1 the physical structure (nmos) field oxide sio2 gate oxide field oxide n+ al sio2 polysilicon gate...

46
1 CONCORDIA VLSI D E SIG N LA B The Physical Structure (NMOS) Field Oxide SiO2 Gate oxide Field Oxide n+ n+ Al Al SiO2 SiO2 Polysilicon Gate channe l L P Substrate D S L W (D) (S) Metal n+ n+ (G) Poly contact

Upload: whitney-rodgers

Post on 26-Dec-2015

222 views

Category:

Documents


1 download

TRANSCRIPT

1CONCORDIAVLSI DESIGN LAB

The Physical Structure (NMOS)

Field Oxide

SiO2

Gate oxide

Field Oxiden+n+

AlAlSiO2SiO2

Polysilicon Gate

channel

L

P Substrate

D S

L

W

(D) (S)

Metal

n+ n+

(G)

Poly

contact

2CONCORDIAVLSI DESIGN LAB

Transistor Resistance

:

Two Components:

Drain/ Sources Resistance:

RD(S) = Rsh x no. of squares+ contact resistance.

Channel Resistance: Depends on the region of operation:

L

W

(D) (S) n+ n+

(G)

RS Rch RD

Linear

RCH2

K' WL----- V

GSVT– 2

----------------------------------------------------= Saturation

RCH1

K'WL----- VGS VT– VDS–

---------------------------------------------------------------- '=

3CONCORDIAVLSI DESIGN LAB

Transistor Geometry

4CONCORDIAVLSI DESIGN LAB

Transistor Geometry- Detailed

5CONCORDIAVLSI DESIGN LAB

NMOS Operation-Linear

K Cox= Process Transconductance uA/V2

for 0.35u, K’ (Kp)=196uA/ V2

Cox

ox

tox-------= Gate oxide capacitance per unit area

ox = 3.9 x o = 3.45 x 10-11 F/m

tox Oxide thickness

for 0.35 , tox=100Ao

Quick calculation of Cox: Cox= 0.345/tox (Ao) pf/um2

= mobility of electrons 550 cm2/V-sec for 0.35 process

VDS

IDS

VGS

IDS N KN VG SN VTN– VD SN12---VD SN

2–

= KN=K’.

W/L

6CONCORDIAVLSI DESIGN LAB

NMOS Operation-Linear

Effect of W/L

Effect of temperature

RdsW/L

W

temp Rds

W

7CONCORDIAVLSI DESIGN LAB

Variations in Width and Length

Weff

Wdrawn

WD WD

1. Width Oxide encroachment Weff= Wdrawn-2WD

2. Length Lateral diffusion LD = 0.7Xj Leff= Ldrawn-2LD

Ldrawn

LD Leff LD

polysilicon

polysilicon

8CONCORDIAVLSI DESIGN LAB

Large Transistors

Rchannel decrease with increase of W/L of the transistor

9CONCORDIAVLSI DESIGN LAB

Semiconductor Resistors

Resistance

R= p(l /A) = (p/t). (l /w) = Rsh. (l /w)

Rsh = Sheet resistance /

For 0.5u process: N+ diffusion : 70 / M1: 0.06 P+ diffusion : 140 / M2: 0.06 Polysilicon : 12 / M3: 0.03 Polycide:2-3 / P-well: 2.5K N-well: 1K

w

current

l t

(A)

1

n n q p p q + ------------------------------------------------=

10CONCORDIAVLSI DESIGN LAB

Semiconductor Resistors

AlAl

n+

Diffusionn+

Field oxide

polysilicon

Polysilicon Resistor Diffusion Resistor

SiO2

11CONCORDIAVLSI DESIGN LAB

Semiconductor Capacitors

1. Poly Capacitor: a. Poly to substrate b. Poly1 to Poly2

2. Diffusion Capacitor

n+ (ND)

depletion region

substrate (NA)bottomwallcapacitance

sidewallcapacitances

12CONCORDIAVLSI DESIGN LAB

Dynamic Behavior of MOS Transistor

DS

G

B

CGDCGS

CSB CDBCGB

Prentice Hall/Rabaey

13CONCORDIAVLSI DESIGN LAB

SPICE Parameters for Parasitics

Prentice Hall/Rabaey

14CONCORDIAVLSI DESIGN LAB

SPICE Transistors Parameters

Prentice Hall/Rabaey

15CONCORDIAVLSI DESIGN LAB

Modelling: Resistance

1. Resistance: Rint= Rsh [l/w]

Rsh values for 0.35u CMOS Process: Polysilicon 10 / Polycide 2 / Metal1 0.07 / Metal II 0.07 / Metal III 0.05 /

Contact resistance: PolyI to MetalI 50 Via resistance: Metal I to Metal II 1.5 Via resistance: Metal II to metal III 1.

