scintillator-based hadron calorimetry for the...

92
Scintillator Scintillator - - based based Hadron Hadron Calorimetry Calorimetry for the ILC for the ILC Dhiman Chakraborty For the NICADD/NIU ILC detector group Linear Collider Study Group Meeting 26 May, 2005

Upload: phamnhu

Post on 25-Aug-2019

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

ScintillatorScintillator--basedbasedHadronHadron CalorimetryCalorimetry

for the ILCfor the ILCDhiman Chakraborty

For the NICADD/NIU ILC detector group

Linear Collider Study Group Meeting26 May, 2005

Page 2: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

OutlineOutline• Motivation

– Particle-Flow Algorithms– Why (not) scintillators?

• Design Considerations: PFA + Others• Hardware tests

– Cells of various types, shapes, surface treatments,…– Extruded scintillators: miscellaneous response characteristics– Photodetectors

• Simulation studies (by V. Zutshi)– Performance vs. size, analog vs. 1- and 2-bit digital approach– Density-weighted clustering– comparison with gas-based technologies

• Beam test preparations– A lot of work in progress, details in a later talk

• SummaryLC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

2

Page 3: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Motivation: Motivation: PFAsPFAsIn a world without neutral particles,

who needs a calorimeter?Imagine a jet at the ILC that is typical in all

respects, except that it contains no neutrals. It’s momentum can be measured within 0.1% using a good tracker alone.– Try to use calorimetry to measure neutrals only.– Unfortunately, can’t prevent all the charged

particles from reaching the calorimeter – the best we can do is to try to steer them away as much as possible with a strong magnetic field.

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

3

Page 4: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

ParticleParticle--Flow AlgorithmsFlow AlgorithmsA typical jet consists of

– 64% charged particles: – 25% photons:– 10% neutral hadrons:

The charged particles are more precisely measured in the tracker

GeVEE /5.0)( ≈σ

GeVEE /15.0)( ≈σ0)( ≈pσ

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

4

Page 5: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

ParticleParticle--Flow AlgorithmsFlow Algorithms• To use momentum measurement from the tracker for

charged particles, we must be able to separate the energy deposited by them from those by neutrals.

• Need fine 3-d granularity in the calorimetry for continued tracking.

• It helps to have the entire calorimeter inside the mag-netic field so as to avoid E loss in coil dead material.

• Having the calorimeter inside the field also leads to continued bending of charged particle showers ⇒better charged/neutral association of hits.

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

5

Page 6: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

ParticleParticle--Flow AlgorithmsFlow AlgorithmsIndeed, the net energy resolution is limited by

incorrect association of hits.

The resulting “confusion” term must be kept below 0.24√(E/GeV) in order to achieve an overall target resolution of 0.3√(E/GeV), which is necessary for effective separation of W’s and Z’s in their hadronicdecay modes on an event-by-event basis in the absence of other constraints.

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

6

Page 7: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

ParticleParticle--Flow AlgorithmsFlow AlgorithmsWith sufficiently fine segmentation, the number of cells

hit by a hadronic shower has a smaller σ/µ compared to the sampled E ⇒ for hadron calorimetry, “digital”measurement based cell counting should be more precise than traditional analog estimation based on sampling fractions.

While cell-counting is less sensitive to absolute calibration, it is more vulnerable to noise, cross-talk. We need to understand the implications of these.

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

7

Page 8: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Why (not) Why (not) scintillatorsscintillators??• As a technology, plastic scintillators are the most

widely used active media in modern sampling calorimeters.– Tested and true, well understood and optimized– Has many highly desirable features

• New developments in cell fabrication & photo-detection help meet ILC/PFA demands – Fine segmentation at a reasonable cost– Photodetection and digitization inside detector ⇒min. signal

loss/distortion, superior hermeticity

• Can operate in both analog and digital modes• Interesting challenge

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

8

Page 9: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Design Considerations: PFADesign Considerations: PFA• Need ≲10 cm2 lateral segmentation.• At least ~35 layers and ~4λ must fit in ~1 m.

