chapter 2 meteorology and oceanography1 meteorology and oceanography items to be considered for...

52
PART II ACTIONS AND MATERIAL STRENGTH REQUIREMENTS, CHAPTER 2 METROLOGY AND OCEANOGRAPHY – 57 – Chapter 2 Meteorology and Oceanography 1 Meteorology and Oceanography Items to be Considered for Performance Verification 1.1 General The following meteorology and oceanography items, shall be considered with regard to the performance verification of port facilities. Atmospheric pressure and its distribution are factors that generate winds. Winds generate waves and storm surge, and affect the wind pressure that acts upon port facilities and moored vessels, and become a factor to interfere with cargo handling and other port operations. See 2 Winds for details. The tidal level affects soil pressure and water pressure, which act on port facilities, and becomes a factor to interfere with cargo handling and other port operations. Also, it has an effect on waves in areas of shallow water. See 3 Tidal level for details. Waves exert wave force on port facilities, and become a factor to interfere with the functioning of port facilities. They also act on moored vessels, causing them to move and interfere with cargo handling and other port operations. They also can raise the mean water level, which has effects similar to the tidal level as mentioned above. See 4 Waves for details. Tsunami exerts wave force and fluid force on port facilities, and becomes a factor to interfere with the functioning of port facilities. It also acts on moored ships, causing them to move. See 5 Tsunamis for details. Water currents affect sediments on the sea bottom and become a factor to interfere with the functioning of port facilities. See 6 Water Currents etc. for details.

Upload: others

Post on 20-Jan-2021

6 views

Category:

Documents


1 download

TRANSCRIPT

  • PART II ACTIONS AND MATERIAL STRENGTH REQUIREMENTS, CHAPTER 2 METROLOGY AND OCEANOGRAPHY

    –57–

    Chapter 2 Meteorology and Oceanography

    1 Meteorology and Oceanography Items to be Considered for Performance Verification1.1 GeneralThefollowingmeteorologyandoceanographyitems,shallbeconsideredwithregardtotheperformanceverificationofportfacilities.

    ① Atmosphericpressureanditsdistributionarefactorsthatgeneratewinds.

    ②Windsgeneratewavesandstormsurge,andaffectthewindpressurethatactsuponportfacilitiesandmooredvessels,andbecomeafactortointerferewithcargohandlingandotherportoperations.See2 Windsfordetails.

    ③ The tidal level affects soil pressure andwater pressure,which act onport facilities, andbecomes a factor tointerferewithcargohandlingandotherportoperations.Also,ithasaneffectonwavesinareasofshallowwater.See3 Tidal levelfordetails.

    ④Wavesexertwaveforceonportfacilities,andbecomeafactortointerferewiththefunctioningofportfacilities.Theyalsoactonmooredvessels,causingthemtomoveandinterferewithcargohandlingandotherportoperations.Theyalsocanraisethemeanwaterlevel,whichhaseffectssimilartothetidallevelasmentionedabove.See4 Wavesfordetails.

    ⑤ Tsunamiexertswaveforceandfluidforceonportfacilities,andbecomesafactortointerferewiththefunctioningofportfacilities.Italsoactsonmooredships,causingthemtomove.See5 Tsunamisfordetails.

    ⑥Watercurrentsaffectsedimentsontheseabottomandbecomeafactortointerferewiththefunctioningofportfacilities.See6 Water Currents etc.fordetails.

  • –58–

    TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

    2 WindsPublic NoticeWinds

    Article 6Characteristicsofwindsshallbesetbythemethodsprovidedinthesubsequentitemscorrespondingtothesingleactionorcombinationoftwoormoreactionstobeconsideredintheperformancecriteriaandtheperformanceverification:(1) Oceansurfacewinds tobeused in theestimationofwavesandstormsurge shallbeappropriately

    definedintermsofwindvelocity,winddirectionandothersbasedonthelong-termwindobservationorweatherhindcasting.

    (2) Windstobeusedinthecalculationofwindpressuresshallbeappropriatelydefinedintermsofthewindvelocityanddirectioncorrespondingtothereturnperiodthroughthestatisticalanalysisofthelong-termdataofobservedorhindcastedwindsorothermethods.

    (3) Windstobeusedinthecalculationofwindenergyshallbeappropriatelydefinedintermsofthejointfrequencydistributionofwindvelocityanddirectionforacertaindurationoftime,basedonthelong-termdataofobservedorhindcastedwinds.

    [Commentary]

    1) WindstobeusedintheEstimationofWavesandStormSurge:Windstobeusedintheestimationofwavesandstormsurgeshallbeobservedorhindcastedvaluesfor30yearsormoreasastandard.

    2) WindstobeusedintheCalculationofWindPressure:Windstobeusedinthecalculationofwindpressureshallbeobservedorhindcastedvaluesfor30yearsormoreasastandard.

    [Technical Note]

    2.1 General

    (1)Windisoneofthemostdistinctivemeteorologicalphenomena,namely,thephenomenonthattheairmovesduetoatmosphericpressuredifferencesandheat.Theconditionsunderwhichwindsblowovertheoceanareusuallyverydifferentthanforthoseoverland.Windvelocitiesovertheoceanaremuchhigherthanthoseoverlandneartheshore.1)Forperformanceverificationofportfacilities,theeffectsofwindsmustbeappropriatelyevaluated.

    (2)GradientWinds

    ① Thevelocityofthegradientwindcanbeexpressedasafunctionofpressuregradient,radiusofcurvatureofbarometicisolines,latitude,andairdensityasinequation(2.1.1).

    (2.1.1)

    where Vg :velocityofgradientwind(m/s);inthecaseofananticyclone,equation(2.1.1)givesanegative

    valueandsotheabsolutevalueshouldbetaken. ∂p/∂r :pressuregradient(takentobepositiveforacyclone,negativeforananticyclone)(kg/m2/s2) r :radiusofcurvatureofbarometicisolines(m) ω :angularvelocityofEarth'srotation(1/s)ω =7.27×10-5/s φ :latitude(°) ρa :densityofair(kg/m3)

    Beforeperformingthecalculation,measurementunitsshouldfirstbeconvertedintotheMKSunitslistedabove.Notethat1ºoflatitudecorrespondstoadistanceofapproximately1.11×105m,andanairpressureof1.0hPais100kg/m/s2.

  • PART II ACTIONS AND MATERIAL STRENGTH REQUIREMENTS, CHAPTER 2 METROLOGY AND OCEANOGRAPHY

    –59–

    ② Agradientwindforwhichthebarometicisolinesarestraightlines(i.e.,theirradiusofcurvatureinequation(2.1.1)isinfinite)iscalledthegeostrophicwind.Inthiscase,thewindvelocityisasequation (2.1.2).

    (2.1.2)

    ③ Theactualseasurfacewindvelocityisgenerallylowerthanthevalueobtainedfromthegradientwindequation.Moreover, although the direction of a gradientwind is parallel to the barometic isolines in theory, the seasurfacewindblowsatacertainangleαtothebarometicisolinesinrealityasillustratedinFig. 2.1.2.Inthenorthernhemisphere,thewindsaroundacycloneblowinacounterclockwisedirectionandinwards,whereasthewindsaroundananticycloneblowinaclockwisedirectionandoutwards.Itisknownthattherelationshipbetweenthevelocityofgradientwindsandthatoftheactualseasurfacewindvarieswiththelatitude.ThisrelationshipundertheaverageconditionsissummarizedasinTable 2.1.1.3)

    Low

    α

    High

    α

    (a) Cyclone (b) Anticyclone

    Fig. 2.1.2 Wind Direction for a Cyclone (Low) and an Anticyclone (High)

    Table 2.1.1 Relationship between Sea Surface Wind Speed and Gradient Wind SpeedLatitude(°) 10 20 30 40 50

    Angleα(°) 24 20 18 17 15

    VelocityratioVs /Vg 0.51 0.60 0.64 0.67 0.70

    (3)TyphoonWindsIncalculationsconcerningthegenerationofstormsurgeorwavesduetoatyphoon,itiscommontoassumethattheairpressuredistributionfollowseitherFujita’sequation (2.1.3)4)or Myers’ equation (2.1.4) 4);theconstantsinthechosenequationaredeterminedbasedonactualairpressuremeasurementsintheregionoftyphoons.

    Fujita’sformula

    (2.1.3)

    Myers’formula

    (2.1.4)

    where p :airpressureatadistancer fromthecenteroftyphoon(hPa) r :distancefromthecenteroftyphoon(km) pc :airpressureatthecenteroftyphoon(hPa) r0 :estimateddistancefromthecenteroftyphoontothepointwherethewindvelocityismaximum

    (km) ∆p :airpressuredropatthecenteroftyphoon(hPa) ∆p=p∞-pc p∞ :airpressureatr =∞(hPa); p∞=pc+∆p

    Thesizeofatyphoonvarieswithtime,andso r0and∆p mustbedeterminedasthefunctionsoftime

    (4)MeteorologicalGPVOrganizations such as the Japan Meteorological Agency, the European Center for Medium-Range Weather

  • –60–

    TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

    Forecasts(ECMWF),andAmerica’sNationalCenterforEnvironmentalProtection(NCEP),calculatethevaluesofitemssuchasairpressure,windvelocity,winddirection,andwatervaporflux,basedoncalculationmodelsformeteorologicalvaluesthatuseathree-dimensionalcalculationgrid,andthevaluesatthegridpoints(GPV:gridpointvalues)aresaved.TheseGPV’smaybeusedinsteadofwindhindcastingsbasedonequation (2.1.1) throughequation (2.1.4). However,whenagridwithlargespacingisusedformeteorologicalcalculationstheatmosphericpressureandwindsmaynotbesatisfactorilyreproducedatplaceswheremeteorologicalconditionschangedrasticallywithposition,suchasnear thecentersof typhoons. Therefore,whenGPV’sareused, it ispreferabletouseobservationalvaluestoverifytheprecision.

    (5)WindEnergyIfwindsareconsideredasthemovementoftheairthenthewindenergythatcrossesaunitcross-sectionalareainunittimeisgivenbyequation(2.1.5).1) Winds forestimating thewindenergyshallbeappropriatelyspecifiedwith jointstatisticdistributions forvelocity and direction for a fixed time (usually, one year), based on long-term (usually, three years ormore)observedorhindcasteddata.

    (2.1.5)

    where P :windforceenergyperunitcross-sectionalarea(W/m2) ρa :airdensity(kg/m3) V :windvelocity(m/s)

    Inotherwords,thewindforceenergyisproportionaltothecubeofthewindvelocity,soasmalldifferenceinwindvelocitycanmeanabigdifferenceinenergy(powergeneration).Therefore,duringperformanceverificationoffacilitiesthatusewindforceenergy,itisimportanttoaccuratelyunderstandhowtheconditionschangewithregardtotimeandspace. Inthecoastalzonethewindconditionsvariesdrasticallybetweenlandandsea.Also,windvelocityshowsgreatvariationonlandduetoaltitude,butovertheseathechangesinwindvelocitywithaltitudearegradual,soitispossibletoobtainhighlystabilizedwindsthatareappropriateforpowergenerationatrelativelylowaltitudes.Forexample,theresultsofmeasurementsinthevicinityoftheKansaiInternationalAirport,showthatthewindenergyoverthecourseofayearatameasurementtower(MTstation)placedataheightof15metersovertheoceanwereroughlythesameasatalandstation(Cstation)withanaltitudeof100meters,andaboutfivetimesgreaterthanatalandstationwithanaltitudeof10meters.5)

    2.2 Characteristic Values of Wind Velocity

    (1)DeterminationofWindCharacteristicsTheelementsofwindsaredirectionandvelocity,wherethewinddirectionisexpressedasoneofsixteendirectionsand thewindvelocity is themeanvelocityover10minutes. Thevelocityofwinds thatactsdirectlyonportfacilitiesandmooredshipsisspecifiedingeneralasavelocityforacertainperiodofoccurrence,asestimatedfromtheprobabilityofoccurrencedistributionofwindvelocitybasedonlong-termmeasuredvaluesover30yearsormore.Usingtheannualmaximum10-minutemeanwindvelocitiesoverabout35years,basedonMeasurementTechnicalDataSheet#34oftheJapanMeteorologicalAgency,7)andassumingadoubleexponentialdistribution,theexpectedwindvelocitiesover5,10,20,50,100,and200yearshavebeencalculatedat141meteorologicalstations. Forperformanceverificationoffacilities, thesedatacanbeusedasreferencevalues,however if thelocationofstudyhasdifferenttopographicalconditionsfromtheclosestofthesemeteorologicalstationsthenitisnecessarytotakemeasurementsforatleastoneyeartodeterminetheeffectofthetopography.8)

    (2)Thewindvelocitiesobtainedatthemeteorologicalstationsarethevaluesatabout10metersabovetheground.Therefore,whenusingthemeasuredvaluestoestimatethewindsovertheocean,iftheheightofthetargetfacilityisverydifferentfromtheheightmentionedabove,thencorrectionoftheheightshallbeperformedforthewindvelocity.Theverticaldistributionofwindvelocityisusuallyshownonalogarithmicscale,howeverforsimplicityanexponentialscaleisoftenusedduringperformanceverificationofvarioustypesoffacilities.

