cf-3 bank hapoalim jun-2001 zvi wiener 02-588-3049 mswiener/zvi.html computational finance

35
CF-3 Bank Hapoalim Jun-2001 Zvi Wiener 02-588-3049 http://pluto.mscc.huji.ac.il/ ~mswiener/zvi.html Computational Finance

Post on 20-Dec-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CF-3 Bank Hapoalim Jun-2001 Zvi Wiener 02-588-3049 mswiener/zvi.html Computational Finance

CF-3 Bank Hapoalim Jun-2001

Zvi Wiener

02-588-3049http://pluto.mscc.huji.ac.il/~mswiener/zvi.html

Computational Finance

Page 2: CF-3 Bank Hapoalim Jun-2001 Zvi Wiener 02-588-3049 mswiener/zvi.html Computational Finance

CF3 slide 2Zvi Wiener

Plan

1. Hypothesis test

2. Maximal Likelihood estimate

3. Multidimensional VaR, contour plots

4. Monte Carlo type methods

Page 3: CF-3 Bank Hapoalim Jun-2001 Zvi Wiener 02-588-3049 mswiener/zvi.html Computational Finance

CF3 slide 3Zvi Wiener

Hypothesis tests

Given a population, we would like to perform

a test in order to accept or reject the claim that

it is distributed according to some rule (for

example normal or normal with some mean

and standard deviation).

Page 4: CF-3 Bank Hapoalim Jun-2001 Zvi Wiener 02-588-3049 mswiener/zvi.html Computational Finance

CF3 slide 4Zvi Wiener

Pearson goodness of fit test

Is based on calculating the sample moments and then

comparing the number of observations in more or

less equally full bins.

The comparison of actual number of points versus

the expected frequency allows to estimate the

likelihood of the distribution to belong to the

suspected class.

Page 5: CF-3 Bank Hapoalim Jun-2001 Zvi Wiener 02-588-3049 mswiener/zvi.html Computational Finance

CF3 slide 5Zvi Wiener

Pearson goodness of fit test

For large samples the following Q statistics follows a Chi Square distribution with m-1 degrees of freedom.

Here m – the number of bins.

fk – is the actual number of points in bin k,

ek is the expected number of points.

m

k k

kk

e

efQ

1

2)(

Page 6: CF-3 Bank Hapoalim Jun-2001 Zvi Wiener 02-588-3049 mswiener/zvi.html Computational Finance

CF3 slide 6Zvi Wiener

The Kolmogorov-Smirnov test

Here we compare the maximal distance between actual and proposed cumulative distribution.

1. Numerical Recepies in C, second edition, p. 623-625.

2. Mathematica in Education and Research Journal, vol. 5:2, 1996, p. 23-30 by David K. Neal.

Page 7: CF-3 Bank Hapoalim Jun-2001 Zvi Wiener 02-588-3049 mswiener/zvi.html Computational Finance

CF3 slide 7Zvi Wiener

The Kolmogorov-Smirnov test

Define test statistics by

)()(sup xGxFnD Here n is the number of sample points, F(x) the sample and G(x) the expected cumulative distribution. For large n distribution of D converges to a distribution Y (see Degroot 1986).

222

1

)1(2)( ti

i

ietYP

Page 8: CF-3 Bank Hapoalim Jun-2001 Zvi Wiener 02-588-3049 mswiener/zvi.html Computational Finance

CF3 slide 8Zvi Wiener

The Kolmogorov-Smirnov test

-2 -1 1 2

0.2

0.4

0.6

0.8

1

-2 -1 1 2

0.2

0.4

0.6

0.8

1

-2 -1 1 2

-0.04

-0.02

0.02

0.04

0.06

0.08

data hypothesis

difference

Page 9: CF-3 Bank Hapoalim Jun-2001 Zvi Wiener 02-588-3049 mswiener/zvi.html Computational Finance

CF3 slide 9Zvi Wiener

Maximal Likelihood

Page 10: CF-3 Bank Hapoalim Jun-2001 Zvi Wiener 02-588-3049 mswiener/zvi.html Computational Finance

CF3 slide 10Zvi Wiener

Example

Your portfolio is exposed to two independent

(correlation =0) risk factors.

Each one is uniformly distributed between –1

and 1 for a given time horizon.

What is your VaR95% for the same horizon?

