characterization of 3d thermal neutron semiconductor...

30
IEAP – CTU Prague Characterization of 3D thermal neutron semiconductor detectors J.Uher 1 , C.Fröjdh 2 , J.Jakůbek 1 , C.Kenney 3 , Z.Kohout 4 , V.Linhart 1 , S.Parker 5 , S.Petersson 2 , S.Pospíšil 1 , G.Thungström 2 (1) Institute of Experimental and Applied Physics, Czech Technical University in Prague, Czech Republic (2) Mid-Sweden University, Sundsvall, Sweden (3) MBC, Stanford Nanofabrication Facility, Stanford University, CA, USA (4) Faculty of Mechanical Engineering, Czech Technical University in Prague, Czech Republic (5) University of Hawaii, Honolulu, HI, USA This work has been done within the 3D-RID project and the Medipix collaboration.

Upload: others

Post on 17-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • IEAP – CTU Prague

    Characterization of 3D thermal neutronsemiconductor detectors

    J.Uher1, C.Fröjdh2, J.Jakůbek1, C.Kenney3, Z.Kohout4, V.Linhart1, S.Parker5, S.Petersson2, S.Pospíšil1, G.Thungström2

    (1) Institute of Experimental and Applied Physics, Czech Technical University in Prague, Czech Republic(2) Mid-Sweden University, Sundsvall, Sweden(3) MBC, Stanford Nanofabrication Facility, Stanford University, CA, USA(4) Faculty of Mechanical Engineering, Czech Technical University in Prague, Czech Republic(5) University of Hawaii, Honolulu, HI, USA

    This work has been done within the 3D-RID project and the Medipix collaboration.

  • Inst

    itu

    te o

    f Ex

    peri

    men

    tal a

    nd

    App

    lied

    Phy

    sics

    Cze

    ch T

    ech

    nic

    al U

    niv

    ersi

    ty in

    Pra

    gue

    IWORID-8, 04/07/2006 Josef Uher

    Outline

    Motivation – why neutron detectors?Neutron detection principlePlanar silicon neutron detectors3D detectors – simulations3D detectors – measurementsConclusions and further outlook

  • Inst

    itu

    te o

    f Ex

    peri

    men

    tal a

    nd

    App

    lied

    Phy

    sics

    Cze

    ch T

    ech

    nic

    al U

    niv

    ersi

    ty in

    Pra

    gue

    IWORID-8, 04/07/2006 Josef Uher

    Motivation Motivation –– neutron radiographyneutron radiography

    • While X-rays are attenuated more effectively by heavier materials like metals, neutrons allow to image some light materials such as hydrogenous substances with high contrast.

    • Neutron radiography can serve as complementary technique to X-ray radiography

    X-rays Neutrons

    In the X-ray image, the metal parts of the photo camera are seen clearly, while the neutron radiogram shows details of the plastic parts.

  • Inst

    itu

    te o

    f Ex

    peri

    men

    tal a

    nd

    App

    lied

    Phy

    sics

    Cze

    ch T

    ech

    nic

    al U

    niv

    ersi

    ty in

    Pra

    gue

    IWORID-8, 04/07/2006 Josef Uher

    Medipix pixel device

    Detector chip

    Medipix-1 chip

    Bump-bonding

    α, β, γ

    • Planar 300 µm thick silicon pixel detector (GaAs and CdTe also available)

    • Bump-bonded to Medipix readout chip containing amplifier, discriminator and counter for each pixel.

    Medipix-2 QuadPixels: 512 x 512Pixel size: 55 x 55 µm2Area: 3 x 3 cm2

    Medipix-2Pixels: 256 x 256Pixel size: 55 x 55 µm2Area: 1.5 x 1.5 cm2

  • Inst

    itu

    te o

    f Ex

    peri

    men

    tal a

    nd

    App

    lied

    Phy

    sics

    Cze

    ch T

    ech

    nic

    al U

    niv

    ersi

    ty in

    Pra

    gue

    IWORID-8, 04/07/2006 Josef Uher

    Adaptation of a silicon detectorAdaptation of a silicon detector

    Silicon pixel detector can not detect neutrons directly.⇒ Conversion of thermal neutrons to detectable radiation in a converter layer

    deposited on the detector surface.