    (2.2.1)

    whereUh:windvelocityatheighth(m/s)U0:windvelocityatheighth0(m/s)

  • PART II ACTIONS AND MATERIAL STRENGTH REQUIREMENTS, CHAPTER 2 METROLOGY AND OCEANOGRAPHY

    –61–

    (3)Theexponentn inequation (2.2.1)varieswiththeroughnessof thenearbyterrainandthestabilityof theair,but ingeneral it ispossible touseavalueofn=1/10to1/4forperformanceverificationwhenspecifyingthewindvelocityforpurposessuchascalculatingwindpressure,andavalueofn≥1/7isoftenusedovertheocean.Statisticaldataforwindvelocityisusuallythemeanwindvelocityover10minutes,howeverdependingonthefacilitythemeanwindvelocityoverashortertimeperiodmayberequired,orthemaximuminstantaneouswindvelocitymayberequired,andinsuchcasesoneshouldunderstandthecharacteristicsoftheregionsuchastherelationshipbetween themainwindvelocityand themaximumwindvelocity, and thegust factor (definedasthe ratio between themaximum instantaneouswind speed and the 10-minutemeanwindvelocity) shouldbeestimated.

    2.3 Wind Pressure

    (1)Wind pressure shall be appropriately specified by considering items such as facility structure and facilitylocation.

    (2)Windpressurethatactsonsheds,warehouses,andcargohandlingequipmentshallbespecifiedasfollows.

    (a) Structuralstandardformobilecrane

    InArticle 9, Structural Standard For Mobile Crane, it is specified that thewind loadshallbecalculatedasfollows:

    ① Thevalueofthewindloadiscalculatedfromequation(2.3.1):

    (2.3.1)

    where W :windpressureforce(N) q :velocitypressure(N/m2) C :windpressurecoefficient A :pressure-receivingarea(m2)

    ② Thevalueofthevelocitypressureinequation(2.3.1)canbecalculatedfromeitherequation(2.3.2) orequation 2.3.3dependingontheconditionofthecrane:

    (2.3.2)

    (2.3.3)

    where h :height(m)abovegroundofthesurfaceofthecranethatreceivesthewindsuseh :16miftheheightislessthan16m.

    ③ Forthevalueofthewindpressurecoefficientitispossibletousethevaluefoundinwindtunneltestsofthecrane,orthevaluegiveninTable 2.3.1forthecategoryofthesurfaceofthecranethatreceivesthewinds.A“surfacecomposedofflatsurfaces”inTable 2.3.1meansthesurfaceofastructurewithabox-likeshapesuchasaboxgirder,operator’scab,machinechamber,orelectricalchamber.A“cylindricalsurface”includesthesurfaceofawirerope.The“facearea”meanstheareaoftheshadedportioninFig. 2.3.1.

  • –62–

    TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

    Table 2.3.1 Wind Pressure Coefficients for the Wind Load on a Crane

    Classificationofcranesurfacesthatreceivewinds ValueSurfacescomposedwithhorizontaltrusses(Otherthanhorizontaltrussesmadewithsteelpipe)

    W1 < 0.1 2.00.1 ≤ W1 < 0.3 1.80.3 ≤ W1 < 0.9 1.60.9 ≤ W1 2.0

    Surfacescomposedofflatsurfaces W2 < 5 1.25 ≤ W2 < 10 1.310 ≤ W2 < 15 1.415 ≤ W2 < 25 1.625 ≤ W2 < 50 1.750 ≤ W2 < 100 1.8100 ≤ W2 1.9

    Surfacescomposedofcylindricalsurfacesorhorizontaltrussesmadewithsteelpipe

    W3 < 3 1.23 ≤ W3 0.7

    Note:Inthistable,W1,W2,andW3representthefollowingvalues,respectively:W1:AreaOccupyingRatio(thevalueobtainedbydividingtheprojectedareaofthesurfaceofthecrane

    thatreceivesthewindsbytheareaofthesurfacethatreceivesthatsamewinds)W2:Thevalueobtainedbydividingthelengthinthelongitudinaldirectionofthesurfaceofthecrane

    thatreceivesthewindsbythewidthofthesurfacethatreceivesthatsamewinds.W3:Thevalueobtainedbymultiplyingtheprojectedwidthofthecylinderorsteelpipe(unit:m)bythe

    squarerootofthevalueshownin2)forthevelocitypressure(unit:N/m2)whenthecranestops.

    hProjected Area Ar : Area of the shaded portion

    Area Occupying Ratio W1 = Arh

    Fig. 2.3.1 Projected Area

    ④ Thepressure-receivingareainequation (2.3.1)shallbetheareaofthesurfaceofthecranethatreceivesthewindsprojectedontoasurfaceperpendiculartothedirectionofthewinds(hereafterinthissectionreferredtoas“projectedarea”).Whentherearetwoormoresurfacesofthecranethatreceivethewinds,theareasubjecttowindpressurecalculationisdeterminedbysummingupthefollowing;

    1) theprojectedareaofthefirstsurfaceinthedirectionofthewinds

    2) theareasobtainedbymultiplying theportionsof thesurfaceareasof thesecondand latersurfaces inthedirectionofthewinds(hereafterinthisparagraph“secondandlatersurfaces”)thatoverlapthefirstsurfaceinthedirectionofthewindsbythereductionfactorsshowninFig. 2.3.2

    3) theprojectedareasoftheportionsofthesurfaceareasofthesecondandlatersurfacesthatdon’toverlapthefirstsurfaceinthedirectionofthewinds.

    InFig. 2.3.2,b,h,φ,andη representthefollowingvalues,respectively:

    b :distancebetweenthebeamsofthecranethatreceivethewinds(seeFig. 2.3.3)h :heightofthefirstbeaminthedirectionofthewinds,amongthebeamsthatreceivethewinds(see Fig. 2.3.3)φ : theareaoccupyingratioof thefirstbeamin thedirectionof thewindsamongthebeamsfor the surfacesofthecranethatreceivethewinds(forsurfacesthatareformedofhorizontaltrussesφ isthe valueW1specifiedinthenoteofthetableoftheprevioussection,andforsurfacesformedofflat surfacesorcylindricalsurfacesitis1)η :reductionfactor

  • PART II ACTIONS AND MATERIAL STRENGTH REQUIREMENTS, CHAPTER 2 METROLOGY AND OCEANOGRAPHY

    –63–

    b/h=6

    b/h=5

    b/h=4

    b/h=3

    b/h=2b/h=1

    b/h=0.5

    10.80.60.40.20φ

    0.2

    0.4

    0.6

    0.8

    1

    0

    η

    Fig. 2.3.2 Reduction Factors for Projected Areas

    hb hb

    (b) Beams of Box Type Structure(a) Beams of Steel Structure

    Fig. 2.3.3 Measurement of b and h

    (b) StructuralstandardsformobilecraneInArticle 9, Structural Standard For Mobile Crane,itisspecifiedthatthewindloadshallbecalculatedasfollows:

    ① Thevalueofthewindloadcanbecalculatedfromequation(2.3.1).

    ② Thevelocitypressurecanbecalculatedfromequation (2.3.2).

    ③ Forthevalueofthewindpressurecoefficientitispossibletousethevaluefoundinwindtunneltestsofthemobilecranethatreceivesthewinds,orthevaluegiveninTable 2.3.1ofSection a), Structural Standard For Mobile Crane”.ForthevalueofvelocitypressureinW3calculation,thevaluefromequation (2.3.3) shallbeused.

    ④ Thepressure-receivingareacanbecalculatedbythemethodof4)inSection a) Structural Standard For Mobile Crane.

    (c)StructuralstandardforderrickcraneInArticle 11, Structural Standard For Derrick Crane,itisspecifiedthatthewindpressureforceshallbecalculatedasfollows:

    ① Thevalueofthewindpressureforcecanbecalculatedfromequation(2.3.4).Inthiscasethewindvelocityistakentobe50m/satthetimeofstorms,and16m/satallothertimes.

    (2.3.4)where

    W :windpressureforce(N) q :velocitypressure(N/m2) C :windpressurecoefficient A :pressure-receivingarea(m2)

    ② Thewindvelocitypressurecanbecalculatedfromequation (2.3.5):

    (2.3.5)

  • –64–

    TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

    where q :velocitypressure(N/m2) U :windvelocity(m/s) h :height(m)abovegroundofthesurfaceofthecranethatreceivesthewinds (useh=15m,iftheheightislessthan15m)

    ③ ForthevalueofthewindpressurecoefficientitispossibletousethevaluefoundinwindtunneltestsorthevaluegiveninTable 2.3.2forthekindofthesurfaceandthecompletenessratioofthesurfacethatreceivesthewinds.

    Table 2.3.2 Wind Pressure Coefficients for the Wind Pressure Force of a Derrick

    Classificationofthesurfacethatreceivesthewinds CompletenessratioWindpressurecoefficient

    Surfacescomposedofhorizontallatticesorhorizontaltrusses W1<0.1 20.1≤W1<0.3 1.80.3≤W1<0.9 1.6

    0.9≤W1 2Surfacescomposedofflatsurfaces --- 1.2

    Wireropesurfaces --- 1.2Note:Thevalueoftheareaoccupyingratioisthevalueobtainedbydividingtheprojectedareaofthesurfaceofthecranethatreceivesthewindsbytheareaofthesurfacethatreceivesthatsamewinds.

    ④ Thepressure-receivingareaistheareathatreceivesthewindprojectedontoasurfaceperpendiculartothedirectionofthewinds.Whentherearetwoormoresurfacesthatoverlapinthedirectionofthewinds,itshallbecalculatedasfollows;Theareasubjecttowindpressurecalculationisdeterminedbysummingupthefollowing;

    1) Incasetherearetwooverlappingsurfacesthatreceivethewinds

    i) theprojectedareaofthefirstsurfaceinthedirectionofthewinds

    ii)60%oftheareasoftheportionsofthesecondsurfaceinthedirectionofthewindsthatoverlapthefirstsurface

    iii)theprojectedareasoftheportionsofthesecondsurfaceinthedirectionofthewindsthatdon’toverlapthefirstsurface.

    2) Incasetherearethreeormoresurfacesthatreceivethewinds

    i) 50%oftheprojectedareasoftheportionsofthethirdandlatersurfacesinthedirectionofthewindsthatoverlapthefirstsurface

    ii)theprojectedareasoftheportionsofthethirdandlatersurfacesinthedirectionofthewindsthatdon’toverlapthefirstsurface.

    ThewindpressurethatactsuponstructuressuchashighwaybridgesandelevatedhighwayscanbespecifiedaccordingtotheHighway Bridge Specifications and Commentary.10)IntheHighway Bridge Specifications and Commentary,thewindpressureforcethatactsuponabridgeisspecifiedbyappropriatelyconsideringthelocation,topography,andgroundconditionsofthebridgeconstruction,thestructuralcharacteristicsofthebridge,anditscross-sectionalshape.

    a) SteelbeamsThewindpressureforcethatactsonasteelbeamisthevaluegiveninTable 2.3.3,whichisthevalueperonemeteroflengthinthebridgeaxialdirectionforonespan.

    Table 2.3.3 Wind Pressure Force for Steel Beams (Units: kN/m)

    Cross-sectionalshape Windpressureforce1≤B/D<8 4.0-0.2BDD≥6.08≤B/D 2.4D≥6.0

    where B=thetotalwidthofthebridge(m)(seeFig. 2.3.4) D=thetotalheightofthebridge(m)(seeTable 2.3.4)

  • PART II ACTIONS AND MATERIAL STRENGTH REQUIREMENTS, CHAPTER 2 METROLOGY AND OCEANOGRAPHY

    –65–

    B

    Fig. 2.3.4 Measurement of B

    Table 2.3.4 Measurement of D

    Bridgeguardfence

    Walltyperigidguardfence

    Otherthanawalltyperigidguardfence

    MeasurementofD

    D

    0.4m

    D

    (b)DualmaintrussThewindpressureforcethatactsonadualmaintrussisthevalueshowninTable 2.3.5,per1m2oftheeffectiveperpendicularprojectedareaonthewindwardside.ForastandarddualmaintrussitisalsopossibletousethewindpressureforceshowninTable 2.3.6peronemeteroflengthofthearchmaterialonthewindwardsideinthebridgeaxialdirection.

    Table 2.3.5 Wind Pressure Force on a Dual Main Truss (Unit: kN/m2)

    Truss WhenthereisaliveloadWhenthereisnoliveload1.25/√—φ2.5/√

    —φ

    Bridgefoundation WhenthereisaliveloadWhenthereisnoliveload1.53.0

    0.1≤φ≤0.6whereφ=areaoccupyingratioofthetruss(theratioofthetrussprojectedareatothetrussenvelopedarea)

    Table 2.3.6 Wind Pressure Force on a Standard Dual Main Truss (Units: kN/m)

    Archmaterial Windpressureforce

    Loadedarch WhenthereisaliveloadWhenthereisnoliveload1.5+1.5D+1.25√—λh≥6.0

    3.0D+2.5√—λh≥6.0

    Notloadedarch WhenthereisaliveloadWhenthereisnoliveload1.25√—λh≥3.02.5√—λh≥3.0

    7≤λ/h≤40whereD:totalheightofthebridgefloor(m)(notincludingtheheightoftheportionthatoverlapsthearchportionasseenfromthehorizontaldirectionperpendiculartothebridgeaxis)(seeFig. 2.3.5)h:heightofthearchportion(m)λ:maintrussheight(m)fromthecenterofthelowerarchportiontothecenteroftheupperarchportion

  • –66–

    TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

    h

    D1

    D=D1–h

    D

    0.4m

    Wall type rigid guard fence

    (a) Upper roadway truss (b) Lower roadway truss

    Bridge protective fence otherthan a wall type rigid guard fence

    Verticalbeam

    Floorbeam

    Archportion

    Verticalbeam

    Floorbeam

    Archportion

    Fig. 2.3.5 Measurement of D for a Dual Main Truss

    (c) OthertypesofbridgesEither(a)or(b)dependingonthebeamshapeshallbeappliedtoobtainthewindpressureforceonothertypesofbridgebeams.Thewindpressureforceonmembersnotdescribedunder(a)or(b)isthevaluegiveninTable 2.3.7dependingonthecross-sectionalshape.Whenthereisaliveload,thewindpressureforceistakentobe1.5kN/mfortheliveloadataposition1.5mfromthebridge’suppersurface.

