a functional vehicle for autonomous mobile robot research · 1 13asic rcscai~ch in mobilc rohotics...

88
A Functional Vehicle for Autonomous Mobile Robot Research Gregg Podnar, Kevin Dowling, and Mike Blackwell CMU-RI-TR-84-28 Autonomous Mobile Robots Laboratory The Robotics Institute Carnegie-MellonUniversity Pittsburgh, Pennsylvania 15213 April 1984 ! Copyright @ 1984 Carnegie-MellonUniversity

Upload: others

Post on 30-Sep-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

A Functional Vehicle for Autonomous Mobile Robot Research

Gregg Podnar, Kevin Dowling, and Mike Blackwell

CMU-RI-TR-84-28

Autonomous Mobile Robots Laboratory The Robotics Institute

Carnegie-Mellon University Pittsburgh, Pennsylvania 15213

April 1984

!

Copyright @ 1984 Carnegie-Mellon University

Page 2: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo
Page 3: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

i

Abstract 1. Introduction 2. Ilcsign Kequirmncnts 3. Design Occisions

3.1 Chassis and Suspcnsion 3.2 l’cthcr 3.3 Powcr 3.4 Motors 3.5 Control 3.6 Communication

4.1 The Fork 4.2 The Frame 4.3 Construction 4.4 Phasc Shifting Components 4.5 Manual Control 4.6 1,imit Switches 4.7 Camera Mount

5.1 Mcchanical 5.2 Moving Accuracy 5.3 System Pcrfonnance 5.4 Summary

6. Elcctrical Control 6.1 System Power 6.2 Motor switching 6.3 Digital Control Logic 6.4 Dclay Circuit 6.5 Main Control Circuitry 6.6 Layout 6.7 Possiblc Enhanccmcnts

4. Structure

5. Performance

7. On-Board Computer 8. Bibliography Appcndix I

Appendix I1

Appcndix 111

Mechanical Drawings

Elcctrical Drawings

On- Board Processor Software

V 1 3 5 5 5 5 5 6 6 9 9

10 11 12 12 12 13 15 15 15 17 17 19 19 20 20 21 21 23 23 25 27

Page 4: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

i i

Page 5: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

i i i

L i s t of 1”g ‘ I urcs 1:igurc 2- 1 : Niyruz:e Iiigurc 3- I : Ncpmt to - Cutaway Yigurc 4- I : Nry/utrci - ‘l‘hc basic vchiclc (port sidc vicw). Kgurc 4-2: N q m i r a - Aft of port. (Countcrwcights not installed.) Iiigurt 4-3: I .iinil Switch Ihngcs 1:igurc 4-4: A’rplutic - Caincl-ci Support Figure 4-5: Nqmtie - l’hc first run Iigurc 5- I: Nepfuric - N‘ivigating in the I-ab Figure 6-1: Start/Stop System Jigurc 6-2: 1)clay Circuit Figorc 6-3: Caincra Circuitry Figure 7-1: On-13oard Proccssor Mock Diagram

4 8 9

11 1 3 13 14 17 19 21 22 25

Page 6: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

iv

Page 7: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

Abstract N r p f u m is a tcthcrcd \chick built for aiitonoitiws mokilc robot rcscarch. Incliidcd arc: tlic dcsign considcrations, UIC resulting design, ; k i d dctails of thc mcclxinical structurc and clcctrical conti 01 systcm. I)ct;iil is sufficicnl to cnahlc rcpliciititw or adaptation by othcrs. A discussion of ttw pcrformancc with rcspcct to thc Jcsign coilsidcratioiis is alx) iilcluded.

Page 8: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

Every instrument, tool, vessel, if it does that for which it is made, is well.

Marcus Aurclius

Page 9: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

1

13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo Lliought cxp."rirncnts. I n dcvc.loping any vchiclc, its apyliccrrirm arc tlic soiircc of dcsigii considcrations. One of thc arcniis of study is Artificial Jntclligcncc (AI). Our application is in ~ i u i o i i o i m t . r mohilc robots, that is, robots which can carry out tasks nith no human intervention, attaining knowlcdgc of thcir cnvironmcnt, and intcracting with it, by using Artificial Iiitclligcncc, (AI).

A vchiclc with complcx control rcquircmcnts or inconsistcnt reliability can contrihutc incfficicncy lo the cxpcrimcntnl prtxcss [2]. Anothcr, oftcn substantial portion of thc total timc av;iilablc for rcscarch is consumcd in fiibrication and dcbugging thc vehicle. By default, a vchiclc itsclf, with its associated subsystcms, can bccomc a rcscarch projcct within thc major objectives [3].

Robot vchiclcs and lhcir basic controls are certainly worthy topics for rcscarch in thcir own right[5]. Howcvcr, a scparation ofconccrns may contribute to a morc rapid advanccment of thc art. Ily minimihg the 'lower-lcvcl' subsystcrns of a vchicle, the functionality should bc more stable. 'l'hc use of such a vchiclc in 'highcr-level' rcscarch shoulJ rcsult in a less intcrrupted study.

For thc purposcs of some of our AI research, an uncomplicated hnctional mobilc base was dcsigncd and built. Its rcliability, and simplicity of operation continue to facilitatc experimcntation in our lab.

Page 10: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

2

Page 11: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

3

2. Design Requirements ‘I‘hc fiindomcntal dcsign rcquircmcnt is: a sclf-propcllcd vchiclc, with provisions for computcr control of dircction and rnotivatioii. ‘lhis inobilc basc should bc cayablc of carrying:

o camcras and lights for vision rcscarch,

e infrarcd and Sonar scnsors for ranging and proximity rcscitrch,

0 on-board proccssing for local control,

0 communication for monitoring, rcmotc control, and off-board proccssing,

e manipulators for actively modifying thc cnvironmcnt.

Thc off-board proccssing may include vision. navigation, and path planning among othcr AT topics.

‘I’hc vchiclc should be vcry sirnplc to build, control, and maintain. It should bc flcxiblc cnough to usc indoors or out, and capablc of carrying a varicty of cxpcrimcntal equipment. Calibratcd stcering and travcl arc rcquircd for accurate movements. Considcring thc computation time necessary for navigation based on visual scrvoing,’ high spced is unsuitable.

Mancuvcrahility is required to facilitate research in crowded environments such as those typical to indoor cxpcrimcntation. Indoor USC provides the convcniences of close physical proximity of thc vehicle to the rcscarchcrs, and the possibility for a controllcd environment. The additional capability for outdoor use allows morc cxtcnsivc environments. These two abilities, togcther in a single vehiclc, allow thc investigation of a broader sct of topics.

For sizc and maneuverability the vehiclc should:

1. fit through doorways,

2. turn around in hallways,

3. steer bctwcen obstacles, and

4. ncgotiate mildly rough terrain such as grass and sidewalks.

The width of a small closet door may be 24 inches (60cm), and a small hallway in an office building might be as narrow as 48 inches (1.2m) wide. ‘I’hcrefore, a width under 24 inches and a ‘curb-to-curb’ turning lcngth less than 48 inches is desired.

‘To get in and out of tight places, the vehicle should be able to turn sharply and reverse direction; ’large’ compliant tires are appropriate for bumps and uneven ground: and it should be strong enough to propel itself and any attachcd equipment up an incline of say, 10 degrees.

Our schcdulc required designing and building a fully functional vehicle within a few months, a major dcsign consideration. Our A I rcsearchers required a vehicle which could be easily controllcd and which would perform consistently and without breakdowns. Therefore, the design had to employ tcchniqucs which minimizcd both the time for fabrication and the propensity of the hardware to fail. The rcsulting design shows clcgance in vcry simply and reliably fulfilling thc hnctional requirements.

’With our current Vision software, we can move about one-halfmeter at three minute intervals.

Page 12: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

4

I =III=

+

II=

I

n r

Figure 2- I: Neplune

Page 13: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

3. Design Decisinns

3.1 Cliassis and Suspeiision

‘1’0 simplify suspension, s tricyclc configuration is uscd. ‘I’CII iiich (25cin) diamctcr pncumatic tires2 ;:IT uscd to providc spring, complinncc, and traction on soft ground. Sincc the vchiclc will Uavcl at walking q ~ c d and slowcr, no additional springing or damping is considcrcd ncccssary.

Onc fork-mountcd whccl is uscd in thc front, and two parallcl whccls in thc rcar. To nccornmodatc sharp turning, thc stccrcd whecl is thc drivcn whccl. l‘hc fork C ~ I L turn at Icast 90’ lcft or riglit, and the whccl can bc drivcn forward or back, which cnablcs the vchiclc to rotatc about a point locatcd directly bctwccn thc two rcar whccls. This is a prinic fcature in the dcsign.

A ’curb-to-curb’ turning lciith of undcr 48 inches is required. ‘I’hc whcclbase is 22.5 inchcs (57cm) and the rear track is 19 inchcs (48cm). With thc 10 inch tircs, thc ovcrall width is 22.5 inches, and thc lcngth is 32.5 inchcs (83cm). With allovianccs for the fork, this gives a turning length ‘curb-to-curb’ of 42 inchcs (1.07111). ‘I’hc section on Structure provides more detail.

3.2 Tethcr

An untcthered vchiclc is not a requirement for much of the basic experimcntation. It is ccrtaiiily desirable to havc wircless vehiclcs with the flexibility of path traveled and the extended range. Howcvcr, with this vehicle, an umbilical is used in ordcr to minimize the number of subsystcms.

3.3 Power

‘I’o eliminate on-board power storage and recharging, powcr is supplied through the umbilical. In addition, by using 12Ov~c motors, the vcomplication and weight of power conversion equipment is climinated. ‘I’hcrefore, 12Ov~c is distributed for all on-board electrical equipment via outlets mounted in the vehicle frame. A ~ S A M P circuit breaker protects against overloads. Each piecc of equipment provides its own power convcrsion/protection. For more detail see the section on Electrical Control starting on page 19.

3.4 Motors

Synchronous motors were chosen for drive and steering as this allows elimination of feed-back and scrvoing systems. ‘The motors are run for a length of time, and the revolutions are calculu/ed. This tcchnique, without optical encoders or resolvers, enhances reliability.

One motor is used to propcl the vehicle. It is a 72RPM synchronous motor,3 that dcvelopcs 1800 o z h . of torque, and weighs about 45 pounds (20kg). It is coupled to the drive whecl with a 3 : l reduction. The stccring motor is a gcarhcad synchronous motor4 with a final speed of 3 . 3 2 ~ ~ ~ and a substantial torque. It is coupled to the steering neck with a 1 : 1 ratio.

