03120r3p802-15_tg3a-oki-cfp-document.doc -...

32
July,2003 IEEE P802.15-03/120r3 IEEE P802.15 Wireless Personal Area Networks Project IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title <title> Date Submitt ed [14 July, 2003] Source [Reed Fisher] [Oki Electric Industry Co., Ltd.] [2514 E. Maddox Rd., Buford, GA 30519 USA.] [Hiroyo Ogawa] [Communication Research Laboratory Independent Administrative Institution ] [3-4 Hikarino-oka, Yokosuka, Kana-gawa, 239- 09847 Japan.] Voice: [1-770-271-0529] E-mail: [[email protected] ] Voice:[81-46-847-5070] FAX[81-46-847-5079] E-Mail:[[email protected],jp] Re: [CFP presentation] Abstrac t [Millmeter-wave ad-hoc wireless system for the alternate PHY to IEEE802.15.3 MAC&PHY Standard for Alt PHY] Purpose [Proposal for the alternate PHY to IEEE802.15.3 Submission Reed Fisher, Oki

Upload: dinhliem

Post on 26-Apr-2018

214 views

Category:

Documents


1 download

TRANSCRIPT

July,2003 IEEE P802.15-03/120r3

IEEE P802.15Wireless Personal Area Networks

Project IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Title <title>

Date Submitted

[14 July, 2003]

Source [Reed Fisher][Oki Electric Industry Co., Ltd.][2514 E. Maddox Rd., Buford, GA 30519 USA.]

[Hiroyo Ogawa] [Communication Research Laboratory Independent Administrative Institution][3-4 Hikarino-oka, Yokosuka, Kana-gawa, 239-09847 Japan.]

Voice: [1-770-271-0529] E-mail: [[email protected] ]

Voice:[81-46-847-5070]FAX[81-46-847-5079]E-Mail:[[email protected],jp]

Re: [CFP presentation]

Abstract [Millmeter-wave ad-hoc wireless system for the alternate PHY to IEEE802.15.3 MAC&PHY Standard for Alt PHY]

Purpose [Proposal for the alternate PHY to IEEE802.15.3 MAC&PHY Standard]

Notice This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Submission Reed Fisher , Oki

July,2003 IEEE P802.15-03/120r3

Millimeter-Wave Ad-hoc Wireless System

1. System Features Utilization of unlicensed millimeter-wave band

- Restricted small and line of sight area but high speed data rate (~624Mbps)- High coexistence with the existing microwave band wireless system

Countermeasure in use of millimeter-wave bandComplete cancellation of phase noise and frequency-offset by self-heterodyne transmi-ssion and detection technique

2. Application Images Basic Ad-hoc system based on 802.15.3a applications

PNC organizes the communications among DEVs in the piconet .

Figure 2.1. Basic Ad-hoc system

Ad-hoc information distribution systemThe ad-hoc coverage area extension using P-P millimeter-wave link

Submission Reed Fisher , Oki

PNC

DEVDEV

DEV PNC

DEVDEV

DEV

July,2003 IEEE P802.15-03/120r3

Figure 2.2. Ad-hoc information distribution system

3. Base Band (BB) & IF processing Basic transmission rate is 156Mbps using DQPSK Configuration Schemes

Multi-channel structure Transmission rate per channel is 156Mbps.

-Frequency division multiplex using low speed modulators (25Mbps)-Number of channels is 4-Transmission rate per channel is 25Mbps

(Total transmission rate is 624Mbps)-Simultaneous transmission of divided frame

Inputdata

Packetdistribute

MACcontrol

RF

Σ

Tx

Rx

BB & IF processingBB IF

Channel #1 f1

Channelcode/decode

Modulator/Demodulator

Channel #2 f2

Channel #4 f4

156Mbps

156Mbps

156Mbps

156 MHz

f1 f2 f3 f4

Frequency allocation of IF band

BPFBPF

BPFBPF

BPFBPF

Σ

Modulator/Demodulator

Channelcode/decode

Channelcode/decode

Modulator/Demodulator

Inputdata

Packetdistribute

MACcontrol

RF

ΣΣ

Tx

Rx

BB & IF processingBB IF

Channel #1 f1

Channelcode/decode

Modulator/Demodulator

Channel #2 f2

Channel #4 f4

156Mbps

156Mbps

156Mbps

156 MHz

f1 f2 f3 f4

Frequency allocation of IF band

156 MHz

f1f1 f2f2 f3f3 f4f4

Frequency allocation of IF band

BPFBPF

BPFBPF

BPFBPF

ΣΣ

Modulator/Demodulator

Channelcode/decode

Channelcode/decode

Modulator/Demodulator

Figure 3.1. Block diagram of Base band and IF processing

Submission Reed Fisher , Oki

July,2003 IEEE P802.15-03/120r3

4. RF processing Transmission

Single RF carrier is used.Available Transmission method: -With Single Side band (SSB) : Basic proposal-With Double Side band (DSB): Optional proposal-Without Side band : Optional proposal

