6.720j/3.43j - integrated microelectronic devices - … · 6.720j/3.43j - integrated...

18
6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 21-1 Lecture 21 - The Si surface and the Metal-Oxide-Semiconductor Structure October 23, 2002 Contents: 1. The semiconductor surface 2. Ideal MOS structure in thermal equilibrium Reading assignment: del Alamo, Ch. 8, §§8.1-8.2 (8.2.1-8.2.2) Seminar: Oct. 24 - V. Mohindra (McKinsey): Turmoil in the Semiconductor Industry - An In-depth Perspective from a Leading Consultant at McKinsey . Rm. 35-225, 7 PM.

Upload: trinhdiep

Post on 03-Aug-2018

231 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: 6.720J/3.43J - Integrated Microelectronic Devices - … · 6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 21-2 Key questions • How do es the surface of a

6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 21-1

Lecture 21 - The Sisurface and the Metal-Oxide-Semiconductor Structure

October 23,2002

Contents:

1. The semiconductor surface

2. Ideal MOS structure in thermal equilibrium

Reading assignment:

del Alamo, Ch. 8, §§8.1-8.2 (8.2.1-8.2.2)

Seminar:

Oct. 24 - V. Mohindra (McKinsey): Turmoil in the Semiconductor Industry - An In-depth Perspective from a Leading Consultant at McKinsey . Rm. 35-225, 7 PM.

Page 2: 6.720J/3.43J - Integrated Microelectronic Devices - … · 6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 21-2 Key questions • How do es the surface of a

6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 21-2

Key questions

• How do es the surface of a semiconductor lo ok like at the atomic

level?

• If one assembles a metal-oxide-semiconductor structure and al­

lows equilibrium to b e established, what is the final situation?

• How do es this picture change for different choices of metal work

function?

Page 3: 6.720J/3.43J - Integrated Microelectronic Devices - … · 6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 21-2 Key questions • How do es the surface of a

6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 21-3

1. Semiconductor Surface

At a surface, p erfect crystalline p erio dicity of solid comes to an

abrupt end. What happ ens?

Ideal semiconductor surface

Semiconductor comes to an end, but bulk prop erties unaffected → b onding arrangement at surface unchanged from bulk.

χ

Eo virtual crystal semiconductor crystal

Ec

Ev

ideal surface

Zero carrier current normal to surface; other than that, carriers un­

affected by surface.

Page 4: 6.720J/3.43J - Integrated Microelectronic Devices - … · 6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 21-2 Key questions • How do es the surface of a

6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 21-4

� Real surface

In ideal surface, four-fold co ordination of atoms cannot b e preserved

⇒ broken b onds ⇒ surface is very reactive.

Surface can lower its energy by:

• surface contamination: absorption of O, C, and other for­

eign atoms and molecules

• surface reconstruction:

selves.

surface� contamination

*

%

#

surface� reconstruction

surface atoms b ond among them-

Ec

Ev

bulk

surface region near surface region� with deformed bonding

Page 5: 6.720J/3.43J - Integrated Microelectronic Devices - … · 6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 21-2 Key questions • How do es the surface of a

6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 21-5

Example of surface reconstruction: 7x7 (111) Si surface:

[courtesy of R. Martel and P. Avouris, IBM]

Page 6: 6.720J/3.43J - Integrated Microelectronic Devices - … · 6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 21-2 Key questions • How do es the surface of a

6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 21-6

Passivated surface

”Coating” of

bulk b onding

semiconductor surface with

prevails for surface atoms.

passivating layer so that

passivating film semiconductor

Ec

Ec

Ev

Ev

passivating film semiconductor crystal

ideal passivated interface

Most imp ortant passivating material: SiO - one of the keys of the 2

micro electronics revolution:

• amorphous dielectric: only short-range order

• natural pro duct of Si oxidation (”Si rusts!”)

• exceptional chemistry

• nearly ideal interface with Si

Wide energy gap of SiO prevents carriers from escaping from semi-2

conductor.

Page 7: 6.720J/3.43J - Integrated Microelectronic Devices - … · 6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 21-2 Key questions • How do es the surface of a

6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 21-7

Residual surface roughness in mo dern Si/SiO structures: ∼ 2 mono-2

layers.

[courtesy of D. Buchanan, IBM]

Page 8: 6.720J/3.43J - Integrated Microelectronic Devices - … · 6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 21-2 Key questions • How do es the surface of a

6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 21-8

2. Ideal Metal-Oxide-Semiconductor structure in thermal equilibrium

MOS structures p ervasive in mo dern micro electronics:

• heart of MOSFETs (from which CMOS is made)

• heart of DRAMs, Flash memories

• MOS structure everytime a metal line runs over a dielectric-

coated semiconductor

MOS understanding is p ortable ⇒ view it as generic sandwich of

highly conducting material/dielectric/semiconductor (b etter name

MIS)

• Al/SiO /Si (early MOSFETs) 2

+ • n -p olySi/SiO /Si (mo dern MOSFETs) 2

• Al/Si N /Si (metal lines on Si) 3 4

• WSi/AlGaAs/InGaAs (mo dern high-frequency transistors)

Page 9: 6.720J/3.43J - Integrated Microelectronic Devices - … · 6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 21-2 Key questions • How do es the surface of a

6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 21-9

Energy band diagram (p-typ e substrate)

Insulator do es not allow charge exchange b etween metal and semi-

conductor ⇒ to attain thermal equilibrium, need wire that connects

metal and semiconductor.

Eo

χi

Eo

WS

χs

Eo

Eci WM

Ec

EF

Egi EFEv

Evi

a) metal, insulator and semiconductor far apart

Eo

Eo

Ec

EF EF Ev

WM

WS

qφbi

qϕp

χsχi

b) metal, insulator and semiconductor in intimate contact

qφ = W − W bi S M

Note: large band discontinuities at insulator-semiconductor interface.