%ires are 10~3.40-5 pneumatic hand truck tires rated for about 200 pounds load each.

3A Slo-Syn SS1800, the most powerful, commercially available, 1 loVAC synchronous motor, with a short delivery time.

4Slo-Syn Ss4~-P2,400 oz.in. at 7?RPM with a planclaaly reduction gear giving about 8000 o z h . at 3 . 3 2 ~ ~ .

Page 14: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

6

F o r study, it inay hc itppropriaic to further rcducc tlic drivc spccd. u hilc inosasiiig thc stccring spccti, h i s ;illowing morc Iluid i~iovcs. ‘I’lic drivc spccd inay hc rcduccd to 67.5% of its prcsciit 1 I+s b y sulisiitiiling thc :Ipprol)riittc stock spi.ockcls. Adding an additional stngc ofstcp-down gcirriiig to LIIC drivc can rcclucc thc linal speed s~ibslnnti;illy (also cffccting a substantial increase in torquc). As Ihc scnsory systcms bccoinc more rcsponsivc, iin incrci\sc in spccd may bc prcfcrrcd.

3.5 Control

An on-board prtxcssor acccpts commands from an RS-232C link. ‘This prtxccssor controls switchcs and rcports on opcration of vchiclc componcnts. The direction and duration of nin for cach motor is controllcd, and thc fork position is monilorcd via limit switchcs. To sclcct onc of thc camcras a rclay is switclicd. ‘l’his proccssor may also providc control and monitoring for other vchiclc-mounted cquipmcnt. For itiorc dctail of thc on-board cornputcr SCC the scction starting on pagc 25. A mcans of manual control is also providcd.

3.6 Communication

Togcthcr with thc powcr, the umbilical carries a number of cables:

e a coax for vidco signal from the cameras,

e a coax for Sync to the cameras, and

0 a multi-conductor cable with shielded bundles.

Serial communication is carried ovcr the multi-conductor cable. Spare conductorj allow for cxpansion. Once thc commitment is madc to an umbilical, the overhead for communication to any device dcsircd to be mountcd on the vchicle is low.

Page 15: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo
Page 16: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

8

\

n n

I

Figure 3-1 : Neptune - Cutaway

Page 17: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

9

4. Structure Ncpfune is madc from two basic asscmblics, thc fork and the frame. 130th parts wcrc dcsigncd to havc an cxccss of structural fortitiidc to withstand abusc and providc secure mounting points for ituxiliary cxpcrimcntal cqiiipmcnt. Aluniinum was chosen for structural componcnts duc to its mitchil1sbility. which facilitated quick construction and allows subscqiicnt inodification to be niorc casily accommodatcd.

r . - - -

i i i

e e e e * e ao

.e i t

.

!

Figure 4-1: Nepfune - The basic vehicle (port side view).

4.1 The Fork

The drive motor is incorporated into the fork, dircctly above the drive wheel. This simplifies the transmission of drivc power. Because this motor weighs almost 50 pounds (20kg) and devclops quite a bit of torque, the fork was designed for strength: All thc aluminum used is 6063-TS or stronger. There are four pieccs: the top and two side plates are .250" thick; the piece which forms the front and back is .125" thick.

The sidc plates arc square at the top and raper and curve at the bottom. They are welded to the top plate inboard a few inches on each sidc. When rhc piece which forms the front and back is bent and wclded around, an angle is formed which provides great stiffness to the whole asscmbly.

Page 18: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

10

‘I’hc drivc motor is nlountcd to thc stiirhoilrd platc and can bc slid up ;tud down to adjilsl thc lcilsion ol‘ the drive chain. A sitnplc scrw jack is pl-ovidcd on this platc Lo aid adjus~iiicnt of thc Iiwtor with ii wrc‘ncll. ‘I’hcrc is a reasonable amount of room hcrc to includc clutchcs, additional gcaring, ctc.

‘I’hc port plate has a cutout through which the back end of the drive niotor protrudcs. 111 diis position, thc motor and drivetrain arc well balanced abovc the drive whccl. Iklow this cutout is an ,idjustable bracket to help support ~ h c motor, taking some stress off &IC starboard side.

One bearing flange block on cnch side platc supports the drive axlc. I’hcrc is room on thc port side, around the drive axlc, for an accessory such as a rcsolvcr. Side covers provide protection.

The fork top is bolted to a steel flange which is welded to a hollow steel neck. ‘Iherc is no castor on the front whccl. This was the decision because the vehicle drives slowly, and the geometry ol‘ thc stccring affects calculation of direction, and thc drive motor is heavy. ‘The fork neck extends up beyond thc top frame piece. A hole in thc sidc of the neck allows the cable from the motor to pass, up through the neck, and out abovc thc top frame section. This cable simply winds and unwinds as the fork is turned. A round platc is scrcwcd onto to top of thc fork neck for mounting of sensors or perhaps a manipulator. ‘Iliese wi!l turn as the fork turns.

4.2 The Frame

The frame is made of 4 inch square, extruded aluminum tubing (6061-T5), with a .125” wall thickness. There are four pieces. In addition to the high strength to weight ratio, the tubing provides a convenicnt raceway for cabling and housing for small components.

The top section provides mounting for the stccring motor and the fork. As the fork is heavily loaded with the drive motor, the steering motor was placed aft as much as possible. The stecring motor mounting provides for stccring chain tension adjustment. The chain runs inside this section, thus providing protection. The fork neck is supported with bearing flange blocks above and below. Snugly fitting end caps, fore and aft, provide additional torsional stiffness to this member. These caps can also be considered as strong and adaptablc chunks of metal on/in/from which to mount accessory equipment. For instance, the current camera support is mounted to one of these.

The vertical section attaches to the mid-part of the top section. It has a lower end cut at 45’ to mate with the next section towards the back.

The rear section is attached like a “T” and spans across the back. It has end plugs, again for torsional stiffiiess, which also serve as strong mounting for the two pillow blocks which support the rear axle. These pillow blocks are a variety which have rubber in them, and provide additional shock absorbing.

Holes A number of 2.75 inch diameter access holes are let into the sections of the frame at convenient places. They each have four capped holes around them to affix coverplates. Consideration to stresses in the frame dictated placement. A line o f holes is provided on each side of the top frame piece to facilitate mounting auxiliary equipment. Other holes are provided for passing cables. The frame, and the fork (see above) have been designed to be robust enough to accommodate many additional holes, to facilitatc the mounting of auxiliary cquipmen t.

c

Page 19: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

11

(kunlerwc4ghts N C ~ I U I W has a fairly high ccntcr of gravity duc primarily to tlic position of Uic drivc motor. Considering thc addition of othcr cquipmcnt, this ccntcr of gravity may bc madc highcr still. Whcn thc fork is stccrcd at right anglcs to Ihc rcar whccls, thcrc is a possibility that thc vchiclc will fall ovcr bccausc of thc vchiclc’s narrow track and (hc instanhncous starting naturc of thc synchronous drivc motor. To avoid this. countcrwcights arc hung bclow tlic rcar axlc. ‘Ihcsc arc simplc rcctangular platcs of stccl. thc sainc s i x as thc rcar franic scction, 4 inchcs x IS inchcs (IOcni x 38cm). with mounting holcs aligncd with tllc rcar axlc pillow blwk holcs. Each is 0.5 inchcs tliick (12.7nim) and wcighs ovcr cight pounds (3.7kg). ‘I’hrcc wcights pmvidc cnough countcrbalanct! to prcvcnt thc basic vchicle from tipping, UI resf, whcn on a surfiicc of 45’. With this ballast thc basic vchiclc. wcighs in at about 175 pounds (80kg). Additional compensating weights may bc hung hcre whcn thc vchiclc is morc highly loaded.

i

i

I

Figure 4-2: Nepfune - Aft of port. (Counterweights not installed.)

4.3 Construction

The frame and the fork assemblies are welded for strength and simplicity of construction. A few thrcadcd holcs were made in the fork side plates for jigging before welding.

Off-the-shclf housed bearings are used to mount the three rotating shafts (the two axles and the fork neck). In

Page 20: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

12

'I'hc chain sprockcts are all kcycd to thcir shafts with stock split-tripcr bushings. Tlic bwring howings, fr:imc caps, motors and thc rest of thc piirts arc bolted or scrcwcd togcthcr. Oncc all ihc picccs wcrc imclc (including sizing tlic chains), assembly o f thc mcchanicd parts rcquircd lcss than c? miti-wcck.

Full shop drawings arc providcd in Appendix I.

4.4 Phase Shifting Coniponcnts

E;lch motor has two windings; onc rcccivcs thc AC current directly, thc othcr through a pF,m shifting rictwork (a rcsistor and capacitor). Thcsc componcnts arc mountcd ncar their respective motors. Whilc tllc stccring motor has componcnts small emu& to mount inside the vcrtical frame section, thc drivc motor hns a capacitor mcasuring 2.5" x 5" x 7" (6cm x 13cm x 18cni). arid a 40Q rcsistor of 375 Watts!

4.5 Manual Control

A pendant control box is provided to allow for manual control (such as positioning the vcliicle in a convcnicnt spot before starting an cxpcriment and parking it afterwards). Its functions include switches for turning the steering motor lcft and right, powering thc drive motor forward and back, and emcrgency stop for safety. Also includcd in tliis hand-held controllcr arc indicator lights which show the status of thc limit switches. A connector is provided on thc vehicle to accept the controller, however. it may also be used at the othcr cnd of the umbilical.

Manual control is also possible by scnding appropriate commands to the on-board processor via the RS232-C link.

4.6 Liniit Switches

Thrce limit switches provide calibi-ation information for the fork. A Ccntcr switch, a Left/!!ight switch. and an Out-of-Range switch.

The Center switch has a dcadband of about +4'. This allows for:

1. the +lo play in the fork due to backlash in the steering planetary gear, and

2. overrun of the steering motor.

As thc backlash in the stecring gear incrcases with wear, a more accurate indication of whecl centering can be had by monitoring transitions of the Lcft/Riglit switch whik in the ccnter range.

Out-of-l<angc is indicated when the fork turns more than 135' in eitlicr direction.

'Pfith the drive and steering chains are 40LL which is. 0.5 inch pitch and lifetime lubricatcd (to minimize rcquircd maintenance).