– Min. inner radius driven by tracker performance.– Max. outer radius limited by magnet cost.– Min. absorber fraction limited by the need for

radial containment.• ⇒2 cm thick absorber layers if SS (less if W).• ⇒0.6-0.8 cm sensitive layers must respond to MIPs

with good efficiency and low noise.

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

9

Page 10: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Design Considerations: PFADesign Considerations: PFA• Good lateral containment of showers is important for

minimizing the confusion term.• W absorber in ECal ⇒ e/π compensation is not built in ⇒ must be achieved in software ⇒ particle id (inside calorimeter by shower shape?) may be important.

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

10

Page 11: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Design Considerations: OthersDesign Considerations: Others• The technology must be

– Reliable,– Mechanically sound, – Operable inside strong magnetic field,– Capable of 15+ years of running,– Tolerant to ~5σ fluctuations in T, P, humidity,

purity of gas (if any). Monitoring will be necessary if response depends strongly on any of these,

– Suited for mass-production and assembly of millions of cells in ~40 layers, (cont’d…)

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

11

Page 12: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Design Considerations: OthersDesign Considerations: Others• The technology must be (…cont’d)

– Allow hermetic construction (minimum cracks/gaps) – Safe (HV, gas, …),– Compatible with other subsystems (MDI?),– Amenable to periodic calibration,– Able to handle the rates (deadtime < 0.1 s?)– Cost effective (incl. construction, electronics,

operation).

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

12

Page 13: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Participating InstitutionsParticipating Institutions

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

13

• NIU: digital (1-bit)/semi-digital (2-bit), Tail-catcher, scint extrusion, simulation, PFA, TB

• DESY: analog (“tile”), FE boards, sim, PFA, TB• LAL: VFE ASICs• Prague: Electronics (LED calibration)• ITEP: Instrumented tiles • MePhi: Si PhotoMultipliers• UK groups: DAQ, PFA• FNAL: scint extrusion, electronics (?)• Japan, Korea: analog (“tile”), algorithms

Much of the effort, including beam test, is coordinated by the CALICE collaboration.

Page 14: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

This report concentrates on This report concentrates on efforts at NICADD/NIU.efforts at NICADD/NIU.

For more information on worldwide efforts, see talks

given at LCWS05 and visit the CALICE scint. HCal web page.

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

14

Page 15: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Hardware testsHardware testsCells made of cast (Bicron) and extruded scintillators

(NICADD/FNAL) have been extensively tested with many variations of– Shape (hexagonal, square),– Size, thickness– Surface treatment (polishing, coating),– Fibers (manufacturer, diameter, end-treatment)– Grooves (σ− shaped, straight)– Photodetectors (PMT, APD, SiPM, MRS)

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

15

Page 16: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Hardware testsHardware tests• Different cell and groove shapes with extruded and

cast scintillators

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

16

Page 17: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

17

Hardware Prototypes (NIU)Hardware Prototypes (NIU)Stack, layer, and unit cell

WLS to Clear Fiber

MPTM

Page 18: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Hardware PrototypesHardware PrototypesCosmic ray data with PMT readout

~11 p.e. peak = 1MIPLC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

18

Page 19: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Hardware Prototypes (DESY Hardware Prototypes (DESY ““MiniCalMiniCal””))•DESY 6 GeV e beam 2003-2004•108 scintillator tiles (5x5cm)•Readout with Silicon PMs on tile, APDs or PMTs via fibres

2 cm steel

0.5 cm active

DES Y, Hamburg U, ITEP, LPI, MEPHI, Prague

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

19

Page 20: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

DESY DESY ““MiniCalMiniCal”” Test Beam resultsTest Beam results• Resolution as good as

with PM or APD*• Non-linearity can be

corrected (at tile level)– Does not deteriorate

resolution – Need to observe

single photon signals for calibration

• Well understood in MC • Stability not yet

challenged

NIM A (2005)

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

20

Page 21: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Choosing the Optimum ThresholdChoosing the Optimum ThresholdEfficiency and Noise Rejection

