23 4 14 prob distribution

Upload: alvin-adrian

Post on 07-Jul-2018

242 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 23 4 14 Prob Distribution

    1/132

  • 8/18/2019 23 4 14 Prob Distribution

    2/132

    Statistics for Business and

    Economics

    ChapterRandom Variables &

    Probability Distributions

  • 8/18/2019 23 4 14 Prob Distribution

    3/132

    Content

    1. Two Types of Random Variables

    2. Probability Distributions for DiscreteRandom Variables

    3. The Binomial Distribution

    4. Poisson and yper!eometric Distributions

    ". Probability Distributions for #ontinuousRandom Variables

    $. The %ormal Distribution

  • 8/18/2019 23 4 14 Prob Distribution

    4/132

    Content (continued)

    &. Descripti'e (ethods for )ssessin! %ormality

    *. )ppro+imatin! a Binomial Distribution witha %ormal Distribution

    ,. -niform and +ponential Distributions

    1/. 0amplin! Distributions11. The 0amplin! Distribution of a 0ample

    (ean and the #entral imit Theorem

  • 8/18/2019 23 4 14 Prob Distribution

    5/132

    2/11 Pearson ducation nc

    Learnin !b"ecti#es

    1. De'elop the notion of a random 'ariable

    2. earn that numerical data are obser'ed 'alues ofeither discrete or continuous random 'ariables

    3. 0tudy two important types of random 'ariablesand their probability models5 the binomial andnormal model

    4. Define a samplin! distribution as the probability ofa sample statistic

    ". earn that the samplin! distribution of follows anormal model

     x 

  • 8/18/2019 23 4 14 Prob Distribution

    6/132

    $hin%in Challene

    • You’re taking a 33 question multiplechoice test. Each question has 4choices. Clueless on 1 question, you

    decide to guess. What’s the chanceyou’ll get it right?

    • If you guessed on all 33 questions, hatould !e your grade? Would you pass?

  • 8/18/2019 23 4 14 Prob Distribution

    7/132

    Two Types of

    Random Variables

  • 8/18/2019 23 4 14 Prob Distribution

    8/132

    Random Variable

    ) random variable is a 'ariable that assumes

    numerical 'alues associated with the random

    outcomes of an e+periment where one 6and onlyone7 numerical 'alue is assi!ned to each sample

     point.

  • 8/18/2019 23 4 14 Prob Distribution

    9/132

    Discrete

    Random Variable

    Random 'ariables that can assume a countable

    number 6finite or infinite7 of 'alues are calleddiscrete.

  • 8/18/2019 23 4 14 Prob Distribution

    10/132

    Discrete Random Variable

    Examples

    +perimentRandom

    Variable

    Possible

    Values

    #ount #ars at TollBetween 115// 8 15//

    9 #ars)rri'in!

    / 1 2 ... :

    (a;e 1// 0ales #alls 9 0ales / 1 2 ... 1//

    nspect &/ Radios 9 Defecti'e / 1 2 ... &/

    )nswer 33

  • 8/18/2019 23 4 14 Prob Distribution

    11/132

    Continuous

    Random Variable

    "andom #aria!les that can assume

    #alues corresponding to any of thepoints contained in one or moreinter#als $i.e., #alues that are in%niteand uncounta!le& are calledcontinuous.

  • 8/18/2019 23 4 14 Prob Distribution

    12/132

    Continuous RandomVariable Examples

    (easure TimeBetween )rri'als

    nter=)rri'alTime

    / 1.3 2.&* ...

    ExperimentRandom

    Variable

    Possible

    Values

    >ei!h 1// People >ei!ht 4".1 &* ...

    (easure Part ife ours ,// *&"., ...

    )mount spent on food ? amount "4.12 42 ...

  • 8/18/2019 23 4 14 Prob Distribution

    13/132

    Probability Distributionsfor Discrete Random

    Variables

  • 8/18/2019 23 4 14 Prob Distribution

    14/132

    Discrete

    Probability Distribution

     'he probability distribution of a

    discrete random ariable is agraph, ta!le, or formula that speci%esthe pro!a!ility associated ith each

    possi!le #alue the random #aria!lecan assume.

  • 8/18/2019 23 4 14 Prob Distribution

    15/132

    Reuirements for the

    Probability Distribution of aDiscrete Random Variable  x 

    1.   p6 x7 @ / for all 'alues of x

    2.   Σ  p6 x7 A 1

    where the summation of p6 x7 is o'er all possible

    'alues of x.

  • 8/18/2019 23 4 14 Prob Distribution

    16/132

    Discrete Probability

    Distribution E'ample

    Probability DistributionValues, x   Probabilities, p( x )

      0 1/4 !"#

      1 "/4 !#0

      " 1/4 !"#

    +periment5  Toss 2 coins. #ount number of

    tails.

  • 8/18/2019 23 4 14 Prob Distribution

    17/132

    Visualiin Discrete

    Probability Distributions$istin% &able

    'ormula

    &ails( x )

    *ountp( x )

    0 1 !"#

    1 " !#0

    " 1 !"#

     p x n

     x!(n – x)!( )

    +  p x ( 1 – p)n – x 

    rap-

    !00!"#

    !#0

    0 1 "

     x 

    p( x )

    . (0, !"#), (1, !#0), (", !"#)

  • 8/18/2019 23 4 14 Prob Distribution

    18/132

    Summary easures

    1. +pected Value 6(ean of probability distribution7 >ei!hted a'era!e of all possible 'alues

      µ  A E 6 x7 A Σ x  p6 x7

    2. Variance

      >ei!hted a'era!e of sCuared de'iation about

    mean

      σ 2 A E 6 x − µ )2] = Σ 6 x − µ )2  p6 x73.  0tandard De'iation

    2σ σ =E

  • 8/18/2019 23 4 14 Prob Distribution

    19/132

    Summary easures

    Calculation $able

     x p(x) x p(x) x –   µ  

    &otal Σ6 x − µ )2  p6 x7

    (x –   µ) 2   (x –   µ) 2  p(x)

    Σ x  p6 x7

  • 8/18/2019 23 4 14 Prob Distribution

    20/132

    Thin!in" Challen"e

     You toss ( coins. You’re interested in

    the num!er of tails. What are the

    expected alue, ariance, and

    standard deiation of  this random

    #aria!le, num!er of tails?