Page 21: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

13

F r o n t

1 O f f L i m i t s 2 C e n t e r 3 R i g h t I L e f t

S w i t c h e s 1 and 2 c a n n o t b e on a t t h e same t i m e

Figure 4-3: Limit Switch Ranges

4.7 Camera Mount

1 2 3

0 0 0 l e g a l s t a t e s

0 U O T ( I AND 2)

0 1 1 1 0 0

1 0 1

1 1 0 I l l e p < i l s t a t e s

1 1 1

n i o

M o u n t i n g F l a n g e Removed

Figure 4-4 Neptune - Camera Support

A mounting system from a professional tripod manufacturer6 is employed to support the two tclcvision cameras rcquircd by the current Vision research. The flange, couplings, lengths of tubing, and camera mounting heads allow considerable adjustment of the cameras up and down as well as inboard and outboard. This system provides great flexibility for mounting a wide range of cmcras and other sensors.

‘llavis and Sanford

Page 22: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

14

Figure 4-5: Neprune - The first run Kevin Dowling attending.

Page 23: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

5. I I\;lcctianical

15

With i1 3: 1 chain reduction from thc motor. the drive ivhccl runs at 24KPh.1. This is about one foot pcr sccond; less than 1 W l f . A set ot’sproclcts rcducing the ratio to 4: I is also available.

With the drivc motor providing lS00 ozin. of torquc and the 3:l reduction gcaring, about 67 pounds of draw-bar pull is calculated. ‘I’his should takc a 350 pound vehicle up about an 11’ slope. A n carly test involvcd loading Neprune to achicvc a coinbincd gross weight of about 350 pounds, starting on a lcvcl :;urfacc, and driving it up a 9’ slope in a hallway near our lab. It did just succeed?

‘I’hc nature of a synchronous motor is such that it can drive a gtciltcr load than it can start. ‘I’hcrcforc, a more uscful number is the actual slope on which the vehicle can be s/uried. Fully loaded with control box, proccssor. cameras, ctc., Nzplunc weighs 1 7 5 - 2 0 0 pounds. For tcsting, a variably inclincd surfncc was uscd. Experimentally, it managed to s m l on a 10’ slope.

Another ‘feature’ of these motors is that once they slip, givcn enough spccd, they will turn relatively easily. Whilc this may be a convenicnce when turning the fork by hand (without power), it may be hazardous to stand c?clow the vchicle when attempting too great a slope. Caution is recommended.

‘The steering motor with its 3.32RPM output and a 1:1 chain drive to the fork neck, provides more than enough torque, even when the vehicle has no forward rolling speed. Final steering is at about 20’ per second.

5.2 Moving Accuracy

Synchronous motors have a starting delay which varies somewhat. This is not apparent in the steering which, due to the low gcaring, has a measured accuracy within one degree. On the other hand, effects of this delay arc significant in thc movement of thc drive motor.

Measurements were taken for straight moves forward and backward at varying lengths of time. An equation for calculating distance travcled is

distance = sped x (time - delay)

where speed is 12.3 inches per second and deluy is considered 0.12 seconds. Variation in short moves (one secund) was about k0.75 inches, and in longer moves about k0.5 inches of the desired position. Different algorithms for moving will result in different dead-reckoning accuracies. One early method for moves required very little geometric calculation:

1. Turn the steered wheel 99’.

2. Run the drive motor for a short time to rotate the vehicle about the center point of the rear axlc.

3. Return the steered whecl to 0’.

4. drive forward along the diagonal formed by the desired change in the x and y positions.

5. Again turn the stccrcd wheel 90’.

7110wevcr, this test was not optimal as it was a live load, namely Hans Moravec

Page 24: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

16

0. 12!)tatc tlic uchiclc to rJic clircction it originally started.

7. Again str-;iightcn l l ic stccrcd whccl.

If at rhc sccond step. l l i o intcnt is LO rolatc thc vchiclc n only small amouni, thc strirtiitg dclay vari,ition o f d ~ e driving motor will inorc adwrscly afl'cct movc accuracy.

For cach niove cmploying this rncthod. the stcercd wheel is scnibbcd back and f011h a numbcr oftiiiics by thc substantial cncouragcmcnt of thc stccring motor. 8

Anothcr iilgorilhrn cinploys S-shnpcd curvcs (fitting splines to positions along Lhc dcsircd path) which ;dlows thc drivc motor to run continuously while thc steering motor is moved back and forth. 'I'his hclps to minimizc thc cl'fect of thc drivc motor starting dclay crror.

8Anothcr useful application of this ability (to rotate the front whecl in place) is to orient a scnsor or manipulator atlaclied to the fork asscmbly.

Page 25: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

17

5.3 System I’crformance

Thc physical vchiclc bccomcs a robot with thc addition of cnvironmcnt mapping ciipabilities [7,4], path planning [6], and navigation [l], software. Ihe currcnt wftwarc runs off-board on a VAX-11/780. In a numbcr of Vision bascd expcrimcnts (using a binocular pair of monochrome vidco camcras), thc vchiclc made moves of about 20 inchcs (0.5m) at thrcc minutc intcrvals, to successfully navigatc 32 fcct (1Om) through a room of obstaclcs. Fxperimcnts have also been run with cnvironment maps dcrived from a 360’ ring of 24 sonar range sensors mounted on-board.

Near-fbture plans include an on-board video digitizer and processor for some of thcse vision functions.

5.4 Summary To facilitate autonomous mobile robot research, it was decided to build an uncomplicated mobile basc. Ninety days later. a tested, working vehicle was used for vision and na-Jigation experiments. Its operational simplicity allows it to be used for a variety of different studies by a number of researchers. Its mechanical fortitude accommodates the mounting needs of many different experimental apparatuses. By w e h l design and employing standard components wherever possible, this rugged, reliable vehicle was produced in a minimum of time.

Figure 51: Nepiune - Navigating in the Lab

Page 26: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo
Page 27: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

6.11Slectsical Control

H o t c l e u t r a 1

Simplicity and thc ilbility to changc hardwarc wcrc primary dcsign considcralion:; in tlic clcctrical system.

AC 5v

E+-- AC Cmn . - - C a l e x 1.5.500

-

All control is bin;ii*y. I .ogic signals from thc on-koilrd prtxcssor control solid-sratc relays which s\vitcli powcr to thc motors. Somc additional circuitry providcs for safcty:

0 'I'hc systcm must bc powcrcd ON and thcn thc S'rAR'r button prcsscd bcforc thc motoIs can bc

0 130th windings of onc motor cannot bc switchcd on siinultaneously. 0 A dclay prcvcnts a motor from bcing instantly rcvcrsed. 0 A numbcr of ~'1'0~ buttons hclps prcvcnt collisions in an cmcrgency. 0 Thc drivc motor is used as a brakc whcn the vehicle is not moving by applying a IX 'holding'

cncrgizcd.

voltagc.

6.1 System Power

A latching configuration is uscd for turning on system power.

11 OVAC - M o t o r s DC H o l d i n g e t c .

% C h a s s i s Ground

I r

DC 200P

S t a r t

__Q_LI>_ L a t c h i n g C i r c u i t r y

I I s t o p s t o p I I

c o n t r o l l e r

Figure 6-1: Start/Stop System

The start/stop system must have the following properties: When a stop switch is prcsscd, power to the controllcr and motors is shut off immediately. If the start switch and a stop arc pressed sirnultancously, thc powcr stays off. The manual controller must be able to disconnect froin the vehicle and yct, when connected, bc able to stop the vehiclc with the stop switch provided.

'I'hc figurc abovc shows a simple outline of how this was accomplished. The inputs to thc latching circuitry arc thc start and scvcral stop switches. When the start switch is presscd, thc output linc is pullcd low, thus turning thc control side of the two SSR's ON. Onc SSR turns on thc AC power for thc rcst of thc controllcr and the motors. Thc othcrs turns on thc 5VDC for thc logic in the rest of thc controllcr.

Page 28: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

20

'I'lic l:i!.cliing citxuicry c;in bc sccn in dctaii in Appendix 11. A sirnplc flip flop w a s constructcd from NOR giiics. I n addition, thc sucitch inputs arc gatcd in sucli ;I wily [tiat illcg;tl inpiits to this conligiiratioti cannot (xcitr. 'l'lw oiqm latches high if any of thc stop switchcs arc prcsscci. thus t.urning off thc coittrol side of thc SSl?'s. If tlic inanual controllcr is conncctcd, and thc stop switch on it is prcsscd. it pulls a n input low. 'I'hc arnngcmcnt of discrctc cornponcnts shown with Schmidt trigscr buffers is IO initi:ili/.c tlic statc of thc circriit when powcr is itpp!icd to Ncptunc and make 3urc thc SSR's rcmain off until thc siart switch is prcsscd.

6.2 R.lolor switching

Sevc'raI solid-statc relays provide a sirnple intcrfacc bctwccn thc logic lcvcl signals and switching AC powcr to thc motors o n and off. l'hc rcqiiircrncnt was a 10 amp capacity with liighcr peak ratings and a voltagc rating able to handlc thc doubled voltagc that can occur across thc phase shifting capacitor and the motor windings. 7'hc rnodcl Opto-22 2401)lO is uscd for Oircctly switching thc motor currcnts for both motors,

Scc Appendix I1 for the schematic layout of the SSRs and tlic motor windings.

Whcn thc drivc motor is off and no currcnt is flowing though the windings. it bccotncs fairly easy to turn. This is unacccptablc sincc rcliancc on position is csscntial and tlic vchiclc will bc stopped uii inclincs. On the othcr hand. thc stccring motor is gcarcd down about 20:l so that a great deal of external forcc is rcquircd to rotate thc fork when it is not powered.

For tlic drive motor, a DC current is put through the windings which holds the motors with a substantial torquc. The motor manufacturer recommcndcd a 9.5VDC supply capable of handling 4.7 Amps. A ~ V D C unrcgidiltcd supply, ratcd at 10 Amps, is used bocausc exact voltagcs and rcgulation arc not neccssary for the holding torquc. In a simple experiment, Nepfurie was placcd on a stccp 30 dcgrce slopc, and thc I>C currcnt put across onc of the motor windings. Nepfurie would tip over before tlic whecl evcr gave way.

When switching motor dircction by turning off onc SSR and turning on another, carc must be taken during this transition period because the capacitor may discharge through the two SSRs. This short circuit discharge currcnt may destroy thc SSRs. An additional resistor may be placed in series with each SSR for protection, but if the control circuit insures that one SSK is off before the other is on the resistors are unncccssary. A sirnplc dclay circuit has been incorporatcd into the control signal circuit to do exactly this. It is possible to do this in software by timing the output control signals but the potential is there for damage. Thus, thc hardware incorporation of the dclay is a major safety factor.