    Table 2.3.7 Wind Pressure Force Acting on Bridge Members other than Steel Beams and Dual Main Trusses (Unit: kN/m2)

    Cross-sectionalshapeofmembersWindpressureforce

    Membersonthewindwardside

    Membersontheleewardside

    Circularshape WhenthereisaliveloadWhenthereisnoliveload0.751.5

    0.751.5

    Polygonalshape WhenthereisaliveloadWhenthereisnoliveload1.53.0

    0.751.5

    (d)ParallelbridgesWhenthesteelbeamsareparallel,appropriatelycorrectthewindpressureforceofTable 2.3.3byconsideringthateffect.

    (e) Thewindpressureforcethatactsdirectlyonthelowerportionofthestructureistakentobeahorizontalloadthatiseitherperpendiculartothebridge’saxialdirectionorparalleltothebridge’saxialdirection.Itisassumedthatitdoesn’tactsimultaneouslyinbothdirections.ThemagnitudeofthewindpressureforceshallbethevalueshowninTable 2.3.8fortheeffectiveverticalprojectedareainthewinddirection.

    Table 2.3.8 Wind Pressure Force Acting on the Lower Portion of the Structure (Unit: kN/m2)

    Cross-sectionalshapeofthebody Windpressureforce

    Circularorellipticalshape WhenthereisaliveloadWhenthereisnoliveload0.751.5

    Polygonalshape WhenthereisaliveloadWhenthereisnoliveload1.53.0

    References

    1) Nagai,T.,K.Sugahara,K.SatoandK.Kawaguchi:CharacteristicofJapaneseCoastalWindPowerbasedonLongTermObservation,TechnicalNoteofPHRI,No.999,p.59,2001

    2) Nagai,T:ObservedOffshoreWindCharacteristicsfromaViewofEnergyUtilization,TechnicalNoteofPHRI,No.1034,p.34,2002

    3) Takahashi,K:Studyonquantitativeweatherforecastingbasedonextrapolation(Part1),StudyBulletinNo.13,19474) JSCE:TheCollectedFormulaofHydraulics(1985Edition),JSCE,Nov.1985

  • PART II ACTIONS AND MATERIAL STRENGTH REQUIREMENTS, CHAPTER 2 METROLOGY AND OCEANOGRAPHY

    –67–

    5) Nagai,T.,H.Ogawa,A,Nakamura,K.SuzukiandT.Nukada:Characteristicsofoccurrenceofoffshorewindenergybasedonobservationdata,JSCEProceedingsofCoastalEng,.,pp.1306-1310,2003

    6) Nagai,T,I.Ushiyama,Y.Nemoto,K.Kawanishi,T.Nukada,K.SuzukiandT.Otozu:Examinationoffieldapplicationoflightingsystemutilizingcoastalwindforce,JournaloftheJapanSocietyforMarineSurveyandTechnologyVol.17No.1,JSMST,2005

    7) JapanMeteorologicalAgency,Catalogueofannualmaximumwindspeed (1928-1966)atvariousplaces inJapanand theprobabilityofoccurrence,MeteorologicalAgencyobservationTechnicalNoteNo.34,1971

    8) JSCE,CivilEngineeringHandbook,Giho-doPublications,1974,pp.541-5449) IndustrialHealthDivision,IndustrialSafetyandHealthDept.,LabourStandardsBureau,MinistryofHealth,Labourand

    Welfare:Commentaryofstructuralstandardsofvarioustypesofcranes,JapanCraneAssociation,200410) JapanRoadAssociation:Specificationsandcommentaryofhighwaybridges,PartIGeneralandPartIISteelBridge,2002

  • –68–

    TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

    3 Tidal LevelPublic NoticeTidal Level

    Article 7Thetidelevelshallbeappropriatelyspecifiedasthewaterlevelrelativetoadatumlevelforportandharbormanagementthroughthestatisticalanalysisoftheobservedorhindcasteddataand/orothers,bytakingintoaccounttheastronomicaltides,meteorologicaltides,wavesetup(riseofwaterlevelbywavesneartheshore),andabnormaltidallevelsduetotsunamisandothers.

    [Commentary]

    (1) TidalLevel:Whenspecifyingthetidallevelfortheperformanceverificationoffacilitiessubjecttotechnicalstandards,appropriatelyconsiderhowthetidallevelaffectstheactionofwavesandwaterpressure.Also,whenspecifyingthecombinationoftidallevelandwavesintheperformanceverificationoffacilitiessubjecttotechnicalstandards,amongthetidallevelsthathaveahighlikelihoodofoccurringsimultaneouslywithwaves,takeasastandardthetidallevelthatwouldbemostdangerousfromtheviewpointoftheperformanceverificationofsuchfacilities.

    (2) AstronomicalTides:Withregard toastronomical tides thatareconsidered in thespecificationof the tidal level, takeasastandardthespecificationofchartdatumlevel,meansealevel,meanmonthly-highestwaterlevel,andmeanmonthly-lowestwaterlevel,basedonmeasuredvaluesforoneyearormore.

    (3) StormSurge:Whenspecifyingstormsurge,appropriatelyconsiderlong-termmeasuredvalues.Asastandard,long-termmeans 30 years ormore. When specifying storm surge, if long-termmeasured values cannotbe available, then appropriately consider items such as hindcasted values of storm surge based onmeteorologicalconditionsandrecordsinpastdisasters.Inthestormsurgehindcasting,wave-stepupduetowavebreakingneartheshoreshallbeappropriatelyconsideredasnecessary.

    [Technical Note]

    3.1 Astronomical Tides

    (1)Definitions1),2),3)Astronomicaltidesaretidesproducedbythegravityofthemoonandsunandcanbeviewedasasumofcomponentsknownastidalconstituents.Thedefinitionsfortherepresentativetypesofwaterlevelareasfollows:

    ①Meansealevel(MSL)Theaverageheightofthesealeveloveracertainperiodisreferredtoasthemeansealevelforthatperiod.Forpracticalpurposes,themeansealevelistakentobetheaverageofthewaterleveloveroneyear.

    ② Chartdatumlevel(CDL)Thestandardwaterlevelobtainedbysubtractingthesumoftheamplitudesofthefourprincipaltidalconstituents(M2,S2,K1andO1)fromthemeansealevel.Thisisusedasthestandardforwaterdepthinnauticalcharts.

    ③Meanmonthly-highestwaterlevel(HWL)Theaverageofthemonthly-highestwaterlevel,wherethemonthly-highestwaterlevelforaparticularmonthisdefinedasthehighestwaterleveloccurringintheperiodfrom2daysbeoreto4daysafterthedayofthelunarsyzygy(newmoonandfullmoon).

    ④Meanmonthly-lowestwaterlevel(LWL)Theaverageofthemonthly-lowestwaterlevel,wherethemonthly-lowestwaterlevelforaparticularmonthisdefinedasthelowestwaterleveloccurringintheperiodfrom2daysbeforeto4daysafterthedayofthelunarsyzygy.

    ⑤Meanhighwaterlevel(MHWL)Themeanvalueofallofthehighwaterlevels,includingthespringtideandtheneaptide.

    ⑥Meanlowwaterlevel(MLWL)Themeanvalueofallofthelowwaterlevels,includingthespringtideandtheneaptide.

  • PART II ACTIONS AND MATERIAL STRENGTH REQUIREMENTS, CHAPTER 2 METROLOGY AND OCEANOGRAPHY

    –69–

    ⑦ Nearhighesthighwaterlevel(NHHWL)Thewaterlevelobtainedbyaddingthesumoftheamplitudesofthefourprincipaltidalconstituents(M2,S2,K1andO1)tothemeansealevel.

    ⑧ Highwaterofordinaryspringtides(HWOST)ThewaterlevelobtainedbyaddingthesumofahalfamplitudeofthetidalconstituentsM2andS2tothemeansealevel.TheheightoftheHWOSTasmeasuredfromthechartdatumisknownasthespringrise.

    ⑨ Lowwaterofordinaryspringtides(LWOST)ThewaterlevelobtainedbysubtractingthesumofahalfamplitudeofthetidalcomponentsM2andS2fromthemeansealevel.

    ⑩MeansealevelofTokyoBay(TP)MeansealevelforTokyoBaydeterminedduringtheMeijiperiodfromtidallevelobservations.Sincethen,TPhasbecomethestandardformeasuringaltitudeinJapan.ThebenchmarkislocatedinNagata-cho,Chiyoda-ku,Tokyo.Incidentally,TPdoesnotcorrespondtothepresentdaymeansealevelofTokyoBay.

    Therearefourprincipaltidalconstituents,namely,theM2tide(theprincipallunarsemi-diurnalcomponentof tides, period = 12.421 hours), the S2 tide (the principal solar semi-diurnal component of tides, period =12.00hours),theK1tide(theluni-solardiurnalcomponentoftides,period=23.934hours),andtheO1tide(theprincipallunardiurnalcomponentoftides,period=25.819hours).

    (2)SeasonalandAnnualChangesinMeanWaterLevel2)ThemeanwaterlevelforeachmonthvariesovertheyearduetofactorssuchastheoceanwatertemperatureandtheatmosphericpressuredistributionneartheJapaneseislands,andinmanyplacesthemeanwaterlevelcanvaryby±5to20cmovertheyear.TypicallyalongtheJapanesecoastitishigherinthesummerandlowerinthewinter. Theannualmeanwaterlevelisalsoaffectedbyfactorssuchastheoceanwatertemperatureandatmosphericpressuredistributionforthatyear,andtheremaybevariationsof±10cmdependingontheoceanregion.

    (3)OccurrenceProbabilityDistributionofAstronomicalTidalLevels4)Astronomicaltidallevelshaverepeatedhightidesandlowtidesabouttwiceperday,andrepeatedhighesttidesandlowesttidesabouttwicepermonth.Theshapeoftheoccurrenceprobabilitydistributionoftheseastronomicaltidallevelsvarieswithlocation,andthetidallevelsthathavethehighestprobabilityofoccurrencearethetidallevelsthatareclosetothemeansealevel,whiletheoccurrenceprobabilityofhightidallevelssuchasthemean-monthlyhighestwaterlevel,orlowtidallevelssuchasthemeanmonthlylowestwaterlevel,aresmall.

    3.2 Storm Surge

    (1)DefinitionsBesidesastronomicaltidesthatarecausedbythegravityofthemoonandsun,theheightoftheoceansurfacecan change due to factors such as changes in atmospheric pressure andwinds accompanying the passage oflowatmosphericpressuresystems(includingtyphoons,hurricanes,andcyclones)andhighatmosphericpressuresystems. Suchmeteorological changes in the sea surface are calledmeteorological tides, and the differencebetweenthemeasuredtidallevelandtheforecastedastronomictidalleveliscalledthetidallevelanomaly.Inparticular,amongmeteorologicaltides,theriseintidallevelduetothepassageofalowpressuresystemiscalledastormsurge.

    (2)CausesofStormSurgeIftheatmosphericpressureattheseasurfaceislowered1hPaforasufficientlylongtimesothattheseasurfaceisinequilibriumwiththeatmosphericpressureattheseasurface,forexample,thentheoceansurfacerisesbyabout1cmhigherthannormallevel.Or,ifthewindsblowataconstantwindvelocityforalongtimefromtheentranceofaninternalbaytowardthethroatofthebaysothattheseasurfacerisestowardthethroatofthebayandreachesequilibriumthentheamountofsealevelriseatthefurthestpointinsidethebayisroughlyproportionaltothesquareofthewindvelocity,anditisalsolargerwhenthebayislongerorshallower.Duringanactualtyphoontheatmosphericpressure,windvelocity,andwinddirectionontheseasurfacechangesinacomplicatedwayatdifferentlocationsandtimes.

