chapter 2 differentiation (微分)

66
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chapter 2 Differentiation (微分) Hung-Yuan Fan (范洪源) Department of Mathematics, National Taiwan Normal University, Taiwan Fall 2018 Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 1/65

Upload: others

Post on 23-Dec-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Chapter 2Differentiation

(微分)

Hung-Yuan Fan (范洪源)

Department of Mathematics,National Taiwan Normal University, Taiwan

Fall 2018

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 1/65

Page 2: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

本章預定授課範圍

2.1 The Derivative and the Tangent Line Problem2.2 Basic Differentiation Rules and Rates of Change2.3 Product and Quotient Rules and Higher-OrderDerivatives2.4 The Chain Rule2.5 Implicit Differentiation2.6 Derivatives of Inverse Functions

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 2/65

Page 3: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Section 2.1The Derivative and the Tangent Line

Problem(導數與切線問題)

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 3/65

Page 4: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Tangent Line Problem (切線問題)Let f be a real-valued function defined on I = (a, b) with c ∈ I.What is the slope (斜率) m of the tangent line (切線) to thegraph of f at the point P(c, f(c))?

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 4/65

Page 5: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

示意圖 (承上頁)

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 5/65

Page 6: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

示意圖 (承上頁)

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 5/65

Page 7: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

ObsevationSince the slope of the secant line (割線) passing through P(c, f(c))and Q(c +∆x, f(c +∆x)) is

msec =∆y∆x =

f(c +∆x)− f(c)∆x ,

the slope m of the tangent line at P is determined by considering

m = lim∆x→0

msec = lim∆x→0

f(c +∆x)− f(c)∆x .

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 6/65

Page 8: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Def (切線的定義)

If m = lim∆x→0

f(c+∆x)−f(c)∆x = lim

x→cf(x)−f(c)

x−c ∃, then the line passingthrough P(c, f(c)) with slope m is called a tangent line to thegraph of f at P.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 7/65

Page 9: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Vertical Tangent Lines

Def (垂直切線的定義)A line x = c is called the vertical tangnet line (垂直切線) to thegraph of f at the point (c, f(c)) if

lim∆x→0+

f(c +∆x)− f(c)∆x = lim

x→c+f(x)− f(c)

x − c = ±∞

orlim

∆x→0−

f(c +∆x)− f(c)∆x = lim

x→c−f(x)− f(c)

x − c = ±∞.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 8/65

Page 10: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

垂直切線的示意圖

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 9/65

Page 11: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Remark (切線方程式)Equation of the tangent line to the graph of y = f(x) at the point(c, f(c)) is given by

y − f(c) = m(x − c). (Point-Slope Form; 點斜式)

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 10/65

Page 12: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Example 4Let f(x) = √x for x ≥ 0.(a) Find the tangent line to the graph of f at (4, 2).(b) Find the slopes of the graph of f at (1, 1) and (0, 0).

Sol: For c > 0, the slope of a tangent line passing through (c, f(c))is given by

m = lim∆x→0

f(c +∆x)− f(c)∆x = lim

∆x→0

√c +∆x −√c

∆x= lim

∆x→0

∆x∆x(

√c +∆x +√c)

=1√

c + 0 +√c

=1

2√c .

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 11/65

Page 13: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

(a) At the point (4, 2), m = 12√4= 1

4 and the equation of thetangent line at (4, 2) is

y − 2 =1

4(x − 4) or y =

1

4x + 1.

(b) The slope of the graph of f at (1, 1) is m = 12√1= 1

2 . Inaddition, the slope of a tangent line at (0, 0) is

lim∆x→0+

f(0 + ∆x)− f(0)∆x = lim

∆x→0+

1√∆x

= ∞,

and hence the graph of f has a vertical tangent line at x = 0.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 12/65

Page 14: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

示意圖 (承上例)

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 13/65

Page 15: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

HomeworkRead Examples 1 and 2 by yourself.

Def (導數或導函數的定義)(1) The derivative (導數) of f at x ∈ dom(f) is

f ′(x) = lim∆x→0

f(x +∆x)− f(x)∆x = lim

z→xf(z)− f(x)

z − x .