16CONCORDIAVLSI DESIGN LAB

CMOS Inverter: Steady State Response

VDD VDD

VoutVout

Vin = VDD Vin = 0

Ron

Ron

VOH = VDD

VOL= 0

17CONCORDIAVLSI DESIGN LAB

Switching Characteristics of Inverters

VDD

Vout

Vin = VDD

Ron

CL

tpHL = f(Ron.CL)

= 0.69 RonCL

t

Vout

VDD

RonCL

1

0.5

ln(0.5)

0.36

Transient Response

18CONCORDIAVLSI DESIGN LAB

Computing the Capacitances

VDD VDD

Vin Vout

M1

M2

M3

M4Cdb 2

Cdb 1

Cgd 12

Cw

Cg4

Cg3

Vout2

Fanout

Interconnect

VoutVin

CLSimplified

Model

19CONCORDIAVLSI DESIGN LAB

Computing the Capacitances

20CONCORDIAVLSI DESIGN LAB

Delay Definitions

tpHL

tpLH

t

t

Vin

Vout

50%

50%

tr

10%

90%

tf

21CONCORDIAVLSI DESIGN LAB

Step Response

Fall Delay Time: TPHL

Vin

IDN Vin = 5

Vin = 4

Vin = 3

VDD=5V

Vin

G

S

D

D

G

S

Vo

GND

MP

MN

CL

VDD

VDDVoVDD-VT

MN OFF Saturation Linear

(VDSAT)

22CONCORDIAVLSI DESIGN LAB

Step Response- Fall time, tf

trCL

KPVDD 1 p+( )--------------------------------------- 2–( ) 1 p+( )

1 p+( )---------------------------- 19 20p+( )ln+=

DDn

L

V

Ck

.

.

DDp

L

V

Ck

.

.

vin

vo1-n

td1 td2

1

0.1

0.9

tfCL

KNVDD 1 n–( )--------------------------------------- 2 n 0.1–( )

1 n–( )------------------------ 19 20n–( )ln+=

tf=~ k is a constant

tr=~ k is a constant

0.1

23CONCORDIAVLSI DESIGN LAB

Step Response-tPHL

Vin

VoVDD-VTN

Vx

td1 td2

vin

vo1-n

td1 td2

VDD

1

0.5

VDD/ 2

Assume normalized voltagesvin= Vin/ VDDvo= Vo/ VDDn = VTN/ VDDp = VTP/ VDD

tPHL=td1+td2

tPHLCL

KNVDD 1 n–( )--------------------------------------- 2n

1 n–( )---------------- 3 4n–( )ln+=

tPHLCLA'N

KNVDD----------------------=

24CONCORDIAVLSI DESIGN LAB

Step Response Rise Delay tPLH and Rise Time tr

VDD

Vin

G

S

D

D

G

S

Vo

GND

MP

MN

CL

VDD

tPLHCL

KPVDD 1 p+( )--------------------------------------- 2p–

1 p+( )----------------- 3 4p+( )ln+=

tPLHCLA'P

KPVDD---------------------=

trCL

KPVDD 1 p+( )--------------------------------------- 2–( ) 1 p+( )

1 p+( )---------------------------- 19 20p+( )ln+=

tr4C LA'PKPVDD---------------------= (P= - 0.2)

0.1

25CONCORDIAVLSI DESIGN LAB

Factors Influence Delay

Inverter Delay,td = (tPHL+tPLH)/2

The following factors influence the delay of the inverter:

• Load Capacitance• Supply Voltage• Transistor Sizes• Junction Temperature• Input Transition Time

26CONCORDIAVLSI DESIGN LAB

Delay as a function of VDD

0

4

8

12

16

20

24

28

2.00 4.001.00 5.003.00

Nor

mal

ized

Del

ay

VDD (V)

27CONCORDIAVLSI DESIGN LAB

Delay as a function of Transistor Size

tPHL and tf decrease with the increase of W/L of the NMOS tPLH and tr decrease with the increase of W/L of the PMOS

28CONCORDIAVLSI DESIGN LAB

Temperature Effect

Temperature ranges: commercial : 0 to700C industrial: -40 to 850C military: -55 to 1250C Calculation of the junction temperature tj= ta + ja X Pd Effect of temperature on mobility Delay and speed implications

29CONCORDIAVLSI DESIGN LAB

Effect of Input Transition Times

rVinVo

The delay of the inverter increaseswith the increase of the input transition times r and f

tPHL = (tPHL) step + (r /6).(1-2p)

tPLH = (tPLH) step + (f/6).(1+2n)

30CONCORDIAVLSI DESIGN LAB

Define = (W/L)p/(W/L)n

For Equal Fall and Rise Delay KN=KP

= n/ p

For Minimum Delay dtD/d = 0

opt = Sqrt (n/ p)