    (3)EmpiricalFormulatoPredictStormSurgeThetideanomalyduetoatyphooncanberoughlyestimatedfromanempiricalformula,suchasequation (3.2.1).5)

    (3.2.1)

  • –70–

    TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

    where ξ :tideanomaly(cm) p0 :referenceatmosphericpressure(1010hPa) p :lowestatmosphericpressureatthetargetlocation(hPa) W :maximumvalueofthe10-minuteaveragewindspeedatthetargetlocation(m/s) θ :anglebetweenthemainwinddirectionforthebayandthatofthemaximumwindspeedWa, b, c:constantsdeterminedfrompastobservationalresultsatthetargetlocation

    (4)NumericalCalculationofStormSurgeAnumericalcalculationisconductedtoanalyzethephenomenonofstormsurgeinmoredetail.Inthisnumericalcalculation,itemssuchastheatmosphericpressurethatactsontheseasurface,thefrictionalstressontheseasurfaceduetowinds,thefrictionalstressthatactsonthecurrentsattheseabottom,andtheeddyviscosityoftheseawateraretakenintoconsideration,andthechangesintidallevelandfluxflowatthegridpointsarecalculatedateachtimestepfromthetimethetyphoonapproachesuntilitpasses.8) Thedistributionsoftheatmosphericpressureandthewindvelocityofthetyphoonarecalculatedfromthecentral(atmospheric)pressure,theradiusofmaximumwindvelocity,andtheforwardingspeedofthetyphoon. Theseabottomtopographyofabayisapproximatedusingagridwithaspacingofseveralhundredmeters,orfinerthanthat,givingthewaterdepthateachgridpoint.Therearevariousmodelsforthenumericalcalculationofstormsurge,thereforeanappropriatecalculationmethodthatsufficientlyreproducesstormsurgesinthetargetsearegionshallbeused. In recentyears,numericalcalculationmodelshavebeendeveloped thatconsiderdensity layersandwaterdischarged from rivers, aswell asmodels that do not treat storm surge, astronomical tides, andwaves as anindependentphenomenabutratherconsidertheirinteractions,andsuchmodelsmaysometimesbetterreproducetheactualphenomena.9),10),11),12)

    (5)StormSurgeandAstronomicalTidesStorm surge is caused bymeteorological disturbances such as typhoons,while astronomical tides are causedmainly by the gravity of themoon and sun. Since storm surge and astronomical tides are phenomenawithindependentcauses,thetimeofmaximumtideanomalyduetostormsurgemightoverlapeithertheastronomicalhightideorthelowtide. Inparticular,theastronomicaltiderangeislargeatinternalbaysattheSetoInlandSeaandalongthecoastoftheEastChinaSea,sothateveniftherehadbeenaremarkabletideanomalyitmighthavebeenpossibletoavoidgreatdamageifitoverlapslowtide.Whenspecifyingthedesigntidallevel,inorderthatonedoesnotoverlooksuchastormsurge,oneshouldnotconsiderthetidallevelobtainedbycombiningthestormsurgewiththeastronomicaltide,butratheroneshouldconsiderthecharacteristicsoftheoccurrenceoftideanomaliesjustduetostormsurge.

    (6)CoincidenceofStormSurgeandHighWavesAstormsurgeinaninternalbaymainlyoccursdueto thesuctioneffectofdepressionandwindsetupeffect.Usually,atthebayentrancethesuctioneffectpredominates,andthetideanomalyismaximalwhenatyphoonis closest and the atmospheric pressure has dropped themost. At the bay throat often thewind setup effectpredominates,sothatthetidallevelanomalyisgreatestwhenthetyphoonwindsareblowingfromtheentranceofthebaytowarditsthroat.Ontheotherhand,wavesarenotdirectlyrelatedtosuctioneffect,butrathertheydevelopduetowinds,andtheirpropagationisaffectedbythetopographyoftheseabed.Wavesarealsoaffectedby thesurrounding topography,andcaneasilybeshelteredbycapesor islands. Sincestormsurgediffers inthesewaysfromwaves,thepeakofthetideanomalyandthepeakofthewavesmaynotoccursimultaneously,dependingonthetrackandthelocationofthetyphoonwithinthebay.13)

    (7)MeanWaterLevelRiseduetoWaveBreakingInthesurfzone,regardlessofwhetherthesealevelisbeingdrawnupbydepressionorwindsetupeffect,thereisariseofthemeanwaterlevelduetowavebreaking,andthereislongperiodoscillation.Aspartofthisprocess,theriseofthemeanwaterleveliscalledwavesetup.Theamountofrisedependsonfactorssuchastheslopeoftheseabottomandthesteepnessoftheincidentwaves,andittendstobelargerneartheshoreline,andmaybe10%ormoreofthesignificantwaveheightatoffshore.Therefore,attheshorethatisdirectlyhitbywaves,theabsolutevalueoftheamountofriseofthemeanwaterlevelislarge,thisisalsoanimportantfactorofthetideanomaly. Fortheperformanceverificationofportfacilitiesinthesurfzoneitisnecessarytoconsidertheriseofthemeanwaterlevelduetowavebreakingaswellastheoscillation,howeverusuallythecalculationformulasanddiagramsforfactorssuchaswaveheightinsurfzone,waveforce,andwaveovertoppingrateincludetheeffectof riseof themeanwater level, therefore it isnotnecessary toseparatelyadd theamountof riseof themeanwaterlevelintothedesigntidallevel.However,inareaswherereefshavewidelyformedtheriseinwaterlevelisespeciallylarge,sometimesevenonemeterormore,soinsuchplacesitispreferabletoincludetheriseinmeanwaterlevelinthetidallevelforthepurposeofperformanceverificationinsuchlocations.

  • PART II ACTIONS AND MATERIAL STRENGTH REQUIREMENTS, CHAPTER 2 METROLOGY AND OCEANOGRAPHY

    –71–

    3.3 Harbor Resonance

    (1)DefinitionIn locationssuchasa lakewhoseperimeter isclosedorabaywhoseentrance isnarrowso that there is littleexchangeofwaterwiththeouteroceantheinternalwaterhasanaturaloscillationwithaconstantperiodduetovariationsinactionssuchaswinds.Thisphenomenoniscalledseiche.Ontheotherhand,theoscillationthatoccursinabayorharborwhereonepartisopentotheouteroceansothatwatercangoinandoutiscalledharborresonance.Harborresonanceisthemainproblemforperformanceverificationofportfacilities,whereonemustconsidertheoscillationperiodandamplitude. Harborresonanceisdividedintotwomaintypes.Oneiswhenitoccurswithinabayduetosuctioneffectofdepressionandwindsetupeffect.Fig. 3.3.1showstheobservationalrecordsoftidallevelinTokyoBayduringTyphoon2001/5(Danas),whenremarkableharborresonanceoccurredasshownbythearrows. Theotheristhetypeofoscillationthatoccurswithinabayorharborduetowavesthatimpingefromtheouteroceanandtheiraccompanyinglong-termwaterlevelvariationsandcurrents.Thistypeofoscillationcancausealargeresonancewithanoscillationperiodthatisuniquefortheshapeandsizeofthebayorharbor.Inparticular,inplaceswheretheshapeislongandnarrow,suchasanartificiallyexcavatedport,andthewaterareaissurroundedbythefacilitieswithahighrefractioncoefficientsuchasquaywalls,remarkableharborresonanceoftenoccurs. Theperiodforharborresonanceisusuallyfromseveralminutestoseveraltensofminutes,andtheamplitudemayreachseveraltensofcentimeters.NagasakiBayhasseenamplitudesofabout2meters.Eventhoughtheverticalamplitudeofthewaterlevelduetoharborresonancemayonlybeseveraltensofcentimeters,thecurrentvelocityinthehorizontaldirectionislarge,sothiscanbeagreatproblemforshipmooringandcargohandlingoperations.Wavesthatcontaincomponentwaveswithaperiodof30to300secondsinthefrequencyspectrumasanalyzedfromcontinuousmeasurementrecordingsof20minutesormorearedefinedaslongperiodwaves(forlong-periodwaves,seeSection 4.4, Long-period Waves). Therefore,itisnecessarytoknowanaturalfrequencyperiodofaportforperformanceverificationofportfacilities. Unoki 17)hasconducteda researchon thecharacteristicsofharbor resonance in themajorportsofJapan.Itisalsopossibletousenumericalcalculationsofwaveswithfrequenciesfromseveralminutestoanhourthatimpingeonportstocalculatetheiramplituderatios.18)

    Fig. 3.3.1 Tidal Level Observational Recordings During Typhoon 2001/5 (Danas)(Japan Coast Guard home page)

    (2)HarborResonancePeriodsForharborswhichcanbemodeledbysimpleshapetheirnaturalfrequencyperiodandamplitudeamplificationratio canbe foundby theoretical calculations. However, shapes andboundary conditionsof real harbors areextremelycomplicated,soitispreferablefortheirnaturalfrequencyperiodsandamplitudeamplificationratiostobefoundbyon-siteobservationsornumericalcalculations.18)Forreference,formulasforthenaturalfrequencyperiodsinthesimplestcasesaregivenasfollows:

  • –72–

    TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

    ① Rectangularharborofconstantdepth(surroundingsareclosed,nowaterentersorleaves,Fig. 3.3.2 (a)):

    (3.3.1)

    where T :naturalfrequencyperiod(s) l :lengthofthewatersurface(thelongitudinaldirection)(m) m :modeoftheoscillation(1,2,3,...) g :gravitationalacceleration(9.8m/s2) h :waterdepth(m)

    ② Rectangularharborofconstantdepth(asinFig. 3.3.2 (b),watercanfreelyentersandleavesinoneplace,andtheharborisnarrowandlong):

    (3.3.2)

    Theamplitudeamplificationratiooftentakesitsmaximumwhenmis0or1,soinpracticeitisacceptabletojustinvestigatethiscase.Inreality,notonlytheseawaterwithintheharborbutalsotheseawaterintheouteroceanneartheharborentrancealsooscillatestosomeextent,thereforethevalueofthenaturalfrequencyperiodbecomessomewhatlongerfromthatgivenbyequation(3.3.2)andbecomesthevaluegivenbyequation (3.3.3) 19):

    (3.3.3)

    where l :longitudinallengthofaharbor α :harborentrancecorrection,givenbyequation(3.3.4):

    (3.3.4)

    where π :ratioofthecircularconstant b :widthofaharbor

    Table 3.3.1 shows values of the harbor entrancemodification coefficientα for representative values ofb/l, ascalculatedfromequation(3.3.4).

    Table 3.3.1 Harbor Entrance Modification Coefficients

    b/l 1 1/2 1/3 1/4 1/5 1/10 1/25α 1.320 1.261 1.217 1.187 1.163 1.106 1.064

    ③ Rectangularharborofconstantdepth(asinFig. 3.3.2 (c),watercanfreelyenterandleaveinoneplace,andtheharborentranceisnarrow):

    (3.3.5)

    where b :widthofaharbor(m) l :lengthofaharbor n :numberofnodesinthewidthdirectionofaharbor(n=0,1,2,...)

    Inactualcases,thenaturalfrequencyperiodhasasomewhatsmallervaluethanthatcalculatedfromequation (3.3.5) duetotheeffectoftheharborentrance.

  • PART II ACTIONS AND MATERIAL STRENGTH REQUIREMENTS, CHAPTER 2 METROLOGY AND OCEANOGRAPHY

    –73–

    b

    (a) (b) (c)

    Fig. 3.3.2 Models of Harbor Shapes

    (3)AmplitudeTheamplitudeofharborresonanceisdeterminedbythewaveperiodthatcauseitaswellasbytheaccompanyinglong-periodwater levelvariationsandcurrentvariations, andtheamplificationratiofor thoseperiods. If theperiodoftheactionequalsthenaturalperiodfortheharborthenresonanceoccurs,sothattheamplificationratiotakesonahighvalue.However,bottomfrictioncausesirregularwavesandeddiesattheharborentrance,leadingtoalossofenergy,sothattheamplitudeoftheharborresonancedoesnotincreasewithoutanylimitation.Aharborresonancewithasmallamplitudestillformseveniftheperiodoftheactionisdifferentfromthenaturalperiodoftheharbor. Ifthewidthoftheharborentranceisnarrowedinordertoincreasethecalmnesswithintheharbor,itmayinsteadmakeharbor resonancemore likely tooccur. Thisphenomenon is called theharborparadox. Whentheshapeof theharbor ischanged,suchasbyextending thebreakwaters,onemustbecarefulnot tocausearemarkableharborresonance. Iftheenergylossattheharborentranceisneglected,theamplitudeamplificationratioRattheinsidecornersofabaywitharectangularharborcanbecalculatedfromtheratioofthelengthoftheharborandthewavelength,usingFig. 3.3.3 20)andFig. 3.3.4.20)AccordingtotheseFigs,forthelongandnarrowrectangularharborofFig. 3.3.3,resonanceoccursmoreeasilyforlengthsthataresomewhatlongerthantheresonanceconditions.InFig. 3.3.4theresonancepointsareroughlythesameastheresonancepointsforacompletelyclosedrectangularshapedlake,asapproximatedbyequation(3.3.6):

    m, n=0,1,2,... (3.3.6)

    Am

    plitu

    de A

    mpl

    ifica

    tion

    Rat

    io R

    Relative Length of the Harbor k = 2π/L Relative Length of the Harbor k = 2π/L

    Am

    plitu

    de A

    mpl

    ifica

    tion

    Rat

    io R

    002468101214161820

    1 2 3 4 5 6 7

    2b/ =0.2

    8 9 10

    d/b=0.01 0.1 1.0

    3π2π

    2b2d

    m=

    1n=

    0

    m=

    0n=

    0

    m=

    2n=

    0

    m=

    3n=

    0

    0 1 2 3 4 5 6 7 8 9 100

    2

    4

    6

    8

    102b/ =0.2

    d/b=0.01 0.1 1.0

    π 3π2π

    2b

    2d

    m=

    1n=

    0

    m=

    0n=

    0

    m=

    1n=

    2 m=

    2n=

    0m=

    2n=

    2

    m=

    2n=

    4m=

    3n=

    0

    π

    Fig. 3.3.3 Resonance Spectrum for a Fig. 3.3.4 Resonance Spectrum for a Long and Narrow Rectangular Harbor 20) Wide Rectangular Harbor 20)

    (4)CountermeasuresAgainstHarborResonanceHarborresonanceisthephenomenonwherebylong-periodwavespenetrateintoaharborfromtheentrance,repeatperfectreflectionwithintheharbor,andincreasetheiramplitude.Inordertoholddowntheamplitudeofharborresonance,itisnecessarytominimizereflectancearoundtheinnerperimeteroftheharbororaltertheshapeoftheharbortoreduceresonancegeneration,orincreasetheenergylosswithintheharbor.Forthisreason,itisnotadvisabletobuilduprightquaywallsaroundthewholeperimeterofaharbor.Ifapermeablerubble-moundbreakwaterwithagentleslopeisused,wavereflectioncanbereducedtosomeextent,andinadditiononecan

  • –74–

    TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

    expectacertainenergylossinaslopingbreakwater.Furthermore,byinstallinganinnerbreakwaterclosetothepositionofanodeoftheharborresonanceinaharbor,theamplitudeoftheharborresonancecanbesomewhatreduced.Regardingtheshapeoftheharbor,itisconsideredthatanirregularshapeisbetterthanageometricallyregularshape.