0%

20%

40%

60%

80%

100%

120%

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Number of MIPs

Perc

ent

EfficiencyNoise Rejection

0.25 MIP threshold: efficient, quietLC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

21

Page 22: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Cell response: uniformity & dispersionCell response: uniformity & dispersion

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50POSITION OF Sr-90, MM

NO

MA

LIZE

D R

ESPO

NSE

Column1

Mean 1562.506

Standard Error 24.52647

Median 1557.96

Mode #N/A

Standard Deviation 115.0394

Sample Variance 13234.05

Kurtosis -0.05291

Skewness 0.334939

Range 444.52

Minimum 1386.47

Maximum 1830.99

Sum 34375.14

Count 22

Cell-to-cell ~7%(dominated by fiber)Uniformity < 3%

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

22

Page 23: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

More uniformity measurementsMore uniformity measurements

-0.200

0.000

0.200

0.400

0.600

0.800

1.000

1.200

0 10 20 30 40 50

POSITION OF THE Sr-90, MM

NOR

MAL

IZED

RES

PONS

E

0.000

0.200

0.400

0.600

0.800

1.000

1.200

0 10 20 30 40 50 60

POSITION OF THE Sr-90, MM

NORM

ALIZ

ED R

ESPO

NSE

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

23

Page 24: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Absolute Response measurementsAbsolute Response measurements

Cell shape Groove Area (cm2) Response (nA)Hexagon Sigma 9.4 1895.3Square Sigma 9.4 1665.8Square Sigma 6 1740.5Hexagon Sigma 6 1743.8Hexagon Sigma 9.4 2015.9Square Straight 9.4 1523.4Square Straight 4 1618.6Square Straight 9.4 861.5Hexagon Straight 9.4 900.9Hexagon Sigma 9.4 1089.4

(Purple: Cast, Blue: Extruded)(Purple: Cast, Blue: Extruded)

Ample light ⇒flexibility for optimization, ease of constructionLC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

24

Page 25: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Surface treatment/wrappingSurface treatment/wrapping

UNPOLISHED TOP +POLISHED BOTTOM

POLISHED TOP +POLISHED BOTTOM

UNPOLISHED TOP +UNPOLISHED BOTTOM

0.98 1.00 1.02

Tyvek Paint VM 2002 Mylar CM590 CM500 Al Foil

1.00 0.89 1.08 0.83 0.28 0.44 0.63

Painting is easy, light loss acceptablePainting is easy, light loss acceptable

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

25

Page 26: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Miscellaneous MeasurementsMiscellaneous Measurements

Response ratios between types, glues, fibers,…• Scintillator type: extruded/cast ≈ 0.7• Optical glue: EJ500/BC600 ≈ 1.0• Fiber: Y11/BCF92 ≈ 3.2

– Y11 = 1 mm round Kuraray,– BCF92 = 0.8 mm square Bicron

Extruded/cast (cost) ≈ 0.05

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

26

Page 27: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

The NICADD/FERMILAB ExtruderThe NICADD/FERMILAB Extruder• GPOLYMER

DRYER

CONVEYOR

POLYMER FEEDER

DOPANT FEEDER

EXTRUDER

MELT PUMP

DIE

POLYMERDRYER

CONVEYOR

POLYMER FEEDER

DOPANT FEEDER

EXTRUDER

MELT PUMP

DIE

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

27

Page 28: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Uniformity of thicknessUniformity of thicknessThickness

