atlas calorimetry at the large hadron colliderkrieger/talks/wrnppc04_talk.pdfpeter krieger,...

53
Peter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter Krieger, University of Toronto / IPP Introduction to Calorimetry / Calorimeter Design The ATLAS Calorimeters

Upload: others

Post on 05-Oct-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 1

ATLAS Calorimetry at the Large Hadron Collider

Peter Krieger, University of Toronto / IPP

• Introduction to Calorimetry / Calorimeter Design• The ATLAS Calorimeters

Page 2: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 2

The ATLAS Detector at the Large Hadron Collider

p (7TeV)

p (7TeV)

Page 3: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 3

What is a Calorimeter ?

CalorimeterOutput signal to electronics

Incident particle flux

A calorimeter consists of:Dense absorber material to fully absorb incident particles

Active material to produce an output signal proportional to the input energy

Page 4: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 4

Sampling Calorimeters

Absorber and active materials can be the same (homogeneous calorimeter: e.g. CsI, NaI, Lead glass) or (more commonly) different

absorber (i.e. Pb) active layer

for example:

• Pb (ATLAS EMB,EMEC)

• Copper (ATLAS HEC)

• Tungsten (ATLAS FCal)

• Depleted Uranium (ZEUS)

for example:

• Scintillator (light output)

• Liquid argon (ionization)

Page 5: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 5

EM Energy Loss vs. Energy (here in Pb) – Electromagnetic Showers

Bremsstrahlung

Lead (Z = 82)Positrons

Electrons

Ionization

Moller (e−)

Bhabha (e+)

Positron annihilation

1.0

0.5

0.20

0.15

0.10

0.05

(cm

2g−

1 )

E (MeV)10 10 100 1000

1 E−

dE dx

(X0−1

)

Photon Energy

1 Mb

1 kb

1 b

10 mb10 eV 1 keV 1 MeV 1 GeV 100 GeV

Lead (Z = 82)− experimental σtot

σp.e.

κe

Cros

ssec

tion

(bar

ns/a

tom

)

aσR y el igh

σCom t np o

κn cuelectron/positrons

photons

Critical energy ~ 10 MeVcE

e−

e−

γ

01 X

Page 6: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 6

e−

e−

γ

01 X

Absorber Active medium (scintillation or ionization)

Page 7: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 7

How does required detector size scale with energy ?

0( )X 2t

Calorimeter (use EM as example)

After t radiation lengths total number of particles present is

Average energy of a shower particle at depth t is

Shower has maximum number of particles when

So, shower maximum appears at

0( ) / 2tE t E=

( ) cE t E=

As we go to higher and higher energies, calorimetry becomes a more critical part of a detector (relative to tracking)

0max

ln( / )ln(2)

cE Et =

For comparison:

Tracking chambers: for same resolution required detector size (for same magnetic field) scales with

/p pδE

Page 8: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 8

ATLAS Calorimetry at the Large Hadron Collider

44 m long 22 m high 7000 tons

Page 9: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 9

Hadronic Energy Containment in Iron

99%

95%

Single Hadron Energy (GeV)

Dep

th in

Iro

n (

cm)

Dep

th in

Iro

n (

λ I)

5 10 50 100 500 1000 50

100

150

200

3

4

5

6

7

8

9

10

11

12

/ Bock param./ CDHS data/ CCFR data

Page 10: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 10

Hadronic Calorimetry

Process Percent ofTotal

Secondary proton ionization 31.6Electromagnetic cascade 21.0Nuclear binding energy plus neutrino energy 20.6Secondary charged pion ionization 8.2Neutrons with E > 10 MeV 4.9Neutrons with E < 10 MeV 3.9Residual nuclear excitation energy 3.7Z > 1 ionization 2.4Primary proton ionization 2.3Other 1.4

λΙ

Principle the same as for electromagnetic calorimeters …… BUT

Hadronic interaction length larger than EM radiation length

Needs to be deeper (denser) than EM calorimeter

More processes contribute to hadronic shower development than to EM

Note that a sizeable fration of the energy deposited in a hadronic shower is electromagnetic (from production and decay of neutral pions )

Some processes do not lead to an observable signal (e.g. neutrinos)

!!!!!

0X

γγπ →0

A calorimeter’s response to electromagnetic particles differs from it’s response to hadronic particles

Average fractional energy deposition for 10 GeVprotons in an Fe-LAr sampling calorimeter

e/h ≠ 1 (for non-compensating calorimeters)

Page 11: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 11

Calorimeter Design Criteria

Aspects driven by physics goals

• Signal linearity

• Resolution (energy, position)

Aspect driven by experimental conditions

• Radiation tolerance choice of technology (TileCal vs Liquid Argon)

• Collision frequency speed of response

Practical aspects

• Cost

• Ease of construction

Requirements are dictated by resolution required for desired signal (e.g. Higgs discovery )

Liquid krypton would yield improved resolution, but is more expensive and requires higher purity than liquid argon

Page 12: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 12

Energy Resolution of a Sampling Calorimeter

Resolution of a sampling calorimeter typically takes the form:

noise term

a b cE E Eσ= ⊕ ⊕ constant term

sampling term

sampling term constant term noise term• Choice of absorber

• Choice of active material

• Thickness of sampling layers

• …..