    3.4 Abnormal Tidal Levels

    (1)CausesofAbnormalTidalLevelsBesidesstormsurgebytyphoonsandtsunamis,variousotherreasonscanbegivenforabnormaltidegeneration,suchascurrentvariationsoftheKuroshiocurrent,riseintheoceanwatertemperatureduetotheinfluxofwarmwater,andthelong-termcontinuationofwestward-movingwind-drivencurrents.Suchabnormaltidallevelsmaycontinuefromseveraldaystoseveralmonths,andincasessuchaswhenthemonthly-highesttidesoverlapwithstormsurgetherecanbedamagefromwaterflooding. Theanalysisofabnormaltidallevelsrevealsnotonlyabnormallyhightidallevelsbutalsoabnormallylowtidallevels.Itisimportanttoclarifytheircausesforeachoceanregion.

    (2)EffectsofAbnormalTidallevelsTheeffectofabnormaltidallevelsonthestabilityofportfacilitiesandtheverificationoftheabilitytowithstandeventssuchaswaveovertoppingcanbeconsideredbyreflectingthemindesigntidallevels.Forexample,withregardtothestabilityofbreakwaters,anabnormallyhightidallevelcanincreasethebuoyancyofbreakwatersandtherebydecreasestability.21) Yoshiokaet. al.haveevaluatedtheprobabilitydistributionofabnormaltidallevelsat97placesthroughoutJapanbasedontideobservationaldataincludingasmuchasfor29years,andtheyhaveperformedareliabilityanalysisbasedonthis,tostudytheeffectontheslidingandoverturningstabilityofbreakwaters.Withinthescopeoftheirresults,thedecreaseinthesafetyindexduetoabnormaltidallevelsissmallenoughthatitcanbeneglected.22)

    3.5 Long-term Variation in the Mean Sea Level

    (1)PredictionofVariationsintheMeanSeaLevelSeparatefromtheconsiderationsofastronomicaltidallevelsandstormsurgeinthespecificationofdesigntidallevels,therehavebeenstudiesbothwithinJapanandabroadofthelong-termriseintheleveloftheoceansurface. According to the evaluation report of the IntergovernmentalPanel onClimateChange (IPCC), 23), 24) theglobalmeansea level ispredicted torisebetween0.09and0.88meters from1990 to2100. Fig. 3.5.1 showsIPCC’spredictedfuturevariationinthemeansealevel.

    Rise

    in th

    e Wat

    er L

    evel

    of t

    he O

    cean

    Sur

    face

    (m)

    Year

    SRES ScenarioComplete SRES Envelope Including the Uncertainties Concerning Continental Ice

    Bars show the range of prediction results for the year 2100 according to several models.

    Complete SRES Scenario Envelope According to Several Models

    Mean Model Envelope for Complete SRES Scenario

    CompleteIS92

    Fig. 3.5.1 Predicted Future Variation in the Mean Water Level of the Earth’s Ocean SurfaceAccording to IPCC’s Third Evaluation Report

    (From the Third IPCC Evaluation Report, First Operating Committee Report, Climate Change 2001, Scientific Basis, Summary for Government Policy Makers)

  • PART II ACTIONS AND MATERIAL STRENGTH REQUIREMENTS, CHAPTER 2 METROLOGY AND OCEANOGRAPHY

    –75–

    (2)EffectoftheMeanSeaLevelRise,anditsAdaptationIfthemeansealevelrises,andastormsurgeortsunamioccurs,theheightsoftheshoresandriverbankswillbeinsufficient,therebyloweringthesafetyoftheirfacilitiesandincreasingtheriskofdisasters.Also,therewillbeaneffectonthelogisticsinfrastructure,suchasusagelimitationsonportfacilities. Measurestotakeagainstameansealevelriseincludesuchmeasuresasfacilitydevelopment,changesinlanduse,andstrengtheningofdisasterpreventionsystem,and it isnecessary toclearlyunderstand theadvantagesanddisadvantagesofsuchmeasures, taking intoaccount factorssuchas thesocialcharacteristicsandnaturalconditionsofthetargetareas,andcombiningallsuchmeasuresintoanadaptableplans.26)Inordertodevelopfacilities,suchasportfacilities,sewerfacilities,androads(bridges),itisnecessarytocompensatefortheeffectsofmeansealevelrise.However,itisnecessarytokeepinmindfacilityplanning,theaccompanyingdesignworkingtime,cost-effectiveness,theeffectonthesurroundingenvironment,andtheuncertaintiesinthepredictionsofthesealevelrise.

    3.6 Underground Water Level and Seepage

    (1)Asnecessary,performanceverificationofportfacilitiesmustappropriatelyconsidertheundergroundwaterlevelatsandycoastalareas.

    (2)As necessary, performance verification of port facilitiesmust consider the velocity and discharge of seepagewithinpermeablefoundationsandfacilities.

    (3)GroundwaterLevelinCoastalAquiferTheelevationofbrackishgroundwaterintrudinginacoastalaquifermaybeestimatedusingthefollowingequation(seeFig. 3.6.1).

    (3.6.1)

    where

    h :depthbelowtheseasurfaceoftheinterfacebetweenfreshwaterandsaltwateratthedistancex(m) h0 :depthbelowtheseasurfaceoftheinterfacebetweenfreshwaterandsaltwateratx=0(m) hl :depthbelowtheseasurfaceoftheinterfacebetweenfreshwaterandsaltwateratx=L(m) ρ1 :densityofthefreshwater(g/cm3) ρ2 :densityofsaltwater(g/cm3) ζ0 :elevationoffreshwaterabovetheseasurfaceatthecoast(x=0)(m) ζ :elevationoffreshwaterabovetheseasurfaceatx=L(m) L :distancefromthecoast(x=0)tothereferencepoint(m) x :landwarddistancefromthecoastline(m)

    Equation(3.6.1)cannotbeappliedifanimpermeablelayerexistsclosetothegroundsurfaceorintheaquifer:Fortherelationshipbetweentheriseofgroundwaterlevelduetowaverunupandbeachprofilechange,seein10.1General[TechnicalNotes](8)

    x=0

    xL

    hh0

    h1

    ζ ζlζ0

    ρ2

    ρ1

    Fresh waterlevel

    Fresh water

    Salt waterlevel

    Salt water

    Sea

    Fig. 3.6.1 Schematic Drawing of Groundwater at Coast

  • –76–

    TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

    (4)SeepagewithinFoundationsandFacilities

    ① FormulaforCalculatingtheSeepagedischargeWhenthefluidthatisflowingintheseepagelayerisasteadylaminarflow,thedischargeofseepagecanbecalculatedfromtheDarcyformula.Steadyflowswithintheusualseepagelayersmadeofsoilandsand,suchassurfacelayersandfiltrationlayers,areextremelyslow.InsuchcasestheflowfollowstheDarcyformulaofequation (3.6.2)

    (3.6.2)

    where q :dischargeofwaterflowinginaseepagelayerperunittime(cm3/s) k : permeabilitycoefficient(cm/s) i : hydraulicgradient

    Lhi =

    h : headloss(cm) L : lengthofseepagecurrentpath(cm) A : cross-sectionalarea(cm2)

    TheapplicabilitylimitsforthisformulaaredeterminedbythediametersoftheparticlesthatformtheseepagelayerandtheReynoldsnumberfortheseepagerate,howeveritisbettertoverifythisbymeasurementbecausetherestillisnosufficientlyagreeduponsolution.31)FortheapplicablerangesandpermeationcoefficientsseeChapter 3, 2.2.3, Hydraulic Conductivity of Soil.

    ② PermeationthroughasheetpilewallTheflowrateofpermeationthroughasheetpilewallisnotdeterminedpurelybythepermeabilityofthewall;rather,thepermeabilityofthesoilbehindthewallhasadominatinginfluence.Shojietal.13)examinedthisproblem, and carriedout comprehensivepermeation experiments inwhich theynot onlyvaried the tensionof the joints,butalsoaddedthecaseswithandwithoutsandfillingin the jointsection. Theyproposedthefollowingexperimentalformula:

    (3.6.3)

    where q :flowrateofpermeationthroughasheetpilejointperunitlengthintheverticaldirection(cm3/s/

    cm) K :permeationcoefficientforthejoints(cm2-n/s) h :pressureheaddifferencebetweenthefrontandbackofajoint(cm) n :coefficientdependingonthestateofthejoints

    (n ≒0.5whenthejointsarenotfilledwithsand,andn ≒1.0whenthejointsarefilledwith sand)

    Whentherewassandonbothsidesofthesheetpileandthejointswereundertension,Shojietal.obtainedavalueof7.0×10-4cm/sforK intheirexperiments.However,theyalsopointedoutthatifthepermeationflowisestimatedwiththisvalue,thentheflowrateturnsouttobeasmuchas30timesthatobservedinthefield.Foractualdesign,itisthusnecessarytopaycloseattentiontoanydifferencebetweenthestateofthesheetpilewallusedintheexperimentsandthoseusedinthefield.

    ③ PermeationthroughrubblemoundTheflowrateofpermeationthrougharubblemoundfoundationofagravitytypestructuremaybeestimatedusingthefollowingequation:

    (3.6.4)

    where q : flowrateofpermeationperunitwidth(m3/s/m) U : meanpermeationvelocityforthewholecrosssectionofrubblemound(m/s) H : heightofthepermeablelayer(m) d : rubblestonesize(m) g : gravitationalacceleration(=9.81m/s2)ΔH/ΔS : hydraulicgradient ζ : resistancecoefficient

  • PART II ACTIONS AND MATERIAL STRENGTH REQUIREMENTS, CHAPTER 2 METROLOGY AND OCEANOGRAPHY

    –77–

    Equation (3.6.4) hasbeenproposedbasedontheexperimentalresultsusingeightdifferenttypesofstonesofuniformsize,withthediameterrangingfrom5mmto100mm.ThevirtualflowlengthΔS maybetakentobeasthetotalofthe70%to80%ofthepermeablelayerheightandthewidthofthecaissonbase.ThecoefficientofresistanceisshowninFig. 3.6.2.WhenRe(=Ud /ν)>104,itisacceptabletotakeζ≒20

    .

    d(mm) ∆S(cm)

    5 – 10 1005 – 10 7510 – 15 10010 – 15 7515 – 20 10020 – 25 10025 – 30 9930 – 35 10095 104100 102

    1010

    102 103 104

    Re =Udv

    102

    103

    ζ

    Fig. 3.6.2 Relationship between Resistance Coefficient ζ and Reynolds Number

    References

    1) JapanCoastGuard:TideTable,Vol.1,19962) JapanMeteorologicalAgency:TideTable2004,2003,3) StudyGroup ofAnalysis and utilization of coastal wave observation data,:measurement of tide, Coastal Development

    InstituteofTechnology,CoastaldevelopmentTechnicalLibrary.No.13,2002.4) Kawai,H.T.Takayama,Y.SuzukiandT.Hiraishi:FailureProbabilityofBreakwaterCaissonTidalLevelVariation,Rept.of

    PHRIVol.36No.4,1997.12,pp.3-425) JapanMeteorologicalAgency:TideTable2004,JapanMeteorologicalAgency,2003,6) Takahashi,H.A.Takeda,K.TanimonoY.TsujiandI.Isozaki:Predictionandpreventivemeasureofcoastaldisaster-Howto

    preparefortsunamisandstormsurges,HakuaPublishing,408p.19887) Hiraishi,T.K.Hirayama andH.Kawai:AStudyonWave-0vertoppingbyTyphoonNo. 9918,TechnicalNoteofPHRI,