Reception for Side band transmissionComplete cancellation of phase-noise and frequency -offset by the self –heterodyne detection (square-law detection)

IFinput

IFoutput

fc fc+fifc-fi

B B

NF=F

2BReceiverTransmitter

Local leakDSB mixer

fc

Pt Pr

ffiB

B

Tfi

IM2

( )2

fc fc+fi

BSSB

DSB

IFinput

IFinput

IFoutput

fc fc+fifc-fi

B B

NF=F

2BReceiverTransmitter

Local leakDSB mixer

fc

Pt Pr

ffiB

B

Tfi

IM2

( )2( )2

fc fc+fi

BSSB

DSB

Figure 4.1. Block diagram of RF processing

Submission Reed Fisher , Oki

July,2003 IEEE P802.15-03/120r3

5. PHY Frame Format5.1. Single Channel Transmission

Figure 5.1.1. PHY frame format: Single Channel Structure5.2. Multi-channel Structure

Figure 5.2.1. PHY frame format: Multi-channel Structure

Submission Reed Fisher , Oki

Preamble

MAC Header

80 bits

PHY Header

MAC Header

HCS

Payload+FCS

250 bits

16 bits

10 Bytes (80 bits)

16 bits

1024+4=1028 Bytes (8224 bits)

PHY Header, Mac Header, HCS,Pad

(Payload+FCS),Pad,ch. coding

DQPSK (156 Mbps)

112 bits

10206 bits

Add PHY header, Calculate HCS

Unique word

153 bits

After channel coding (BCH(63,51))Add PreambleAdd Unique word

PHY Header, Mac Header, HCS,Pad,channel coding

20 bits 189 bits

From MAC via PHY SAP

(Payload+FCS)

8224 bits

8262 bits

(Payload+FCS),PadAdd Pad

Error Correction filed (BCH(63,51))

FCS : Frame Check Sequence HCS : Header Check Sequence Pad : Padding

Preamble (Payload+FCS),Pad,ch. codingUnique word PHY Header, Mac Header, HCS,Pad,channel codingPreamble (Payload+FCS),Pad,ch. codingUnique word PHY Header, Mac Header, HCS,Pad,channel coding

Preamble (Payload+FCS),Pad,ch. codingUnique word PHY Header, Mac Header, HCS,Pad,channel coding

Preamble

MAC Header

80 bits

PHY Header

MAC Header

HCS

Payload+FCS

250 bits

16 bits 16 bits

PHY Header, Mac Header, HCS,Pad

(Payload+FCS),Pad,ch. codingDQPSK (156 Mbps)

112 bits

10206 bits

Add PHY header, Calculate HCS

Unique word

153 bits

After channel coding (BCH(63,51))Add PreambleAdd Unique word

PHY Header, Mac Header, HCS,Pad,channel coding

20 bits 189 bits

From MAC via PHY SAP

(Payload+FCS)

8224 bits

8262 bits

(Payload+FCS),PadAdd Pad

Error Correction filed (BCH(63,51))

Preamble (Payload+FCS),Pad,ch. codingUnique word PHY Header, Mac Header, HCS,Pad,channel codingCh 1Ch 2Ch 3

Ch 4

July,2003 IEEE P802.15-03/120r3

6. Interference and SusceptibilityInterference coming from the other standard systems is negligibly small.

The interference attenuation by spurious strength and filter is expected between Millimeter-wave band (802.15.3a) and Micro-wave band (other standard systems).