(2) f is differentiable (可微分; 簡寫為 diff.) at x ∈ dom(f) if thederivative f ′(x) ∃.

(3) f is diff. on I = (a, b) if it is diff. at each x ∈ I.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 14/65

Page 16: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

NotesIf S = {x ∈ dom(f) | f ′(x) ∃}, the first derivative f ′ can beregarded as a function defined on S.

For any y = f(x), the derivative is often denoted by

f ′(x) = y ′(x) = df(x)dx =

dydx = Dxf(x) = D1f(x).

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 15/65

Page 17: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 16/65

Page 18: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

RecallSice the following equality

(a + b)3 = a3 + 3a2b + 3ab2 + b3

holds for any a, b ∈ R, we immediately obtain

(x +∆x)3 = x3 + 3x2(∆x) + 3x(∆x)2 + (∆x)3.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 17/65

Page 19: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Differentiability v.s. Continuity

Thm 2.1 (可微分 =⇒ 連續)Let f be a real-valued function defined on X ⊆ R withc ∈ X = dom(f). If f is diff. at c, then f is conti. at c.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 18/65

Page 20: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 19/65

Page 21: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 20/65

Page 22: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Remarks1 函數的可微分點必定是連續點,詳見 Thm 2.1。

2 但是,函數的連續點不一定是可微分點! 詳見 Example 6 和Example 7。

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 21/65

Page 23: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Sections 2.2 & 2.3Basic Differentiation Rules and

Higher-Order Derivatives(基本微分法則與高階導數)

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 22/65

Page 24: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Thm (Basic Differentiation Rules)Let f and g be diff. functions of x and c ∈ R. Then(1) d

dx [c] = 0.

(2) ddx [xn] = n · xn−1 for n ∈ R.

(3) ddx [f(x)± g(x)] = f ′(x)± g ′(x).

(4) ddx [c · f(x)] = c · f ′(x).

(5) ddx [f(x)g(x)] = f ′(x)g(x) + f(x)g ′(x) = (前微)(後不微) + (前不微)(後微).

(6) ddx

[f(x)g(x)

]= f ′(x)g(x)−f(x)g ′(x)

[g(x)]2 = (子微)(母不微) - (子不微)(母微)(母)2 .

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 23/65

Page 25: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 24/65

Page 26: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 25/65

Page 27: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 26/65

Page 28: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 27/65

Page 29: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Thm (Derivatives of Elementary Functions)(1) d

dx [sin x] = cos x, ddx [cos x] = − sin x.

(2) ddx [tan x] = sec2 x, d

dx [cot x] = − csc2 x.

(3) ddx [sec x] = sec x tan x, d

dx [csc x] = − csc x cot x.

(4) ddx [ex] = ex, d

dx [ ln |x| ] = 1x for x = 0.

Equivalent Def. of Euler number eThe number e is the base number of an exponential function s.t.the slope of the tangent line at (0, 1) is 1, i.e., it satisfies

lim∆x→0

e∆x − e0∆x = lim

∆x→0

e∆x − 1

∆x = 1.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 28/65

Page 30: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Sketch of the Proof

(1)

ddx [sin x] = lim

∆x→0

sin(x +∆x)− sin x∆x

= lim∆x→0

sin x cos(∆x) + cos x sin(∆x)− sin x∆x

= sin x(

lim∆x→0

cos(∆x)− 1

∆x)+ cos x

(lim

∆x→0

sin(∆x)∆x

)= (sin x)(0) + cos x · 1 = cos x.

(2) ddx [tan x] = d

dx

[sin xcos x

]= cos2 x+sin2 x

cos2 x = sec2 x.

(3) ddx [sec x] = d

dx

[1

cos x

]= (0) cos x−1·(− sin x)

cos2 x =(

1cos x

)(sin xcos x

)=

sec x tan x.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 29/65

Page 31: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 30/65

Page 32: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 31/65

Page 33: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Higher-Order Derivatives (高階導函數)

Let y = f(x) be a diff. function of x. Thenfirst derivative: y ′ = f ′(x) = dy

dx = ddx [f(x)].

second derivative: y ′′ = f ′′(x) = d2ydx2 = d2

dx2 [f(x)] ≡ddx(y ′).

third derivative: y ′′′ = f ′′′(x) = d3ydx3 = d3

dx3 [f(x)] ≡ddx(y ′′).

fourth derivative: y(4) = f(4)(x) = d4ydx4 = d4

dx4 [f(x)] ≡ddx(y ′′′).