Page 11: CF-3 Bank Hapoalim Jun-2001 Zvi Wiener 02-588-3049 mswiener/zvi.html Computational Finance

CF3 slide 11Zvi Wiener

Example

A

B

Probability density

Page 12: CF-3 Bank Hapoalim Jun-2001 Zvi Wiener 02-588-3049 mswiener/zvi.html Computational Finance

CF3 slide 12Zvi Wiener

2 dimensional risk

-1 1 A

B

1

-1Probability of 5%

Page 13: CF-3 Bank Hapoalim Jun-2001 Zvi Wiener 02-588-3049 mswiener/zvi.html Computational Finance

CF3 slide 13Zvi Wiener

Example

The total probability is 1, the area of the rectangle is 4, so the height is 0.25.

We are looking for x, such that

95.014

1

2

1 2 x

x=0.6325, and VaR95%=2-x=1.3675

Page 14: CF-3 Bank Hapoalim Jun-2001 Zvi Wiener 02-588-3049 mswiener/zvi.html Computational Finance

CF3 slide 14Zvi Wiener

OvalsConsider a portfolio managed versus benchmark.The benchmark has duration T and includes only government bonds (no credit risk).

A manager has two degrees of freedom. He can choose non-government bonds and have a duration mismatch.Denote the actual duration by T+q and by a – % of the assets invested in non-government bonds.

Page 15: CF-3 Bank Hapoalim Jun-2001 Zvi Wiener 02-588-3049 mswiener/zvi.html Computational Finance

CF3 slide 15Zvi Wiener

Ovals

Denote by r – the current yield on treasuries Denote by L – LIBOR

(for simplicity we assume a flat term structure).

Denote by dr and dL the possible change in each risk factor during a short period of time.

Page 16: CF-3 Bank Hapoalim Jun-2001 Zvi Wiener 02-588-3049 mswiener/zvi.html Computational Finance

CF3 slide 16Zvi Wiener

Ovals

The value of the benchmark today is 1.rTrT eeBenchmark 0

quantity discount factor

The value of the benchmark tomorrow will be

))((1

dTTdrrrT eeBenchmark

For short time intervals we ignore dT.

Page 17: CF-3 Bank Hapoalim Jun-2001 Zvi Wiener 02-588-3049 mswiener/zvi.html Computational Finance

CF3 slide 17Zvi Wiener

Ovals

Similarly the dollar P&L of the portfolio will be

)()(01 )1( qTdrqTdL eaaePP

We ignore convexity and carry effects.

To measure relative performance we use

drT

qTdrqTdL

e

eaae

BB

PP

)()(

01

01 )1(

Page 18: CF-3 Bank Hapoalim Jun-2001 Zvi Wiener 02-588-3049 mswiener/zvi.html Computational Finance

CF3 slide 18Zvi Wiener

Assume that dr and dL are jointly normal and use delta approach. Then the gradient vector is

)(

))(1(

qTa

qTaTgrad

One should also check the impact of the second derivative.

For a given variance covariance matrix of the risk factors one can easily construct the level curves of the total risk on the q, a plane.

Page 19: CF-3 Bank Hapoalim Jun-2001 Zvi Wiener 02-588-3049 mswiener/zvi.html Computational Finance

CF3 slide 19Zvi Wiener

Assuming correlation of 26% between dr and dL we have:

gradgradbenchmportf ../

The resulting contour plot shows the levels of risk for any potential position as seen according to today’s data.

Page 20: CF-3 Bank Hapoalim Jun-2001 Zvi Wiener 02-588-3049 mswiener/zvi.html Computational Finance

CF3 slide 20Zvi Wiener

0 0.1 0.2 0.3 0.4 0.5

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

spread

OvalsVaR=1bp

VaR=2bp

Page 21: CF-3 Bank Hapoalim Jun-2001 Zvi Wiener 02-588-3049 mswiener/zvi.html Computational Finance

CF3 slide 21Zvi Wiener

Plan1. Monte Carlo Method

2. Variance Reduction Methods

3. Quasi Monte Carlo

4. Permuting QMC sequences

5. Dimension reduction

6. Financial Applications

simple and exotic options

American type

prepayments

Page 22: CF-3 Bank Hapoalim Jun-2001 Zvi Wiener 02-588-3049 mswiener/zvi.html Computational Finance

CF3 slide 22Zvi Wiener

Monte Carlo

-1 -0.5 0.5 1

-1

-0.5

0.5

1

Page 23: CF-3 Bank Hapoalim Jun-2001 Zvi Wiener 02-588-3049 mswiener/zvi.html Computational Finance

CF3 slide 23Zvi Wiener

Monte Carlo Simulation

10 20 30 40

-15

-10

-5

5

10

15

Page 24: CF-3 Bank Hapoalim Jun-2001 Zvi Wiener 02-588-3049 mswiener/zvi.html Computational Finance

CF3 slide 24Zvi Wiener

Introduction to MC

N

iixf

Ndxxf

1

1

0

)(1

)(

Hopefully due to the strong law of large

numbers the approximation is good.