  • 8/18/2019 23 4 14 Prob Distribution

    21/132

    E)pected *alue + *ariance

    olution

    0 !"# 1!00 1!00

    1 !#0 0 0

    " !"# 1!00 1!00

    0

    !#0

    !#0

      1!0

     x p(x) x p(x) x –   µ   (x –   µ)  2   (x –   µ)  2  p(x)

    !"#

    0

    !"#

    σ

    2

     = 50

    σ

     = 71

  • 8/18/2019 23 4 14 Prob Distribution

    22/132

    Probability Rules for Discrete

    Random Variableset x be a discrete random 'ariable with probability

    distribution p6 x7 mean µ and standard de'iation σ .Then dependin! on the shape of p6 x7 the followin!

     probability statements can be made5

    #hebyshe'Fs Rule mpirical Rule

    P x −σ 

  • 8/18/2019 23 4 14 Prob Distribution

    23/132

    The #inomialDistribution

  • 8/18/2019 23 4 14 Prob Distribution

    24/132

    Binomial Distribution

     %umber of GsuccessesF in a sample of n 

    obser'ations 6trials7

     %umber of reds in 1" spins of roulette wheel

     %umber of defecti'e items in a batch of " items

     %umber correct on a 33 Cuestion e+am

     %umber of customers who purchase out of 1//customers who enter store 6each customer is

    eCually li;ely to pyrchase7

  • 8/18/2019 23 4 14 Prob Distribution

    25/132

    Binomial Probability

    *-aracteristics o a inomial Experiment1! The e+periment consists of n identical trials.

    "! There are only two possible outcomes on each trial. >e

    will denote one outcome by S  6for success7 and the other

     by F  6for failure7.

    2! The probability of S  remains the same from trial to trial.

    This probability is denoted by p and the probability of

     F  is denoted by q. %ote that q A 1 H p.4! The trials are independent.

    #! The binomial random 'ariable x is the number of S Fs in

    n trials.

  • 8/18/2019 23 4 14 Prob Distribution

    26/132

    Binomial Probability

    DistributionI6 7 61 7I 6 7I

     x n x x n xn n

     p x p q p p x  x n x

    − −  = = − ÷ −  

     p( x ) Probability o x 3uccesses5  p Probability o a 3uccess5 on a sin%le trial

    q 1  p

    n 6umber o trials

     x  6umber o 3uccesses5 in n trials

      ( x   0, 1, ", !!!, n)

    n – x  6umber o ailures in n trials

  • 8/18/2019 23 4 14 Prob Distribution

    27/132

    #inomial Probability

    Distribution Example

    3 " 3

    I6 7 61 7I6 7I

    "I637 ." 61 ."73I6" 37I

    .312"

     x n xn p x p p x n x

     p

    = −−

    = −−

    =

    +periment5  Toss 1 coin " times in a row. %ote

    number of tails. >hatFs the probability of 3 tailsJ

  • 8/18/2019 23 4 14 Prob Distribution

    28/132

    Binomial Probability Table (Portion)

    n = 5  p

    k  ./1 K /."/ K .,,

    / .,"1 K ./31 K .///

    1 .,,, K .1** K .///

    2 1./// K ."// K .///

    3 1./// K .*12 K .//1

    4 1./// K .,$, K ./4,

    #umulati'e Probabilities

    p( x  7 2)  p( x  7 ")  !81"   !#00 !21"

  • 8/18/2019 23 4 14 Prob Distribution

    29/132

    Binomial Distribution

    Characteristicsn #  p  0!1

    n  #  p  0!#

      µ   = E 6 x7   = np

    9ean

    tandard Deviation

     

    σ   = npq

  • 8/18/2019 23 4 14 Prob Distribution

    30/132

    #inomial DistributionThin!in" Challen"e

    LouFre a telemar;eter sellin! ser'ice contracts for

    (acyFs. LouF'e sold 2/ in your last 1// calls 6 p 

    !"07. f you

    call 1" people toni!ht whatFs the probability of ). %o salesJ

    B. +actly 2 salesJ

    #. )t most 2 salesJD. )t least 2 salesJ

  • 8/18/2019 23 4 14 Prob Distribution

    31/132

    Binomial Distribution Solution*

    n  1", p  !"0

    :.  p6/7 A !0;8

  • 8/18/2019 23 4 14 Prob Distribution

    32/132

    4!4

    =t-er Discrete Distributions>

    Poisson and ?yper%eometric

  • 8/18/2019 23 4 14 Prob Distribution

    33/132

    Poisson Distribution

    1.  %umber of e'ents that occur in an inter'al  e'ents per unit

     O   Time en!th )rea 0pace

    2. +amples  %umber of customers arri'in! in 2/ minutes

     %umber of stri;es per year in the -.0.

