1 living organisms living things exist in a wide range of sizes, types, and environmental...

74
1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered living creatures but they are very different in size, appearance, and in the way they

Upload: elmer-gaines

Post on 17-Dec-2015

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

1

Living OrganismsLiving things exist in a wide range of sizes, types, and environmental interactions.

Irises, koalas, and paramecium are all considered living creatures but they are very different in size, appearance, and in the way they interact with the environment.

Page 2: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

2

To classify what is living and what is not living is actually quite difficult. Scientists are still grappling with this argument trying to decide if viruses are indeed living creatures. There are 5 basic characteristics that scientists have agreed on. Living organisms will…

Need energy

Respond to their environment.

Reproduce

Grow

Produce wastes

Page 3: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

3

Every living organism carries out these functions in different ways. They need to use specialized structures to fulfill these functions.

Lions use their teeth, mouths, digestive tracks to gain energy. They need to kill another organism to gain their energy.

The trees leaves on the other hand collect sunlight and use special chemicals to synthesize energy.

Just in the way that they gain energy, lions and trees have very different interactions with their environment.

Page 4: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

4

In our own bodies we have many organs which are specialized to carry out the functions we need to live. Each organ is made from special tissues. These muscle tissues Are made from long bundles on thin striations.

Page 5: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

5

Muscle tissues are common in the body. The skeletal muscles move our limbs. As well, muscle tissues are part of our stomach, heart, and esophagus.

The muscle tissues are made from cells. A cell is the basic unit of a living system. Like organs and tissues, each cell is specifically designed to help carry out a function. The muscle cell uses long fibers that relax and contract chemically to complete their function.

Page 6: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

6

Plants have very different cells that make up their tissues. The aquatic plant elodea has cells designed to help support the plant as well as make food using sunlight.

The stem, leaves, and roots of this elodea plant are the organs. The stem, leaf, and roots are made from different specialized tissues. These tissues are made from different specialized cells.

Page 7: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

7

Microscopes

It is impossible for us to see cells with our eyes. This is why many of our ideas about cells were not discovered until the late 1600’s after the invention of the microscope.

A microscope is a device that magnifies objects. Magnification makes objects appear larger.

A simple magnifying glass is in a way a type of microscope.

Page 8: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

8

In the late 1600’s, Robert Hooke used a simple one lens microscope to look at a thin slice of oak cork. He saw little rooms that reminded him of the cells where monks lived. Cork cells are dead so he only saw their cell walls.

Page 9: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

9

Around the same time as Hooke, Anton van Leeuwenhoek used simple microscopes to view rain water and blood. He saw in rain water things he called “animalcules” which we now call bacteria. In blood, saw blood cells of different varieties and shapes. Van Leewenhoek made his own simple microscopes grinding lenses to about the size of the head of a pin. They could magnify about 300 x.

Page 10: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

10

German botanist Matthias Schlieden and zoologist Theodore Schwann made many observations of cells in every living tissue they studied from plants, muscles, nerves and many others in the early 1800’s.

Another German scientist, Rudolf Virchow, proposed a cell theory about living things.

• All living things are made of cells

• Cells are the basic units of structure and function in living things.

Schlieden Schwann

Page 11: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

11

All early microscopes used light to view the microscopic world. Mirrors would deflect light through a sample and into the magnifying lens. Microscopes that use light are called light microscopes and are still used today however an electric light source is place beneath the object being studied.

Page 12: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

12

Simple microscopes (with one lens) were the tool of choice for a long time. Compound microscopes (using 2 lenses) had been invented in the 1600’s. The images produced by compound microscopes were blurry due to the relatively poor lens quality. However, a compound microscope can offer greater magnification.

Page 13: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

13

The very best light microscopes can magnify about 2000x. This is not enough to see some of the smaller parts of cells but, the images are in color and single celled organisms can be seen alive.

Electron microscopes can magnify today up to 2 000 000x.

Electrons are passed and scattered off of objects and then recorded on a photographic plate. The images are black a white and kill the living objects being observed. The first electron microscopes were developed in Germany. The first practical design of an electron microscope was developed in Canada by James Hillier and Albert Prebus.

Page 14: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

14

A compound light microscope has these common parts.

Page 15: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

15

The eyepiece (ocular lens) is helps magnify the object being observed. It is also what you look though to see your object.

The tube holds the eyepiece and objective lenses at the correct distance from each other. As well, it refracts the light through the eyepiece.

Page 16: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

16

The revolving nosepiece holds the objective lenses and allows you to change to different lenses and higher and lower powers of magnification.