    Converter materials:6Li: 6Li + n → α (2.05 MeV) + 3H (2.72 MeV)

    10B: 10B + n → α (1.47 MeV) + 7Li (0.84 MeV) + γ (0.48MeV) (93.7%)10B + n → α (1.78 MeV) + 7Li (1.01 MeV) (6.3%)

    113Cd: 113Cd + n → 114Cd + γ (0.56MeV) + conversion electrons

    155Gd: 155Gd + n → 156Gd + γ (0.09, 0.20, 0.30 MeV) + conversion electrons157Gd: 157Gd + n → 158Gd + γ (0.08, 0.18, 0.28 MeV) + conversion electrons

    Detector:300 µm thick silicon pixel detector (pixel size 55 µm) bump bonded to Medipix-2 readout chip.

  • Inst

    itu

    te o

    f Ex

    peri

    men

    tal a

    nd

    App

    lied

    Phy

    sics

    Cze

    ch T

    ech

    nic

    al U

    niv

    ersi

    ty in

    Pra

    gue

    IWORID-8, 04/07/2006 Josef Uher

    Good spatial resolutionGood spatial resolution

    100µm50µm

    =>Resolution ~65µm!

    Si wafer with thin Gd pattern:

    GdGd patterns: Siemens starpatterns: Siemens star

  • Inst

    itu

    te o

    f Ex

    peri

    men

    tal a

    nd

    App

    lied

    Phy

    sics

    Cze

    ch T

    ech

    nic

    al U

    niv

    ersi

    ty in

    Pra

    gue

    IWORID-8, 04/07/2006 Josef Uher

    Sample objects: wrist watchSample objects: wrist watch

    Medipix2 quad (at PSI, 2005):

  • Inst

    itu

    te o

    f Ex

    peri

    men

    tal a

    nd

    App

    lied

    Phy

    sics

    Cze

    ch T

    ech

    nic

    al U

    niv

    ersi

    ty in

    Pra

    gue

    IWORID-8, 04/07/2006 Josef Uher

    Good background suppression

    Threshold~500 keV

    triton edge(2.72 MeV)

    alpha edge(2.05 MeV)

    A typical spectrum of deposited energy in a planar detector withLiF converter

    “zero power” reactor LR-0 at Rez near Prague

    Medipix

    Reactor core

    Reactor shut down

    Reactor on

    High threshold:only neutron clusters

    are visible

    Background can be very effectively suppressed!

  • Inst

    itu

    te o

    f Ex

    peri

    men

    tal a

    nd

    App

    lied

    Phy

    sics

    Cze

    ch T

    ech

    nic

    al U

    niv

    ersi

    ty in

    Pra

    gue

    IWORID-8, 04/07/2006 Josef Uher

    Drawback – a lower efficiency of the planar geometry

    6LiF, enrichment 90% Amorphous 10B, enrichment 80%Efficiency as a funtion of B thickness

    0

    1

    2

    3

    4

    5

    6

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

    B thickness [mg/cm2]D

    etec

    tion

    effic

    ienc

    y [%

    ]

    Planar geometry

    Efficiency as a funtion of LiF thickness

    0

    1

    2

    3

    4

    5

    6

    0 2 4 6 8 10 12 14 16 18 20

    LiF thickness [mg/cm2]

    Det

    ectio

    n ef

    ficie

    ncy

    [%]

    Planar geometry

    Efficiencies are comparable. Higher cross section of 10B does not spawn a significant increase of efficiency.

    Detection efficiency of the planar detector can not be more than ~5%!