    No.972,2000.12,19p8) Shibaki,H.,T.Ando,T.MikamiandC.Goto:Developmentof integratednumerical researchsystemforpreventionand

    estimationofcoastaldisaster,Jour.JSCENo586/11-42,pp.77-92,19989) Yamashita,T.,Y.Nakagawa:SimulationofastormsurgeinYatsushiroSeaduetoTyphoonNo.9918bywave-stormsurge

    coupledmodelconsideringshearstressofwhitecapbreakers,ProceedingofCoastalEng.No.48,pp.291-295,200110) Takigawa,K..andM.Tabuchi:Preparationofhazardmapsofstormsurgesandhighwavesunderthemostprobableoccurrence

    basedontide-waveinteractionanalysis,probableassumption,ProceedingofCoastalEng.No.48,pp.1366-1370,200111) Shibaki,H.andA.Watanabe:StudyonMulti-levelsimulationmodelforestormsurgeconsideringdensitystratificationand

    wavesetup,JournaloftheJSCE,No.719/IIpp.47-61,200212) Kawai,Y.,K.KawaguxhiandN.Hashimoto:Modelingofwave-stormsurgetwo-wayjointhindcastingandcasestudyfor

    Typhoon9918hindcasting,,ProceedingofCoastalEng.No.50,pp.296-300,200313) Kawai,Y.,S.TakemuraandN.Hara:Characteristicsofstormsurge-highwavejointoccurrenceanddurationinTokyoBay,

    ProceedingofCoastalEng.No.49,pp.241-245,200214) Konishi,T.:Situationsofdamagesofstormsurgesandstatusofthestudyforforecasting,OceanographicSocietyofJapan,

    CoastalOceanographyResearchVol.35No.2,199815) TatsuoKonishi:ACauseofStormSurgesGeneratedatthePortsFacingOpenOceans-EffectofWaveSetup-,Seaandsky

    Vol.74,No.2,199716) Shibaki,H.,F.KatoandK.Yamada:HindcastingofabnormalstormsurgeinTosaBayconsideringdensitystratificationand

    wavesetup,ProceedingofCoastalEng.No.48,pp.286-290,200117) Unoki,S:Onseicheandlongperiodwavesinharbours,Proceedingof6thconferenceoncoastalEngineering,pp.1-11,195918) Takayama, T. and T. Hiraishi: Amplification Mechanism of Harbor Oscillation Derived From Field Observation And

  • –78–

    TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

    NumericalSimulation,TechnicalNoteofPHRINo.636,pp.70,198819) Honda,K,,Terada,T.,Yoshida,Y.andlshitani,D.:Secondaryundulationofoceanictides,Jour.CollageofScience,Univ.of

    Tokyo,Vol.26,194320) Goda,Y:Secondaryundulationoftideinrectangularandfan-shapedharbour,JSCE10thconferenceonCoastalEng.,pp.

    53-58,196321) CoastalDevelopmentInstituteofTechnology(CDIT):SurveyreportonExtra-hightidelevelFiscal2002,pp.86,200322) Yoshioka,K.,T.Nagao,E.Kibe,T.ShimonoandH.Matsumoto:Effectofextra-hightideontheexternalstabilityofcaisson

    typebreakwaters,TechnicalNoteofNationalInstituteforLandandInfrastructureManagement,No.241,200523) IPCC:ClimateChange2001,ScientificBasis,CambridgeUniversityPress,p.881,200124) AssemblymeninchargeofEnvironment,SyntheticScienceandTechnologyConferenceand,CabinetOfficeDirector-general

    forPoliticsonScienceandTechnologyCondition:StudyReportonClimateChange,SyntheticScienceandTechnologyConference, GlobalWarming Study Initiative, Frontier of Climate Change Studies, Knowledge and Technology in theCenturyofEnvironment,2002,p.142,2003

    25) Nagai,T.K.Sugahara,H.WatanabeandK.Kawaguchi:LongTermObservationoftheMeanTideLevelandLongWavesattheKurihama-Bay,Rept.OfPHRIVol.35No.4,1996.12,pp.3-36

    26) TaskForceoftheStudyonLandconservationagainstsealevelriseduetoglobalwarming:ReportoftheLandConservationTaskForceonsealevelriseduetotheglobalwarming,,p.35,2002

    27) Todd,D.K.:Groundwaterhydrology,JohnWiley&Sons,Inc.,196328) JSCE:TheCollectedFormulaofHydraulics(1985Edition),JSCE,Nov.198529) Ishihara,T.andH.Honma:AppliedHydraulics(Vol.IINo.2),MaruzenPublishing,196630) Sakai,G:Geohydrology,AsakuraPublishing,196531) Iwasa,Y.:Hydraulics,AsakuraPublishing,p.226,196732) Yamaguchi,H:SoulMechanics,Giho-doPublishing,p.76,196933) Shoji,Y.M.KumedaandY.Tomita:ExperimentsonSeepagethroughInterlockingJointsofSheetPile,Rept.PHRIVol.21

    No.41982.12

  • PART II ACTIONS AND MATERIAL STRENGTH REQUIREMENTS, CHAPTER 2 METEOROLOGY AND OCEANOGRAPHY

    –79–

    4 WavesPublic NoticeWaves

    Article 8Characteristicsofwavesshallbesetbythemethodsprovidedinthesubsequentitemscorrespondingtothesingleactionorcombinationoftwoormoreactionstobeconsideredintheperformancecriteriaandtheperformanceverification:(1)Wavestobeemployedintheverificationofthestructuralstabilityofthefacilities,thefailureofthe

    sectionofastructuralmember(excludingfatiguefailure),andothersshallbeappropriatelydefinedintermsofthewaveheight,periodanddirectioncorrespondingtothereturnperiodthroughthestatisticalanalysisofthelong-termdataofobservedorhindcastedwavesorothermethods.

    (2)Waves tobeemployed in theverificationof the assuranceof the functionsof a structuralmemberandthefailureofitssectionduetofatigueshallbeappropriatelydefinedintermsofthewaveheight,period,directionandothersofwaveshavingahighfrequencyofoccurrenceduringthedesignworkinglifethroughthestatisticalanalysisofthelong-termdataofobservedorhindcastedwaves.

    (3)Wavestobeemployedintheverificationoftheharborcalmnessshallbeappropriatelydefinedintermsof the joint frequencydistributionsof thewaveheight, periodanddirectionofwaves for a certaindurationoftimethroughthestatisticalanalysisofthelong-termdataofobservedorhindcastedwaves.

    [Commentary]

    (1)Wavesemployedtoverifythestabilityoffacilities,toverifythefailureofthesectionofastructuralmember.

    ①ReturnperiodofvariablewavesWhensettingthewavestobeconsideredintheverificationofserviceabilityforavariablestatewheredominatingactionisvariablewaves,thepurposeofthefacilitiesandtheperformancerequirementsmust satisfied, and in addition the returnperiodof thewavesare set appropriatelybyconsideringsuitablythedesignworkinglifeanddegreeofimportanceofobjectivefacilities,aswellasthenaturalconditionofobjectivelocation.

    ②ReturnperiodofaccidentalwavesWhensettingthewavestobeconsideredintheverificationofserviceabilityforaaccidentalsituationwheredominatingactionisaccidentalwaves,thewavesthatbecometheseverestamongthewavesthatcanoccurinobjectivemarinewatersorwaveswithareturnperiodof100yearsorlongeraresetappropriately.

    ③PeriodofobservedvaluesorestimatedvaluesAperiodof30yearsorlongerisusedasthestandardforthelong-termobservedvaluesorestimatedvalues.

    (2)Wavesemployedtoverifytheassuranceofthefunctionsandthefailureofsectionsduetofatigueofthefacilitiesrelatingtostructuralmembers

    ①Theverificationoftheassuranceofthefunctionsofthefacilitiesrelatingtostructuralmembersreferstoverificationofthelimitstateinwhichfunction-relatedtroubleoccursinstructuralmembers,andinadditiontheverificationoffailureofsectionsduetofatiguereferstoverificationofthelimitstateinwhichdestructionofasectionoccursinastructuralmemberduetorepeatedaction.

    ②Thewavestobeconsideredintheverificationoftheassuranceofthefunctionsofthefacilitiesrelatingtostructuralmembersemployasthestandardwavesforwhichthenumberoftimeswhichthewaveswithawaveheightgreaterthanthatstrikeinthedesignworkinglifeisabout10,000times.

    ③Whensettingthewavestobeconsideredintheverificationofdestructionofasectionduetofatigue,the various conditions such as the natural condition of objective facilities are considered, and thenumberoftimesofappearancerelatingtothewaveheightandperiodofthewavesthatoccurduringthedesignworkinglife.Theperiodoftheobservedvaluesandestimatedvaluesisbasedon(1)③above.

    (3)WavesemployedtoverifyharborcalmnessAperiodof5yearsorlongerisusedasthestandardforthelongterm(observationorestimation).Inaddition,

  • –80–

    TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

    when setting thewaves tobe considered in theverificationofharbor calmness, longperiodwaves shouldbeincludedinareaswhereoccuranceoflongperiodwavesispredicted.

    [Technical Note]

    4.1 Basic Matters Relating to Waves

    (1)DefinitionofWavesThewavesoftheoceansareoneoftheprincipalactionsactingontheportfacilities,andareinprincipletreatedasrandomwaves,andaresetappropriatelybasedtothegreatestpossibleextentonpastobservationdataandthelatestfindings.Fig. 4.1.1showsthedefinitionofwaves.Here,theheightfromthetroughtothepeakofonewaveisthewaveheightH,thespatiallengthisthewavelengthL,andthespeedatwhichitispropagatedisthewavecelerityCcalculatedbythezero-upcrossmethod.ThelengthoftheperiodfromthestartofawavetothestartofthenextwaveexpressedinacaseobservedatafixedpointistheperiodT.Reference1)canbereferredforthespecificsonthebasicnatureofwaves.

    -4

    -3

    -2

    -1

    0

    1

    2

    3

    4

    00 10 20 30 4040 50 6060 70 80 90 100100

    Time (s)

    Wat

    er le

    vel (

    m)

    Wave height H (m)

    Period T

    Fig. 4.1.1 Definition of Waves

    (2)IntroductionofRandomWavesThewaveheightandperiodofoceanwavesvaryforeachwave.Suchwavesarecalledrandomwaves,anditispreferableinprinciplethatrandomwavesareemployedintheperformanceverification.Itispossibletoconsiderrandomwavestobetheoverlappingofregularwaveswithvariousperiods,andtherespectiveregularwavesarecalledcomponentwaves.Itisthefrequencyspectrumofawavethatindicatesthedegreeoftheenergyofthecomponentwaves,andaspectrumshapecorresponding to thepropertiesofoceanshouldbeemployed in theperformance verification. Basedon observed cases to date on Japan’s seacoast, theBretschneider-Mitsuyasuspectrum2)iscommonlyemployed. TheBretschneider-Mitsuyasuspectrumshapeisexpressedbythefollowingequation.

    (4.1.1)

    whereS( f ) :frequencyspectrumofthewaveH1/3 :significantwaveheight T1/3 :significantwaveperiod f :frequency

    However,ininnerbayareaslikeTokyoBay,thepeakofthespectrumoftenbecomespointed,soitispreferabletointroduceaspectrumshapeoftheJONSWAPtype3)basedonobservationstothegreatestextentpossible,ortoemployaspectrumthatcanreflectappropriatelytheobservationresults.

    (3)IntroductionofMultidirectionalityofWavesInshallowwaters,thewaveheightofthecomponentwavesbecomesorthogonaltotheshorelineduetorefractioneffects,andthenatureofthewavesbecomesclosertouni-directionalrandomwaves.Accordingly,acaseinwhichthewaterdepthtothewavelengthratioofoffshorewaves(h/L0)becomes0.1orsmallerisusedasthebenchmark,andinwatersshallowerthanthisitmaybeapproximatedasawavethatactsbyanuni-directionalrandomwavecomposedofcomponentwaves thatareunidirectionalonly, limited tocaseswhereawaveisemployedas thevariable action. In deeperwaters, its character as amulti directional randomwavewhere the energy of thecomponentwavesadvances invariousdirectionsbecomesstronger, and it ispreferable to treat thewaveasamultidirectionalrandomwave.Inaddition,sincethemultidirectionalityofthewavehasamajoreffectinthe

  • PART II ACTIONS AND MATERIAL STRENGTH REQUIREMENTS, CHAPTER 2 METEOROLOGY AND OCEANOGRAPHY

    –81–

    performanceverificationofthestabilityofthebreakwaterheadofabreakwaterorfloatingfacilities,sothemultidirectionalityofthewavesinwatersshouldbeexaminedbeforehandwithappropriateobservationdata.Thewavedirectionhasamajoreffectontheresultsinthecalculationofthedegreeofcalmness,sothewavesarecalculatedasmultidirectionalrandomwaves. Adirectionalwavespectrumisemployedasanindexforshowingthemultidirectionalityofawave.Thedirectionalwavespectrum is theproductof theabove-described frequencyspectrum S( f )and thedirectionalspreadingfunctionG( f,θ),andisexpressedasS( f,θ)=S( f )G( f,θ).TheMitsuyasutypedirectionalspreadingfunction is commonly employed inmost cases as the directional spreading function. Fig. 4.1.2 shows thedistributionshapeoftheMitsuyasudirectionalspreadingfunction.f,fpandl inthefigurearerespectivelythefrequency,peakfrequencyofthefrequencyspectrumandcoefficientemployedwhencomputingthedirectionalwavefunctionincosineshape.TheparameterofthedirectionalwavefunctionSmaxisthedirectionalspreadingparameterintroducedbyGodaandSuzuki,4)andthefollowingnumericalvaluescangenerallybeused.