The objective lenses magnify the object. The low power objective lens is the smallest while the high power lens is the largest.

The arm holds up the revolving nosepiece. It is also what you hang onto when moving a microscope.

Page 17: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

17

The stage holds the object you are viewing and moves up and down to focus the object.

The stage clips secures the object to the stage so that it doesn’t move around with small bumps and movements of the microscope.

Page 18: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

18

The diaphragm controls the amount of light going through the object and into the objective lens. More light is needed at higher magnifications.

The course-adjustment knob quickly moves the stage to focus the image (usually only used under low power magnification). The fine-adjustment knob slowly moves the stage to focus the image (usually used for higher magnifications).

Page 19: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

19

The light source shines light through the object and into the objective lenses.

The base provides a heavy support for the microscope so that small pushes and movements will not juggle the object being viewed. Always have one hand on the base when carrying a microscope.

Page 20: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

20

When you look at an object trough a microscope you see only a small portion of the entire object. What you see through the eyepiece is called the field of view.

As the magnification is increased, the amount you see gets smaller.

Page 21: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

21

In order to measure the field of view a ruler needs to be observed under the microscope. An ordinary clear plastic ruler will work. Usually under low power, the millimeter lines on a clear plastic ruler are visible.

In this case the low power magnification was 4x and we could see 5.5 mm lines. Therefore, the field of view for the low power is 5.5 mm.

Page 22: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

22

If the low power 4x lens, for a microscope, gives a field of view of 5.5 mm then we can calculate the field of view for the other magnifications. Let’s say the medium power lens has a magnification of 15x. We can use the proportion of magnification to field of view with the following formula.

Medium power field of view

=Low power

field of view

Mag. of low power lens

Mag. of medium power lens

Med f. of v. = 5.5 mm 4x

15x

Med f. of v. 1.5 mm

Page 23: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

23

The accuracy of this calculation methods completely depends on how accurate the measurement of the low power field of view. To get more precise calculations of field of view, special and expensive rulers called micrometers are viewed at different magnifications. A micrometer divides a single millimeter into many tiny divisions so accurate measurements can be made.

Page 24: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

24

When we look at microscopic organisms we don’t look at them directly on the lens. Instead, we make a wet mount.

First, you place a drop of a sample onto a clear glass slide. The sample contains the objects you want to view.

Then you place a clear glass cover slip over the sample.

The cover slip will stick to the slide holding down the objects you want to view.

Page 25: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

25

The specimen is sandwiched between the cover slip and the slide. Air bubbles are commonly seen as small round shapes. Being careful when making your wet mount can reduce the appearance of air bubbles. Most cells are transparent. Stains are added to help highlight certain cells and cell parts.

This hydra has been stained purple so that it can be easily seen with a microscope.

Imperfections in the glass of the slide and lenses are also seen under the microscope.

Page 26: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

26

The CellWe have seen the theory that all living tissues are made from cells. This can help us to categorize living things into two broad groups. Unicellular organisms are made from only one cell. There are many different examples that range from animal like carnivores like paramecium and hydra to single celled plants like algae. Many fungi are also unicellular like penicillium.

Page 27: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

27

Organisms made from many cells are multicellular. This group encompasses all other forms of organisms from dust mites to blue whales. We are much more familiar with multicellular organisms due to the fact that we can easily see and interact with them. However, there are far more varieties of single celled bacteria than all other forms of life combined. In fact, the estimate of the total living mass of bacteria far outweigh any other form of life.

Page 28: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

28

Just like animals cells contain structures that complete specific functions. In animals these are called organs. In cells, these are called organelles. Most organelles are invisible to even the best light microscopes

Each organelle completes a specific function for the cell. Not all cells have the same organelles however, there are some common characteristics of cell organelles. For example, cheek cells (left) look very different from onion skin cells (right).

Page 29: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

29General Animal Cell

Page 30: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

30General Plant Cell

Page 31: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

31

The cell membrane separates the interior of the cell and its environment. It also controls the movement of materials in and out of the cell.

The membrane is like the cells “skin.” It is visible with a light microscope.

Page 32: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

32

The cytoplasm is a fluid inside of the cell. It is constantly moving and helps distribute disolved nutrients to different parts of the cell. The cytoplasm is also visible with a light microscope with the use of a colored stain. The cytoplasm is like the cells “blood.”

Cytoplasm

Cell Membrane

Nucleus

Page 33: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

33

The nucleus of the cell is usually found at the center. It contains the genetic information in chromosomes. The nuclear membrane is similar to the cellular membrane. Small holes exist on the membrane called nuclear pores. Inside the nucleus is the nucleolus. This small ball produces other organelles called ribosomes.