0

50

100

150

200

250

300

350

400

4.79 4.81 4.83 4.85 4.87 4.89 4.91 4.93 4.95 4.97 4.99 5.01 5.03 5.05

4.98 +/- 0.03mm

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

28

Page 29: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Uniformity of thicknessUniformity of thicknessσ/µ ≈ O(10-3) on 5 mm: well within

tolerance NORMALIZED CELL RESPONSE OF Cs-137

y = 0.8426x + 0.1376R2 = 0.9852

0.75

0.95

1.15

1.35

1.55

1.75

0.75 0.95 1.15 1.35 1.55 1.75

CELL THICKNESS NORMALIZED TO 3 MM

RES

PON

SE N

OR

MA

LIZE

D T

O 3

MM

CEL

3mm

4mm

5 mmExtruded Tile

4.78

4.8

4.82

4.84

4.86

4.88

4.9

4.92

1 2 3 4 5 6

Position in 20 cm steps

Th

ick

ne

ss i

n m

m

Side oneSide two

Thickness is not an issueLC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

29

Page 30: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Optimum parametersOptimum parameters• Shape: Hexagonal or Square• Thickness: 5 mm• Lateral area: 4 - 9 cm2

• Groove: straight• Fiber: Kuraray 1 mm round (or similar)• Fiber Glued, Surface Painted• Scintillator type: Extruded

But a bigger question is the photodetector:PMTs are costly, bulky (won’t operate in B field anyway)

We have been investigating APDs, MRS, Si-PM…

Based on what we have learnt so far

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

30

Page 31: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Avalanche PhotoAvalanche Photo--DiodesDiodesHamamatsu APD gain vs V @ diff wavelengths (T= 18 ºC)

1.0

10.0

100.0

1000.0

100 150 200 250 300 350 400

Bias Voltage, V

Gai

n

486nm 565nm for 587nm 660nm

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

31

Page 32: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Cosmic MIP detection with Cosmic MIP detection with APDsAPDs5 mm cast scintillator read with Hamamatsu S8550 APD

Bias = 393 V, Signal width ≈ 100 ns, amplitude ≈ 8 mV, noise ≈ 2 mV

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

32

Page 33: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Metal Resistive Semiconductors (MRS)Metal Resistive Semiconductors (MRS)

• From the Center of Perspective Technologies and Apparatus (CPTA, Russia)

LED signal

0

200

400

600

800

1000

1200

1 33 65 97 129

161

193

225

257

289

321

353

385

417

449

481

513

ADC counts

Eve

nts

Typical pulseheight spectrum

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

33

Page 34: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Cosmic MIP detection with MRSCosmic MIP detection with MRS

Range of working points

y = 24.255x - 1180.5R2 = 0.9969

0

10

20

30

40

50

60

49.8 50 50.2 50.4 50.6 50.8 51

Bias Voltage (V)

Ave

rage

min

us

pede

stal

~5 PE

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

34

Page 35: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Silicon Photomultipliers (Silicon Photomultipliers (SiPMSiPM))• From Moscow Engineering Physics Institute (MEPhI, Russia)

0 100 200 300 4000

2000

4000

6000

8000

10000

Cou

nts

Channel

0 pe 1 pe

2 pe

3 pe

4 peAuto-calibrating,

but non-linear

(B.Dolgoshein)

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

35

Page 36: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Silicon Photomultipliers (Silicon Photomultipliers (SiPMSiPM))Typical pulseheight spectrum

Ru106, Si-PMT, 51 Volts, ~6 PE

0

100

200

300

400

500

600

700

800

900

1000

1 56 111 166 221 276 331 386 441 496 551 606 661 716 771 826 881 936A D C C H A N N E L

MEPHI sample, Courtesy of B.Dolgoshein

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

36

Page 37: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Cosmic MIP detection with Cosmic MIP detection with SiPMSiPM

Comparable to PMTComparable to PMT

Light output vs bias

0

10

20

30

40

50

51 52 53 54 55

Bias (Volts)

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

37

Page 38: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

PhotodetectorPhotodetector Characteristics Characteristics Summary: Specs/Test ResultsSummary: Specs/Test Results

Device HAMAMATSU APD

VLPC SiPM or MRS

PMT

Photo Electrons/ MIP

>30 (by specs)

>30 >>1100 >>1100

Gain 400 ? 10E(5) 10E(6) 10E(6) APD output Charge (fC)

3

768

1152

1152

S/N(room T)

~ 5.5 Est. ~ 3 real ~ 8.1 (10oC)