     %umber of defects per lot 6!roup7 of DVDFs

  • 8/18/2019 23 4 14 Prob Distribution

    34/132

    Characteristics of a Poisson

    Random Variable

    1. #onsists of countin! number of times an e'entoccurs durin! a !i'en unit of time or in a !i'enarea or 'olume 6any unit of measurement7.

    2. The probability that an e'ent occurs in a !i'en unitof time area or 'olume is the same for all units.

    3. The number of e'ents that occur in one unit oftime area or 'olume is independent of the numberthat occur in any other mutually e+clusi'e unit.

    4. The mean number of e'ents in each unit is denoted by λ.

  • 8/18/2019 23 4 14 Prob Distribution

    35/132

    Poisson Probability

    Distribution +unction

      µ = λ  σ  2 = λ 

     p6 x7 A Probability of x !i'en λ

    λ A (ean 6e+pected7 number of e'ents in unite A 2.&1*2* . . . 6base of natural lo!arithm7

     x A %umber of e'ents per unit

     p x x

    6 7I

    = xλ λe H

    6 x A / 1 2 3 . . .7

  • 8/18/2019 23 4 14 Prob Distribution

    36/132

    Poisson Probability

    Distribution +unctionλ

    0!#

    λ ;

    9ean

    tandard Deviation

    σ λ =

     µ = E ( x) = λ 

  • 8/18/2019 23 4 14 Prob Distribution

    37/132

    Poisson Distribution E'ample

    #ustomers arri'e at a rate of &2 per hour. >hat

    is the probability of 4 customers arri'in! in 3 

    minutesJ

  • 8/18/2019 23 4 14 Prob Distribution

    38/132

    Poisson Distribution Solution

  • 8/18/2019 23 4 14 Prob Distribution

    39/132

    Poisson Probability Table (Portion)

    #umulati'e Probabilities

    p( x  7 4)  p( x  7 2)  !

  • 8/18/2019 23 4 14 Prob Distribution

    40/132

    $hin%in Challene

     You ork in -uality ssurance for an

    in#estment %rm. clerk enters $% 

    ords per minute ith & errors per

    hour. What is the pro!a!ility of ' 

    errors in a (%%)word !ond

    transaction?

  • 8/18/2019 23 4 14 Prob Distribution

    41/132

    Poisson Distribution Solution,

    +indin λ* &" wordsmin A 6&" wordsmin76$/ minhr7

     A 4"// wordshr 

      $ errorshr A $ errors4"// wordsA !00122 errorsword

    n a "##=word transaction 6inter'al75

      λ  A (!00122 errorsword 76"## words7A .34 errors2""=word transaction

  • 8/18/2019 23 4 14 Prob Distribution

    42/132

    Poisson Distribution Solution:

    Finding p()!

    ( )

    =

    / =.34

    6 7

    I.34

    6/7 .&11*/I

     xe

     p x

     xe

     p

    λ λ =

    = =

  • 8/18/2019 23 4 14 Prob Distribution

    43/132

    Characteristics of a*yper"eometricRandom Variable

    1. The e+periment consists of randomly drawin! n 

    elements without replacement from a set of N  elements r  of which are S Fs 6for success7 and 6 N  Hr 7 of which are F Fs 6for failure7.

    2. The hyper!eometric random 'ariable x is the

    number of S Fs in the draw of n elements.

  • 8/18/2019 23 4 14 Prob Distribution

    44/132

    "ypergeometric Probability

    Distribution Function

    where . . .

     x A (a+imum / n H 6 N  H r 7 K

      (inimum 6r  n7N

     p x( )=

     x

      

       

     N − r n − x

      

       

     N 

    n      

     µ = nr 

     N  σ 2

    = r N − r ( )n N − n( )

     N 2  N −1( )

  • 8/18/2019 23 4 14 Prob Distribution

    45/132

    /ypergeometric 0ro!a!ility

    1istri!ution 2unction

    N  3 'otal num!er of elements

    r   3 4um!er of S’s in the N elements

    n  3 4um!er of elements dran

     x 3 4um!er of S’s dran in the n 

    elements

  • 8/18/2019 23 4 14 Prob Distribution

    46/132

    Probability

    Distributions forContinuous Random

    Variables

  • 8/18/2019 23 4 14 Prob Distribution

    47/132

    Continuous Probability

    Density +unctionThe !raphical form of the probability distribution for acontinuous random 'ariable x is a smooth cur'e

  • 8/18/2019 23 4 14 Prob Distribution

    48/132

    Continuous Probability Density

    +unction

    This cur'e a function of x is denoted by the symbol f 6 x7

    and is 'ariously called a probability density unction

    (pd), a reBuency unction or a probability

    distribution.

    The areas under a probability

    distribution correspond to

     probabilities for x. The area A  beneath the cur'e between two

     points a and b is the probability

    that x assumes a 'alue between a and b.

  • 8/18/2019 23 4 14 Prob Distribution

    49/132

    The ,ormalDistribution

  • 8/18/2019 23 4 14 Prob Distribution

    50/132

    @mportance o

    6ormal Distribution

    1. Describes many random processes or

    continuous phenomena

    2. #an be used to appro+imate discrete probability distributions

     +ample5 binomial

    3. Basis for classical statistical inference

  • 8/18/2019 23 4 14 Prob Distribution

    51/132

     %ormal Distribution

    1. GBell=shapedF 8

    symmetrical

    2. (ean median mode

    are eCual x 

     f ( x )

    9ean

    9edian

    9ode

  • 8/18/2019 23 4 14 Prob Distribution

    52/132

    Probability Density 'unction

    where µ A (ean of the normal random 'ariable x

    σ  A 0tandard de'iation

    π  A 3.141" . . .

    e A 2.&1*2* . . . P 6 x Q a7 is obtained from a table of normal

      probabilities

     f ( x) =1

    σ  2π e

    −1

    2

      

       

      x− µ σ 

      

       

    2

  • 8/18/2019 23 4 14 Prob Distribution

    53/132

    Eect o Varyin%

    Parameters (  C σ )

  • 8/18/2019 23 4 14 Prob Distribution

    54/132

    6ormal Distribution

    Probability

    c d x 

     f ( x )

    Probability is

    area under

    curve+P(c ≤ x ≤ d ) =   f ( x)

    c

    ∫    dx?