-Calculation for interference from other standard system

Table 6.1. Interference coming from the other standard systems

Submission Reed Fisher , Oki

42 dB55 dB55 dBRx filter attenuation of proposal system

-103.5 dBm-114.6 dBm-131.6 dBmInterference to the proposed system

36.5 dB29.6 dB29.6 dBPath loss at 0.3 meter

40 dB50 dB47 dBSpurious strength attenuation

0 dBi0 dBi0 dBiTx antenna gain (GT)

15 dBm20 dBm0 dBmTx power

2.4 GHz

IEEE 802.11bIEEE 802.15.3

Center frequency 5.4 GHz2.4 GHz

IEEE 802.11aBluetoothIEEE 802.15.1

42 dB55 dB55 dBRx filter attenuation of proposal system

-103.5 dBm-114.6 dBm-131.6 dBmInterference to the proposed system

36.5 dB29.6 dB29.6 dBPath loss at 0.3 meter

40 dB50 dB47 dBSpurious strength attenuation

0 dBi0 dBi0 dBiTx antenna gain (GT)

15 dBm20 dBm0 dBmTx power

2.4 GHz

IEEE 802.11bIEEE 802.15.3

Center frequency 5.4 GHz2.4 GHz

IEEE 802.11aBluetoothIEEE 802.15.1

(Rx filter attenuation is calculated by using N-degree Butterworth filter)

July,2003 IEEE P802.15-03/120r3

7. CoexistenceThe interference impacted to microwave band systems, from this proposed systems, is

sufficiently smaller than the Rx sensitivity of the microwave sys-tem.

Therefore, coexistence is assured.

-Calculation of interference impacted to other standard system from this proposal system

Table 7.1. Interference impacted to the other standard systems

Submission Reed Fisher , Oki

55.75 dBPath loss at 0.3 meter

50 dBSpurious strength loss

-82 dBm-76 dBm-75 dBm-70 dBmRx Sensitivity

0 dBi0 dBi0 dBi0 dBi0 dBiRx Antenna Gain (GR)

0 dBi0 dBi0 dBi0 dBi0 dBiTx Antenna Gain (GT)

15 dBm20 dBm0 dBm0 dBm10 dBmTx Power

2.4 GHz

IEEE802.11b

5.3 GHz2.4 GHz2.4 GHz60 GHzCenter frequency

-95.75 dBmInterference impacted to othersystem from 802.15.3a

IEEE802.11a

IEEE802.15.3

IEEE802.15.1

IEEE802.15.3a

July,2003 IEEE P802.15-03/120r3

8. Payload Bit Rate and Data Throughput8.1 Single channel

Throughput = 1channels× Throughput per channel

N× Frame Length+SIFS+(N-1)× MIFSN× Payload_bitsThroughput

per channel=

Where,Payload_bit=1024byte, N =1(single), 5(multi),SIFS=10μ sec, MIFS=2μ secFrame Length= 68.3μ sec(DQPSK)

(1) Single FramePreamble UW PHY-HDR MAC-HDR HCS Payload FCS SIFSPreamble UW PHY-HDR MAC-HDR HCS Payload FCS SIFS

2.9μ sec 65.4μ sec(DQPSK) 10μ sec2.9μ sec 65.4μ sec(DQPSK) 10μ sec

68.3μ sec

(2) Multi frame Preamble SD PHY-HDR MAC-HDR HCS Payload FCS MIFSPreamble SD PHY-HDR MAC-HDR HCS Payload FCS MIFS Preamble SD PHY-HDR MAC-HDR HCS Payload FCS MIFSPreamble SD PHY-HDR MAC-HDR HCS Payload FCS MIFS Payload FCS SIFS

2μ sec 10μ sec

Figure 8.1.1. Time length of PHY frame

Therefore, the Data Throughputs for Payload Bit Rates are given as following table.

Table 8.1.1. Data Throughput for each payload bit rate

104.5Mbps 113.8Mbps

Payload bit RateData Throughput

156Mbps DQPSK

ModulationSingle Frame Multi frame

104.5Mbps 113.8Mbps

Payload bit RateData Throughput

156Mbps DQPSK

ModulationSingle Frame Multi frame

Submission Reed Fisher , Oki

July,2003 IEEE P802.15-03/120r3

8.2 Multi channel

Throughput = 4channels× Throughput per channel

N× Frame Length+SIFS+(N-1)× MIFSN× Payload_bitsThroughput

per channel=

Where,Payload_bit=1024byte, N =1(single), 5(multi),SIFS=10μ sec, MIFS=2μ secFrame Length= 68.3μ sec(DQPSK)