>10 (9K) meas. *

~ 8meas.** > 10 meas.***

* A. * A. BrossBross et al., Fermilab FNet al., Fermilab FN--0733, 20030733, 2003

** B. ** B. DolgosheinDolgoshein, , ““An Advanced Study of Silicon PMAn Advanced Study of Silicon PM””, ICFA IB, 2002, ICFA IB, 2002

*** V. *** V. RykalinRykalin, NICADD presentation, , NICADD presentation, http://http://nicadd.niu.edunicadd.niu.edu , 2002, 2002

Estimate <$10 channel in bulk for Extruded/Estimate <$10 channel in bulk for Extruded/SiPMSiPMLC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

38

Page 39: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Simulation StudiesSimulation StudiesGeometries considered

Scint HCal

Steel 20mmPolystyrene 5mm

Gas Geom1

Steel 20mm

Gas 5mm

Gas Geom2

G10

Glass 1mm

Gas 1mm

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

39

Page 40: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Number of cells hit by Number of cells hit by ππ++s of s of 2, 5, 10, 20, 30, 50 2, 5, 10, 20, 30, 50 GeVGeV

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

40

Page 41: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

ππ++ energy resolution as function of energy resolution as function of energy for different (linear) cell sizesenergy for different (linear) cell sizes

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

41

Page 42: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

EEnergy resolution for 10 nergy resolution for 10 GeVGeV ππ++ss

σ/E=0.183 σ/N=0.166

9cm2 cells

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

42

Page 43: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

EEnergy resolution for 50 nergy resolution for 50 GeVGeV ππ++ss

σ/E=0.101 σ/N=0.153

9cm2 cells

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

43

Page 44: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Nhit correlations for different Nhit correlations for different cell energy thresholdscell energy thresholds

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

44

Page 45: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

NhitNhit correlations for different correlations for different cell energy thresholdscell energy thresholds

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

45

Page 46: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

NhitNhit correlations for different correlations for different cell energy thresholdscell energy thresholds

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

46

Page 47: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Alternatively,Alternatively,

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

47

Page 48: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

CompensationCompensation• Cell counting has its own version of the

compensation problem (in scintillators).• With multiple threshold this can be

overcome by weighting cells differently (according to the threshold they passed).

• In MC, 3 thresholds seem to be adequate

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

48

Page 49: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

After semiAfter semi--digital treatmentdigital treatment

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

49

Page 50: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Energy resolution: 50 Energy resolution: 50 GeVGeV ππ++ss

σ/E=0.101 σ/E=0.092

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

50

Page 51: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Energy resolution: 10 Energy resolution: 10 GeVGeV ππ++ss

σ/E=0.183 σ/N=0.164

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

51

Page 52: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

ππ++ energy resolution vs. energyenergy resolution vs. energy

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

52

Page 53: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Time of flightTime of flight

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

53

Page 54: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

ToF dependenceToF dependence

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

54

Page 55: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

CrossCross--talktalk(10% of cell E leaks equally to 4 neighbors)

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

55

Page 56: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

NhitNhit vs. fraction of vs. fraction of ππ++ E in cells with E>10 MIP:E in cells with E>10 MIP:1cm x 1cm 1cm x 1cm scintillatorscintillator cellscells

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

56

Page 57: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

NhitNhit vs. fraction of vs. fraction of ππ++ E in cells with E>10 MIP:E in cells with E>10 MIP:Gas vs. scintillatorGas vs. scintillator

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

57

Page 58: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

ππ++ energy resolution vs. energyenergy resolution vs. energyMultiple thresholds not used

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

58

Page 59: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

NonNon--linearitylinearity• Nhit/GeV varies with energy.• This will introduce additional

pressure on the “constant” term.• For scintillator, the non-linearity

can be effectively removed by “semi-digital” treatment.

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

59

Page 60: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Density of hitsDensity of hitsNeed a hierarchy in the absence of an energy measurement.

Local density of hits is an obvious candidate.

A simple-minded density variable:

di = Σ (1/Rij),

where Rij is the angular distance between cells i & j.