  • 8/18/2019 23 4 14 Prob Distribution

    55/132

    0tandard %ormal Distribution

     'he standard normal distribution is a normaldistri!ution ith µ 3 5 and σ  3 6. random#aria!le ith a standard normal distri!ution,

    denoted !y the sym!ol z , is called a standardnormal random #aria!le.

  • 8/18/2019 23 4 14 Prob Distribution

    56/132

     z  0

    σ

      1

    1!A;

    ./4 ./"

    1.* .4$&1 .4$&* .4$*$

    .4&3* .4&44

    2./ .4&,3 .4&,* .4*/3

    2.1 .4*3* .4*42 .4*4$

    The 0tandard %ormal Table5

     P 6/ Q z Q 1.,$7

    !0;

    1!A .4&"/

    0tandardiSed %ormal Probability

    Table 6Portion7

    Probabilities

    !4

  • 8/18/2019 23 4 14 Prob Distribution

    57/132

    &-e tandard 6ormal &able>

     P (1!"; ≤  z  ≤ 1!";)

     z   0

    σ  1

     1!";

    tandardied 6ormal Distribution

    -aded area exa%%erated

    !2A;"

    1!";

    !2A;"  P (1!"; 7 7 1!";)

    !2A;" !2A;"

    !

  • 8/18/2019 23 4 14 Prob Distribution

    58/132

    &-e tandard 6ormal &able>

     P ( z  F 1!";)

     z   0

    σ  1

    tandardied 6ormal Distribution

    1!";

     P ( z  F 1!";)

    !#000 !2A;"

    !1028

    !2A;"

    !#000

    &- t d d 6 l & bl

  • 8/18/2019 23 4 14 Prob Distribution

    59/132

    &-e tandard 6ormal &able>

     P ("!

  • 8/18/2019 23 4 14 Prob Distribution

    60/132

    &-e tandard 6ormal &able>

     P ( z  F "!12)

     z   0

    σ  1

     "!12

    tandardied 6ormal Distribution

    -aded area exa%%erated

     P ( z  F "!12)

    !4824 !#000

    !A824

    !#000!4824

    6 d d 6 l

  • 8/18/2019 23 4 14 Prob Distribution

    61/132

     x 

    ( x )

    6onGstandard 6ormal

    Distribution

    6ormal distributions dier by

    mean C standard deviation!

    Eac- distribution Hould

    reBuire its oHn table!

    &-at5s an infinite

    number o tables+

  • 8/18/2019 23 4 14 Prob Distribution

    62/132

    Property o 6ormal Distribution

    f x is a normal random 'ariable with mean μ and

    standard de'iation σ  then the random 'ariable z defined by the formula

    has a standard normal distribution. The 'alue z  describesthe number of standard de'iations between x and µ.

     z =  x −  µσ 

    t d di t-

  • 8/18/2019 23 4 14 Prob Distribution

    63/132

    tandardie t-e

    6ormal Distribution

    6ormal

    Distribution

     x 

    σ

     One table!

      0

    σ  1

     z 

    tandardied 6ormal

    Distribution

     z =  x − µ σ 

    'i di P b bilit * di t

  • 8/18/2019 23 4 14 Prob Distribution

    64/132

    'indin% a Probability *orrespondin% to a

    6ormal Random Variable

    1. 0;etch normal distribution indicate mean and shadethe area correspondin! to the probability you want.

    2. #on'ert the boundaries of the shaded area from x 

    'alues to standard normal random 'ariable z 

     z =  x −  µσ 

    0how the z  'alues under correspondin! x 'alues.

    3. -se Table V in )ppendi+ ) to find the areas

    correspondin! to the z  'alues. -se symmetry when

    necessary.

    6on standard 6ormal μ # σ 10>

  • 8/18/2019 23 4 14 Prob Distribution

    65/132

     z  0

    σ  1

    !1"

    tandardied 6ormal

    Distribution

    0haded area e+a!!erated

    !04

     P (# I x I ;!")

    6ormal

    Distribution

     x  #

    σ  10

    ;!"

      z  =  x − µ 

    σ = $.2 − "

    1/= .12

    6 t d d 6 l # 10

  • 8/18/2019 23 4 14 Prob Distribution

    66/132

     z   0

    σ  1

    G!1"

    tandardied 6ormal

    Distribution

    6onGstandard 6ormal J #, K 10>

     P (2!8 ≤  x  ≤ #)

    6ormal

    Distribution

     x   #

    σ  10

    2!8

    !04

  • 8/18/2019 23 4 14 Prob Distribution

    67/132

    0

    σ  1

    G!"1  z !"1

    tandardied 6ormal

    Distribution

    6onGstandard 6ormal μ  #, σ   10>

     P ("!A ≤  x  ≤ 

    #

    σ  10

    "!A

    6ormal

    Distribution

    !1;;4

    !082"!082"

    0haded area e+a!!erated

      z  =  x − µ 

    σ = 2., − "

    1/= −.21

      z  =  x − µ 

    σ = &.1− "