  • Inst

    itu

    te o

    f Ex

    peri

    men

    tal a

    nd

    App

    lied

    Phy

    sics

    Cze

    ch T

    ech

    nic

    al U

    niv

    ersi

    ty in

    Pra

    gue

    IWORID-8, 04/07/2006 Josef Uher

    Obverse and adverse irradiation

    Efficiency as a funtion of LiF thickness

    0

    1

    2

    3

    4

    5

    6

    0 2 4 6 8 10 12 14 16 18 20

    LiF thickness [mg/cm2]

    Det

    ectio

    n ef

    ficie

    ncy

    [%]

    Frontal irradiationBackside irradiation

    Neutrons

    Number of captured neutrons

    Converter Silicon

    Neutrons

    Number of captured neutrons

    Converter Silicon

    Irradiation from back side is useful especially when comparing different detectors and converters – the effect of self-shielding and the necessity of precise converter layer thickness control are eliminated.

  • Inst

    itu

    te o

    f Ex

    peri

    men

    tal a

    nd

    App

    lied

    Phy

    sics

    Cze

    ch T

    ech

    nic

    al U

    niv

    ersi

    ty in

    Pra

    gue

    IWORID-8, 04/07/2006 Josef Uher

    Measured and simulated spectra of deposited energy

    triton edge

    alphastriton edge

    alphas

    1 µm thick insensitive layer included in the simulation.

    Si

    6LiF

    neutron

    T

    α

    Neutron beam parameters:

    Horizontal channel (neutron guide) of the LVR-15 nuclear research reactor at Nuclear Physics Institute of the Czech Academy of Sciences at Rez near Prague. Intensity about 106 neutrons/(cm2s) at reactor power of 8MW

    insensitive layer

    T and α always fly in opposite direction => no events above 2.72 MeV

    Fabricated at Mid-Sweden University, Sundsvall

  • Inst

    itu

    te o

    f Ex

    peri

    men

    tal a

    nd

    App

    lied

    Phy

    sics

    Cze

    ch T

    ech

    nic

    al U

    niv

    ersi

    ty in

    Pra

    gue

    IWORID-8, 04/07/2006 Josef Uher

    2D neutron array modification

    converter

    sensitive volumeα

    T

    n+

    Neutron beam

    p+n

    back side contact“Standard” 2D type

    “Egg plate” 2D type(with enlarged surface to increasethe detector efficiency)

  • Inst

    itu

    te o

    f Ex

    peri

    men

    tal a

    nd

    App

    lied

    Phy

    sics

    Cze

    ch T

    ech

    nic

    al U

    niv

    ersi

    ty in

    Pra

    gue

    IWORID-8, 04/07/2006 Josef Uher

    Neutron array modification

    Neutron beam

    “3D inverse” structure(there are pillars instead of pores)

    low n+

    p+n

    back sidecontact grid

    “Channel” 2D type(maximized filling)

    bottom view

  • Inst

    itu

    te o

    f Ex

    peri

    men

    tal a

    nd

    App

    lied

    Phy

    sics

    Cze

    ch T

    ech

    nic

    al U

    niv

    ersi

    ty in

    Pra

    gue

    IWORID-8, 04/07/2006 Josef Uher

    Inverse pyramids

    Efficiency as a funtion of LiF thickness

    0

    1

    2

    3

    4

    5

    6

    7

    0 5 10 15 20

    LiF thickness [mg/cm2]

    Det

    ectio

    n ef

    ficie

    ncy

    [%]

    Inverse pyramidsPlanar geometry

    LiF

    Si

    T

    α

    Simulation:LiF thickness vs. efficiency

    pyramids

    planar

    The pyramidal dips increase the overall detection efficiency from 4.9% to 6.3% (an increase of ~28%).

    Note: exposure time of a neutron imaging detector can be by 28% shorter to get the same SNR!