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

60

Page 61: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Position resolutionPosition resolution

unweighted

Density weightedEnergy weighted

Mea

sure

d re

lativ

e to

the

ener

gy w

eigh

ted

reso

lutio

ns

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

61

Page 62: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Density vs. EnergyDensity vs. Energy

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

62

Page 63: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Shower WidthShower Width

• Find centroid {Swixi/Swi}• ‘width’ = sqrt(SwiR2

i/Swi)• Three weights were used:

– Unweighted (wi=1)

– Energy weighted (wi=Ei)

– Density weighted (wi=nearest-neighbor occupancy in a 5x5 window in lyrs k-1,k,k+1)

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

63

Page 64: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Distance to farthest cellDistance to farthest cell

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

64

Page 65: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Density of farthest cellDensity of farthest cell

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

65

Page 66: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Distance to farthest cellDistance to farthest cell

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

66

Page 67: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Density of farthest cellDensity of farthest cell

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

67

Page 68: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

BackscatterBackscatter

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

68

Page 69: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Shower width for 10GeVShower width for 10GeV ππ±±

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

69

Page 70: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Shower width for 50GeVShower width for 50GeV ππ±±

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

70

Page 71: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

π± angular widthrms shown as bars

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

71

Page 72: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

ππ±± angular width: energy weightedangular width: energy weighted

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

72

Page 73: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

ππ±± angular width: density weightedangular width: density weighted

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

73

Page 74: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

CommentsComments• There is no clear cut case either way

at the moment; detailed studies of assessing impact needed.

• Will look at cluster separability next.• Need to evaluate this in the global

context of calorimeter performance.

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

74

Page 75: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

ClusteringClustering• Clustering based on local density

works well.• It is an alternative to track-seeded

clustering.• Can be used in the ECal and HCal.• Full PFA implementation (not shown)

gives encouraging results.

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

75

Page 76: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

10 GeV10 GeV ππ0 0 →→ γγγγD

ensi

ty w

eigh

ted

θ−φ

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

76

Page 77: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

ΣΣ++ →→ ppππ0 0 →→ ppγγγγ

p

π0

Den

sity

wei

ghte

dθ−

φ

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

77

Page 78: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Simulation SummarySimulation Summary• Large parameter space in the nbit-

segmentation-medium plane for hadron calorimetry. Optimization through cost-benefit analysis?

• Scintillator and Gas-based ‘digital’ HCalsbehave differently.

• Need to simulate detector effects (noise, x-talk, non-linearities, etc.)

• Need verification in test-beam data.• More studies underway.

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

78

Page 79: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Beam Test: GoalsBeam Test: Goals• 1m3 Hadron beam prototype• Test the analog and semi-digital scintillator-based HCAL concept• High granularity core with 3cm tiles• 8000 channels in total

V.Zutshi (NIU)

Reading everylayer is essential

A.Raspereza (DESY)

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

79

Page 80: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

Beam Test: GoalsBeam Test: Goals• Technology: Gain large scale, long-term experience

with a SiPM readout detector– Identify critical operational aspects to optimize

photo-detector, electronics and calibration system

• Physics: Collect data samples (~ 108 evts) to– Study hadron showers

with unprecedented granularity

– Validate hadronic shower models

– Develop PFAs

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

80

Page 81: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

TB: Design ChallengesTB: Design ChallengesNOT a prototype

for an ILC detector

x 8000

• Design based on minicalexperience (SiPM, scintillator, cable) – but…

• Industrialize SiPM and tile production – scale by 2 orders of magnitude

• 8k channel bias supply and readout electronics for beam test with ECAL

• Versatile calibration & monitoring system

• Modular mechanical designLC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

81

Page 82: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

CALICE Beam Test PreparationsCALICE Beam Test Preparations

LED calibration electronics

(Prague)

Cassettes, LED optics(DESY)

VFE ASICs(LAL)

FE boards(DESY)

DAQ(UK groups)

Stack, motion, Slow Control (DESY)

SiPMs(MEPHI)

Instrumented tiles (ITEP) Commissioning

(DESY, MEPHI, later: NIU, all)

Collaborative effort

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

82

Page 83: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

83

CALICE Beam Test PreparationsCALICE Beam Test Preparations

Tail Catcher

ECALECAL

HCALHCAL

Electronic Racks

Beam

Page 84: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

TB: TB: ScintScint HCalHCal layer compositionlayer composition

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

84

• 10x10 array of (3 cm)2 cells surroun-ded by 3-wide frame of (6 cm)2 cells, then a 1-wide frame of (12 cm)2 cells.