    1/= .21

    6on standard 6ormal # 10> P(

  • 8/18/2019 23 4 14 Prob Distribution

    68/132

    6onGstandard 6ormal μ  #, σ   10> P ( x  

    ≥ 8)

     x   #

    σ  10

    8

    6ormal

    Distribution

     z  0 !20

    tandardied 6ormal

    Distribution

     

    σ  1

      !28"1

    !#000

    !11

  • 8/18/2019 23 4 14 Prob Distribution

    69/132

      0

    σ  1

    !20 z !"1

    tandardied 6ormal

    Distribution

    6on standard 6ormal J #, K 10>

    P(

      #

    σ  10

    8

    6ormal

    Distribution

    !11

  • 8/18/2019 23 4 14 Prob Distribution

    70/132

    ,ormal DistributionThin!in" Challen"e

    Lou wor; in hatFs the probability that a bulb will

    last

    ). between "000 and "400 

    hoursJ

    B. less than 14

  • 8/18/2019 23 4 14 Prob Distribution

    71/132

    tandardied 6ormal

    Distribution

     z   0

    σ  1

    "!0

    olutionL  P ("000 ≤  x  ≤ "400)

    6ormal

    Distribution

     x   "000

    σ  "00

    "400

      !4

  • 8/18/2019 23 4 14 Prob Distribution

    72/132

     z   0

    σ  1

     "!;#

    tandardied 6ormal

    Distribution

    olutionL  P ( x ≤ 14

  • 8/18/2019 23 4 14 Prob Distribution

    73/132

    'indin% z GValues

    or MnoHn Probabilities

    N-at is Z , %iven

     P ( z ) !1"1

  • 8/18/2019 23 4 14 Prob Distribution

    74/132

    'indin% x  Values

    or MnoHn Probabilities

    6ormal Distribution

     x   #

    σ  10

    O

      !1"1<

    tandardied 6ormal Distribution

    0haded areas e+a!!erated

     z   0

    σ  1

    !21

      !1"1<

    8!1

     x = µ + z ⋅σ = 5 + .31( ) 10( )=

  • 8/18/2019 23 4 14 Prob Distribution

    75/132

    4!<

    Descriptive 9et-ods or:ssessin% 6ormality

    Determinin% N-et-er t-e Data

  • 8/18/2019 23 4 14 Prob Distribution

    76/132

    Determinin% N-et-er t-e Data

    :re rom an :pproximately

    6ormal Distribution

    1. #onstruct either a histo!ram or stem=and=leaf

    display for the data and note the shape of the !raph.f the data are appro+imately normal the shape of

    the histo!ram or stem=and=leaf display will be

    similar to the normal cur'e.

    Determinin" -hether the

  • 8/18/2019 23 4 14 Prob Distribution

    77/132

    "Data .re from an

    .pproximately ,ormalDistribution

    2. #ompute the inter'als and

    determine the percenta!e of measurements fallin!in each. f the data are appro+imately normal the

     percenta!es will be appro+imately eCual to $*U

    ,"U and 1//U respecti'ely from the mpirical

    Rule 6$*U ,"U ,,.&U7.

     x ± s,  x ± 2s, and  x ± 3s,

  • 8/18/2019 23 4 14 Prob Distribution

    78/132

    Determinin% N-et-er t-e Data :re rom

    an :pproximately 6ormal Distribution

    3. Wind the interCuartile ran!e

  • 8/18/2019 23 4 14 Prob Distribution

    79/132

    2/11 Pearson ducation nc

    Determinin% N-et-er t-e Data

    :re rom an :pproximately

    6ormal Distribution

    4. +amine a normal

     probability plot for thedata. f the data are

    appro+imately normal

    the points will fall

    6appro+imately7 on a

    strai!ht line.=bserved value

       E  x  p

      e  c   t  e   d

          z  0  s  c  o  r  e

  • 8/18/2019 23 4 14 Prob Distribution

    80/132

    6ormal Probability Plot

    normal probability plot for a dataset is a scatterplot ith the ranked data#alues on one a)is and their

    corresponding e)pected z 7scores from astandard normal distri!ution on the othera)is. 84ote9 Computation of the e)pectedstandard normal z 7scores are !eyond thescope of this te)t. 'herefore, e ill relyon a#aila!le statistical softare packagesto generate a normal pro!a!ility plot.:

  • 8/18/2019 23 4 14 Prob Distribution

    81/132

    .pproximatin" a#inomial Distribution

    with a ,ormalDistribution

    6ormal :pproximation o

  • 8/18/2019 23 4 14 Prob Distribution

    82/132

    6ormal :pproximation o

    inomial Distribution

    1. -seful because not all

     binomial tables e+ist

    2. ReCuires lar!e sample

    siSe

    3. i'es appro+imate

     probability only

    4.  %eed correction for

    continuity

    n  10  p  0!#0

    !0

    !1!"!2

    0 " 4 ; 8 10 x 

     p( x )

  • 8/18/2019 23 4 14 Prob Distribution

    83/132

    !0

    !1

    !"

    !2

    0 " 4 ; 8 10 x 

     p( x )

    N-y Probability, is :pproximate

    Binomial Probability5

    Bar ei!ht

     %ormal Probability5 )rea -nder

    #ur'e from 3." to 4."