...nth derivative: y(n) = f(n)(x) = dny

dxn = dndxn [f(x)] ≡ d

dx(y(n−1))

for n ∈ N. Here, we denote y(0) = y = f(x).

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 32/65

Page 34: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Section 2.4The Chain Rule

(連鎖律)

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 33/65

Page 35: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Thm 2.11 (The Chain Rule; 連鎖律)If y = f(u) is a diff. function of u and u = g(x) is a diff. function ofx, then y = f(g(x)) is a diff. function of x and

dydx =

dydu

dudx or d

dx[f(g(x))

]= f ′(g(x)) · g ′(x).

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 34/65

Page 36: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 35/65

Page 37: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Thm 2.12 (General Power Rule; 廣義冪法則)

If u(x) is a diff. function of x, then y =[u(x)

]nis also a diff.

function for any n ∈ R with

y ′ = n ·[u(x)

]n−1· u′(x).

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 36/65

Page 38: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 37/65

Page 39: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Example 8Find f ′(x) if f(x) = x

3√

x2 + 4= x

(x2 + 4)1/3.

Sol: From the Quotient Rule of Differentiation and the ChainRule, we see that

f ′(x) = 1 · (x2 + 4)1/3 − x · (1/3)(x2 + 4)−2/3(2x)(x2 + 4)2/3

=1

3(x2 + 4)−2/3 ·

[3(x2 + 4)− 2x2(x2 + 4)2/3

]=

1

3(x2 + 4)2/3· x2 + 12

(x2 + 4)2/3=

x2 + 12

3(x2 + 4)4/3.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 38/65

Page 40: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Example 11 (1/2)Fid the derivative y ′.(a) y = cos 3x2 = cos(3x2).

(b) y = (cos 3)x2.

(c) y = cos(3x)2 = cos(9x2).

Sol: By the Chain Rule, we have(a) y ′ = (− sin 3x2) · (6x) = −6x sin(3x2).

(b) y ′ = (cos 3) · (2x) = (2 cos 3)x.

(c) y ′ = (− sin 9x2) · (18x) = −18x sin(9x2).

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 39/65

Page 41: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Example 11 (2/2)(d) y = cos2 x = (cos x)2.

(e) y =√

cos x = (cos x)1/2.

Sol: From the Chain Rule, we see that(d) y ′ = 2(cos x)(− sin x) = −2sixx cos x.

(e) y ′ = 12(cos x)−1/2(− sin x) = − sin x

2√

cos x .

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 40/65

Page 42: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Thm (Derivatives of eu and ln |u|)If u = u(x) is a diff. function of x, then(1) d

dx [ex] = ex ∀ x ∈ R, ddx [eu] = eu · u ′.

(2) ddx [ ln x ] = 1

x for x > 0, ddx [ ln u ] = u ′

u for u > 0.

(3) ddx [ ln |x| ] = 1

x for x = 0, ddx [ ln |u| ] = u ′

u for u = 0.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 41/65

Page 43: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Example 13(b) Find y ′ = f ′(x) if y = f(x) = ln(x2 + 1).

Sol: If we let u = u(x) = x2 + 1 > 0 for x ∈ R, then

f ′(x) = ddx

[ln(x2 + 1)

]=

u ′

u =2x

x2 + 1∀ x ∈ R.

HomeworkPlease read Example 13 of Section 2.4 by yourself.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 42/65

Page 44: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 43/65

Page 45: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Example 15Differentiate the following function

f(x) = ln x(x2 + 1)2√2x3 − 1

∀ x ∈ (13√2,∞).

Sol: Firstly, it follows from Laws of Logarithm that

f(x) = ln[x(x2 + 1)2

]− ln

[(2x3 − 1)1/2

]= ln x + 2 ln(x2 + 1)− 1

2ln(2x3 − 1).

Thus, the first derivative of f is given by

f ′(x) = 1

x + 2( 2x

x2 + 1

)− 1

2

( 6x22x3 − 1

)=

1

x +4x

x2 + 1− 3x2

2x3 − 1∀ x ∈ (

13√2,∞).