    (samples from Sundsvall, Sweden)

  • Inst

    itu

    te o

    f Ex

    peri

    men

    tal a

    nd

    App

    lied

    Phy

    sics

    Cze

    ch T

    ech

    nic

    al U

    niv

    ersi

    ty in

    Pra

    gue

    IWORID-8, 04/07/2006 Josef Uher

    Measured and simulated spectra of deposited energy

    triton edge

    alphastriton edgealphas

    events frompyramids

    events frompyramidsInsensitive

    layers not included in the simulation.

    Si

    6LiF

    neutron

    α

    T

    Neutron beam parameters:

    Horizontal channel (neutron guide) of the LVR-15 nuclear research reactor at Nuclear Physics Institute of the Czech Academy of Sciences at Rez near Prague. Intensity about 106 neutrons/(cm2s) at reactor power of 8MW

    T and α from pyramids can reach Si at the same time => events above 2.72 MeV

    Fabricated at Mid-Sweden University, Sundsvall

  • Inst

    itu

    te o

    f Ex

    peri

    men

    tal a

    nd

    App

    lied

    Phy

    sics

    Cze

    ch T

    ech

    nic

    al U

    niv

    ersi

    ty in

    Pra

    gue

    IWORID-8, 04/07/2006 Josef Uher

    3D geometry arrays- comparison of cylindrical vs. square 6LiF converter

    Fixed wall thickness – variance in the converter / cell size

    Square Cylinder

    Maximal efficiency: ~32% Maximal efficiency: ~27%

    Square pores, 6LiF (89% enrichment), walls 10 µm

    0

    5

    10

    15

    20

    25

    30

    35

    0 10 20 30 40 50 60 70 80 90 100

    Pore size [µm]

    Det

    ectio

    n ef

    ficie

    ncy

    [%]

    density 1.00 g/cm3density 1.40 g/cm3density 1.80 g/cm3density 2.20 g/cm3density 2.64 g/cm3

    Cylinder pores, 6LiF (89% enrichment), walls 10 µm

    0

    5

    10

    15

    20

    25

    30

    0 10 20 30 40 50 60 70 80 90 100

    Pore size [µm]

    Det

    ectio

    n ef

    ficie

    ncy

    [%]

    density 1.00 g/cm3density 1.40 g/cm3density 1.80 g/cm3density 2.20 g/cm3density 2.64 g/cm3

    The optimal pore size: from 30 to 70 µm depending on 6LiF converter filling density.It is achievable with current semiconductor technologies.

    A question unanswered by simulations: What is a feasible wall thickness?

  • Inst

    itu

    te o

    f Ex

    peri

    men

    tal a

    nd

    App

    lied

    Phy

    sics

    Cze

    ch T

    ech

    nic

    al U

    niv

    ersi

    ty in

    Pra

    gue

    IWORID-8, 04/07/2006 Josef Uher

    How thin silicon walls still work?

    Si

    p+

    n

    LiF

    LiF

    Si

    p+

    n

    LiF

    Si

    p+

    n

    pn junction on bottom pn junction on top pn junction on pore surfaces

    Possible pn junction placements:

    Samples were prepared by Chris Kenney

    Various pillars with sizes ranging from 808 µm to 10 µm.

    Heights of pillars are 80 and 200 µm.

    A sample contacted with probes

  • Inst

    itu

    te o

    f Ex

    peri

    men

    tal a

    nd

    App

    lied

    Phy

    sics

    Cze

    ch T

    ech

    nic

    al U

    niv

    ersi

    ty in

    Pra

    gue

    IWORID-8, 04/07/2006 Josef Uher

    241Am alpha spectra of 80 µm tall pillars

    Alph

    as

    Alph

    as

    Range of 5.41 MeV alphas from 241Am in silicon is 28.2 µm =>they deposit only part of their energy in the thin wall.