    Probability )dded

     by %ormal #ur'e

    Probability ost by

     %ormal #ur'e

    # ti f # ti it

  • 8/18/2019 23 4 14 Prob Distribution

    84/132

    #orrection for #ontinuity

    1. ) 12 unit adYustment to

    discrete 'ariable

    2. -sed when appro+imatin!a discrete distribution

    with a continuous

    distribution

    3. mpro'es accuracy

    4!#

    (4 !#) 

    2!#

    (4 !#)4

  • 8/18/2019 23 4 14 Prob Distribution

    85/132

    -sin! a %ormal Distribution to

    )ppro+imate Binomial Probabilities

    1. Determine n and p for the binomial distribution

    then calculate the inter'al5

    f inter'al lies in the ran!e / to n the normal

    distribution will pro'ide a reasonableappro+imation to the probabilities of most

     binomial e'ents.

     µ ± 3σ = np ± 3   np 1−  p( ) 

  • 8/18/2019 23 4 14 Prob Distribution

    86/132

    sin% a 6ormal Distribution to

    :pproximate inomial Probabilities

    2.  +press the binomial probability to be

    appro+imated by the form

    Wor e+ample

    P x ≤ a( ) or P x ≤ b( )− P x ≤ a( )

    P x < 3( )= P x ≤ 2( )P x ≥ 5( )= 1− P x ≤ 4( )

    P 7 ≤ x ≤ 10( )= P x ≤ 10( )− P x ≤ 6( )

    sin% a 6ormal Distribution to

  • 8/18/2019 23 4 14 Prob Distribution

    87/132

    sin% a 6ormal Distribution to

    :pproximate inomial Probabilities

    3.  Wor each 'alue of interest a the correction for

    continuity is 6a M ."7 and the correspondin!

    standard normal z ='alue is

     z =  a + .5( )−  µ

    σ 

    sin% a 6ormal Distribution to

  • 8/18/2019 23 4 14 Prob Distribution

    88/132

    sin% a 6ormal Distribution to

    :pproximate inomial Probabilities

    4.  0;etch the appro+imatin! normal distribution and

    shade the area correspondin! to the e'ent of

    interest. -sin! Table V and the z ='alue 6step 37

    find the shaded area.

    This is the appro+imate

     probability of the

     binomial e'ent.

    6 l : i ti E l

  • 8/18/2019 23 4 14 Prob Distribution

    89/132

    !0

    !1

    !"

    !2

    0 " 4 ; 8 10

     x 

    P( x )

    6ormal :pproximation Example

    2!# 4!#

    >hat is the normal appro+imation of p6 x A 47!i'en n A 1/ and p A /."J

    6 l : i ti l ti

  • 8/18/2019 23 4 14 Prob Distribution

    90/132

    6ormal :pproximation olution

    1. #alculate the inter'al5

    2. +press binomial probability in form5

    P x = 4( )= P x ≤ 4( )− P x ≤ 3( )

    np ± 3   np 1−  p( ) = 10 0.5( )± 3 10 0.5( ) 1− 0.5( )

    =5

    ±4.74

    =0.26, 9.74

    ( )nter'al lies in ran!e / to 1/ so normalappro+imation can be used

    6 l : i ti l ti

  • 8/18/2019 23 4 14 Prob Distribution

    91/132

    6ormal :pproximation olution

    3. #ompute standard normal z  'alues5

     z ≈  a + .5( )− n ⋅ p

    n ⋅ p 1−  p( ) =3.5 −10 .5( )10 .5( ) 1− .5( ) = −0.95

     z ≈  a

    +.5

    ( )− n

    ⋅ p

    n ⋅ p 1−  p( ) =4.5

    −10 .5

    ( )10 .5( ) 1− .5( ) = −0.32

  • 8/18/2019 23 4 14 Prob Distribution

    92/132

    6 l : i ti l ti

  • 8/18/2019 23 4 14 Prob Distribution

    93/132

    6ormal :pproximation olution

    !0

    !1

    !"

    !2

    0 " 4 ; 8 10

     x 

     p( x )

    ". The e+act probability from the binomial formula is

    /.2/"1 6'ersus .2/347

  • 8/18/2019 23 4 14 Prob Distribution

    94/132

    /ther ContinuousDistributions0

    niform andExponential

    -niform Distribution

  • 8/18/2019 23 4 14 Prob Distribution

    95/132

    -niform Distribution

    #ontinuous random 'ariables that appear to ha'eeCually li;ely outcomes o'er their ran!e of possible

    'alues possess a uniorm probability distribution.

    0uppose the random

    'ariable x can assume

    'alues only in an

    inter'al ! Z x Z " .

    Then the uniorm

    reBuency unction 

    has a rectan!ular

    shape.

    Probability Distribution for a

  • 8/18/2019 23 4 14 Prob Distribution

    96/132

    Probability Distribution for a

    -niform Random Variable  x 

    (ean5

      f 6 x7 =

    1

    "  − !! ≤ x ≤ " Probability density function5

    σ = d − c

    12 µ =

     c + d 2

    0tandard De'iation5

    P a

  • 8/18/2019 23 4 14 Prob Distribution

    97/132

    niform DistributionExample

     You’re production manager of a soft drink !ottling

    company. You !elie#e that hen a machine is set

    to dispense 6( o;., it really dispenses !eteen

    112% and 1(2% o;. inclusi#e. uppose the

    amount dispensed has a uniform distri!ution.

    What is the pro!a!ility that less than 112 o;. is

    dispensed?

    -niform Distribution 0olution

  • 8/18/2019 23 4 14 Prob Distribution

    98/132

    -niform Distribution 0olution

     P (11!#≤

      x  ≤

     11!8) (ase)/(?ei%-t)

    (11!8 11!#)/(1) !20 

    11!# 1"!#

     f ( x )

     x 11!8

    1 1

    12." 11."