(1) Single FramePreamble UW PHY-HDR MAC-HDR HCS Payload FCS SIFS

2.9μ sec 65.4μ sec(DQPSK) 10μ sec

68.3μ sec

(2) Multi frame Preamble SD PHY-HDR MAC-HDR HCS Payload FCS MIFS Preamble SD PHY-HDR MAC-HDR HCS Payload FCS MIFS Payload FCS SIFS

2μ sec 10μ sec

Throughput = 4channels× Throughput per channel

N× Frame Length+SIFS+(N-1)× MIFSN× Payload_bitsThroughput

per channel=

Where,Payload_bit=1024byte, N =1(single), 5(multi),SIFS=10μ sec, MIFS=2μ secFrame Length= 68.3μ sec(DQPSK)

(1) Single FramePreamble UW PHY-HDR MAC-HDR HCS Payload FCS SIFSPreamble UW PHY-HDR MAC-HDR HCS Payload FCS SIFS

2.9μ sec 65.4μ sec(DQPSK) 10μ sec2.9μ sec 65.4μ sec(DQPSK) 10μ sec

68.3μ sec

(2) Multi frame Preamble SD PHY-HDR MAC-HDR HCS Payload FCS MIFSPreamble SD PHY-HDR MAC-HDR HCS Payload FCS MIFS Preamble SD PHY-HDR MAC-HDR HCS Payload FCS MIFSPreamble SD PHY-HDR MAC-HDR HCS Payload FCS MIFS Payload FCS SIFS

2μ sec 10μ sec

Figure 8.2.1. Time length of PHY frame

Therefore, the Data Throughputs for Payload Bit Rates are given as following table.

Table 8.2.1. Data Throughput for each payload bit rate

418.0Mbps 455.2Mbps

Payload bit RateData Throughput

624Mbps DQPSK

ModulationSingle Frame Multi frame

418.0Mbps 455.2Mbps

Payload bit RateData Throughput

624Mbps DQPSK

ModulationSingle Frame Multi frame

Submission Reed Fisher , Oki

July,2003 IEEE P802.15-03/120r3

9. Simultaneously Operating Piconets9.1 156Mbps (AWGN)

- Co-channel separation distance (dint) is about 44.6 m, from the following calculation.- Each parameter is referred to link budget.- Calculation is as follows.- Tx antenna gain = Rx antenna gain = 20 dBi

- 80

- 60

- 40

- 20

0

20

40

0 1 2 3 4 5 6 7 8 9

dB

Piconet1

ReferenceTransmitter

TestReceiver

InterferenceTransmitters

Tx antenna gain : 20 dBi dint

MS

Piconet2

MSMSDesired

signal : SInterference

signal : I

Path loss at 1 meter (68.0 dB)

Rx antenna gain : 20 dBi

System loss : 15 dBTx power : 10 dBm

30 dBm

-38 dBm

-18 dBm

SNR : 11.7 dB-60.3 dBm

-54.3 dBm

-66.0 dBm

33.0 dB

- 80

- 60

- 40

- 20

0

20

40

0 1 2 3 4 5 6 7 8 9

dB

Piconet1

ReferenceTransmitter

TestReceiver

InterferenceTransmitters

Tx antenna gain : 20 dBi dint

MS

Piconet2

MSMSDesired

signal : SInterference

signal : I

Path loss at 1 meter (68.0 dB)

Rx antenna gain : 20 dBi

System loss : 15 dBTx power : 10 dBm

30 dBm

-38 dBm

-18 dBm

SNR : 11.7 dB-60.3 dBm

-54.3 dBm

-66.0 dBm

33.0 dB

Figure 9.1.1. Co-channel interference level

Submission Reed Fisher , Oki

July,2003 IEEE P802.15-03/120r3

9.2 624Mbps (AWGN) - Co-channel separation distance (dint) is about 11.2 m, from the following calculation.- Each parameter is referred to link budget.- Calculation is as follows.- Tx antenna gain = Rx antenna gain = 20 dBi

-80

-60

-40

-20

0

20

40

0 1 2 3 4 5 6 7 8 9

dB

Piconet1

ReferenceTransmitter

TestReceiver

InterferenceTransmitters

Tx antenna gain : 20 dBi dint

MS

Piconet2

MSMSDesired

signal : SInterference

signal : I

Path loss at 1 meter (68.0 dB)