  • Inst

    itu

    te o

    f Ex

    peri

    men

    tal a

    nd

    App

    lied

    Phy

    sics

    Cze

    ch T

    ech

    nic

    al U

    niv

    ersi

    ty in

    Pra

    gue

    IWORID-8, 04/07/2006 Josef Uher

    Relative peak position

    75

    80

    85

    90

    95

    100

    105

    10 100 1000Characteristic pillar size [um]

    Peak

    pos

    ition

    [%]

    Pillars thinner than the range of alphas from 241Am

    Range of 5.41 MeValphas from 241Am in silicon is 28.2 µm.

    An important conclusion of this measurement:

    10 µm wide and 80 µm high silicon walls still work fine as a detector.

  • Inst

    itu

    te o

    f Ex

    peri

    men

    tal a

    nd

    App

    lied

    Phy

    sics

    Cze

    ch T

    ech

    nic

    al U

    niv

    ersi

    ty in

    Pra

    gue

    IWORID-8, 04/07/2006 Josef Uher

    Conclusion and future work

    Behind us:

    Tests of planar single pad detectors with thermal neutronsValidation of simulationsSimulations of 3D structure detection efficiencyMeasurements of silicon microstructures as heavy charged particles detectorsTests of structure filling

    Ahead of us:

    Tests of 3D single pad detectors with thermal neutronsMedipix device with 3D thermal neutron detectorDevices for fast neutronsOptimization of structures for different applications...

  • Inst

    itu

    te o

    f Ex

    peri

    men

    tal a

    nd

    App

    lied

    Phy

    sics

    Cze

    ch T

    ech

    nic

    al U

    niv

    ersi

    ty in

    Pra

    gue

    IWORID-8, 04/07/2006 Josef Uher

    Thanks a lot for your attention

  • Inst

    itu

    te o

    f Ex

    peri

    men

    tal a

    nd

    App

    lied

    Phy

    sics

    Cze

    ch T

    ech

    nic

    al U

    niv

    ersi

    ty in

    Pra

    gue

    IWORID-8, 04/07/2006 Josef Uher

    Backup slides

  • Inst

    itu

    te o

    f Ex

    peri

    men

    tal a

    nd

    App

    lied

    Phy

    sics

    Cze

    ch T

    ech

    nic

    al U

    niv

    ersi

    ty in

    Pra

    gue

    IWORID-8, 04/07/2006 Josef Uher

    Simulation package

    Neutron transport(MCNP)

    Ion stopping power(TRIM/SRIM)

    Energy deposition(MCRID)

    Neutron capture coordinates

    Bragg curve shape α

    6Li

    Our Monte-Carlo code (MCRID) samples directions of ions and simulates flight of them in matter. It performs plotting of deposited energy distribution and pulse height spectrum.

    T

  • Inst

    itu

    te o

    f Ex

    peri

    men

    tal a

    nd

    App

    lied

    Phy

    sics

    Cze

    ch T

    ech

    nic

    al U

    niv

    ersi

    ty in

    Pra

    gue

    IWORID-8, 04/07/2006 Josef Uher

    Examples of created structures

    Photo-electrochemical etching(KTH, Stockholm)

    Laser ablation(University of Glasgow)

  • Inst

    itu

    te o

    f Ex

    peri

    men

    tal a

    nd

    App

    lied

    Phy

    sics

    Cze

    ch T

    ech

    nic

    al U

    niv

    ersi

    ty in

    Pra

    gue

    IWORID-8, 04/07/2006 Josef Uher

    3D stuffed detector

    A next step in the development would be a 3D detector diode withetched pores filled with a neutron converter.

