alignment control of geo 600

28
Alignment Control of GEO 600 Hartmut Grote for the GEO600 team Institut für Atom- und Molekülphysik University of Hannover Max-Planck-Institut für Gravitationsphysik 9. July 2003

Upload: zorana

Post on 06-Jan-2016

28 views

Category:

Documents


0 download

DESCRIPTION

Alignment Control of GEO 600. Hartmut Grote for the GEO600 team Institut für Atom- und Molekülphysik University of Hannover Max-Planck-Institut für Gravitationsphysik 9. July 2003. Autoalignment: Why ?. Superimpose beam axes Maximize light power Stabilze optical gain - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Alignment Control  of  GEO 600

Alignment Control

of GEO 600

Hartmut Grotefor the GEO600 team

Institut für Atom- und MolekülphysikUniversity of Hannover

Max-Planck-Institut für Gravitationsphysik

9. July 2003

Page 2: Alignment Control  of  GEO 600

9. July 2003 Hartmut Grote

Autoalignment: Why ?

Superimpose beam axes

Maximize light power

Stabilze optical gain

Center beam spots on mirrors

Minimize angular to longitudinal noise coupling

Page 3: Alignment Control  of  GEO 600

9. July 2003 Hartmut Grote

Differrential wavefront sensing

(analog feedback for 14 DOF in GEO)

Spot position sensing

(digital feedback for 20 DOF in GEO)

Autoalignment: How ?

Page 4: Alignment Control  of  GEO 600

9. July 2003 Hartmut Grote

Modecleaner Autoalignment

Bandwidth: 1kHz

Page 5: Alignment Control  of  GEO 600

9. July 2003 Hartmut Grote

Modecleaner Reflected Power

Time [s]

Ref

lect

ed p

ower

[A

rb.]

Pitch DWS feedback

... and yaw DWS feedback

Page 6: Alignment Control  of  GEO 600

9. July 2003 Hartmut Grote

PR und MI Autoalignment

Page 7: Alignment Control  of  GEO 600

9. July 2003 Hartmut Grote

3 mm

Blades

Stack

Mirror

Magnet-CoilActuatorRange: 100 µm,Typ. DC-10 Hz

Intermediatemass

ElektrostaticActuatorRange: 1 µm (DC), Typ. 10-100 Hz

Double – Triple Pendulum

Page 8: Alignment Control  of  GEO 600

9. July 2003 Hartmut Grote

Processing square root with analog electronics

Peak force: 30 µNNeeded for acquisition

Maximal mirror speed with PR gain 300 is100 nm/s

Electrostatic Drive

Page 9: Alignment Control  of  GEO 600

9. July 2003 Hartmut Grote

Intermediate Mass Actuator

Alignment transfer function

Frequency [Hz]

Am

plit

ude

[Abs

.]

Page 10: Alignment Control  of  GEO 600

9. July 2003 Hartmut Grote

Michelson Power Levels

Time [s]

Time [s]

Lig

ht p

ower

[A

rb.]

Lig

ht p

ower

[A

rb.]

Dark port

PR cavity

Page 11: Alignment Control  of  GEO 600

9. July 2003 Hartmut Grote

Spectral Density of MI-DWS

Frequency [Hz]

Dif

fere

ntia

l MC

e/M

Cn

alig

nmrn

t [ra

d/sq

rt(H

z)]

Error signal

Feedback

Page 12: Alignment Control  of  GEO 600

9. July 2003 Hartmut Grote

DWS Feedback Noise

Noise coupling by spot position deviations

Angular noise in GW band(e.g. caused by DWS feedback)

RMS angular noise

RMS deviationfrom center of pitch / yaw

Induced length noise

Page 13: Alignment Control  of  GEO 600

9. July 2003 Hartmut Grote

Michelson Strain Sensitivity

S1

Sqrt-noise

HV-amplifier noise

Michelson DWS feedback noise (1mm)

Frequency [Hz]

Str

ain

sens

itivi

ty [

1/sq

rt(H

z)]

Noise limit

Page 14: Alignment Control  of  GEO 600

9. July 2003 Hartmut Grote

PR and MI Autoalignment

Matrix diagonalizationfor 4 dimensions

Page 15: Alignment Control  of  GEO 600

9. July 2003 Hartmut Grote

Computer Control

Page 16: Alignment Control  of  GEO 600

9. July 2003 Hartmut Grote

Operation during S1

98% duty cycle, almost no human interaction required

Time

Time [days]

Time [days]

Tem

p. [

Deg

. C]

BS

pitc

h F

B [

µra

d]

Page 17: Alignment Control  of  GEO 600

9. July 2003 Hartmut Grote

Summary and Outlook

Autoalignment for modecleaners and power recycled Michelson complete (14 DOF DWS, 20 DOF spot pos.)

Long term stable operation achieved (~98% duty cycle during S1, longest lock >121 hours)

Michelson DWS feedback needs 10-20dB more gain at 0.5-2 Hz (reach 10nradRMS for MI arms)

Signal recycling DWS feedback in near future

Page 18: Alignment Control  of  GEO 600

9. July 2003 Hartmut Grote

Page 19: Alignment Control  of  GEO 600

9. July 2003 Hartmut Grote

Page 20: Alignment Control  of  GEO 600

9. July 2003 Hartmut Grote

Detect angle between wavefronts in “near-“ and “far“ field

Sensitivity typically 10 p rad / sqrt(Hz)

Differential Wavefront Sensing

Page 21: Alignment Control  of  GEO 600

9. July 2003 Hartmut Grote

Modelliertes Alignment am PR MI

Page 22: Alignment Control  of  GEO 600

9. July 2003 Hartmut Grote

Michelson Error Signal

A larger mismatch in the radii of curvature makes the system more sensitive to misalignment.

Page 23: Alignment Control  of  GEO 600

9. July 2003 Hartmut Grote

Autoalignment

Experimental setupfor 1 cavity

Page 24: Alignment Control  of  GEO 600

9. July 2003 Hartmut Grote

Autoalignment

Experimental setupfor 1 cavity

Differential wavefrontsensing

Orthogonalization< 1/10

Bandwith 0.2 or 6 Hz

Page 25: Alignment Control  of  GEO 600

9. July 2003 Hartmut Grote

Autoalignment

Experimental setupfor 1 cavity

Local beam centeringservos

Bandwidth ~ 1kHz

Page 26: Alignment Control  of  GEO 600

9. July 2003 Hartmut Grote

Autoalignment

Experimental setupfor 1 cavity

Spot position control

Page 27: Alignment Control  of  GEO 600

9. July 2003 Hartmut Grote

Autoalignment setup

PR + MI cavity

Page 28: Alignment Control  of  GEO 600

9. July 2003 Hartmut Grote

Misalignment eines Resonators

Messe Winkel zwischen Wellenfronten an zwei verschiedenen Positionen

Achse der Eigenmode

Achse des eintretenden Strahls