The idea is very simple

Page 25: CF-3 Bank Hapoalim Jun-2001 Zvi Wiener 02-588-3049 mswiener/zvi.html Computational Finance

CF3 slide 25Zvi Wiener

Introduction to MC

N

iixf

Ndxxf

1

1

0

)(1

)(

How to determine a well distributed sequence?

How one can generate such a sequence?

How to measure precision?

Page 26: CF-3 Bank Hapoalim Jun-2001 Zvi Wiener 02-588-3049 mswiener/zvi.html Computational Finance

CF3 slide 26Zvi Wiener

Speed of Convergence

From the central limit theorem the error of approximation is distributed normal with mean 0 and standard deviation

s

dxIxf]1,0[

22 )(

s

dxxfI]1,0[

)(

N

Page 27: CF-3 Bank Hapoalim Jun-2001 Zvi Wiener 02-588-3049 mswiener/zvi.html Computational Finance

CF3 slide 27Zvi Wiener

Regular Grid

An alternative to MC is using a regular grid to approximate the integral.

Advantages:

The speed of convergence is error~1/N.

All areas are covered more uniformly.

There is no need to generate random numbers.

Disadvantages:

One can’t improve it a little bit.

It is more difficult to use it with a measure.

Page 28: CF-3 Bank Hapoalim Jun-2001 Zvi Wiener 02-588-3049 mswiener/zvi.html Computational Finance

CF3 slide 28Zvi Wiener

Variance Reduction

Let X() be an option.

Let Y be a similar option which is correlated with X but for which we have an analytic formula.

Introduce a new random variable

YYXX )()()(

Page 29: CF-3 Bank Hapoalim Jun-2001 Zvi Wiener 02-588-3049 mswiener/zvi.html Computational Finance

CF3 slide 29Zvi Wiener

Variance Reduction

The variance of the new variable is

]var[],cov[2]var[]var[ 2 YYXXX

If 2cov[X,Y] > 2var[Y] we have reduced

the variance.

Page 30: CF-3 Bank Hapoalim Jun-2001 Zvi Wiener 02-588-3049 mswiener/zvi.html Computational Finance

CF3 slide 30Zvi Wiener

Variance Reduction

The optimal value of is

Then the variance of the estimator becomes:

]var[

],cov[*

Y

YX

]var[)1(]var[ 2* XX XY

Page 31: CF-3 Bank Hapoalim Jun-2001 Zvi Wiener 02-588-3049 mswiener/zvi.html Computational Finance

CF3 slide 31Zvi Wiener

Variance Reduction

Note that we do not have to use the optimal

* in order to get a significant variance

reduction.

Page 32: CF-3 Bank Hapoalim Jun-2001 Zvi Wiener 02-588-3049 mswiener/zvi.html Computational Finance

CF3 slide 32Zvi Wiener

Multidimensional Variance Reduction

A simple generalization of the method can be used when there are several correlated variables with known expected values.

Let Y1, …, Yn be variables with known means.

Denote by Y the covariance matrix of variables Y and by XY the n-dimensional vector of covariances between X and Yi.

Page 33: CF-3 Bank Hapoalim Jun-2001 Zvi Wiener 02-588-3049 mswiener/zvi.html Computational Finance

CF3 slide 33Zvi Wiener

Multidimensional Variance Reduction

Then the optimal projection on the Y plane is given by vector: 1* Y

TXY

The resulting minimum variance is

]var[)1(]var[ 2* XRX XY

where

]var[

12

XR XYY

TXY

XY

Page 34: CF-3 Bank Hapoalim Jun-2001 Zvi Wiener 02-588-3049 mswiener/zvi.html Computational Finance

CF3 slide 34Zvi Wiener

Variance Reduction

• Antithetic sampling

• Moment matching/calibration

• Control variate

• Importance sampling

• Stratification

Page 35: CF-3 Bank Hapoalim Jun-2001 Zvi Wiener 02-588-3049 mswiener/zvi.html Computational Finance

CF3 slide 35Zvi Wiener

Monte Carlo

• Distribution of market factors

• Simulation of a large number of events

• P&L for each scenario

• Order the results

• VaR = lowest quantile