    1

    1./1

    " !=

    − −

    = =

    1!0

    E'ponential Distribution

  • 8/18/2019 23 4 14 Prob Distribution

    99/132

    E'ponential Distribution

     'he length of time !eteen emergencyarri#als at a hospital, the length of time!eteen !reakdons of manufacturingequipment, and the length of time !eteen

    catastrophic e#ents $e.g., a stockmarketcrash&, are all continuous randomphenomena that e might ant to descri!epro!a!ilistically.

     'he length of time or the distance !eteen

    occurrences of random e#ents like thesecan often !e descri!ed !y the exponentialprobability distribution. 2or this reason,the e)ponential distri!ution is sometimes

    called the waitin")time distribution.

    Probability Distribution

  • 8/18/2019 23 4 14 Prob Distribution

    100/132

    Probability Distributionfor an Exponential Random

    Variable  x 

    (ean5

      f 6 x7 = 1

    θ e

    − xθ   x > /( )Probability density function5

    σ = θ 

     µ = θ 

    0tandard De'iation5

  • 8/18/2019 23 4 14 Prob Distribution

    101/132

    Exponential Distribution

  • 8/18/2019 23 4 14 Prob Distribution

    102/132

    Exponential DistributionExample

    (ean5   f 6 x7 =

    1

    θ e

    − x

    θ 

     x > /( )

    0uppose the len!th of time 6in hours7 between

    emer!ency arri'als at a certain hospital is modeled as

    an e+ponential distribution with θ  A 2. >hat is the probability that more than " hours pass without an

    emer!ency arri'alJ

    σ = θ = 2

     µ = θ = 2

    0tandard De'iation5

    Exponential Distribution

  • 8/18/2019 23 4 14 Prob Distribution

    103/132

    Exponential Distributionolution

    Wrom Table V5

      A = e−a θ 

    = e− " 2( )

    = e−2."

    Probability is the area A to

    the ri!ht of a A ".

    Probability that more than "

      A = e−2."

    = ./*2/*"

    hours pass between emer!ency arri'als is about ./*.

  • 8/18/2019 23 4 14 Prob Distribution

    104/132

    4!10

    amplin% Distributions

    Parameter C tatistic

  • 8/18/2019 23 4 14 Prob Distribution

    105/132

    Parameter C tatistic

    ) parameter is a numerical descripti'e measureof a population. Because it is based on all the

    obser'ations in the population its 'alue is

    almost always un;nown.

    ) sample statistic is a numerical descripti'e

    measure of a sample. t is calculated from theobser'ations in the sample.

    *ommon tatistics C Parameters

  • 8/18/2019 23 4 14 Prob Distribution

    106/132

    *ommon tatistics C Parameters

    0ample 0tatistic Population Parameter 

    Variance  s# σ 2

    0tandardDe'iation  s σ 

    (ean

     x  µ 

    Binomial

    Proportion p pQ

    amplin% Distribution

  • 8/18/2019 23 4 14 Prob Distribution

    107/132

    The samplin% distribution of a sample statistic

    calculated from a sample of n measurements is

    the probability distribution of the statistic.

    amplin% Distribution

    Deelopin"

  • 8/18/2019 23 4 14 Prob Distribution

    108/132

    p "amplin" Distributions

    Population siSe N  A 4

    Random 'ariable x

    Values of x5 1 2 3 4

    -niform distribution

    uppose &-ere5s a Population !!!

    Population *-aracteristics

  • 8/18/2019 23 4 14 Prob Distribution

    109/132

    Population *-aracteristics

      µ =  x

    $$=1

     N 

    ∑ N 

    = 2."

    Population Distributionummary 9easure

    !0!1!"

    !2

    1 " 2 4

    P6 x7

     x

    :ll Possible amples

  • 8/18/2019 23 4 14 Prob Distribution

    110/132

    p

    o ie n  "

    ample Hit- replacement

    1./ 1." 2./ 2."

    1." 2./ 2." 3./

    2./ 2." 3./ 3."2." 3./ 3." 4./

    1; amples

    1st

    Obs

    11 12 13 14

    21 22 23 24

    31 32 33 3441 42 43 44

    "nd =bservation

    1 " 2 4

    1

    "

    24

    "nd =bservation

    1 " 2 4

    1

    "

    24

    1st

    Obs

    1; ample 9eans

    amplin% Distribution

  • 8/18/2019 23 4 14 Prob Distribution

    111/132

    p %

     o :ll ample 9eans

    1./ 1." 2./ 2."

    1." 2./ 2." 3./

    2./ 2." 3./ 3."

    2." 3./ 3." 4./

    "nd =bservation

    1 " 2 41

    "

    2

    4

    1st

    Obs

    1; ample 9eans amplin% Distribution

    o t-e ample 9ean

    !0

    !1

    !"

    !2

    1!0 1!# "!0 "!# 2!0 2!# 4!0

    P( x )

     x

    ummary 9easure o 

  • 8/18/2019 23 4 14 Prob Distribution

    112/132

    y

    :ll ample 9eans

     

     µ  % 

    = x

    $$=1

     N 

     N 

    =1./ + 1." + ...+ 4./

    1$

    = 2."

    *omparison

  • 8/18/2019 23 4 14 Prob Distribution

    113/132

    *omparison

    Population amplin% Distribution

    2." x µ    =

    !0!1

    !"!2

    1 " 2 4

    2." µ  =

    !0

    !1!"