The nucleus is visible with a light microscope and the appropriate stains. It is like the “brain” of the cell because it controls the cells functions.

Page 34: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

34

The endoplasmic rheticulum (ER) is a folded organelle usually near the nucleus. It aids in the transport of materials in the cell.

Ribosomes are small organelles that produce long strands of protiens like a teletype.

If the ER has ribosomes attached to it we call it the rough ER and if there are no ribosomes we call it the smooth ER.

The ER and ribosomes are not usually visible with a light microscope. The ER is like the cells “veins.”

Page 35: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

35

The mitochondrion is a bean shaped organelle with many folds and ridges called cristae. These produce the energy for the cell. Muscle cells would have many mitochondria (plural of mitochondrion) to produce a lot of energy. These are like the “power plants” of the cell.

Page 36: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

36

The Golgi apparatus is a folded organelle that packages materials into balls called vacuoles. Vacuoles can then be transported safely and efficiently throughout the cell. Come vacuoles contain digestive chemicals. These are called lysosomes.

Vacuoles

A lysosome needs to be kept separate from the rest of the cell otherwise the digestive chemicals would kill the cell.

The Golgi apparatus is like the “post office” of the cell. Vacuoles and lysosomes are like the cell’s “stomach.”

Page 37: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

37

The cell wall is only found in plant cells. It is made from cellulose and offers the plant support. It is thick and difficult to transport materials out of the cell wall. Plant cells therefore need large vacuoles to store wastes.

Page 38: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

38

Chloroplasts are only found in plant cells. They are green organelles that convert light energy to chemical energy. The chlorophyll in the chloroplasts in plants is green which is why plants are green.

Page 39: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

39

Cells are cell organelles are very small. Even the largest animals and plants are made from very tiny cells that are close to the same size. Having a small size makes cells very efficient. Firstly, it doesn’t take much energy to transport from the membrane of the cell to the center. Secondly, the surface area to volume ratio is very large if the cell is small. Imagine two cubic cells. One has has a side length of 1mm and the other 10mm.

6.01000

6001000

101010600

10106

3

2

V

SAmmV

VmmSA

SA

61

61

1116

116

3

2

V

SAmmV

VmmSA

SA

Page 40: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

40

Fluids and Movement in CellsCells require materials to exist and complete their necessary functions. They need water, air, food, and a variety of other nutrients. The cell membrane separates the cell from the rest of its environment. It is like our skin.

Cell membranes have openings and special passage ways that let materials in and out of the cells.

This means that the membrane is selectively permeable.

If the membrane didn’t let anything into the cell it would be impermeable.

Page 41: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

Fluids and Movement in Cells

• An impermeable membrane would be fatal to cells since they couldn’t get their needed nutrients.

• A totally permeable membrane would also be fatal since even harmful chemicals could enter and destroy the cell.

41

Page 42: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

42

One way for a cell to gain and remove materials is by using vacuoles.

A vacuole containing waste can approach the plasma membrane and merge with it. An opening is created on the other side and the waste pushed out.

The reverse process can also occur where the membrane can grow around and consume some kind of beneficial material.

Page 43: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

43

The process of gradual mixing of particles in fluids is called diffusion. According to the particle theory, since particles of a fluid are in constant motion, when a clump of fluid particles are added to the moving particles of another fluid, they will tend to spread out and intermix.

Diffusion is a natural process. When perfume is released in air, it diffuses through the air to eventually spread evenly throughout the room.

Page 44: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

44

The principle of diffusion is that particles will tend to move from areas of high concentration to areas of low concentration. Imagine yourself breathing. When you expel carbon dioxide, the concentration around you is relatively higher than 2 m away from you. Therefore, the carbon dioxide tends to diffuse away from you, which is a good thing otherwise we would simply breath the carbon dioxide back. A cell “breaths” in a similar way.

When this amoeba creates carbon dioxide waste the concentration inside the cell is relatively higher than outside the cell. By diffusion the carbon dioxide moves out of the cell.

Page 45: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

45

Cell membranes remain impermeable to most large particles. Water particles, however, are able to flow relatively easily through cell membranes.

The diffusion of water across a membrane is called osmosis. When a cell is put into pure water, there is a great tendency for water to rush into the cell (since there is relatively little water inside the cell compared to outside). If this happens too quickly the cell can burst in a process called lysis.

Page 46: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

46

Osmosis can have a significant effect. When there is a relatively large amount of dissolved solute on one side of a membrane the osmotic pressure will push water to even out the concentration of the two sides.