    5 mm

    “Inverse pyramids”detector (Sweden)3D stuffed detector intermediate step

  • Inst

    itu

    te o

    f Ex

    peri

    men

    tal a

    nd

    App

    lied

    Phy

    sics

    Cze

    ch T

    ech

    nic

    al U

    niv

    ersi

    ty in

    Pra

    gue

    IWORID-8, 04/07/2006 Josef Uher

    3D geometry arrays- comparison of cylindrical vs. square 10B converter

    Fixed wall thickness – variance in the converter / cell size

    Square Cylinder

    Maximal efficiency: ~36% Maximal efficiency: ~31%

    Square pores, 10B (80% enrichment), walls 5 µm

    0

    5

    10

    15

    20

    25

    30

    35

    40

    0 2 4 6 8 10 12 14 16 18

    Pore size [µm]

    Det

    ectio

    n ef

    ficie

    ncy

    [%]

    density 1.00 g/cm3density 1.40 g/cm3density 1.80 g/cm3density 2.20 g/cm3

    Cylinder pores, 10B (80% enrichment), walls 5 µm

    0

    5

    10

    15

    20

    25

    30

    35

    0 2 4 6 8 10 12 14 16 18

    Pore size [µm]

    Det

    ectio

    n ef

    ficie

    ncy

    [%]

    density 1.00 g/cm3density 1.40 g/cm3density 1.80 g/cm3density 2.20 g/cm3

    The detection efficiency is slightly higher than for 6LiF, BUT the simulation does not include insensitive layers (passivation, contacts, etc.) which will turn the results in favor of 6LiF.

    The unanswered question still remains: What is a feasible wall thickness?

  • Inst

    itu

    te o

    f Ex

    peri

    men

    tal a

    nd

    App

    lied

    Phy

    sics

    Cze

    ch T

    ech

    nic

    al U

    niv

    ersi

    ty in

    Pra

    gue

    IWORID-8, 04/07/2006 Josef Uher

    241Am alpha spectra of 80 µm tall pillars

    808 x 808 µm 435 x 435 µm 235 x 235 µm 126 x 126 µm

    172 x 50 µm 209 x 30 µm 209 x 209 µm 209 x 93 µm

    93 x 32 µm 93 x 20 µm 327 x 10 µm 327 x 17 µm

  • Inst

    itu

    te o

    f Ex

    peri

    men

    tal a

    nd

    App

    lied

    Phy

    sics

    Cze

    ch T

    ech

    nic

    al U

    niv

    ersi

    ty in

    Pra

    gue

    IWORID-8, 04/07/2006 Josef Uher

    Pores filling using pressure

    Empty pores

    Poured powder

    Covered by foil

    Lead hob

    Final preparationready for pressing

    Pressing

    Chip

    Metal pad

  • Inst

    itu

    te o

    f Ex

    peri

    men

    tal a

    nd

    App

    lied

    Phy

    sics

    Cze

    ch T

    ech

    nic

    al U

    niv

    ersi

    ty in

    Pra

    gue

    IWORID-8, 04/07/2006 Josef Uher

    Pores filling using pressure

    BaSO4

    BaSO4

    BaSO4

    LiF

  • Inst

    itu

    te o

    f Ex

    peri

    men

    tal a

    nd

    App

    lied

    Phy

    sics

    Cze

    ch T

    ech

    nic

    al U

    niv

    ersi

    ty in

    Pra

    gue

    IWORID-8, 04/07/2006 Josef Uher

    Pores filling using pressure

    Roentgenogram of filled structures

    BaSO4 LiF

    Estimated average filling depth is 150µm

    Characterization of 3D thermal neutron semiconductor detectorsOutlineMotivation – neutron radiographyMedipix pixel deviceAdaptation of a silicon detectorGood spatial resolutionSample objects: wrist watchGood background suppressionDrawback – a lower efficiency of the planar geometryObverse and adverse irradiationMeasured and simulated spectra of deposited energy2D neutron array modificationNeutron array modificationInverse pyramidsMeasured and simulated spectra of deposited energy3D geometry arrays- comparison of cylindrical vs. square 6LiF converterHow thin silicon walls still work?241Am alpha spectra of 80 mm tall pillarsRelative peak positionConclusion and future workSimulation packageExamples of created structures3D stuffed detector3D geometry arrays- comparison of cylindrical vs. square 10B converter241Am alpha spectra of 80 mm tall pillarsPores filling using pressurePores filling using pressurePores filling using pressure