    !2

    1!0 1!# "!0 "!# 2!0 2!# 4!0

    P( x )

     x

    P6 x7

     x

  • 8/18/2019 23 4 14 Prob Distribution

    114/132

     'he ampling 1istri!utionof a ample

  • 8/18/2019 23 4 14 Prob Distribution

    115/132

    p p %

    Distribution o x 

    1. (ean of the samplin! distribution eCuals mean of

    sampled population[ that is

     µ  x = E x( )= µ .2. 0tandard de'iation of the samplin! distribution eCuals

    Standard deviation of sampled population

    Square root of sample size

    σ  x =σ 

    n.That is

    tandard Error o t-e 9ean

  • 8/18/2019 23 4 14 Prob Distribution

    116/132

    tandard Error o t-e 9ean

    The standard de'iation is often referred to

    as the standard error o t-e mean.

    σ  x

    &-eorem 4!1

  • 8/18/2019 23 4 14 Prob Distribution

    117/132

    &-eorem 4!1

    f a random sample of n obser'ations is selected from

    a population with a normal distribution the samplin!

    distribution of will be a normal distribution. x 

    amplin% rom

  • 8/18/2019 23 4 14 Prob Distribution

    118/132

    n 1;σ

     x   "!#

    6ormal Populations *entral &endency

    Dispersion

     H  0amplin! withreplacement

    µ

      #0

    σ 10

     x 

    n  4σ

     x   #

    µ

     x   #0G  x 

    amplin% Distribution

    Population Distribution

     x µ µ =

     x

    n

    σ σ    =

    tandardiin% t-e amplin%

  • 8/18/2019 23 4 14 Prob Distribution

    119/132

    Distribution o x 

    tandardied 6ormal

    Distribution

      0

    σ  1

     z 

     

     z  = x  − µ  xσ 

     x

    = x  − µ 

    σ 

    namplin%Distribution

     x  x 

    σ

     x 

    &-inin% *-allen%e

  • 8/18/2019 23 4 14 Prob Distribution

    120/132

    &-inin% *-allen%e

     You’re an operations analyst for'+'. =ong7distance telephone callsare normally distri!uted ith  5  

    min. and  5 ( min. If you selectrandom samples of (% calls, hatpercentage of the sample means 

    ould !e !eteen $2 + 2( minutes?

    amplin% Distribution olutionL

  • 8/18/2019 23 4 14 Prob Distribution

    121/132

    p %

    amplin%

    Distribution

    8

    σ

     x   !4

    = −."/

     z   = x   − µ 

    σ 

    n

    =

    *.2 − *

    2

    2"

    = ."/

    amplin% rom

  • 8/18/2019 23 4 14 Prob Distribution

    122/132

    6onG6ormal Populations

    *entral &endency

    Dispersion

     H 0amplin! withreplacement

    Population Distribution

    amplin% Distribution

    n 20σ

     x   1!8n  4

    σ

     x   #

      #0

    σ 10

     x 

     

     x   #0G  x 

     x µ µ =

     x

    n

    σ σ    =

    *entral $imit &-eorem

  • 8/18/2019 23 4 14 Prob Distribution

    123/132

    #onsider a random sample of n obser'ations selectedfrom a population 6an& probability distribution7 with

    mean μ and standard de'iation σ . Then when n issufficiently lar!e the samplin! distribution of will be

    appro+imately a normal distribution with mean

    and standard de'iation The lar!er the

    sample siSe the better will be the normal appro+imation

    to the samplin! distribution of .

     µ  x = µ  x 

    σ  x = σ   n .

     x 

    *entral $imit &-eorem

  • 8/18/2019 23 4 14 Prob Distribution

    124/132

    *entral $imit &-eorem

     x

    :s sample

    sie %ets

    lar%e

    enou%-(n ≥ 20) !!!

    samplin%

    distributionbecomes almost

    normal!

     x µ µ =

     xn

    σ σ    =

    *entral $imit &-eorem Example

  • 8/18/2019 23 4 14 Prob Distribution

    125/132

    *entral $imit &-eorem Example

     'he amount of soda in cans of aparticular !rand has a mean of 1( o;and a standard de#iation of 2( o;. If

    you select random samples of %' cans, hat percentage of the samplemeans ould !e less than 1126% o;?

    *entral $imit &-eorem olutionL

  • 8/18/2019 23 4 14 Prob Distribution

    126/132

    amplin%

    Distribution

    1"

    σ

     x   !02

    11!A#

     x  0

    σ  1

     1!

  • 8/18/2019 23 4 14 Prob Distribution

    127/132

    y

    Properties o Probability Distributions

    Discrete Distributions

    1.  p6 x7 @ /

    ".

    *ontinuous Distributions

    1.  P 6 x A a7 A /

    ".  P 6a Q x Q b7 A area under cur'e between a and b 

     p x( )= 1all  x∑

    .ey /deas

  • 8/18/2019 23 4 14 Prob Distribution

    128/132

    y

    6ormal :pproximation to inomial

     x is binomial 6n p7

    P x ≤ a( )≈ P z <   a + .5( )−  µ{

  • 8/18/2019 23 4 14 Prob Distribution

    129/132

    .ey /deas

  • 8/18/2019 23 4 14 Prob Distribution

    130/132

    y

    9et-ods or :ssessin% 6ormality

    "! Sem+an"+leaf "$spla&

    1 &

    2 33*,

    3 24"$&&

    4 1,

    " 2

    .ey /deas

  • 8/18/2019 23 4 14 Prob Distribution

    131/132

    y

    9et-ods or :ssessin% 6ormality

    2.  6 IQ7 ,S X 1.3

    4.  Nrmal prbab$l$& pl 

    .ey /deas

  • 8/18/2019 23 4 14 Prob Distribution

    132/132

    y

    eneratin% t-e amplin% Distribution o x