Rx antenna gain : 20 dBi

System loss : 21 dBi

Tx power : 10 dBm

30 dBm

-38 dBm

-18 dBm

SNR : 12.1 dB -53.9 dBm

-47.9 dBm

-60.0 dBm

21 dB

-80

-60

-40

-20

0

20

40

0 1 2 3 4 5 6 7 8 9

dB

Piconet1

ReferenceTransmitter

TestReceiver

InterferenceTransmitters

Tx antenna gain : 20 dBi dint

MS

Piconet2

MSMSDesired

signal : SInterference

signal : I

Path loss at 1 meter (68.0 dB)

Rx antenna gain : 20 dBi

System loss : 21 dBi

Tx power : 10 dBm

30 dBm

-38 dBm

-18 dBm

SNR : 12.1 dB -53.9 dBm

-47.9 dBm

-60.0 dBm

21 dB

Figure 9.2.1. Co-channel interference level

Submission Reed Fisher , Oki

July,2003 IEEE P802.15-03/120r3

9.3 156Mbps (Channel model) The Narrow band channel model (Raleigh channel model )is used as the channel model according to P802.15-02/490r1 which describes the channel model for the proposals using a narrow band channel in the 2.4 GHz,5GHz, 60GHz, or other unlicensed spectrum

- Co-channel separation distance (dint) is about 44.6 m, from the following calculation.- Each parameter is referred to link budget.- Calculation is as follows.- Tx antenna gain = Rx antenna gain = 20 dBi

- 80

- 60

- 40

- 20

0

20

40

0 1 2 3 4 5 6 7 8 9

dB

ReferenceTransmitter

TestReceiver

InterferenceTransmitters

Tx antenna gain : 20 dBi dint

MS

Piconet1Piconet2

MSMSDesired

signal : SInterference

signal : I

Path loss at 1 meter (68.0 dB)

Rx antenna gain : 20 dBi

System loss : 15 dBi

Tx power : 10 dBm

30 dBm

-38 dBm

-18 dBm

-41.0 dBm

-35.0 dBm

-66.0 dBm

33 dB

- 80

- 60

- 40

- 20

0

20

40

0 1 2 3 4 5 6 7 8 9

dB

ReferenceTransmitter

TestReceiver

InterferenceTransmitters

Tx antenna gain : 20 dBi dint

MS

Piconet1Piconet2

MSMSDesired

signal : SInterference

signal : I

Path loss at 1 meter (68.0 dB)

Rx antenna gain : 20 dBi

System loss : 15 dBi

Tx power : 10 dBm

30 dBm

-38 dBm

-18 dBm

-41.0 dBm

-35.0 dBm

-66.0 dBm

33 dB

Figure 9.3.1. Co-channel interference level

Submission Reed Fisher , Oki

July,2003 IEEE P802.15-03/120r3

9.4 624Mbps (Channel model) - Co-channel separation distance (dint) is about 11.2 m, from the following calculation.- Each parameter is referred to link budget.- Calculation is as follows.- Tx antenna gain = Rx antenna gain = 20 dBi

-80

-60

-40

-20

0

20

40

0 1 2 3 4 5 6 7 8 9

dB

ReferenceTransmitter

TestReceiver

InterferenceTransmitters

Tx antenna gain : 20 dBi dint

MS

Piconet1Piconet2

MSMSDesired

signal : SInterference

signal : I

Path loss at 1 meter (68.0 dB)

Rx antenna gain : 20 dBi

System loss : 21 dBi

Tx power : 10 dBm

30 dBm

-38 dBm

-18 dBm-32.0 dBm

-27.0 dBm

-60.0 dBm

21 dB

-80

-60

-40

-20

0

20

40

0 1 2 3 4 5 6 7 8 9

dB

ReferenceTransmitter

TestReceiver

InterferenceTransmitters

Tx antenna gain : 20 dBi dint

MS

Piconet1Piconet2

MSMSDesired

signal : SInterference

signal : I

Path loss at 1 meter (68.0 dB)

Rx antenna gain : 20 dBi

System loss : 21 dBi

Tx power : 10 dBm

30 dBm

-38 dBm

-18 dBm-32.0 dBm

-27.0 dBm

-60.0 dBm

21 dB

Figure 9.4.1. Co-channel interference level

Submission Reed Fisher , Oki

July,2003 IEEE P802.15-03/120r3

10. Signal Acquisition 10.1 Miss detect probability of AWGN channel

- Miss detect probability (Pmd) is probability which causes bit error more than 2 bits.- 1 bit error is permitted to detect unique word.