• depth of detector

• detector non-uniformities

• cracks

• dead material …….

• electronic noise

• signal pileup0( , )X λΙ

Dominates at high energy Dominates at low energyTypically most important in 10-100 GeV energy range

Page 13: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 13

Status of the Search for the Higgs Boson

80.2

80.3

80.4

80.5

80.6

130 150 170 190 210

mH114 300 1000

mt

mW

Preliminary

68% CL

∆α

LEP1, SLD Data

LEP2, pp− Data

0

2

4

6

10020 400

mH [GeV]

∆χ2

Excluded Preliminary

∆αhad =∆α(5)

0.02761±0.00036

0.02747±0.00012

Without NuTeV

theory uncertainty

Discovery of the Higgs bosons is one of the main purposes of the LHCLEP direct search limit > 114 GeV

Current experimental evidence points to a low mass HIggs

Page 14: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 14

Higgs Branching Ratio as a Function of Higgs Mass

92

43

43~

125

7

7

8

1010100200

10101)8.0(10101)1(~~1010500108.0800105.15.1101515

/sec/Pr

nbGeVp

QCDjetspbTeVMHpbTeVMgg

bbbpbttnbeeZnbeW

yearEventEventsocess

T

SM

g

>

==

→→

µ

νσ

BR(H)

bb_

τ+τ−

cc_

gg

WW

ZZ

tt-

γγ Zγ

MH [GeV]50 100 200 500 1000

10-3

10-2

10-1

1

bb

In favoured low mass region decay is almost entirely to bb

QCD background to too large. Need to look for cleaner search channel

0H bb→

Favoured discovery channel for a light mass Higgs is 0H γγ→

Page 15: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 15

Electromagnetic Energy Resolution

1

10

10 2

102

103

mH (GeV)

Sig

nal s

igni

fica

nce

H → γ γ + WH, ttH (H → γ γ ) ttH (H → bb) H → ZZ(*) → 4 l

H → ZZ → llνν H → WW → lνjj

H → WW(*) → lνlν

Total significance

5 σ

∫ L dt = 100 fb-1

(no K-factors)

ATLAS

10000

12500

15000

17500

20000

105 120 135

mγγ (GeV)

Eve

nts

/ 2 G

eV

0

500

1000

1500

105 120 135

mγγ (GeV)

Sign

al-b

ackg

roun

d, e

vent

s / 2

GeV

0H γγ→

Higgs discovery potential in the favored low-mass region relies on reconstruction of the final state

Required resolution on the reconstruction represents the most stringent constraint on ATLAS electromagnetic calorimetry

Small signal on significant background. The better the signal resolution, the better the signal to noise ratio

Require good energy resolution AND good position resolution

0H γγ→

Page 16: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 16

ATLAS Calorimetric Coverage

|η| < 1.7|η| < 3.2

1.5 < |η| < 3.23.1 < |η| < 4.9

ln(tan )θη = −2

Total mass ~ 4000 tons

Page 17: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 17

The ATLAS Liquid Argon and Tile Calorimeters

Tile barrel Tile extended barrel

LAr forward calorimeter (FCAL)

LAr hadronic end-cap (HEC)

LAr EM end-cap (EMEC)

LAr EM barrel

Page 18: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 18

The ATLAS Tile Calorimeter

PMT

Plastic scintillatorinside steel absorberstructure

WLS fiber

“Conventional” Iron-Scintillating Tile Sampling Calorimeter, but with unconventional mechanical structure

Page 19: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 19

Tile Calorimeter Construction

Iron cutting

sub-module assembly

tile manufacturing

tile insertion

Page 20: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 20

One TileCal Barrel Module

Page 21: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 21

TileCal Modules Before Assembly

Page 22: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 22

TileCal Barrel Preassembly (April 2003)

Final assembly of TileCal detector is done in the ATLAS Cavern

Page 23: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 23

ATLAS Electromagnetic Barrel Calorimeter

Detector design dictated by physics goals:

e.g.