Page 47: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

47

Plants use osmosis and diffusion to gain the nutrients and water they need. If celery is placed in pure water, osmosis pushes water into the stalk. The cell wall prevents lysis and the celery stands upright. If the stalk is place in a salt water solution, then there is relatively more water inside the cells so water rushes out through osmosis. The stalk falls limp.

Pure water Salty water

Page 48: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

48

Water and nutrients move through a plant through special tissues called vascular tissues. Phloem tissue moves sugars made by the leaves to the rest of the plant. Xylem tissues move water and dissolved minerals to parts of the plant.

Page 49: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

49

The roots of a plant absorb the necessary water and minerals to make its food. Tiny root hairs have semipermiable membranes that connect to the xylem tissues. Osmotic pressure pushes the water up the xylem to the leaves where most of the photosynthesis (food production) occurs.

Page 50: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

50

The large flat leaves are packed with chloroplasts to gather sunlight and make sugars. Oxygen is allowed to diffuse into the leaf through openings called stomata on the underside of the leaf.

Plants need to breath just like us. They use the oxygen in exactly the same way we do to make energy for to do many of the functions they need. This also means they need to expel waste gasses. When the stomata are open, carbon dioxide, oxygen, and water escape. This “breathing out” is called transpiration.

Page 51: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

51

The transpiration of a rainforest can sometimes display visible “tree breath.” During the hot day, the stomata stay closed to limit the loss of water due to transpiration. During the cooler night, the stomata open to breath in the air and slowly release wastes. Transpiration also helps to “pull” the water through the xylem tissues.

Page 52: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

52

Waxy Cuticle

Vein

(Xylem & Phloem)

StomataEpidermis

Epidermis

Chloroplasts

General Leaf Structure

Page 53: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

53

Nerve Cell

Sperm Cell

Onion Skin Cell

Cells are speciallized to complete the functions they are required to do. Their structure relates to their function. A nerve cell has long ends to communicate with other nerves. Sperm cells are small with whip like tails to propel them to the egg. Onion skin cells have thick strong cell walls. These specialized cells are good at completing the tasks they were designed for.

Page 54: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

54

This is an advantage of being a multicellular organism. If you were a single celled organism, the one cell would have to move about, collect food, expel waste, and reproduce. A multicellular organism can specialize certain cells to move limbs, transport oxygen, communicate responses, and produce offspring.

Yet, we can still see a great variety of single celled organisms. This is because it is extremely easy, comparatively, to create a single celled organism. Their simplicity makes them prolific. Bacteria cells are even more simple than animal or plant cells. Bacteria don’t have organelles. They can reproduce very quickly and easily. By overwhelming numbers, bacteria have been able to be the most successful life form on Earth.

Page 55: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

55

Body Systems and HealthAll of the cells in our body require food, oxygen, water, and other nutrients. There are specialized cells organized into tissues which are further organized into organs to carry out these functions. Many organs are connected together and work as an organ system to carry out functions. Many organ systems can be interconnected as well.

Page 56: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

56

Our digestive system consists of all of the organs we use to consume and breakdown the food we eat into its basic chemicals. These include the mouth, salivary glands, esophagus, stomach, liver, pancreas, gallbladder. It also includes the large and small intestines, rectum, and anus which absorbs nutrients and expels wastes.

Page 57: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

57

The respiratory system includes all of the organs needed to consume oxygen. These include the mouth, nose, trachea, and lungs, and diaphragm. The lungs have tissues called bronchi that branch out into smaller bronchioles. At the end of the bronchioles they branch into even smaller alveoli.

Page 58: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

58

The circulatory system is the connection to all of our other systems. It is the heart, blood, arteries, and veins that run throughout our body. All of the nutrients collected by the digestive and respiratory systems are transferred through the circulatory system. All of our systems and directly connected to the circulatory system so that the cells and tissues can receive these needed nutrients.

Heart

Arteries

Veins

Page 59: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

59

Arteries carry blood under pressure from the heart. They have a thick muscular layer to give them strength and flexibility.

Veins carry blood back to the heart and are under much less pressure. Valves in veins stop the blood from flowing backward.

Page 60: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

60

Veins and arteries branch into smaller and smaller vessels until they are very thin capillaries. Capillaries are so thin that usually blood cells flow single file.

The walls of capillaries are also very thin which allows dissolved nutrients in the blood to diffuse through the membranes.

Page 61: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

61

When air enters the lungs, it branches down into bronchi. The bronchi branch into smaller bronchioles. The bronchioles end at tiny sacs called alveoli.

bronchioles

alveoli

Page 62: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

62

Oxygen diffuses through the alveoli to the red blood cells. Carbon dioxide from the red blood cells diffuses into the alveoli.