6.3 Digital Control Logic

All logic in the Neptune Electrical Control System operates on active low logic. That is, things turn on and switch with logic 0 signals. This is consistent throughout the design. The simple reason is that thc digital circuit clcmcnts cffectively sink more current than they can source.

'Thc inputs to the system are the processor signals and the manual controller signals. 'The outputs are the motor signals and directions. In between, there is hardware to make sure that conflicting signals aren't gcncratcd (c.g., a motor told to go forward and backward at the same time). and that manual and computcr control do not conflict.

Page 29: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

21

6.4 1)cl;iy Circuit

‘ 1 3 2

i r Time delay

Figure 6-2: Delay Circuit

The delay circuit provides a safety factor when motor direction is changed, ensuring that 0111: SSR is off before tl;c other is turncd on. (See the scctioii on Motor Switching for morc iiifurinatiori on chis.) Ihc dc!ay circuit has thc following property: When an input signal drops Jow (active), thc ouipiit signal will drop low slightly later. When the input signal goes high, the output signal also goes high (cffcctively at rhc same tinic).

This circuit block buffers and inverts the input signal. The inverter output fans out to a rcsistor-capacitor arrangemcnt and to thc input of a Schmitt trigger NAND gate. The XC arrangymcnt delays thc signal because the capacitor charges up over a finite time, and the resistor impedes the current to it. l’hcn after soiiie time, the capacitor charges up and the NAND input on the RC circuit side changes state. ‘I’hc Schniitt trigger output changes smoothly due to the hysteresis effect. When one illput is low. a property of NAND logic causes t’lc output to go high. Thus when the delay input goes high, the inverter output gocs low, thcn oile of the NAND inputs is low and it’s output goes high. ‘I’his simply means that when the input gocs back to a high state the output also returns to a high state.

l’hc values of R and C are common values that provide an RC value of 0.08 seconds (assuming actual values are equal to their labeled values). Originally the delay was longer with an ovcrestimated safety factor but for smooth motions while turning the delay was reduced to the present value.

6.5 Mairi Control Circuitry

As dcscribcd, each motor SSR control has a dchy unit associated with it. ‘l’he delay unit hac computer or manual controllcr signals as its input. A simple methcd of switching between thc manila1 controller and the computer so conllicting signals will not occur is obtained by using a Quad Dual Input Multiplcxcr. A 74C157 is uscd and fits the bill perfectly. ‘the four inputs are: Drive Forward, Drive Back, Steer I,cft, Stecr Right for each set of inputs.

Page 30: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

22

N(;tc ( h i tlic n i , i i d controllcr has a switch to cnablc m:i~iuA c o ~ ~ t ~ ~ l . I! ~ I . I J I S thc S C I C Z ~ ('tl thc I I I ~ I X C i i i l b l c

1t)w 111us ,~llowiiig thc sct ol' four inputs froin the mnnual controllcr to control thc vc4iicle. Whcn lhis switch pills thc i i t i i x cwablc high tlic coinputcr signals control llic vchiclc. I%ssivc ~.,ull-up resistors arc used for Ixiiigiiis tiic signal high whcn somcthing is not cnablcd.

'I'hc coinputcr inputs still havc thc capability of turning on both SSRs to n motor io wftwarc. 'I'lirougli thc xitiition of a I'cw K A N D gatcs, this both-on skitc is not allowcd to occur. Wlicn it. docs, thc motor is turncti off bcciiusc both $pals arc low.

l)uc to thc physical construction of thc switch. thc manual controller cannot ha4c both directions iiiriicd oil at oncc. ' I ' t i c final addition is NANDing thc inpuls to thc drive motor to scc when thc LX Holding 'I'orquc should bc turncd on. I f both dircctions arc turncd off, lhcn the IIC SSR should bc tuincd on. Onc NAPID gatc suMccs for this.

I h c IX holding torquc is switched by a small clectrc~-mecIiai~ical rclay. Thc relay has logic levcl voltagc input to a small 2N2222 transistor configuration which drivcs the rclay coil. An ilttempt to find a IX SSK with the com1iin:ition of lVl'L level control, high current handling (SAMP), and high blocking voltage (200~) was unsucccssfi~l so a simple rclay configuration was uscd (SCC Appendix 11).

Camera Switching

computer

Manual

5 VDC

Coax R e l a y

s t a t u s l i g h t s

I

V i d e o Out

- - Camera

- -

Figure 6-3: Camera Circuitry

'I'wo cameras arc mounted above the vehicle for capturing stereo image data. Instead of running a coaxial cablc for each camcra, one cablc and a mcthod of switching betNccn the two cameras was designcd. A processor signal turns on the input sidc to a DC SSR. Tliis SSR triggers a coax relay which switchcs the output line bctwecn camera 0 or camcra 1. The rclay is a doublc-pole, doublc throw design. The othct pole is used simply to sclect ari LED output to signal visually which camera is currently being selcctcd. ?'he LEIYs are mountcd adjacent to the DNC conncctors to which cameras are connected to on the rcar of thc control box.

In addition, a pair of switchcs enables manual camera switching. This makes it easy to do calibrations, inspcct

Page 31: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

23

cancr:i fi91s CIC. 0nc switch swilcixs from coniputcr control to ni~inu:rl control Lind thc ollicr sclccts onc of Ihc t w o C ; I I I I C ~ ; R Ag,iin, thc l,l:lYs iiidicatc which camera is currcntly sclcctcd.

6.6 Layout

A11 the powcr supplies, circuitry. switchcs, ctc. fit into ;I 12~12x4 inch box that fits on tlic back o f N ~ p t i u i e . SCC thc drawings in Appendix 11 for further layout dctnils. Considcralions for c~icIosurcs, switchcs, and conncc t ors wcrc si in pl ici t y and rugged ncss.

6.7 Possible Enliancerncnts

Bccausc thc drivc motor is synchronous, Nepfune starts with a slight luirh whcn tlic motor is cnablcd. Itamping up thc frcqucncy is a possibility. A simplc circuit using powcr MOSFE'l's m a y bc used to chop R 13c input voltagc and provide logic lcvcl control of speed. There are on thc market variable frcqucncy drives but with fcw cxccptions, thcsc arc dcsigncd for multiplc phase induction motors and arc physically fairly hrgc for Ncplunc to haul around.

In scrics with thc stop switches is planned a bumper "skirt" to shut down the motors whcn a collision is imminent.

Page 32: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

24

Page 33: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

25

On board, Nqmrir carrics one micrt~omputcr spstcm, built around a Motoroln MCOY000 32-bit rnicroproccssor. ‘I’hc liinction of tlic microconiputcr is to act as an intclligcnt intcrfxc t)ctwcen the off 1)oard computers (Le., ii VAX running vision softwarc) and thc on board hardware, chicfly the niotor drivcr and thc canicra sclcction circuitry.

Two RS-232 lincs in tlic umbilical arc uscd to connect thc niicrocornputcr scrially to thc outsidc world. Chic of tlicsc lincs connccts thc ~~iicrwomputcr to a debugging and stiltus tcrminal, whilc thc othcr connccts it to thc \’AX. ‘I’hc microcornputcr is conncctcd to thc various robot control and status lincs through a parallcl port.

Figurc 7-1 dcpicts thc basic micrtxomputcr’s architccture, along with the extcrnal conncctions.

M i c r o p r o c e s s o r

I To VAX

Figurc 7-1: On-Board Processor Block Diagram

D r i v e Forward D r i v e Backward S t e e r L e f t S t e e r R i g h t Camera S e l e c t R i g h t S w i t c h C e n t e r S w i t c h Out-Bounds S w i t c h

To allow the VAX to control the robot, the microcomputer runs a special controller program, ‘Ncpcon’, H ..., h parscs high lcvcl commands from the VAX and translaics them in to robot motion and control. Appcndix I11 contains a completc description of the ‘Nepcon’ program.

Physically, tlic microcomputer is built on one Augat Multibus prototyping board, approximately 7 by 12 inchcs. To minimize power consumption and possible heat problem, CMOS integratcd circuitry was used whcrc cvcr possible (the only non-CMOS circuits arc thc 68000 microprocessor, thc 68230 parallcl intcrfxc/timer and the RS-232 bus drivers). ‘ h e microprocessor is enclosed in a 10 by 14 by 4 inch aluniiiiuin box, along with a small Calex + 5, + 12 and -12 volt supply.

Page 34: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

26

Page 35: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

27

8. Bibliography Mntthics, I,. CYC ‘I’horpc, C. b”I10 and ‘I’YCIIO: Vision and Navigation for Mobilc Robots. In I’rocwdiiigs r~11~/.:I:‘-Occari.~-H4. I EEH, 1984.

Moravcc, Hans P. Obstuc-le Avoidaiice and Navi,qcilioti in (he Real World by a Seeirig Robot Rovrr. Phi> thcsis. Stanford 1Jnivcrsily. Scptcmber, 1980. l’ublishcd as /<obut Rover Visual Navigalion by LJMI Kcscarch l’rcss, Ann Arbor. Michigan, 198 1.

Moravcc, Hans P. Three Ihgrees for a Mobile Robot. ‘I’cchnical Ikport, Carncgic-Mcllon University, May, 1984.

Moravcc, H. 1’. & Elfcs, A. High I<csoliition Maps from Widc Angle Sonar. I n Proceedings of IL:‘EE- Itilernalional Corference on Robotics and Arrlomutioti. II-XE, 1985.

Muir, P. F. Dcsign of a Digital Scrvo Controller for Brushless D.C. Motors for Motion Control ol‘a Mobilc Robot. Mastcr’s thcsis, Carnegic-Mcllon University, December, 1983.

Thorpc, C. Path Kclaxation, Path Planning for a Mobile Robot. In Proceedings of AAAl-b4. AAAI. 1984.

Ihorpc, c. An Analysis of Interest Opcrators for FIDO. In Proceedings of IEEE Workshop on Computer Vision. IEEE, April, 1984.

Page 36: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo
Page 37: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

Appendix I

Appendix I Mechanical Drawings

Page 38: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

Appendix I

Page 39: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

t d 4 N Y)

10

.126 -/

n c"- I2*O -I I 7

.250

.250

Page 40: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

.II n n

4 . p

V

I L . uu - 0

* 2 . 1 2 5 1 P 6 . 0 0 2.125-

' F i l e : [ r o v e r ] / u s r / g w p / d . tri I F o r k T o p . dp

D a t e : 7 -Feb-84 I S c a l e : NTS Approved:

Dwg, Fork Drawn by: G.Podnar

Checked by: N o . : ?&

"f

O-% 2 ? m

0 1

o f f o r IYB screws I

I

- Four h o l e s I n a s q u a r e .326 dla .

