 2.5 4.3 3.2Mean radius [m] 140 295 178 240Field index k 130 508.5 186.4 339.6Horizontal phase adv./cell [deg.] 87.4 85.8 90.0 90.0Vertical phase adv./cell [deg.] 50.7 30.1 42.4 31.4Number of these cells in the ring 8!4 8!4 4!4 4!4

0

10

20

30

40

0 50 100 150 200 250 300

! [m]

0

10

20

30

40

0 50 100 150 200 250 300

! [m]

0

10

20

30

40

! [m]

0

10

20

30

40

! [m]

!"#$%&'

()"#$%&'

!"#

!"#$%

!"#$&

!"#$'

!"#$(

!""

!%) !%)$% !%)$& !%)$' !%)$( !%&

*+

*,

!"#

!"#$%

!"#$&

!"#$'

!"#$(

!""

!%) !%)$% !%)$& !%)$' !%)$( !%&

*+

*,

!"#

!"#$%

!"#$&

!"#$'

!"#$(

!""

!%) !%)$% !%)$& !%)$' !%)$( !%&

*+

*,

!"#

!"#$%

!"#$&

!"#$'

!"#$(

!""

!%) !%)$% !%)$& !%)$' !%)$( !%&

*+

*,

!"#

!"#$%

!"#$&

!"#$'

!"#$(

!""

!%) !%)$% !%)$& !%)$' !%)$( !%&

*+

*,

!"#

!"#$%

!"#$&

!"#$'

!"#$(

!""

!%) !%)$% !%)$& !%)$' !%)$( !%&

*+

*,

!"#

!"#$%

!"#$&

!"#$'

!"#$(

!""

!%) !%)$% !%)$& !%)$' !%)$( !%&

*+

*,

Page 34: Zer o-chr omatic FF A Gs for m uon acceleration. Planche , E. Yamaka wa, J-B. Lagrange ,T. Uesugi, Y. K uriyama, Y. Ishi, Y. Mori: K yoto Univ ersity , Japan. J. Pasternak : Imperial

EUROnu - June 2010 T. Planche

Appendix - 3.6 to 12.6 GeV muon ring using harmonic number jump acceleration

34

3

4

5

6

7

8

9

10

11

12

13

0 0.2 0.4 0.6 0.8 1

Ekin [GeV]

rf phase/2!

-20

-15

-10

-5

0

5

10

15

20

294.6 294.8 295 295.2 295.4 295.6

r' [mrad]

r [m]

-8

-6

-4

-2

0

2

4

6

8

-200-160-120-80 -40 0 40 80 120 160 200

z' [mrad]

z [mm]

- 6D tracking results -

Figures A9 - Initial (blue) and final (red) particles distribution in the horizontal (top), and vertical (bottom) phase space.

Figures A10 - longitudinal phase space plot showing a 8.5-turn acceleration cycle. rf frequency = 400, sum of the rf peak voltage over one turn = 2.1 GV.