• Scintillator production well advanced.

• Semi-automatic test bench for SiPMtile system ready– Measure light yield in px/MIP

• Ready for mass production of SiPM tile systems with data sheet

Page 85: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

TB: TB: ScintScint HCalHCal layer assemblylayer assembly

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

85

Page 86: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

TB: TailTB: Tail--Catcher/Catcher/MuonMuon TrackerTracker• “Fine” section (8 layers): 2 cm thick steel• “Coarse” section (8 layers): 10 cm thick steel• 5mm thick, 5cm wide extruded scintillator strips• 1.2 mm-diameter Kuraray Y11 fibers• Tyvek/VM2000 wrapping• Alternating x-y orientation• Si-PM photo detection • Common readout w/ Hcal• Along beam: 142 cm• Height: 109 cm

• Weight: ~10 ton

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

86

Page 87: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

TB: TCMT layer assemblyTB: TCMT layer assembly

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

87

Page 88: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

TB: TCMT layer assemblyTB: TCMT layer assemblyWLSF-SiPM misalignment is within 0.1 mm

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

88

Page 89: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

TB: FrontTB: Front--end electronicsend electronicsM. Reincke (DESY)

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

89

Page 90: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

TB: TCMT schedule for 2005TB: TCMT schedule for 2005

• Mar-Jun: QC for WLS fibers, first full cassette assembly, cut absorber plates.

• Jun-Aug: Continue cassette assembly, testing with baseboard, start full-chain commissioning.

• Sep-Nov: Start extended calibration, data taking with CR triggers, CR tests with all cassettes in place.

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

90

Page 91: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

SummarySummary• Simulations indicate (semi-) digital approach

competitive with analog calorimetry• Prototypes indicate there is sufficient sensitivity (light

x efficiency) & uniformity.• Now optimizing materials & construction to minimize

cost with required sensitivity.• SiPM and MRS photodetectors look very promising.• Preparations for Tile HCal (analog) and TCMT in full

swing.

All-in-all scint looks like a competitive option.We are moving toward the next prototype.

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

91

Page 92: Scintillator-based Hadron Calorimetry for the ILCnicadd.niu.edu/presentations/Dhiman_050526_lcdsg_scint_hcal.pdfScintillator-based Hadron Calorimetry for the ILC Dhiman Chakraborty

NIU/NICADD publicationsNIU/NICADD publications1. MRS PHOTODIODE IN STRONG MAGNETIC FIELD FERMILAB-TM-2284,

Dec 20042. SMALL SCINTILLATING CELLS AS THE ACTIVE ELEMENTS IN A DIGITAL

HADRON CALORIMETER FOR THE e+e- LINEAR COLLIDER DETECTOR. A. Dyshkant et al. FERMILAB-PUB-04-015, Feb 2004. 11pp Published in J.Phys.G30:N1,2004

3. THE DIGITAL HADRON CALORIMETER (DHC) ELEMENTS TEST. FERMILAB-FN-0733, Apr 2003

4. TOWARD A SCINTILLATOR-BASED DIGITAL HADRON CALORIMETER FOR THE LINEAR COLLIDER DETECTOR Published in IEEE Trans.Nucl.Sci.51:1590-1595,2004

5. About NICADD Extruded Scintillating Strips FERMILAB-PUB-05-010-E6. INVESTIGATION OF A SOLID STATE PHOTODETECTOR Accepted for

publication in NIM A

LC Study Group mtg, 26-05-2005

Scintillator-based HCal for ILC Dhiman Chakraborty

92