One h o l e C e n t e r e d .600 D l a . Chamfer edges.

L 0 i v / / / / A I////// Y i / / A I / /i/i/ / / / / / I I / / / / / I

F r o n t

I,

i

N o t e : A l l measurements: + / - . 0 1 5 "

N o t e : Make one.

Or where g l v e n .

M a t e r l a l : .250" Alumlnum 6063-T6

0 Mobile Robot Lab 1984 Tjt!e: T r i k e Fork Top P l a t e

Page 41: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

0 8.500 m

b

N p-- 3 . 3 7 5 - - = 3 . 3 7 5 1 0 0 Seven H o l e s

About 1 .000 deep D r i l l e d and Tapped f o r #8

T-

....... I .... > -

I

E I I 10 c:::::::::::: - --

0 lb

i 7

0 0 0

rn

F r o n t

N o t e : A l l measurements: +/-.OM"

N o t e : Make one.

N o t e : B e v e l p e r l m e t e r on one s l d e

Or where g l v e n . 1 I n c h

U b fo r we1 d i n g .

M a t e r i a l : .250" Aluminum 6063-T6

4 0 -

Q

Page 42: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

0 h r l N

e

.......

Seven Ho les About 1.000 deep D r i l l e d and Tapped f o r #8

0

2

+ - I - +

;

f s : : Y - ! N ( O

0 m 7

F r o n t

Note: A l l measurements: +/- .016"

Note: Make one. 1 i n c h

O r where g i v e n .

Note: Beve l p e r i m e t e r on one s i d e U A f o r we ld ing .

M a t e r i a l : .260" Aluminum The t a p e r i s de te rm ined b y a l l n e f r o m 8.500 t o a b o u t 14.6 I n . wh ich I s t a n g e n t t o tJe 3.500R a r c (abou t .76 I n ). The a r c i s abou t 156 . 6083-TS V

0 Mobile Robot Lab 1984 T i t l e : T r i k e Fork L e f t S i d e

-

Page 43: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

Four holes- each end. . Z O O d i a .

Four h o l e s 1

J each end. .I75 d i a . Countersunk one s i d e .

Four h o l e s each end. .175 d i a . Countersunk one s i d e .

One h o l e - each end. .500 d i a . Beve led b o t h s i d e s .

Bend l i n e 1

Gradual b e 9 s t a r t s he r

12 .000 ______( . 2 . 6 2

2 R I 4

4 6.000 -

+

0 0 0 0

0 0

fj-r 0

W N

a

I

-, 3 r( - Io

3 1

E i g h t i n - b o a r d countersunk h o l e s a r e t o mate w i t h th readed h o l e s i n t h e L e f t and R i g h i s i d e p l a t e s . The p i e c e s w i l l be screwed t o g e t h e r b e f o r e w e l d i n g t o h e l p a n e a t j o b .

E i g h t o u t - b o a r d coun te rsunk h o l e s a r e f o r b r a c k e t s t o h o l d s i d e cove r p l a t e s .

T h i s p i e c e fo rms t h e f r o n t and back o f t h e f o r k . It w i l l be welded w i t h t h e L e f t and R i g h t s i d e p l a t e s and t h e Top p l a t e . The f i t o f t h e bends I s i m p o r t a n t f o r s t r e n g t h . I f necessary t h i s p i e c e may be made i n two p a r t s w i t h a s p l i t h a l f w a y (see * ) .

I

F r o n t

Note: A l l measurements: +/- .015"

Note: Make one.

O r where g l ven .

1 I n c h

U b

f M a t e r i a l : .125" Aluminum 4 -

6063-T l

0 Mobile Robot Lab 1984 T l t l e : T r i k e Fork F r o n t and Back

Drawn by: G.Podnar

Page 44: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

Top

Front (cutaway )

F i l l e t welds a l l t h e way aro'rnd t h e s ide p l a t e s on t h e Jut.-hoard s i d e .

Fillet w<!lds a l c n ~ t h a i n s i d e c n ? n e r s w::era

KO:C t h a t t h e c e i i t r a l par t . g f t h e s e welds drt! a c ~ ~ i i l ~ i i r ; h t ? d by r e a c h i n g i n s i d e froni t h e I'oiinded end.

The p i c c c s v i - i l I h e s c r e w e d i .ogether b e f o r e wc ld i t i ! , t o h e l p il i l e a l j o b .

t h e t o p piQ:;e n I C e t S t h e f r o n t dnd back .

C l a t e r i a l :

J R i g n t

Side

F r o n t

Page 45: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

Cover B r a c k e t s

0 W t

m

0 In

I ".*""

Two h o l e s .180" d l a .

0 r 0 0

d

h

T

4_

0 UJ h

0

In t I

0 W N

I M a t e r i a l : Alumlnum

I one I n c h Note: Make 10 I

The t a p e r I s de te rm lned b y a l i n e f r o m 8.450 t o a b o u t 14.46 i n . wh ich I s t a c g e n t :a tJe 3.450R a r c (about..75 i n ). The a r c 1 s a b o u t 165 .

7 UJ

n rn c1

1

J R i g h t

F r o n t

1 I n c h

U Note: A l l measurements: + / - .015"

Note: Make two.

M a t e r l a l : .0625" Alumlnum 4 -

O r where g l ven .

b

V 0 Mobile Robot Lab 1 9 ~ 4

T f t l e : T r i k e F o r k S ide Cover

-< F l l e : [rover]/usr/gwp/d.trl/ForkCov.dp Date: 18-Feb-84 I Sca le : NTS Approved:

Dwg. For Drawn by: G.Podnar Cheched by; No.: 01

Page 46: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

0 f

3.375

0 0 0 ..

0

0 Y)

- 1.365 ,Ld two h o l e s each. Two s e t s o f

D r i l l e d and tapped f o r 1 4 . tb

v) N

0 '9

+ One c u t o u t r - . 6 0 0

_.

~ O i I

Mobile Robot Lab

0 ID

I

0 1984

7.250

b

J--0

F i l e : [rover]/usr/gwp/d.tri/ForkRes.dp Date : 20-Feb-84 I Sca le : U T S I ADuroved:

-. 750 -*= 1.150

1 i n c h - I I f

T0-0 Two h o l e s .

I . . Dwg* Fork Drawn by: G.Podnar

Checked by: No. :

I D r i l l e d and 0 2 t apped f o r # 4 . c 4

Note: A l l measurements: +/-.010"

Note: Make ons.

M a t e r i a l : . 1 2 5 " Aluminum

O r where g i v e n .

€061

0 -0

0

0

I I I 0 I

n * 0

(0

0

0

I

I 0

Four Holes i n f o u r c o r n e r s .

- 0 ped f o r # E .

-0

I

I -0

0 I

0

N

I 0 I I

0

0 I I

0

N

2

0

a H

Two s e t s o f 16 h o l e s each. D r i l l e d and tapped f o r U4.

0- 0

-0 I I

-0

-0

0

Page 47: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

I r- 1.375

A l l edges f i l e d t o

sharp edges. 3.250 remove

I n 1 .625

I I One h o l e JAR. dia. .100

.200 c l e a r d e p t h k- 2.750 0___/1

m , * I .

Two h o l e s .426" d i a .

- One h o l e D r i l l e d and tapped f o r d f i n e t h r e a d

16

.500

Smooth p a r a l l e l s u r f a c e s

% Hex Cap Screw. 2" l o n g . f i n e t h r e a d

W i t h a reduced d iamete r o f .U .1840

f o r a l e n g t h o f . .ZOO

J.mi .1840

. . I , I , I , @ ; ; I , I ,

% Hex n u t Assembled f o r l o c k i n g

M a t e r i a l s : One 5/16" s t e e l hex cap screw, f u l l y t h readed . One 5/16" s t e e l hex n u t . O the r p a r t s - m i l d s t e e l .

Note: Make one s e t . b

Ial Mobile Robot Lab I T i t l e : T r i k e Motor Suppor t A

Fo r A d j u s t i n g Cha in l e n s i o n F i l e : [ r o v e r ] / u s r / g w p / d . t r i / F o r k S u p A . d p

Date: 17-Feb-84 I S c a l e : N T S l Approved: 1 Dwg. Fork Drawn by: G.Podnar Checked bv: NO.: nf

Page 48: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

A l l edges f i l e d t o remove s h a r p e d g e s .

One h o l e 1 . 0 " d l a .

One h o l e D r i l l e d and t a p p e d f o r 318" c o a r s e t h r e a d

t- T

3.260

U .260

M a t e r l a l s : M i l d s t e o l . N o t e : Measurements + / - .060 o r a s n o t e d . N o t e : Make o n e . S u p p l y one 3/8" x 1" Hex Cap Screw and washer

0 Mobile Robot Lab 1384 T i t I e : T r i k e Motor S u p p o r t B

For S u o o o r t i n n R?ck F n d o f Motor .. F i l e : [ rover ] /usr /gwp/d . t r i /ForkSupR.dp D a t e : 1 7 - F e b - 8 4 I S c a l e : N;SI Approved: 1

I Fork Checked bv NO.: ,,f

Page 49: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

f H o l e b o r e d . 6 0 " deep I n s l d e o f s h a f t f o r p a s s l n g w i r e s . . 5 0 " d l a . To p r e v e n t a b r a s i o n , f i l e o r beve s h a r p edges i n s l d e & ou t

0

2 d

0 0 0

d

1 4 . 5 0 0 /- - 5 ~ ~ 4 5 ' Chamfer

I I I I p; I I

I I I I I I I I I I I I I I I I I I I I I I

Hole bo red t h r o u g h s h a f t f o r p a s s i n g w i r e s .

. 5 0 " d i ameter . Concent. + / - , 0 5 0

To p r e v e n t a b r a s l o n . f i l e o r b e v e l sha rp edges a t each end.

See D e t a i l f o r h o l e p a t t e r n and s i z e .

I I I I I I I I I I I I I I I I I I I I

I I I I

I

L &x45 ' Chamfer.

SICE (cutaway)

I I I I I I 1 - 1

Y Y > - 4 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

I I I I I I I I I I I I I

/ I I

- 1 I I I I I I I I I I I I I I I I I I I I I I I

- 1 I I I

,I I I I I I I I I I I -

I I I I

HOLF PATTERN DETAIL L Three h o l e s l o c a t e d 120 'apar t . D r i l l e d t o d e p t h o f abou t 0 .6" and tapped f o r #8 screws.

Kevsea t .260 x.126 r Leng th : 3"mln. - 4"max. C e n t e r e r d 4" f r o m end as shown. Keysea t ends need n o t be nea t .