Channel model, 156 Mbps (1 ch)16.1AWGN, 624 Mbps (4 ch)6.5AWGN, 156 Mbps (1 ch)5.3

Channel model, 624 Mbps (4 ch)19.4

ConditionEb/N0 (dB)

Channel model, 156 Mbps (1 ch)16.1AWGN, 624 Mbps (4 ch)6.5AWGN, 156 Mbps (1 ch)5.3

Channel model, 624 Mbps (4 ch)19.4

ConditionEb/N0 (dB)

1.E-03

1.E-02

1.E-01

1.E+00

0 5 10 15 20 25 30Eb/N0 (dB)

Pm

d

UW detec tion error(AWGN)UW detec tion error(Channel model)

1.E-03

1.E-02

1.E-01

1.E+00

0 5 10 15 20 25 30Eb/N0 (dB)

Pm

d

UW de te ction e rror(AWGN)UW de te ction e rror(ch anne l mode l)

Figure 10.1.1. PER vs. Eb/No Characteristics

Submission Reed Fisher , Oki

July,2003 IEEE P802.15-03/120r3

10.2 False alarm probability of AWGN channel- False alarm probability (Pfa) is probability which detects unique word after PHY Header.- Pfa = 9.91 x 10-3 (at 156 Mbps), 3.91 x 10-2 (at 624 Mbps)- Calculation of Pfa is as follows

Pfa_1ch = 0.520 x 10395= 9.91 x 10-3

20 = unique word length10395 = (length from PHY Header to FCS with including FEC per 1ch)

Pfa = 1 - (1 - Pfa_1th ch) (1 - Pfa_2nd ch) (1 - Pfa_3rd ch) (1 - Pfa_4th ch)It is assumed that Pfa_1th ch = Pfa_2nd ch = Pfa_3rd ch= Pfa_4th ch

Pfa=1 - (1 - Pfa_1ch)4 = 1 –(1 – 9.91 x 10-3)4 = 1.02 x 10-2

4 = Number of channel

Submission Reed Fisher , Oki

July,2003 IEEE P802.15-03/120r3

11. System Performance11.1 Required Eb/N0 for PER 8 % in AWGN channel

- Error Correction : BCH(63,51)- The Narrow band channel model (Raleigh channel model )is used as the channel model

according to P802.15-02/490r1 which describes the channel model for the proposals using a narrow band channel in the 2.4 GHz,5GHz, 60GHz, or other unlicensed spectrum.

- Required Eb/N0 for PER 8 % as follows

Channel model, 156 Mbps (1 ch)28.0AWGN, 624 Mbps (4 ch)9.1AWGN, 156 Mbps (1 ch)8.7

Channel model, 624 Mbps (4 ch)30.0

ConditionEb/N0 (dB)

Channel model, 156 Mbps (1 ch)28.0AWGN, 624 Mbps (4 ch)9.1AWGN, 156 Mbps (1 ch)8.7

Channel model, 624 Mbps (4 ch)30.0

ConditionEb/N0 (dB)

156 Mbps (ch 1) 624 Mbps (ch 4)

1.E-03

1.E-02

1.E-01

1.E+00

0 5 10 15 20 25 30 35 40Eb/N0 (dB)

PE

R

Sy s tem Pe rforma nce(AWGN)Sy s tem Pe rforma ne(Ch anne l mode l)

1.E-03

1.E-02

1.E-01

1.E+00

0 5 10 15 20 25 30 35 40Eb/N0 (dB)

PE

R

S y s tem P erformance(AWGN)

S y s tem P erformance(C hannel model)

Figure 11.1.1. PER vs. Eb/No Characteristics

Submission Reed Fisher , Oki

July,2003 IEEE P802.15-03/120r3

11.2 PER vs. Distance characteristics of AWGN channel- By using PER- Eb/N0 characteristics, PER-Distance characteristics are calculated.- Parameters such as center frequency, propagation loss are referred to link budget.- PER at d = 10 m is less than 10-5

156 Mbps (ch1) 624 Mbps (ch 4)

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 10 20 30 40 50 60 70Dis ta nce (m)

PE

R

System Performance(AWGN)System Performance(Channe l mode l)

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 20 40 60 80 100 120 140Dis tance (m )