Transistor Sizing

31CONCORDIAVLSI DESIGN LAB

Power Dissipation in CMOS

Two Components contribute to the power dissipation:

» Static Power Dissipation– Leakage current– Sub-threshold current

» Dynamic Power Dissipation– Short circuit power dissipation– Charging and discharging power

dissipation

32CONCORDIAVLSI DESIGN LAB

Static Power Dissipation

G

S

D

D

G

S

Vo

VDD

GND

B

B

MP

MN

Leakage Current:• P-N junction reverse biased current: io= is(eqV/kT-1) • Typical value 0.1nA to 0.5nA @room temp.• Total Power dissipation:

Psl= i0.VDD

Sub-threshold Current• Relatively high in low threshold devices

Vin

33CONCORDIAVLSI DESIGN LAB

Analysis of CMOS circuit power dissipation

The power dissipation in a CMOS logic gate can be expressed as P = Pstatic + Pdynamic

= (VDD · Ileakage) + (p · f · Edynamic) Where p is the switching probability or activity factor at the output node (i.e. the average number of output switching events per clock cycle). The dynamic energy consumed per output switching

event is defined as

Edynamic = eventswitching

DDDD dtVi__1

34CONCORDIAVLSI DESIGN LAB

Analysis of CMOS circuit power dissipation

SCDDMDDLdynamic EVCVCE 22 2

SCDDgdpgdndbndbpDDload EVCCCCVC 22 )](2[

The first term —— the energy dissipation due to theCharging/discharging of the effective load capacitance CL.

The second term —— the energy dissipation due to the input-to-output coupling capacitance. A rising input results in a VDD-VDD transition of the voltage across CM and so doubles the charge of CM.

CL = Cload + Cdbp +Cdbn

CM = Cgdn + Cgdp

35CONCORDIAVLSI DESIGN LAB

• distributed, • voltage-dependent, and • nonlinear. So their exact modeling is quite complex.

The MOSFET parasitic capacitances

Even ESC can be modeled, it is also difficult to calculate the Edynamic.

On the other hand, if the short-circuit current iSC can be Modeled, the power-supply current iDD may be modeled with the same method.

So there is a possibility to directly model iDD instead of iSC.

36CONCORDIAVLSI DESIGN LAB

Schematic of the Inverter

37CONCORDIAVLSI DESIGN LAB

38CONCORDIAVLSI DESIGN LAB

The short-circuit energy dissipation ESC is due to the rail-to-rail current when both the PMOS and NMOS devices are simultaneously on.

ESC = ESC_C + ESC_n

Where

and

DDVv

nDDcSC dtiVE0

_

0

0

_

0 DDVv

pDDdSC dtiVE

Analysis of short-circuit current

39CONCORDIAVLSI DESIGN LAB

Charging and discharging currents

Discharging Inverter Charging Inverter

40CONCORDIAVLSI DESIGN LAB

Factors that affect the short-circuit current

TVV

VI TDD

DDmean

3)2(12

1

For a long-channel device, assuming that the inverter is symmetrical (n = p = and VTn = -VTp = VT) and with zero load capacitance, and input signal has equal rise and fall times (r = f = ), the average short-circuit current [Veendrick, 1994] is

From the above equation, some fundamental factors that affect short-circuit current are:

, VDD, VT, and T.)(L

W

tox

41CONCORDIAVLSI DESIGN LAB

Parameters affecting short cct current

For a short-channel device, and VT are no longer constants, but affected by a large number of parameters (i.e. circuit conditions, hspice parameters and process parameters).

CL also affects short-circuit current.

Imean is a function of the following parameters (tox is process-dependent): CL, , T (or /T), VDD, Wn,p, Ln,p (or Wn,p/ Ln,p ), tox, …

The above argument is validated by the means of simulation in the case of discharging inverter,

42CONCORDIAVLSI DESIGN LAB

The effect of CL on Short CCt Current

43CONCORDIAVLSI DESIGN LAB

Effect of tr on short cct Current

44CONCORDIAVLSI DESIGN LAB

Effect of Wp on Short cct Current

45CONCORDIAVLSI DESIGN LAB

Effect of timestep setting on simulation results

Tr (ps) Timestep (ps) MaxStep (ps) iMax (uA) iaverage_inT/2 (uA) 2 10 802.6 1.258 4 10 413.8 1.264 5 10 336.4 1.24 6 10 284.9 1.234 8 10 221 1.245

0

10 20 183 1.231 2 10 73.09 1.202 4 10 64.4 1.213 5 10 58.69 1.21 6 10 65.64 1.208 8 10 76.13 1.207

100

10 20 63.1 1.217 2 10 50.96 1.311 5 10 49.78 1.295 5 20 50.46 1.313 8 10 50.72 1.311 8 20 52.08 1.311

200

10 20 51.25 1.311

46CONCORDIAVLSI DESIGN LAB

Thank you !