No te I: Groove f o r r e t a i n i n ; r i n g . ANSI s t a n d a r d f o r 1 s h a f t .

No te 2: A l l measurements: +/-.010" O r where g l v e n .

No te 3: Have S h a f t made by Thompson I n d u s t r i e s , I n c . Manhasset. NY 11030 (615 )883-8000

Note 4: Make One.

M a t e r i a l : 60 Case hardened s t e e l . 1" s h a f t l n a

BACK C lass "L* * a i a . t o l e r a n c e .

0 Mobile Robot Lab 1984 T i t l e : T r l k e Fork Neck S h a f t

4 .500

Page 50: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

Four h o l e s

One h o l e Cen te red

.880

i n a square .326 d l a .

d i a .

.E76

\ _ I -x46 Chamfer. . I 6 One s l d e .

As semb 1 y

Use F o r k S h a f t . Square keyway w i t h f l a n g e h o l e s .

Weld o r b r a z e b o t h s i d e s . Beve l we lds a l l around. A f i l l e t around t h e f o p o f a t l e a s t .126 x . 1 2 6 .

Weld s t r e n g t h : 30.000 l b s . / i n ? m ln

Bo t tom f i n l s h e d by g r l n d l n y f l a t .

Note: A l : measurements: + / - .016"

Note: Make one.

Or where g l v e n .

M a t e r l a l : .250" M l l d S t e e l

I Mobile Robot Lab 1 Tit;e: T r i k e Fo rk F lange

1

Q Drawn by: G.Podnar .

F I 1 e : [ r o v e 1.1 /us r / ywp /d . t r i / F or k F 1 ange . d p Date: 18-Feb-84 I Sca le : NTS Approved:

4 . p

Dwg. Fork . f Checked by: No.: -

Page 51: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

3 .825

\ - One Hole, I

L T h r e e h o l e s l o c a t e d 120 O a p a r t . D r i l l e d and c o u n t e r s u n k f o r #8.

N o t e : A l l measurements: +/-.010"

N o t e : Make Two.

O r where g i v e n .

M a t e r i a l : Alumlnum .126" 6061

0 Mobile Robot Lab 1904 T i t l e : T r i k e F o r k Neck S h a f t CaD P l a t e

I F i l e : [ r o v e r ] l u s r / g w p / d . tr i / F o r k C a p . dp 4 b

D a t e : 30-Jan-84 [Scale: NTS Approved: ' Drawn by: G . P i d n a r Dwg . I inch I No.: Checked by: '

Page 52: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

L

-I-- + ' 9 ' 9 -- b -I

. 6 2 5 " UNC t h r e a d

/-

.625" UNC t h r e a d /-

Note 1: Have Shaf t made by Thompson I n d u s t r l e s . I n c . Manhasset. NY 11030 (616)883-8000

Note 2: Wake One.

M a t e r l a l : 60 Case hardened s t e e l . b I

.626" ! h a f t i n g 4 -

Class L" d l a . t o l e r a n c e .

I 1 I n c h

0 198, Mobile Robot Lab

T i t l e : T r i k e Rear s h a f t

0 198, Mobile Robot Lab

T i t l e : T r i k e Rear Axel S h a f t

F i l e : [ rover] /usr /gwp/d. t r i / R e a r A x e l .dp Date : 1-Feb-84 I S c a l e : NTS Approved:

Checked by:

Drawn by: G.Podnar Dwg . N o . : '

Page 53: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

Chamfer b o t h ends t o ease p r e s s i n g i n t o wheel .

- A l l e n S e t Screw h o l e D r i l l e d and tapped f o r 110 - A l l e n Cap Screw h o l e D r i l l e d and tapped f o r Y10 ( a t same l o c a t l o n on o t h e r s i d e )

Keyseat : . 125 The

x . 0660 l e n g t h o f t h e h o l e .

Note 1: Measurements +/- .010" o r as

No te 2: Make One. . M a t e r i a l : W l l d s t e e l .

n d i c a t e d .

0 Mobile Robot Lab 1984

T i t l e : T r i k e D r i v e Wheel Hub

F11 e: [ r o v e r ] /usr /gwp/d . t r i /Wlieul Hub. dp Date: 2-Feb-84 I S c a l e : NTS Appruved:

Checked by: No. :

.- Drawn by: G.Podnar Dug.

'

Page 54: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

.600

0 0 0 0

901 f f :

+x45 Chamfer

I %x45 Chamfer .

Note 1: Have S h a f t made by Thompson I n d u s t r i e s , I n c . Manhasset . NY 11030 (616)883-8000

Note 2: Make One.

M a t e r i a l : 60 Case hardened s t e e l . 0 .6" s b a f t l n g C l a s s L" d i a . t o l e r a n c e .

Keyseat : .128 x .0626 Ends need n o t be n e a t .

b - I 1 i n c h 1 V

0 Mobile Robot Lab 1984 T i t l e : T r i k e Fork Axe l S h a f t

F i l e : [rover]/usr/gwp/d.tri/ForkAxel.dp

Drawn by: G.Podnar Checked by: No. :

Page 55: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

I

D a t e : 10-Feb-84 I S c a l e : NTS

Checked b y : '

Drawn b y : G.Podnar

'1 2 ? ID

L

Approved: Dwg. Fork N o . : O f

7 .750 - p- 3 .875 _____de__ 3 .876 -1

0

\

Measurements f o r b e v e l s a r e g i v e n t o edge of o p e n i n g ( b o t t o m ) . Bevel i s made a: 4 5 d e g r e e s . (May b e f i l e d . )

I I

' Bottom \ -

M a t e r l a l : Aluminum A" t h i c k . N o t e : Rake one. 16 u Rs;I Mobile Robot Lab T i t l e : T r i k e Fork L i m i t S w i t c h C o n t r o l P l a t e

F i l e : r r 9 v e r l / u s r / a w D / d . t r i / F o r k L i i n i t . d p

Page 56: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

I

S i x h o l e s . - D r i l l e d and tapped f o r #6.

Four h o l e

M a t e r i a l : Aluminum 6061

Note: Make one. .le75 ( o r . 260 ) t h i c k .

7 4 . 0 0 "

u

0 0 0 0

c(

0 0 0

=-l-=-l" 0Q 0-

0 0

c) 9

0 -0 0

- 0 0

0

o 0

.15Ox. 400

I f 14 I Two Holes . 1 5 0 ~ . 6 5 0 \ I .3751

1.760 4 1 .650

.126

-=IF

M a t e r i a l : Aluminum 6 0 6 1 Note: Make f o u r .

n

LTwo Holes. D r i l l e d 1: I and t a p p e d ' f o r #6 . -= M a t e r i a l : M i l d S t e e l Note: Make four .

I' I1

Supply :

8 - 66x1" A l l e n head 8 - Lt6x.260 Round head P h i l l l p s

16 - #6 Washers 16 - 1 6 Lockwashers

4 - 1 8 x . 5 0 0 Brass 4 - #8 Washers 4 - #8 Lockwashers

Measurements: +/- .010

I 1 i n c h J

0 Mobile Robot Lab 1984

T i t l e : T r i k e Fork L i m i t S w i t c h B r a c k e t s

F i l e : [ r o v c r ] / u s r / y w p / d . t r i i f o r k l n . d p

Drawn by: G.Podnar Dwy. Fork

Checked by:

Page 57: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

L ‘ Y Turn lng Length 42” ( ‘ c u r b t o curb’

0 Mobile Robot Lab 1984

1 i n c h T i t l e : T r i k e Frame

F i l e : [ rovr r ] /usr /gwp/d . t r i /F rame.dp

Dwg* Frame Drawn by: G.Podnar Checked by: No.:

Page 58: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

0 0

0

0

0

0

0

0

0 0

00° 0

0 0

0

0 0

R l g h t

M a t e r i a l :

4" S q u a r e Alumlnurn T u b i n g . . 125" w a l l . 6 0 6 3 - T 6

0 0

0

0

0

0

0

0

0

0 0

L o r t

N o t e : Make one.

For D e t a l l s s e e D r a w l n g s : T r i k e FrameAl - R l g h t T r i k e frameA2 - Top T r i k e FrameA3 - L e f t T r i k e FrarneA4 - B o t t o m

0 0

00° 0

0 0

Bottom

Part A

0 Mobile Robot Lab 1984 T i t l e : T r i k e FrameA

F i l e : ~ r o v e r ] / u s r / y w p / d . t r i / F r a m e A . d p D a t e : 2 6 - J a n - 8 4 I S c a l e : N T S l A w r o v e J :

I . .

D w y * Frame 1 f n c h Drawn by: G.Podnar No. : Checked by: n f lil

Page 59: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

0

z

F r o n t

i

-Note: See o t h e r end f o r I Checked by: N O . :

t h e s e h o l e p lacements. nf 10

0 u)

W

W I.

N d

1 . 2 5

A1 l . C 7

0

0

0

0

0 @ \

I

I j 0

0

Note: Same h o l e p a t t e r n on a l l f o u r s i d e s and b o t h ends.

Right

4" Square A1 uminum Tublng. . 1 2 6 " w a l l .

r r i i M a t e r i a l : 4" Square A1 uminum Tublng. . 1 2 6 " w a l l . 6063-T6

Note: D e t a i l o f Frame P a r t A .

Note: A l l measurements: + / - .016" Except o v e r a l l l e n g t h : + / - . l o o " O r where g i v e n .

0 Mobile Robot Lab 1984 l inch G8

Tit!e: T r l k e FrameAl - R i g h t

F i l e : [ r o u e r ] l u s r / g w p / d . t r i / F r a m e A l . d p Date : 26-Jan-84 I Sca le : NTSl Approved:

Drawn by: G.Podnar

Page 60: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

UI N

Q

9 m N Lo N

x

0

* u!

r -1 .376

- 0

- 2 .05 4- 2.00

- 2.00 -=I- 2.00

F r o n t

] Note: Same on a l l h o l e f o u r p a t t e r n s i d e s

and b o t h ends.

1 l a r g e h o l e ' o n Top and Bot tom. 2.76 d l a . W i t h f o u r s m a l l h o l e s spaced as shown. D r l l l e d and tapped f o r #lo screws.