    Windwaves Smax=10 Swellwithashortattenuationdistance Smax=25 Swellwithalongattenuationdistance Smax=75

    However,thevarianceofthedirectionalspreadingparameterislargeon-site,andwhenthedirectionalwavespectrumisobservedon-site,thesevaluesshouldbeusedasareference.

    ℓ= 5

    ℓ=13ℓ=11ℓ= 9

    f*1(f/fp=0.80)f*0(f/fp=1.00)f*2(f/fp=1.38)f*3(f/fp=1.65)

    G( ) 2.5

    -90° 0° 90°

    θ

    θ

    (1)WhenSmax=75

    -90° 0° 90°

    2

    1

    G( ) f*1(f/fp=0.80)f*0(f/fp=1.00)f*2(f/fp=1.38)f*3(f/fp=1.65)

    ℓ=1ℓ=3

    θ

    θ

    (2)WhenSmax=25

    -90° 0° 90°

    2

    ℓ=1

    ℓ=5ℓ=3

    f*1(f/fp=0.80)f*0(f/fp=1.00)f*2(f/fp=1.38)f*3(f/fp=1.65)

    G( )θ

    θ

    11

    (3)WhenSmax=10

    Fig. 4.1.2 The Distribution Shape of the Mitsuyasu Type Directional Spreading Function

  • –82–

    TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

    ThedirectionalspreadingparameterSmaxofoffshorewavesthatexpressesthedirectionalspreadingofwaveenergyvariesdependingonthewaveshapesteepness,anditcanbeestimatedwithFig. 4.1.3intheeventthatadequateobservationdataisnotobtained.Inaddition,inshallowwaters,thedirectionalspreadingofwavesvariesdependingontheseabottomtopography,soitispreferabletoestimatethisbyawavedeformationcalculation,butinthosecaseswherethecoastlineisclosetolinearhavingsimpletopographyandthewaterdepthcontourisdeemedtobeparalleltotheshoreline,thechangesinSmaxmaybeestimatedbythediagraminFig. 4.1.4.

    200

    100

    20

    50

    10

    5

    2

    1

    H0/L00.005 0.01 0.02 0.05

    S max

    Fig. 4.1.3 Changes in Smax due to Wave Shape Steepness

    10

    20

    30

    405060708090

    100

    0.02 0.05 0.1 0.2 0.5 1.0

    ( p )0= 0°30°60°

    (Smax)0= 25

    (Smax)0= 10

    (Smax)0= 75

    h/L0

    S max

    α

    * (Smax)indicatesthevalueofoffshorewaves,and(αp)0indicatestheprincipalwavedirectionofoffshorewaves.L0indicatesthewaveheightofoffshorewaves,andhindicatesthewaterdepth.

    Fig. 4.1.4 Changes in Smax due to Water Depth

    (4)WavesRepresentedinPerfomanceVerificationSincethewaveheightofrandomwavesvariesdependingonthetime,representativewavesshallbeemployedin theperformanceverification. Significantwavesarenormallyemployedasrepresentativewaves. SincethesignificantwaveheightH1/3 is calculatedbycalculating thewaveheight for eachwaveobtainedby the zero-upcrossmethod,andthencalculatingthemeanvalueof1/3oftheuppervalueofwaveheightthatarerearranged

  • PART II ACTIONS AND MATERIAL STRENGTH REQUIREMENTS, CHAPTER 2 METEOROLOGY AND OCEANOGRAPHY

    –83–

    indescendingorder.AndthesignificantwaveperiodT1/3isthevalueaveragingtheperiodofthewaveemployedforcalculationofthesignificantwaveheight.Themeanoftheindividualwavesincludedinalldataareexpressedasthemeanwaveheight R andmeanwaveperiodT .Thewavewiththegreatestwaveheightamongaseriesofwavesiscalledthehighestwave,itswaveheightandperiodarerespectivelycalledthehighestwaveheightHmaxandhighestwaveperiodTmax,andtheactionduetothewavesemployedintheverificationofstabilityofabreakwatershallbecalculatedfromthedimensionsofthehighestwave.Ontheassumptionthatwaveenergyisconcentratedintheextremelynarrowrangeofacertainfrequency,theoccurrencefrequencyofthewaveheightsincludedinthewavegroupofoffshorewavesfollowstheRayleighdistribution.IntheeventthattheoccurrencefrequencyofwaveheightsfollowstheRayleighdistribution,thefollowingrelationshipexistsbetweenthehighestwaveheightHmaxandthesignificantwaveheightH1/3.5)

    (4.1.2)

    Thefollowingrelationshipexistsfortheperiod.

    (4.1.3)

    TheRayleighdistributionisexpressedbythefollowingequation.

    (4.1.4)

    whereH isthemeanwaveheightofallwavesinthewavegroup.

    Asinthecaseofthemethodforcalculatingthesignificantwaveheight,thewaveheightcalculatedwith1/10oftheuppervalueofwaveheightiscalledthehighest1/10waveheight.Thefollowingformulasareestablishedbetween H ,H1/3andH1/10.

    (4.1.5)

    (5)DeformationofwavesinshallowwatersThephenomenonwherethewaveheightordirectionofprogressofwavesvariesduetotheeffectsofthewaterdepthiscalledthedeformationofwaves,andadeformationofwavesinwatersthatareshallowerthan½ofthewavelengthL0(=1.56T02)ofoffshorewavesshouldbetakenintoconsideration.Thedeformationofwavesincludessuchphenomenaasrefractionordiffraction,waveshoaling,breakingand,reflection,andcalculationoftheseisdonewiththerespectiveappropriatenumericalcalculationmethods.Sincetheserespectivephenomenaoccurbymutuallyaffectingoneanother,theapplicationofacalculationmethodthatcantakeallofthemintoconsiderationat once is preferable, but at present there is no calculationmethod that can consider all of these phenomenasimultaneouslyinpracticaluse.Inprinciple,thewavesthatactontheportfacilitiesarethoseappropriatewavesthataremostdisadvantageousforthestabilityofthestructureoftheportfacilitiesortheutilizationoftheportfacilities,inviewofrefraction,diffraction,shoaling,andbreakingduetothepropagationofoffshorewaves.

    (6)ShallowwatersanddeepwatersInwaterswherethewaterdepthisatleast½thewavelength,thewavesarehardlyaffectedbytheseabottom,andproceedwithoutdeforming.However,wavesaregraduallyaffectedbytheseabottomwhentheyinvadewaterswherethewaterdepthislessthan½thewavelength,andthewaveceleritybecomesslower,thewavelengthshorten,andthewaveheightalsochanges.Giventhisfact,waterswherethewaterdepthisatleast½thewavelengthiscalleddeepwaters,andthewatersshallowerthanthisiscalledshallowwaters.Whensettingthewavesinshallowwaters,dueconsiderationmustbegiventothedeformationofthewaves.Forthedistinctionbetweenshallowwatersanddeepwatersforrandomwaves,thewavelengthL0ofoffshorewavesiscalculatedbyL0=1.56T02(m),andthenthewatersmaybedistinguishedbythewaterdepthrelativetothiswavelength.Moreover,itisnecessarytotakeintoconsiderationthefactthattheshapeofthespectrumandthefrequencydistributionofthewaveheightdiffer fromthestateofoffshorewaves,due to theeffectsof refraction,diffraction, shoaling,andbreaking inshallowwaters.

    (7)LongperiodwavesandharborresonanceLongperiodwaves,whichhaveawatersurfacefluctuationwhosefrequencyisseveraltensofsecondsorlonger,mayexertamajorimpactonthemooringfacilitiesortopographyoftheseabottom,anditispreferabletoexamineasnecessary,basedonon-siteobservationsandtheanalyticalresults todate. Harborresonance,whichis the

  • –84–

    TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

    naturalresonanceofharborsandbays,haseffectsonnotonlymooredshipsbutalsothewaterleveloftheinnerpartofthebay,sointheeventthatclearharborresonanceisfoundfromthetiderecordstodate,orintheeventthat thetopographyoftheharborvarieswidely, it ispreferabletoexaminethiswithanappropriatenumericalcalculationmethod.6)

    (8)WavedirectionThewavedirectionisanimportantparameterfordeterminingthedirectionoftheforcesactingonthefacilities.It ispreferable todetermine theprincipalwavedirection to thegreatest extentpossiblebyobservationof thedirectionalwavespectrumoroftheflowspeedoftwocomponents.7)Theprincipalwavedirectionistheorientationwherethepeaksinthewavetrainaredistributedmostdenselyonawaveformofacertaindirection,anditisconsideredasananglewherethepeakindirectionalwavespectrumappears.However,intheeventthattheswellsfromoutside theharboror thewindwaves thatoccur inside theharboroverlap,bidirectionalwaves thathavetwopeaksforthedirectionalspreadingfunctionappearfrequently.8)Inthesecases,eveniftheprincipalwavedirectionisdetermined,itisseldomthatthisprincipalwavedirectionrepresentsthedirectioninwhichtheenergyofthewaveproceeds,sooneshouldexaminespecialmeasuressuchascarryingouttheperformanceverificationofthefacilitiesatthewavedirectionthatismostdangerous,orcarryingouttheperformanceverificationfortherespectivewavedirections,andsettingthefacilitiestobestableforboth.

    (9)SettingofwavesIntheperformanceverification,theabove-describedpropertiesofwavesshallbeconsidered,andfirstofalltheoffshorewavescomposingvariableactionoraccidentalactionshallbedetermined,inaccordancewiththefunctionofthefacilities.Thedirectionalconcentrationoftheenergyofthewaveisset,inadditiontothesignificantwaveheight,significantwaveperiodandwavedirection,astheconditionsofthewaves.Next,thewavedeformationcalculationshowninthenextchapteriscarriedoutinshallowwaters,andtheconditionsofthewavesthatactonthefacilitiesshallbedetermined.

    4.2 Generation, Propagation and Attenuation of Waves

    (1)SummaryoftheWaveHindcastingMethodWavehindcastingestimatesthetemporalandspatialchangesinwinddirectionandwindvelocityoftheprescribedwaterareafromthetopographyandthemeteorologicaldata,andestimatesthewavesunderthewindfield.Therearevariousmethodsforwavehindcasting,butingeneralthesecanbedividedroughlyintothesignificantwavemethodandthespectrummethod,andthemainstreammethodatpresentisthespectrummethod.

    (2)WaveHindcastingbytheSignificantWaveMethodThemodernwavehindcastingmethodthatwasfirstdevelopedintheworldtreatstheseriesofphenomenaknownasthegeneration,development,propagationandattenuationofwavescollectively,andestimatesthewaveheightH1/3(m)andperiodT1/3(s)withthewindvelocityU10(ms)valueat10mabovetheseasurface,winddurationt(s)andfetchlengthF(m)astheparameters.ItsforerunneristheS-M-Bmethod,whichwasproposedbySverdrupandMunk9)inthe1940sandrevisedbyBretschneider.10),11)

    Currently,theimprovedWilsonIVformula,12)isgenerallyemployed:

    (4.2.1)

    (4.2.2)

    Fig. 4.2.1illustratestheserelationalexpressions(theunitofthefetchlengthFinequation(4.2.1)andequation(4.2.2)isexpressedbykilometerunitsinFig. 4.2.1).However,theserelationalexpressionsareforcaseswherethewindiscontinuouslyblowingconstantlyforanadequatelylongtime,andforawhileafterthewindstartsblowing it doesnot reach thiswaveheightorperiod. The time required for awave thatoccurs at theupperextremityofthefetchtoreachthepointatdistanceF(m)whileitdevelopsiscalledtheminimumwinddurationtmin(s),andisexpressedbythefollowingequation.

    (4.2.3)

    whereCg(x)isthegroupvelocityofthewaves.Inaddition,itispossibletomakearoughestimatebymeansofthefollowingequation.13)

  • PART II ACTIONS AND MATERIAL STRENGTH REQUIREMENTS, CHAPTER 2 METEOROLOGY AND OCEANOGRAPHY

    –85–

    (4.2.4)

    Where,tmin’istheminimumwindduration(hr),andF’isthefetchlength(km),anditisnecessarytopayattentiontothefactthattheunitsdifferfromequations(4.2.1)and(4.2.2).Whenthewinddurationisshorterthantheminimumwindduration,thewavesareintheprocessofdevelopingwithtime.Therefore,inthosecaseswherethefetchlengthandthewinddurationaresimultaneouslyprovided,thesmallerwareofthetwocalculatedwavesmustbeadopted. TheSMBmethodfundamentallyappliestoconstantfetch,butintheeventthatthewindspeedischanginggradually,thewavescanbehindcastedbyusingtheequi-energyline(thelineshowingH1/32·T1/32=const). Intheeventthatthewidthofthefetchisnarrowerthanthefetchlengthinalakeorbay,orintheeventthatthefetchlengthisdeterminedbytheoppositeshoredistance,andtheoppositeshoredistancevarieswidelyrelativetominutefluctuationsofthewinddirection,equation(4.2.1) andequation(4.2.2)provideawaveheightorperiodthatismuchlargerthanitreallyis.Insuchcases,itisbesttoemploytheeffectivefetchlength14)providedbythefollowingformula.