Page 10: 6.720J/3.43J - Integrated Microelectronic Devices - … · 6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 21-2 Key questions • How do es the surface of a

6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 21-10

Other p ossible band arrangements dep ending on relative values of

W and W : S M

sem

ico

nd

uct

or

wo

rk f

un

ctio

n

depletion (W S >W M ) inversion (W S >>W M ) accumulation (W S <W M )

accumulation (W S >W M ) depletion (W S <W M ) inversion (W S <<W M )

n-ty

pe s

emic

ondu

ctor

p-

type

sem

icon

duct

or

metal work function

Page 11: 6.720J/3.43J - Integrated Microelectronic Devices - … · 6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 21-2 Key questions • How do es the surface of a

6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 21-11

� General relations for MOS electrostatics

0

ρ

0-xox Qs

Qg

x

-xoxmetal 0 oxide

εox

ε

0

εs 0 -xox x

semiconductor

x φbi

φ

0

φs

φox Gaussian pill box

0 -xox x

Ec

EF

qφs

Ev

• no charge in dielectric

• overall charge neutrality:

Q = −Q g s

• field inside dielectric uniform: Q s E = − ox � ox

• normal comp onent of displacement vector conserved at semicon­

ductor/dielectric interface:

� E = � E s s ox ox

Page 12: 6.720J/3.43J - Integrated Microelectronic Devices - … · 6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 21-2 Key questions • How do es the surface of a

6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 21-12

Hence field at semiconductor surface:

Q s E = − s � s

Total p otential difference across structure:

φ = φ + φ bi s ox

-drop across semiconductor, φ , called surface potential s

-drop in oxide:

φ = x E ox ox ox

Define oxide capacitance per unit area:

� ox C = ox

x ox

All together, total p otential build-up across MOS:

Q s φ = φ − bi s

C ox

Key relationship b etween φ and Q . s s

Page 13: 6.720J/3.43J - Integrated Microelectronic Devices - … · 6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 21-2 Key questions • How do es the surface of a

6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 21-13

Depletion

Do depletion approximation:

0

ρ

x d 0 -x ox x

-qN A

ε

0

ox

ε

0

εs

x -x x ox d

φ bi

0 x

φ

0

φ s

x-x d ox

ln p , n o o

p o

n o

N A

n i 2 N A

-x ox 0 xd x

E c

E F E v

qφ s

Page 14: 6.720J/3.43J - Integrated Microelectronic Devices - … · 6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 21-2 Key questions • How do es the surface of a

6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 21-14

Integrated semiconductor charge:

Q � −qN x s A d

Field at semiconductor surface:

qN x A d E s � s

Field in insulator:

qN x A d E ox � ox

Surface p otential:

2 qN x A d φ s 2� s

Everything in terms of x , but don’t know x ! d d

Page 15: 6.720J/3.43J - Integrated Microelectronic Devices - … · 6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 21-2 Key questions • How do es the surface of a

6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 21-15

Demand φ b e the right amount from energy considerations: bi

2 1 qN x qN x A A d d φ = (W − W ) = φ + φ + bi S M s ox q 2� C s ox

Solve for x : d

√ √ √ � 4φ s bi √√x ( 1 + − 1) d 2 C γ ox

Where γ is body-factor coefficient :

√ 1 γ = 2� qN s A

C ox

Key dep endencies: φ ↑→ x ↑ bi d

N ↑→ x ↓ A d

Page 16: 6.720J/3.43J - Integrated Microelectronic Devices - … · 6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 21-2 Key questions • How do es the surface of a

γ

6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 21-16

Bo dy-factor co efficient, γ :

√ 1 γ = 2� qN s A

C ox

1E+02

1E+01

1E+00

1E-01

1E-02

1E-03

1E+15 1E+16 1E+17 1E+18

xox=1 nm

xox=100 nm

xox=10 nm

NA (cm-3)

γ dep ends on:

• doping of b o dy

• capacitance of insulator

⇒ relative magnitude of depletion capacitance and oxide capaci­

tance.

1/2 In well designed MOSFETs, γ ∼ 0.1 − 1 V .

γ (V

1/2 )

Page 17: 6.720J/3.43J - Integrated Microelectronic Devices - … · 6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 21-2 Key questions • How do es the surface of a

6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 21-17

Inversion ρ

0 x

ε

0

ox

Q i εs

ε

0

εs

x -x x ox dmax

φ bi

0 x

φ

0

φ sth

x-x dmax ox

ln p , n o o

p o

n o N A

n i 2 N A

-x ox 0 xdmax x

E c

E F E v

x dmax

-qN A

0-x ox

qφ sth

Q = Q + Q s d i

Page 18: 6.720J/3.43J - Integrated Microelectronic Devices - … · 6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 21-2 Key questions • How do es the surface of a

6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 21-18

Key conclusions

• Si/SiO interface nearly ideal: most Si b onds satisfied but inter-2

face ab out two monolayers rough.

• Most typical equilibrium case of MOS structure: depletion re­

gion next to Si/SiO interface; other p ossible cases: accumula-2

tion or inversion .

• Surface potential , φ : total p otential build-up across semicon­s

ductor.

• General relationships for MOS electrostatics:

– overall charge neutrality: Q = −Q g s

– continuity of normal displacement vector at semiconductor/insulator

interface: � E = � E s s ox ox

Q s – total p otential difference must add up to φ : φ = φ − bi bi s C ox

• Order of magnitude of key parameters of Si at 300K:

1/2 – Bo dy factor co efficient: γ ∼ 0.1 − 1 V (dep ends on doping

level of semiconductor and insulator capacitance).