\

Mater 1 a1 : 4" Square Aluminum Tublng. . 1 2 5 " w a l l . 6063-T6

Note: D e t a l l o f Frame P a r t A

Note: A l l measurements: + / - .016" Note: Same h o l e p a t t e r n on Excep t o v e r a l l l e n g t h : +/-.loo"

b o t h Top and Bottom. O r where g i v e n .

i F i l e : [ r o v e r ] / u s r / y w p / d . t r i / F r a a e A 2 . d p Date : 26-Jan-84 I Sca le : N T S l Approved:

F r ame Drawn by: G.Podnar No te : See o t h e r end f o r No.: - t h e s e h o l e Dlacements.

n f 1 0

Page 61: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

F

F r o n t

9 w N

Frame Orawnby : G.Podnar

-Note: See o t h e r end f o r No. : t h e s e h o l e p lacements.

n f in

t L

ID h

N .4

t t

1 .25 - 1 . 5 0 1 . 2 5 I

I

I I

0

0

0

0

0

0

0 @ \

1 Note: Same h o l e p a t t e r n on a l l f o u r s i d e s and b o t h ends.

Left

Material: 4" Square Aluminum Tubing. . 125" w a l l . 6063-15

Note: D e t a l l o f Frame P a r t A.

Note: A l l measurements: +/- .016" Except o v e r a l l l e n g t h : +/- . loo" O r where g l v e n .

0 Mobile Robot Lab 1984 Tit,!: T r i k e FrameA3 - L e f t

F i l e : [ rover ] /usr /gwp/d. t r i /Fra i i ieALI .dp Date: 26-Jan-84 I Sca le : N T S l Approved:

Page 62: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

0 0

*

1

F r o n t

ID N

rd

F i l e : [ rover ] /usr /gwp/d . t r i /F rameA4.dp

Revised: 5-Feb-84 gp Date: 26-Jan-84 I Sca le : NTS Approved:

, i;:; Frame Drawn by: G.Podnar

-No to : See o t h e r end f o r Checked by: t h e s e h o l e p lacements.

5 of i n

Note: Same h o l e p a t t e r n on a l l f o u r s i d e s and b o t h ends.

1 .25 1.50

- *

Material: 4" Square Aluminum Tubing. . 125" w a l l . 6063-16

- 2.00 + 2 . 0 0 - . - - - - - - - :a r.1.376

- 0

- 2 * o o -I- 2 * o o -

2 - c u t o u t s -

- r = * 4-hOl e5

Two l l n e s marked t o I n d i c a t e a l l g n m e n t f o r w e l d i n g o f P a r t 8.

\

1 l a r g e h o l e ' o n Bo t tom

W l t h f o u r s m a l l h o l e 5 spaced as shown. D r i l l e d and tapped f o r Y 1 0 screws.

Top. 2.76 d i a .

Bottom

- s \ ?lf \Mot@: Same h o l e p a t t e r n on b o t h TOD and Bottom. r(

SS400-PZ Moto r f o r r e f e r e n c e

Note: D e t a i l of Frame P a r t A.

Note: A l l measurements: + / - .016" Except o v e r a l l l e n g t h : + / - . l o o " O r where g l v e n .

0 Mobile Robot Lab 1984 Tlt!e: T r i k e FrameA4 - Bo t tom

Page 63: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

4.00 '\\\ i L

R i g h t

r 2 . 5 0

\ -

\ I F r o n t

B

1 . 2 6 ' 1.26

L e f t

J R i n h t

Part B

One l a r g e h o l e on F r o n t 2.76 d l a . With 4 s m a l l h o l e s spaced as shown, d r i l l e d

I\ \ and tapped f o r Y10 screws.

Chamfer edges a t b o t h ends f o r w e l d l n g t o P a r t A and P a r t C.

t \ I/ Note: Make ona.

F r o n t

Back

4" Square Alumlnum Tublng , . 1 2 5 " w a l l .

0 Mobile Robot Lab 1984 T i t l e : T r i k e FrameB

F i 1 e : [ r o v e r ]/us r / gwp / d . t I' i / F I' anieR . d p Da te : 26-Jan-84 I Sca le : NTS-0-ved:

I . .

Dw9. F r ame 1 i n c h Drawn by: G.Podnar Checked by: No.: I n f l n

Page 64: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

ID N

d

1 I n c h

I I

l g h t

- . Date: 25-Jan-64 I Sca le : N T S Approved:

Checked by: n f 10 Drawn by: G.Podnar D w g . F raine

. N o . :

One l a r g e h o l e on Top 2.75 d i a . W i t h 4 s m a l l h o l e s spaced as shown, d r l l l e d and tapped f o r #lo screws.

r F r o n t

Part C

L e f t

2.50

3 7 5

Q o t t o m / Chamfer edges a t b o t h ends - f o r w e l d l n g w l t h P a r t 6 and P a r t D. M a t e r l a l :

4" Square Aluminum Tublng. .125" w a l l . 6063-75

Note: Make one.

c , i B l Mobile Robot Lab 198 T l t l e : T r i k e FrameC

F l l e : r r o v e r l / u s r / i i w D / d . t r i / F r a m c C . d p

Page 65: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

I

I\

3.00 -d I O

Two l i n e s marked t o l n d l c a t e a l i g n m e n t f o r w e l d l n g o f P a r t C .

/'

1 i n c h

F r o n t L I

Part D

0 @I Mobile Robot Lab 1984 T i t l e : T r i k e FrameD

F i l e : [ r o v e r ] / u ~ r / g w p / d . t r l / F r a m e D . d p

D a t e . 20-Jan-84 1 S c a l e : NTS Approved:

Checked by: . Frame ~ Drawn by: G.Podnar

No. : o f i n

TOP

<I;-> I

7- - 1 - - - ,

I

I 6 .

k- 3.00 -4

$-- 3.00 -4

F r o n t

1 0 - h o l e s l o p and E o t t o m . 3 7 5

. ___I_-

Page 66: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

* .125 P Note

No te

E i g h t h o l e s d r i l l e d t o a dep th of . 7 5 " f r o m s u r f a c e and tapped f o r #la screws

One h o l e , c e n t e r e d 1 .00" d 1 a. Beve led f r o n t and back.

Note: Four h o l e s . 2 7 5 " d l a . A l l spaced e v e n l y f r o m c e n t e r on a 2.5" square.

M a t e r i a l : A lum lnun

Note: A l l measurements: +/-.010" O r where g l v e n .

Note: Make Two.

0 1984 Mobile Robot Lab

T i t l e : T r i k e Frame "A" End Caps

F i l e : -p>ver]/usr/gwp/d.tri/FranleCapA.dp

Date: 27-Jan-84 I Sca le : NTS Approved:

DldWn by: G.Podnar Dwg. Frame No. : I Inch I

' Checked by : - n f I n

Page 67: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

I I I I I I I I I I I I I I

I

I I I I I I I I I I 1 I I I I I I .I I I I I I I I I I I

I I 1 I I I I I I I I I I 1 I I I I I I I I I I I

I I

1 li

Two h o l e s . 3 7 5 " d i a . D r i l l e d Through

I I 1

A l l b e v e l s - x 46 ' .loo

RPB 6/8 f o r r e f e r e n c e .

M a t e r i a l : Aluminum

N o t e : A l l measurements: + / - .010" Or where g i v e n .

N o t e : Wake Two.

Mobile Robot Lab 1,z4 T i t l e : T r i k e Frame "D" End Caps

F i l e : [ r o v e r ] / u s r / g w p / d . t r i / F r ~ m e ~ ~ ~ ) D . d p D a t e : 27-Jan-84 I S c a l e : N T S l Approved:

r rame Drawn by: G.Podnar No. : n f ~n

Page 68: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

m

R i g h t

Materlal: 4" Square Aluminum Tublng. .126" wall. 6063-T6

~

F r o n t

Page 69: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

T 1 . 2 5 c 1 .26

I

I

0 0

+ --- 3 . 0 0

0 L

'*'o * Four h o l e s

1 I n c h

.210" d i a .

M a t e r i a l : .0625" Aluminum

Note : Wake t e n .

0 GI Mobile Robot Lab 1981

T i t l e : T r i k e Frame C o v e r s

F i 1 e : [ r o v e r 3 /us r / gwp / (1, t r i / F r aine C o v . dp D a t e : 17-Feb-84 I S c a l e : NlS( Approved:

Drawn by: G.Podnar Dwg* F r ame No.: Checked by: f I

Page 70: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

Two H o l e s . D r i l l e d and tappod f o r #lo-32

0

-7 r = a (May b e f i l e d o r ground) . 2 2 6

N o t e : A l l measurements: + / - .016" E x c e p t H o l e s p a c i n g : +/- .010" Or where g lven .

N o t e : Make two.

M a t e r i a l : M l l d S t e e l

S u p p l y : 4 each: 10-32 A l l e n Cap Screws Washers I .ock Washers

fl1 Mobile Robot Lab I,:, T i t l e : T r i k e Frame S t e e r i n a Motor SlJooort.

F i l e : [ r o v e r ] / u s r / g w p / d . t r ~ / F ~ a ~ ~ S u p A . d p

Drawn by: G . P o d n a r Dwg. Frame

N o t e : See o t h e r end for t h e s e h o l e p l a c e m e n t s .

I_

Page 71: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

Hitch Tongue

p . 7 5 0 4

I

I

I

I

I

I

I

9

J 0 0

0

- \

0

0 9

0

4

-1 \ 1 Four Holes I .375 d f a .

Hitch Bracket

One ho le . . 3 7 5 d i a .

E - .200 max . I I r - i n s l d e r a d i u s

I L I I

.la75

1

7 1 .250 7

1.250 4 I - One Hole . .E60 d l a .

M a t e r l a l : M l l d S t e e l

Note: Make one o f each.

Mobile Robot Lab

DWQ. Frame No. : of Checked b v :

_I__- -

Page 72: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

+- io

\ 4 .00 -

Four h o l e s . 3 7 5 d i a .

F r o n t

M a t e r i a l : M i l d S t e e l N o t e : Make f i v e . Measurements: + / - .020

I4 . 60

1 i n c h

U

0 Mobile Robot Lab 198.1

T i t l e : T r i k e Frame W e i g h t s Charge: 1-11921 (About 9 pounds e a c h . )

t F i l e : [ r o v e r ] / u s r / y w p / d . t r i / F r a ~ ~ ~ e W . O p D a t e : 24-Mar-84 I S c a l e : NlS Approved:

Checked by: No.: brawn by: G.Podnar Dwg. Frame f

Page 73: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

Appendix I1

Appendix I1 Electrical Drawings

Page 74: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

Appendix I1

Page 75: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

110 AC

S t e e r l n g Mo to r S u p e r l o r E l e c t r l c S1 o-Syn SS400

I-iiTFij Opto-22 DC2OOP

I C e k o p i a n Model #U9YlOOO iVOC U n r e g u l a t e d ( 1 0 A 86)

ID-AC-J Opto-22 240D10

110 AC 0

I t . I I

\ 3 I I

I /

D r l v e Mo to r S u p e r l o r E l e c t r l c S l o - s y n SS1800

H o l d i n g Torque Requi rements

VD C C u r r e n t Toraue Res idua l H-T

Slo-Syn SS400 30 VDC 0.60 A 600 or-In 9 o z - I n

S l o - s y n SS1800 9.6 VDC 4.7 A 2200 o z - I n 20 o r - I n

Note: The g e a r l n q on t h e S t e e r l n g mo to r w l l l be h i g h enough t h a t DC h o l d i n g t o r q u e w o n ' t be necessa ry and l i t t l e o r no e x t e r n a l f o r c e s on t h e wheel I t s e l f a r e expected.