The circulatory system then move the oxygen to the cells of the body through the blood. The lungs push out the carbon dioxide when you breath out.

Page 63: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

63

A similar process occurs in the small intestine. Instead of exchanging oxygen and carbon dioxide, the blood picks up digested and dissolved nutrients through villi and microvilli.

Page 64: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

64

Inside the kidney a similar process occurs. Blood from capillaries is brought to the kidney. Tiny nephrons filter excess water and toxic chemicals. These wastes are made into urine and sent through the ureter to the bladder.

Page 65: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

65

The nervous system is also connected to many of the other systems of the body. Tiny electrochemical signals are sent along nerve cells to the brain. Most of the nerves go through the spinal chord. In many cases, signals received by the brain trigger automatic responses like sweating when you get hot getting a hungry feeling when your energy supply is lower.

Page 66: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

66

The nervous system does not control all of your bodies responses. The endocrine system (gland system) also sends chemical signals through the blood. These chemical signals are called hormones. The effect of hormones are very complex and very powerful.

Page 67: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

67

It is impossible to say which body system is the “most important.” Each system is dependent on the others. All cells require oxygen from the respiratory system and nutrients from the digestive system.

Without regulation and control mechanisms of the nervous and endocrine systems, our organs wouldn’t know what jobs they had to do. Imagine eating but your stomach not knowing it had to help in digestion. If the circulatory system were to stop functioning, the very specialized cells would not be able to give or receive the needed chemicals. All of your systems depend on your blood to fullfill these needs.

Page 68: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

68

Your blood is not complete made from blood cells. Plasma is the fluid that dissolves many of the nutrients and carries them to other cells. Red blood cells (RBC) are doughnut shaped cells that contains iron rich hemoglobin. The hemoglobin binds to the oxygen and carbon dioxide. White blood cells (WBC) help attack and digest bacteria infecting the blood. Platelets burst and make a tangled web to clot blood when there is a wound. This prevents excess blood loss.

Component % by Volume

Plasma 55

RBC 44

WBC < 1

Platelets < 1

Page 69: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

69

One of the main health problems with the circulatory system in North America is hypertension (high blood pressure).

Hypertension is a “silent killer” because you may not feel ill if you have it. A doctor uses a sphygmomanometer to measure blood pressure.

An inflatable cuff is put around the arm of the patient and a stethoscope is put over an artery in the arm. The cuff is inflated until no blood flow sounds can be heard. Pressure is slowly let out until blood starts flowing again. This is the same pressure in the artery. Since the pressure in the artery fluctuates with the heart beat, a high (systolic) and low (diastolic) reading is taken.

Page 70: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

70

There are 5 main causes of hypertension.

• Blood Volume: Large volume of blood will raise pressure

• Heart Rate: A fast heart rate will increase the blood flow and pressure.

• Artery Size: A small sized artery will raise blood pressure.

• Artery Elasticity: Inflexible arteries cannot easily allow blood through and thus increase blood pressure.

• Blood Viscosity: Viscous blood does not flow easily and therefore requires more pressure to move through the body.

Page 71: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

71

A diet rich in fatty foods and cholesterol can cause build ups of fatty deposits in your arteries. These fatty deposits narrow the opening and can lead to hypertension. These deposits can also completely block and cut off blood flow to areas of the body. If an artery feeding the heart is blocked a portion of the hear can die. This is called a heart attack.

Page 72: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

72

Our digestive system handles many harmful waste chemicals. If our diets lack fiber, it takes the digestive system longer to process these chemicals. Bacteria can multiply and cause infections and damage can be caused by not being able to expel these wastes in a timely fashion. This is why fiber, even though it offers little nutritional value, is an important part of our diets.

Stress, smoking, alcohol, or other drugs can also allow bacteria to infect the lining of our stomachs and intestines. These can lead to damage and cause ulcers.

Page 73: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

73

Healthy lungs are bright pink and allow gas exchange between alveoli and capillaries easily.

A smoker’s lung contains dark tar deposits that interfere with the gas exchange. As well, toxins from tobacco can greatly increase the risk of cancers developing in the lungs and killing their function.

Page 74: 1 Living Organisms Living things exist in a wide range of sizes, types, and environmental interactions. Irises, koalas, and paramecium are all considered

74

Air pollution can also also effect your respiratory system health. Clean air in major centers is becoming polluted from industrial wastes as well as vehicle congestion. Hong Kong can have clear days if the winds are right. On some days however, the smog is thick and can cause people to feel light headed and dizzy from a lack of oxygen.