Accordion structure chosen to ensure azimuthal uniformity (no cracks)

Liquid argon chosen for radiation hardness and speed

0 0, 4 ,H H ZZ e W e eeγγ ν′ ′→ → → → , Ζ →

|η| < 1.475

Copper/kaptonelectrode

Honeycomb spacer to maintain LAr gap

Stainless-steel-clad Pb absorber plates

Page 24: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 24

LAr Gap Structure in Accordion EMB Calorimeter

Particle from interaction point

Page 25: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 25

ATLAS EMB Calorimeter (Half Barrel}

Half Barrel Assembly

Note η segmentation of readout

Page 26: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 26

Readout segmentation of accordian electrodes (in η)

Page 27: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 27

Readout segmentation of accordian electrodes (in η)

Finer segmentation in first layers for better position resolution

Page 28: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 28

Stacked Electromagnetic Barrel Calorimeter Module

Page 29: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 29

Installation of EMB Half-Barrel Module

Page 30: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 30

EMB Half-Barrel Wheel on Insertion Stand

Page 31: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 31

ATLAS EBM Calorimeter Installed in Barrel Cryostat

Page 32: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 32

The ATLAS Endcap Calorimeter

Electomagetic Endcap Calorimeter (EMEC)

Hadronic Endcap Calorimeter (2 Wheels)

Forward Calorimeter

Page 33: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 33

Electomagnetic Endcap Calorimeter (EMEC)

1.375 < |η| < 3.2electrode folding outer wheel

electrode folding inner wheel

Accordion structure chose here as well. Design is more complicated as folding amplitude is a function of radius

Constructed as an inner and outer wheel

″spanish fan ″ geometry

Page 34: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 34

Construction of 1/8 Sector of EMEC

Page 35: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 35

Construction of an EMEC Wheel

Inner and outer wheels visible

Page 36: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 36

Endcap C EMEC Installed and Cabled

Page 37: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 37

ATLAS Hadronic Endcap Calorimter (HEC)

LAr-Cu sampling calorimeter covering 1.5 < η < 3.2

HEC Module Structure

Back Wheel

Front Wheel

Composed of 2 wheels per end, 32 modules per wheel

Page 38: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 38

HEC Module

Page 39: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 39

HEC Readout Granularity

Page 40: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 40

HEC Readout Electrode Structure

• The read-out structure is electrostatictransformer:– Small gap avoids ion build-up– Same behaviour as a 4 mm gap with

lower HV (2 kV instead of 4 kV)

• Robust against H.V. shorts

Page 41: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 41

HEC Module Assembly into HEC Wheel

Page 42: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 42

Rotation of HEC Wheel to Vertical (HEC Rotator)

Page 43: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 43

HEC Storage and Insertion into Endcap Cryostat

Page 44: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 44

Endcap C Hadronic Endcap Calorimeter Installed and Cabled

Page 45: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 45

ATLAS Forward Calorimeter

Provides calorimetric hermiticity: covers 3.1 < η < 4.9

Important for determination of missing transverse energy (signature of supersymmetry and other possible new physics scenarios).

Require liquid argon calorimeter with very thin gaps

Novel detector design – tubular electrodes in an absorber matrix

• one copper module (copper electrodes, copper absorber)

• two hadronic modules (tungsten electrodes, tungsten absorber)

• one uninstrumented brass plug (prevents punch through to muon system)

Page 46: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 46

Forward Calorimeter Design Concept

Tubular electrode structure allows for very narrow LAr gaps:

• FCal1: 250 µm ~ 12K electrodes

• FCal2: 375 µm ~ 10K electrodes

• FCal3: 500 µm ~ 8K electrodes

Absorber formed by material matrix containing the electrodes as well as by the electrode rods

• FCal1 matrix: 18 copper plates

• FCal2 matrix: tungsten slugs

• FCal3 matrix: tungsten slugs

Page 47: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 47

FCal1 Structure / Assembly

Insertion of FCal1 electrode tube

Page 48: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 48

FCal2/3 Structure and Assembly

Endplate and inner absorber assembly

During matrix stacking (tubes and slugs)

Page 49: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 49

Matrix Stacking of Hadronic FCal Module

Page 50: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 50

FCal2/3 Structure and Assembled Module

Liquid Argon Gap

Tungsten Rod

Page 51: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 51

Forward Calorimeter Modules and Final Assembly

FCal1 FCal2 FCal3

First Integrated FCal ready for delivery to ATLAS

Final assembly of the second FCal will begin this spring. Modules are completed

Page 52: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 52

The ATLAS Endcap Calorimeters

Endcap Cryostat Forward Calorimeter Support Tube

Page 53: ATLAS Calorimetry at the Large Hadron Colliderkrieger/talks/WRNPPC04_Talk.pdfPeter Krieger, University of Toronto WRNPPC 2004 1 ATLAS Calorimetry at the Large Hadron Collider Peter

Peter Krieger, University of Toronto WRNPPC 2004 53

Calorimeter TestbeamsBeam tests of calorimeter prototypes and production module are a critical part of calorimeter development and construction.

EMEC, HEC testbeams are covered in next two talks

Still to come (summer 2004)

• HEC/EMEC/FCal Combined Testbeam 2004

• ATLAS Barrel Testbeam (Full slice through ATLAS barrel, including tracking)

Ec

Ebaσ/E ⊕⊕=

a=(3.76±0.06)%, b=(24.5±0.84)√GeV %, c=(145.5±1.6) GeV%

FCal electron resolution

From the 2003 FCalTestbeam

Exceeds design goal