0 Mobile Robot Lab 198.1

T i t l e : Neptune r o v e r e l e c t r s n r c s

I C h e c k e d by: I.". .

Page 76: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

A d d i t l o n a l P a n i c B u t t o n s a r e I n s e r l e s w l t h t h e one shown l i t l e :

F i l e : r r o v e r l / u s r l n i v e k / r J v e r / n e ~ t u n e / m r e Z . d p D a t e : 3 /6 /84 I S c a l e : NTS Approved:

Checked b y :

Emergency S t a r t / S t . o p system

nws. Drawn b y : n i v e k "2.:

11 OVAC Power C o n n e c t o r

I I DC H o l d i n g et,( I

C a l e x 1 . 5 . 5 0 0 H o t Q

Q AC Cmn . N e u t r a l

I %

C h a s s i s Ground

DC 2OOP I-Ea-L I I AL I 5~ ? o r r e s t o f c o n t r o l l e r

s top s t o p

Page 77: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

'DE THREE

1 . 5 . 5 0 0

Power Supply

K 4 .00 i n c h e s >I, & I o

-

16.100

r DC SSR and I

SIDE TWO

SIDE FOUR

SIDE THREE SIDE THREE v2 SIDE ONE

SIDE TWO - SIDE ONE

SIDE FOUR

SIDE]

~~

0 G51 Mobile Robot Lab 190

T I t 1 e : Neptune ' r o v e r e l e c t r o n I cs - F l e c t r o n i c s Box 1 a y o u t Assembled Vier

F l l e : [ r o v e r ] / u s r / n l v e k / r o v e r / n c p t u n e / n 1 r e 3 . d p ~

D a t e : 2 /9 /84 ( S c a l e : NTS

Checked b y :

Drawn b y : n l v e k - Approved:

Dwg . No. :

Page 78: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

START I

main c i r c u i t b r e a k e r CAM1

p r o c e s s o r connec t

CAM2

V deo o u t

7 1 K-. 3.0 i n c h e s -1 I E.6 i n c h 3 . .

see c i r c u i t b r e a k e r

1.626 i n c h e s diam.

1.26 I n c h e s

1.5 i n c h e s

.X I12 I n c h e s

1.1875 i n c h e s diam. 2.0 i n c h e s K

2.6 i n c h e s >It--- 4.75 i n c h e s -1 K

SIDE TWO

SIDE THRFE

SIDE O N E

View f r o m t h i s s i d e

C u t o u t Diagram

SIDE TWO

HREEioi SIDE ONE

H one i n c h

SIDE FOI

~~

E l e c t r i c a l B o x Sides . SIIIE ONE

! /9 /84 I S c a l e : N T S l Approved: Dwg .

Drawn by: n i v e k .. . [Checked by : rw . :

Page 79: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

0

1 2 3

0 0 0 L e g a l s t a t e s 0 0 1 0 1 0 0 1 1 1 0 0

1 0 1

L e g a l s t a t e s a r e NOT( 1 A I D 2 )

1 1 0 I l l e g a l s t a t e s

1 1 1

S w l t c h e s 1 and 2 c a n n o t b e on a t t h e same t i m e

0 1994 1fi1 Mobile Robot Lab

l i t l e : L i m i t swi tch band p l a c e m e n t

Drawn by: n4Vt.k N o . :

Page 80: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

@* 0.20 I n c h e s w / c l e a r a n c e

D a t e : 2 /9 /64 I S c a l e : NTS Orawn by:

Checked by: n i v e k

2.02 I n c h e s d i a . c u t o u t

2 . 5 0 I n c h d l a . b o l t c i r c l e

Approved: Dwg . No. :

0

The h o l e s a r e f o r m o u n t l n g t h e s e c o n n e c t o r s

SIDE TWO

E FOUR

SIDE THREE SIDE THR

SIDE ONE

SIDE ONE

/

2"

\

SIDE FOUR

0 1984 Mobile Robot Lab

T i t l e : Neptune r o v e r e l e c t r o n l c s E l e c t r o n i c s B o x l a y o u t SIDE TWO

Page 81: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

IDE THREE

Da te : 2 /9 /94 !Sca le : fJTS

Checked by: Drawn by: n i v e k

SIDE

Approved: Dwg . No.:

K-. 3.625 Inches -1 1-1 K- 3.625 inches -

k 7 6 I n c h d

3 . 0 0 i n c h e s

1.50 i n c h e s k 7 5 i n c h d &

" T 8 h 7 5 inch* 8 8

inch] I

1 .876 i n c h e s

L @ T @ 8 0

1 .376 I n c h e s

d

View f r o m t h e t o p

S I D l TWO

THREE FaE The box b o t t o m I s 12 i nches square A l l h o l e s a r e f o r 8-32 screws w i t h c l e a r a n c e . The i n n e r square i s t h e 112 i n c h l i p around t h e t o p .

FOUR

SIDE THREE

~

SIDE ONE

SIDE ONE

SIDE

-

FOUR

-

Iml Mobile Robot Lab 0 I1984

Page 82: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

0 0

D a t e : 3 /5 /84 I S c a l e : NTS

Checked by:

Orawn by: n i v e k

0 0

( S I D E j

Approved:

No. : Dwg .

one i n c h one I n c h

0

S I D E

S I D E TWO

THREE

SIDE ONE

FOUR

SIDE THREE

SIDE ONE

SIDE FOUR

H o l e s a r e f o r 10-32 Screws w i t h c l e a r a n c s

0 lfil Mobile Robot Lab 1984

Page 83: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

> 0

Center h o l e i n p l a t e t o be threaded f o r the swltch.

N o t sure about thread lng d lameter r .

Q Mobile Robot Lab 1984

No. :

Page 84: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

4 . 7 K

T h i s symbol w i

1 K

D a t e : 3 /6 /84 I S c a l e : NTS

Checked b y : Drawn b y : n l v e k

Approved: Dwg . NO. :

Page 85: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

S t e e r

computer

computer

Manual C o n t r o l l e r

D r i v e

+

+

l- s e l ec

When e l t h e r o f t h e manual c o n t r o l l e r s w i t c h e s a r e moved i n e i t h e r d i r e c t l o n t h e S e l e c t l l n e on t h e Mux i n p u t s i s p u l l e d

l o w , t h u s d i s a b l i n g computer c o n t r o l .

S-AC-1

+

S-AC-2

D e l a y +

D-AC-2

D e l a y +

D-AC-1

D e l a y +

D-DC-1 - D e l a y +

I f d r i v e I s on t h e n t u r n o f f DC h o l d i n g t o r q u e

0 Mobile Robot Lab 1984

T i t l e : Neptune r o v e r e l e c t r o n l c s C i r c u i t d iag rams

F i l e : [ r o v e r l / u s r / n i v e k / r o v e r / n e p t u n e / m r e l 1 . d p Date: 3 /7 /84 I S c a l e : NTS Approved:

Checked by: Drawn by: n i v e k Dwg .

No. :

Page 86: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

computer

Manual

5 VDC

' T i t l e : n e p t u n e r o v e r e l e c t r o n i c s camera s w i t c h i n g c i r c u i t r y - - F i l e : ~rover~/usr/nivek/rover/neptune/mrel2.dp ,

D a t e : 3 /8 /84 I S c a l e : NTS Approved:

Checked b y :

nwg . Drawn by: n i v e k No. :

Coax R e l a y

16VDC

s t a t u s l i g h t s

- Camera 1

Camera 2

760 ohms

- I+ -

- - I - I Ln n I

-

Page 87: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo

Appendix 111

Appendix 1x1 On-Board Processor Software

A simple controller for the Neptune rovcr. This program parses commands from the VAX or the debugging terminal and translates them in to robot motion and control. On start up, the debugging terminal is queried for the source of commands: either the VAX, or the debugging terminal for manual control. When an entire command has been parsed, the commands arc executed. At the end of execution, a ’!’ is sent to the terminal, and also to the VAX, if it is originating commands. If there was a problem with the parse, a ?’ is sent and nothing is done. Commands are in the form:

[ subcommand subcommand subcommand ... ] Subcommands are either a single character or a movement command enclosed in parenthesis. The single character subcominands are:

C : Cente r s t e e r i n g motor 0 : S e l e c t camera z e r o ( l e f t ) 1 : S e l e c t camera one ( r i g h t )

The movement subcommand is of the form: (motion. d u r a t i o n )

where motion is one or two characters:

N : Do nothing C : Center s t e e r i n g L : S t e e r l e f t R : S t e e r r i g h t F : Drive forward B : Drive backwards

and duration is a decimal number representing the number of 1/6Oths of a second to run this particular motion. The N command is mutually exclusive of everything else, the C, L and R commands are mutually exclusive, as are the F and B commands. If you specify two or more mutually exclusive commands, the parser will return an error. In all commands, upper and lower case is identical and spaces, carriage returns and line feeds are ignored. If the out-of-bounds limit switch is triggered during movement, all steering in the out-of-bounds direction is inhibited, but execution continues. Here‘s an example command:

[ 0 C ( L F , 60) ( C F , 120) ( R B , 60) ( 6 , 120) 3 This command would be completely parsed, and then the following actions would occur: The left camera will be selected, the steering motor will be centcred, the robot will move forward steering left for one second, forward stceriiig to the ccntcr position for two sxonds, backwards steering right for one second, and backwards for two seconds. After all of this had been performed, a ’!’ would be sent to the terminal, and the VAX, if it were issuing commands. While running, a rK typed at the terminal will immediately abort the current command and turn off all of the motors.

Page 88: A Functional Vehicle for Autonomous Mobile Robot Research · 1 13asic rcscai~ch in mobilc rohotics rcquircs rcnl-world niobilc vchiclcs without wliich ninny topics arc liinitcd lo