    (4.2.5)

    Here,Feffistheeffectivefetchlength,Fiistheoppositeshoredistanceinthenumberithdirectionfromthehindcastingpointofthewave,andθiistheangleformedbythedirectionoftheoppositeshoredistanceFiandtheprincipalwinddirection,andis-45°≤θi≤45°.

    Win

    d ve

    loci

    ty U

    (m/s

    )

    Fetch length F (km)

    1 2 3 4 6 108 2 3 4 6 1028 2 3 4 6 1038 2 3 4 6 1048

    1

    60

    50

    40

    35

    3028262422201816

    14

    12

    10

    9

    8

    7

    6

    52 3 4 6 108 2 3 4 6 1028 2 3 4 6 1038 2 3 4 6 1048

    =0.25

    H

    =0.50

    t

    =1.5T

    0.5

    2.5

    3.5

    1.5

    1.5 2.5

    2.5

    3.5

    10

    10

    10 12 14 18 20 25 30 40 50 60 70 80 90 100 15

    0

    200

    300

    400

    12

    12

    14

    14

    16

    18

    2022

    2426

    2830

    1618

    2022

    3035

    4045

    50

    24

    1

    1 2 3 4 5

    6 7 9

    2

    3

    4

    5

    6

    78

    9

    3

    4

    5

    67 8

    9

    2

    0.75

    0.75

    8 16

    2628

    Wave height H1/3 (m) Period T1/3Minimum wind duration t (h) Equi-energy line (H1/32 • T1/3) = const.

    Fig. 4.2.1 Wind Hindcasting Diagram by the S-M-B Method

    IntheSMBmethod,whenthevariationofthewindfieldissignificantasinthecaseofatyphoonorextratropicalcyclone,itisdifficulttoprovidesuitablythevaluesforwindvelocityU10,fetchlengthForwinddurationt.AmethodthatsolvesthisproblemisWilson’sgraphicalcalculationmethod,15)andthemethodsofIjimaandHorikawa,16),17)whichsolveWilson’sequationnumerically,arecommonlyemployed. Asshowninequation(4.2.1)andequation(4.2.2),thesignificantwavemethodisnothingmorethanformulathat linksexperientially thedevelopmentofwindwaveswith thebasicparameters, and isnot formula that isconstructedinlinewiththemechanismsofgenerationanddevelopmentofwaves.Owingtothisnature,itleavesanumberofvaguepoints,suchashowtohandlecaseswherethewindgraduallydeflects,thetransitionfromwindwavestoswells,themethodforsynthesizingwindwavesandswells.Inaddition,thereisalsotheproblemthatthewavedirectionobtainedbyhindcastingdisplaysthewinddirectionofthefinalstepofcalculation.However,compared toa casewhere thewindfieldhasa simplenatureand theeffectsof swells canbe ignored, it is apracticalestimationmethodthatissimplerthanthespectrummethodandwhosecalculationtimeisalsoshort.

  • –86–

    TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

    As far as the swells that wind waves propagate distant from the generation and development areas areconcerned,

    (4.2.6)

    (4.2.7)

    Here,(H1/3)Fand(T1/3)Farethewaveheightandperiodofasignificantwaveattheterminusofthefetch,(H1/3)Dand(T1/3)Darethewaveheightandperiodofaswell,Fministheminimumfetchlengththatgeneratesthewave,Distheattenuationdistance,thatisthedistanceterminusofthewindfieldtothearrivalpointofaswell,andk10.4,andk2 2.0.Inaddition,thepropagationtimetofaswellisgivenbythefollowingequation.

    (4.2.8)

    Awavehindcastingmethodforshallowwaterareahasalsobeenproposed.19)

    (3)WaveHindcastingbytheSpectrumMethodIngeneralthefollowingformulaisemployedforwavehindcastingbythespectrummethod.

    (4.2.9)

    Here,Cgisthegroupvelocity,thefirsttermatleftstandsforthelocaltemporalchangeinspectrumenergyE(ω,θ),andthesecondtermstandsforthechangesduetothetransmissioneffectofthespectrumenergy.Inaddition,Snet(ω,θ)ontherightsideisthetermexpressingthetotalamountofchangeinenergyrelatedtothechangeofthespectrumcomponents,andingeneralisprovidedbythefollowingformula:

    (4.2.10)

    Here,Sinistheenergytransmittedfromthewindtothewaves.Snlisthegainandlossofenergythatoccursbetween the four componentwaveswith differentwave numbers, and is called transport ofwave energy bynonlinear interactions(hereinafter,“nonlinear transportofwaveenergy”). Thenonlinear interactionsdue tothesefourwavescausetheshapeofthedirectionalwavespectrumtovary,withthetotalsumofenergythatthewaveshaveconstant.Sdsstandsfortheeffectswheretheenergyofthewavesdissipatesduetowhite-capbreakingwavesortheinternalviscosityofseawater. Modelsbasedonthespectrummethodareclassifiedintothedisjoinedpropagation(DPmodel),thecoupledhybrid(CH)modeland thecoupleddisjoined(CD)model,dependingonhowthenonlinear transportofwaveenergySnlistreated.IntheDPmodel,thenonlineartransportofwaveenergytermisnotintroduceddirectly,andtherespectivefrequencyanddirectionalcomponentsarenotcoupledtoeachother. IntheCHmodel,thenonlinear interactions between component waves are parameterized and introduced. In the CD model, thenonlinearinteractionsareintroduceddirectlyinsomeformorother. Ontheotherhand,themodelsarealsoclassifiedbytheperiodwhentheyweredeveloped.TheDPmodel,whichwasdevelopedfromthe1960s to thebeginningof the1970s, is thefirstgenerationmodel,andtheCHmodelandCDmodel,whichweredevelopedfromthe1970stothe1980s,aresecondgenerationmodels,andtheCDmodel,whichwasdevelopedfromthelatterhalfofthe1980stothepresent,andwhichhandlesthenonlinearinteractionswithhigheraccuracythanpreviously,iscalledthethirdgenerationmodel.Inthethirdgenerationmodel,thedegreeofflexibilityoftheschemeofthenonlineartransportofwaveenergytermishigh,anditispossibletohindcastwithgoodaccuracyeveninthecaseofwaveswherebidirectionalwaves,windwavesandswellsareallpresent. ThewavehindcastingmodeloftheJapanMeteorologicalAgencystartedfromMRI,20)thefirstgenerationmodel,anddevelopedintoMRI-II21)andMRI-IInew,22)thesecondgenerationmodels,andcurrentlyMRI-III,23)the thirdgenerationmodel, isbeingemployed. Inaddition to these, the Inouemodel 24) and theYamaguchi-Tsuchiyamodel25)areknownasafirstgenerationmodel,andtheTohokumodel26)isknownasasecondgenerationmodel.Inaddition,inthefirstgenerationmodels,aonepointmethodwherethewavesatonespotarecalculated

  • PART II ACTIONS AND MATERIAL STRENGTH REQUIREMENTS, CHAPTER 2 METEOROLOGY AND OCEANOGRAPHY

    –87–

    fromacalculationalongthewaverayofeachcomponentwavethatarrivesatonespothasbeendeveloped.

    (4)MRIModel20)TheMRImodelthatwasdevelopedin1973isthemodelthatwasemployedforthenumericalwavereportserviceoftheJapanMeteorologicalAgencyoverapproximatelyadecadefrom1977. IntheMRImodel,thelineardevelopmentandexponentialdevelopmentofwindwavesduetowind,andthephysicalmechanismsofenergydissipationduetotheeffectsofbreakingwavesandinternalfrictionandheadwinds,aretakenintoconsideration.TheeffectsofnonlineartransportofwaveenergySnlarenotconsideredformally,buttheeffectsofon-lineartransportofwaveenergyareexpressedindirectlybyemployingthedevelopmentequation24)forwindwaves,whichdoesnotseparatethenonlineartransportofwaveenergySnlfromthetransportofwaveenergySin fromthewindtothewave. Thetotalamountofchangeinenergy Snet(ω,θ)isdividedintothecasesoftailwindsandheadwinds,andisexpressedasfollows.

    (4.2.11)

    Here,fisthefrequency,θ isthewavedirection, θw isthewinddirectionandE=E( f,θ)isthedirectionalspectrum of thewave. EPM is the Pierson-Moskowitz spectrum, and is employed as the standard form of asaturatedspectrum.Inaddition,Γ(θ-θw)isthedirectionalwavefunctionthatisproportionatetocos2θ,AandBarethelinearandexponentialdevelopmentrates24)ofwindwavesperunittime,andDisthecoefficientofinternalfriction(eddyviscosity). InaDPmodelincludingtheMRImodel,thespectrumshapeofthewavesisexpressedsoastograduallyapproximateasaturatedspectrum,bymultiplyingthetermoftheform{1–(E-EPM)2},and–(E-EPM)2expressestheformalenergydissipation.Inaddition,intheDPmodel,thecalculationtimeisshort,andithaspracticalaccuracywithrespecttowaveheight,soitisemployedcurrentlyasawavemodelthatcanbeusedsimplyandconveniently.

    (5)WAMModel28)TheWAMmodelisarepresentativethirdgenerationwavehindcastingmodelthatdirectlycalculatesthenonlinearinteractions of fourwave resonance, by the discrete interaction approximation 29) of S. Hasselmann andK.Hasselmann.

    Inthemodelofthespectrummethod,thetransportofwaveenergyfromwindtowaveisgenerallyprovidedbythefollowing.

    (4.2.12)

    Here,A correspondstothePhillipsresonancemechanism,andBEtotheMilesinstabilitymechanism.ThePhillipsresonancemechanismisamechanismwheretherandompressurefluctuationsofwindthatblowsoverastillwatersurface,andthecomponentwavesthathaveaspatialscaleandphasevelocitythatmatchestheformer,cause resonance, andowing to thephenomenaawave isgenerated. On theotherhand, theMiles instabilitymechanismisamechanismwheretheairflowonthewatersurfaceisdisturbedandbecomesunstableowingtotheunevennessofthewatersurfaceduetothewaves,andenergyisefficientlytransmittedfromwindtowavesduetothisphenomenon.IntheWAMmodel,thefollowingequation,fromwhichtheitemsrelatedtothePhillipsresonancemechanismareomitted,isadopted:

    (4.2.13)

    However,inthismethod,iftheinitialvalueofthespectrumenergyofthewavesisassumedtobe0,nowavesaregenerated,soitispossibletoprovideastheinitialvalueaspectrumcalculatedfromthefetchlengthandinitialvelocity. InCycle4oftheWAMmodel,Janssen’squasi-lineartheory30),31)hasbeenincorporatedinthecalculationequationforthetransportofwaveenergytermfromwindtowaves.Owingtothis,evenintheeventthattheconditionsoftheoffshorewindsareidentical,itispossibletocalculateclosertoreality,suchthattheamountofwaveenergytransportedisgreaterforwaveswhosewaveageisyounger. IntheenergydissipationtermoftheWAMmodel,theeffectsofwhite-capbreakingwavesandseabottomfrictionhavebeentakenintoconsideration. Inthenonlineartransportofwaveenergyterm,thenonlinearinteractionsofthefourwaveresonancehave

  • –88–

    TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

    beentakenintoaccount.Nonlinearinteractionsareaphenomenonwherethecomponentwavesmakingupthespectrumexchangetheenergythat theyrespectivelyhave,andalthoughnochangeis imparteddirectly to thetotalenergyofthewave,effectsappearthemselvesontheamountofenergytransportfromwindtowavesandtheamountofenergydissipationduetothefactthatthespectrumshapechanges.Then,thenonlineartransportofwaveenergyoffourwaveresonanceisexpressedbythefollowingequation.32)

    (4.2.14)

    Here,n(k)=E(k)/ωstandsforthewaveactiondensity,Q()thejointfunctionofthespectrumcomponents,δ thedelta function,k thewavevector,and thesubscriptsare the fourwavecomponents. Thedelta functionexpressestheresonanceconditions,andnonlinearinteractionsoccurbetweenthecomponentwavesthatsatisfythefollowingexpression.

    (4.2.15)

    However,anincalculablenumberofcombinationsofresonancethatsatisfiesthisexpressionexist.Owingtothis,animmensecalculationburdenisinvolvedincalculatedallofthesecombinations,sointheactualmodelonerepresentativecombinationisdecidedon,andSnlisapproximated. AmodelexpandedsothattopographicalbreakingwavesandwavesetupbasedonWAMcanbeconsideredisSWAN,33)andthisisemployedforwavehindcastinginshallowwaters.

    4.3 Wave TransformationsIngeneral,thewavestobeconsideredtoexertactionsonportfacilitiesshallbethewavesthataremostunfavorablein terms of the structure stability or the usage of the port facilities. In this consideration, appropriate attentionshall begiven towave transformationsduring thepropagationofwaves fromdeepwater toward the shore,whichincluderefraction,diffraction,shoaling,breaking,andothers.Thewavetransformationstobeconsideredshallbemultidirectional randomwaves, 34) and thesewillhave tobecalculatedafterassigning themwithanappropriatedirectionalwavespectrum35)whileindeepwater.However,whendeterminingtheroughwaveheightoftheaction,anapproximatesolutionmaybecalculatedusingregularwaveswithrepresentitivewaveheightsandwaveperiods(forexampleH1/3,T1/3)ofrandomwaves.

    4