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 44/65

Page 46: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Def (函數 ax 和 loga x 的定義)Let 0 < a = 1.(1) The exponential function to the base a (以 a 為底的指數函數) is defined by

ax ≡ ex ln a ∀ x ∈ R.

(2) The logarithmic function to the base a (以 a 為底的對數函數) is defined by

loga x ≡ ln xln a ∀ x > 0.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 45/65

Page 47: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Thm (函數 au 和 loga |u| 的微分公式)Let u = u(x) be a diff. function of x and 0 < a = 1.(1) d

dx [ax] = (ln a)ax ∀ x ∈ R, ddx [au] = (ln a)au · u ′.

(2) ddx

[loga x

]= 1

(ln a)x for x > 0, ddx

[loga u

]= u ′

(ln a)u for u > 0.

(3) ddx

[loga |x|

]= 1

(ln a)x for x = 0.

(4) ddx

[loga |u|

]= u ′

(ln a)u for u = 0.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 46/65

Page 48: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 47/65

Page 49: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Section 2.5Implicit Differentiation

(隱微分)

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 48/65

Page 50: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Representations of a functionExplicit Form (顯式):

y = f(x),

where x is the independent variable (自變量) and y is thedependent variable (應變量).

Implicit Form (隱式):

F(x, y) = 0,

where we assume that y = y(x) is a diff. function of x.

[Q]: How to fined y ′ = dydx under the implicit form?

Ans: apply the technique of Implicit Differentiation!

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 49/65

Page 51: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Example (補充題)

Find dydx if xy = 1.

Sol: Assume that y = y(x) is a diff. function of x. Thaen x and ysatisfy the following equation

F(x, y) ≡ xy − 1 = x · y(x)− 1 = 0.

Differentiating w.r.t. x on both sides of equality gives that

ddx [x · y(x)− 1] = y + x · dy

dx =ddx(0) = 0.

So, we have dydx = −y

x for x = 0.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 50/65

Page 52: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Example 8 (利用隱微分求切線方程式)Find the tangent line to the graph of

x2(x2 + y2) = y2 or F(x, y) ≡ x4 + x2y2 − y2 = 0

at the point (√2/2,

√2/2).

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 51/65

Page 53: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Solution of Example 8

Sol: Assume that y = y(x) is a diff. function of x. It follows fromthe Chain Rule that

4x3 + 2xy2 + 2x2y · dydx − 2y · dy

dx = 0.

Thus, the first derivative dydx is given by

dydx =

−2x(2x2 + y2)2y(x2 − 1)

=x(2x2 + y2)y(1− x2) .

At the given point, m = dydx

∣∣∣x=y=

√2

2

= 3/21/2 = 3, and hence the

equation of the tangent line at this point is

y −√2

2= 3

(x −

√2

2

)or y = 3x −

√2.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 52/65

Page 54: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 53/65

Page 55: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 54/65

Page 56: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 55/65

Page 57: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 56/65

Page 58: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Logarithmic Differentiation (對數微分法)

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 57/65

Page 59: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Section 2.6Derivatives of Inverse Functions

(反函數的微分法則)

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 58/65

Page 60: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Thm 2.17 (反函數的可微分性)Let f be diff. on an open interval I. If f has an inverse functiong = f−1, then g is diff. at any x ∈ range(f) for which f ′(g(x)) = 0,with the derivative

g ′(x) = 1

f ′(g(x)) .

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 59/65

Page 61: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 60/65

Page 62: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 61/65

Page 63: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 62/65

Page 64: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Thm 2.18 (反三角函數的微分公式)Let u = u(x) be a diff. function of x. Then(1) d

dx sin−1 u = u ′√1−u2

, ddx cos−1 u = −u ′

√1−u2

.

(2) ddx tan−1 u = u ′

1+u2 ,ddx cot−1 u = −u ′

1+u2 .

(3) ddx sec−1 u = u ′

|u|√

u2−1, d

dx csc−1 u = −u ′

|u|√

u2−1.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 63/65

Page 65: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 64/65

Page 66: Chapter 2 Differentiation (微分)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Thank you for your attention!

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 65/65