PE

R

System Performance(AWGN)System perfomance(Channe l model)

Figure 11.2.1. PER vs. Distance Characteristics

Submission Reed Fisher , Oki

July,2003 IEEE P802.15-03/120r3

12. SensitivityReceiver Sensitivity of this system is given by following equation.

Receiver Sensitivity = Noise Power + Required Eb/N0 + Modulation Loss + Self-heterodyne Loss + Channel Multiplex Loss

Table 12.1. Receiver sensitivity for each transmission rate

Noise Power -84.1 dBm-84.1 dBm- 84.1 dBm- 84.1 dBmRequired Eb/No 8.7 dB 9.1 dB 28.0 dB 30.0 dBModulation Loss 3.0 dB 3.0 dB 3.0 dB 3.0 dBSelf- Heterodyne Loss 9.0 dB 9.0 dB 9.0 dB 9.0 dBChannel Multiplex Loss 3.0 dB 9.0 dB 3.0 dB 9.0 dBReceived Sensitivity -60.3 dBm-53.9 dBm- 41.0 dBm- 33.0 dBm

Term 156 Mbps 624 MbpsChannel ModelAWGN

156 Mbps 624 Mbps

Submission Reed Fisher , Oki

July,2003 IEEE P802.15-03/120r3

13. Link Budget- Link budget is calculated for antenna gain 20 dBi case.- Proposed min. Rx sensitivity level is as follows. Rx sensitivity level = -60.3 dB (AWGN, 156 Mbps), -53.9 dB (AWGN, 624 Mbps), -41.0 dB (Channel model, 156 Mbps), -33.0 (Channel model, 624 Mbps)-From link budget, directional antenna is necessary for millimeter-wave band system.

Table 13.1. Link budgetParameter

ThroughputAverage Tx power (Pt) 10.0 dBm 10.0 dBm 10.0 dBm 10.0 dBmTx antenna gain (Gt) 20.0 dBi 20.0 dBi 20.0 dBi 20.0 dBiCenter frequency(f) 60.0 GHz 60.0 GHz 60.0 GHz 60.0 GHzPath loss at 1meter (L1)(L1 = 20log10(4π f'c/ c)) c=3x10̂ 8 68.0 dB 68.0 dB 68.0 dB 68.0 dBdistance d (m) 10 m 10 m 4 m 4 mPath loss at d m(L2)(L2 = 20log10(d)) 20.0 dB 20.0 dB 12.0 dB 12.0 dBRx antenna gain (Gr) 20.0 dBi 20.0 dBi 20.0 dBi 20.0 dBiRx power (Pr=Pt+Gt+Gr-L1-L2) -38.0 dBm - 38.0 dBm - 30.0 dBm -30.0 dBmBand width (Rb) per channel 156 MHz 156 MHz 156 MHz 156 MHzAverage noise power per bit(N)(N = -174 + 10*log10(Rb) -92.1 dBm - 92.1 dBm - 92.1 dBm -92.1 dBmRx Noise Figure Refferd totha Antenna Terminal (NF) 8 dB 8 dB 8 dB 8 dBAverage noise power per bit (Pn=N+NF) -84.1 dBm - 84.1 dBm - 84 dBm - 84 dBmMinimum Eb/N0 (S) 8.7 dB 28 dB 9.1 dB 30.0 dBImplementation Loss (I) 15 dB 15 dB 21 dB 21 dBLink Margin (M=Pr- Pn-S-I) 22 dB 3 dB 24 dB 3 dBProposed Min. Rx Sensitivity Level -60.3 dBm - 41.0 dBm - 53.9 dBm -33.0 dBm

ValueAWGN

156 MbpsCh. Model156 Mbps

Value

624 Mbps

ValueCh. Model624 Mbps

ValueAWGN

Submission Reed Fisher , Oki

July,2003 IEEE P802.15-03/120r3

14. Regulatory Compliance

Table 14.1. Regulatory Compliance

Geographical Region

Japan Radio Regulatory Law Article 4.3Enforcement Regulatory Article 6.4 10dBm

Transmission Power Limit

59GHz-66GHz

Frequency band Regulatory

USA 10dBm 57GHz-64GHz 47 CFR 15.255

15. Scalability•156 Mbps data rate is supported by single-channel.

•When the desired rate is greater than 156 Mbps, it could be provided by changing number

of channel.

•When the desired rate is smaller than 156 Mbps, it could be provided by symbol repetition .

Submission Reed Fisher , Oki

July,2003 IEEE P802.15-03/120r3

16 Prototype System16.1 RF Circuits

16.2 Setup

Submission Reed Fisher , Oki

MLT

29.25GHz

FLT

ANT

× 2MIX MPA

IF-in

TX-MCM

1.5GHzDC Power Control

Self-Heterodyne MIX LNAFLT

IF-out

RX-MCM ANT

DC Power Control

OSC

TX

RX

wireless transceiverchipset

receiver transmitter

DC power supply & control

frequency doubler up-converter

medium power amplifier low noise amplifier

self-heterodyne mixer filter appearance

internalstructure

total size: 89mm83mm

July,2003 IEEE P802.15-03/120r3

16.3 Performance16.3,1 Phase-Noise PerformanceAlmost no phase-noise performance degradation occurs by the millimeter-wave transmission

(a) Input IF signal

(b) Out put IF signal after self-heterodyne detection

Submission Reed Fisher , Oki

July,2003 IEEE P802.15-03/120r3

16.3.2 Transmission Power PerformanceOptimal condition (PLO=PUSB+PLSB) for DSB and total transmission power of 10dBm can be performed.

Submission Reed Fisher , Oki

-30 -25 -20 -15 -10 -5-20

-15

-10

-5

0

5

10

15

Pin (dBm)

Pou

t (dB

m)

LO

IF:140MHzLO:72.4GHz

USB

LSB

effective P1dB point

P1dB point

-30 -25 -20 -15 -10 -5-20

-15

-10

-5

0

5

10

15

Pin (dBm)

Pou

t (dB

m)

LO

IF:140MHzLO:72.4GHz

USB

LSB

effective P1dB point

P1dB point

July,2003 IEEE P802.15-03/120r3

16.3,3 Receiver Linearity Good linearity can be achieved for wide power range

Submission Reed Fisher , Oki

-90 -80 -70 -60 -50 -40-80

-70

-60

-50

-40

-30

-20

-10

0

P2 (dBm)

Out

put I

F P

ower

(dB

m)

f1=72.40GHz

slope: 1

Gain(IF Amp.)=9dB

P1=-59dBm

P1=-69dBm

P1=-49dBm

f2=72.54GHz

July,2003 IEEE P802.15-03/120r3

16.4 Demonstration System

RF Unit of MT RF Unit of AP

Submission Reed Fisher , Oki

AP-AP Link

RF Unit of MT

AP-MT Link

RF Unit of AP

July,2003 IEEE P802.15-03/120r3

Submission Reed Fisher , Oki

July,2003 IEEE P802.15-03/120r3

SELF-Evaluation

General Solution Criteria

CRITERIA REF. IMPORTANCELEVEL PROPOSER RESPONSE

Unit Manufacturing Complexity (UMC)

3.1 B 0

Signal RobustnessInterference And Susceptibility

3.2.2 A +

Coexistence 3.2.3 A +

Technical Feasibility

Manufacturability 3.3.1 A +

Time To Market 3.3.2 A 0

Regulatory Impact 3.3.3 A +

Scalability (i.e. Payload Bit Rate/Data Throughput, Channelization – physical or coded, Complexity, Range, Frequencies of Operation, Bandwidth of Operation, Power Consumption)

3.4 A 0

Location Awareness 3.5 C -

Submission Reed Fisher , Oki

July,2003 IEEE P802.15-03/120r3

PHY Protocol Criteria

CRITERIA REF. IMPORTANCE LEVEL PROPOSER RESPONSE

Size And Form Factor 5.1 B 0

PHY-SAP Payload Bit Rate & Data ThroughputPayload Bit Rate 5.2.1 A +

Packet Overhead 5.2.2 A +

PHY-SAP Throughput 5.2.3 A +

Simultaneously Operating Piconets

5.3 A 0

Signal Acquisition 5.4 A 0

System Performance 5.5 A +

Link Budget 5.6 A +

Sensitivity 5.7 A 0

Power Management Modes 5.8 B 0

Power Consumption 5.9 A 0

Antenna Practicality 5.10 B 0

MAC Protocol Enhancement Criteria

CRITERIA REF. IMPORTANCE LEVEL PROPOSER RESPONSE

MAC Enhancements And Modifications

4.1. C 0

Submission Reed Fisher , Oki