cicc09 slides19.3 pll loop measurement

Upload: rah0987

Post on 02-Jun-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/11/2019 CICC09 Slides19.3 PLL Loop Measurement

    1/23

  • 8/11/2019 CICC09 Slides19.3 PLL Loop Measurement

    2/23

    2

    Outline

    Motivation

    Loop Measurement Circuit

    Algorithm

    Architecture

    Silicon Results

    Conclusion

  • 8/11/2019 CICC09 Slides19.3 PLL Loop Measurement

    3/23

    3

    PLL Closed-Loop Transfer Function

    Frequency domain model

    Input: excess phase modulation of input (reference) clock Output: excess phase modulation of feedback clock

    Jitter Modulation Frequency

    100kHz 1MHz 10MHz 100MHz

    Normaliz

    edJitterTransfer(dB)

    Low

    damping

    High

    damping

    0

    +2

    +4

    +6

    -6

    -4

    -2

    PLL

    tftft cfeedback mod 2

    BW

    Peaking

    ttft crefclk mod 2

  • 8/11/2019 CICC09 Slides19.3 PLL Loop Measurement

    4/23

    4

    Motivation

    Strict bandwidth and peaking requirements

    e.g., PCI Express Generation II @ 5 Gb/s

    58 MHz BW/ < 1 dB peaking

    816 MHz BW/ < 3 dB peaking

    Locktime (function of BW) increasingly important

    given frequent exit from sleep/power-save states Device PVT variation simulations inadequate

    Standard methods

    Spectrum Analyzer, Waveform Generator

    Problems with standard methods

    Slow expensive

    Wafer? Package? Product? inflexible

  • 8/11/2019 CICC09 Slides19.3 PLL Loop Measurement

    5/23

    5

    Outline

    Motivation

    Loop Measurement Circuit

    Algorithm

    Architecture

    Silicon Results

    Conclusion

  • 8/11/2019 CICC09 Slides19.3 PLL Loop Measurement

    6/23

    6

    Simulated Step Response vs. Time

    0

    +2

    +4

    +6

    -6

    -4

    -2

    -8

    Time (s)

    PhaseError(ns)

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

    Tcrossover

    MaxOvershoot

  • 8/11/2019 CICC09 Slides19.3 PLL Loop Measurement

    7/237

    Basis of Algorithm

    Relationship between time & frequency domain behavior

    Lower BW higher Tcrossover

    Larger input phase step larger peaking

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.0 0.1 0.2 0.3 0.4 0.5 0.6

    50%

    75%

    1/BW(s)

    Tcrossover

    (s)

    Linear Fit

    Trefclk

    Phase Step

    MaxO

    vers

    hoo

    t(ns)

    Peaking(dB)

    0

    1

    2

    3

    4

    5

    0 1 2 3 4 5 6 7 8 9

    50%

    75%

    Trefclk

    Phase Step

    Linear Fit

  • 8/11/2019 CICC09 Slides19.3 PLL Loop Measurement

    8/238

    Closed-Form Equations for Phase Error

    Damping Factor < 1 (underdamped)

    Damping Factor = 1 (critically damped)

    Damping Factor > 1 (overdamped)

    tet nt

    steperrn

    1

    1

    1

    1 2

    2

    2

    ttet nn

    t

    steperrn sinhcosh

    2

    2

    21

    1

    1

    ttet nn

    t

    steperrn sincos

    Source: Gardner, Phaselock Techniques, 2005

  • 8/11/2019 CICC09 Slides19.3 PLL Loop Measurement

    9/239

    Closed-Form Equations vs. Simulations

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.0 0.1 0.2 0.3 0.4 0.5 0.6

    Simulation

    Equation

    1/BW(s)

    Tcrossover

    (s)

    MaxO

    vers

    hoo

    t(ns)

    Peaking(dB)

    0

    1

    2

    3

    4

    5

    0 1 2 3 4 5 6 7 8 9

    Simulation

    Equation

    75% TrefclkPhase Step 75% TrefclkPhase Step

    Equations become less accurate at high due tosmoothing loop filter pole for reference spur reduction

  • 8/11/2019 CICC09 Slides19.3 PLL Loop Measurement

    10/2310

    PLL + Loop Measurement Circuit

    Digital State Machine no analog circuits

    Minimal overhead/intrusion communicates with feedback divider only

    Instantaneously steps feedback clock phase programmable, directional

    Measures Tcrossoverand MaxOvershoot

    UP

    Gain Control Range ControlRefClk

    FbClk

    FbDiv[5:0]FbCnt[5:0]

    Nstep[5:0]

    N[5:0]

    Start

    BwCnt[9:0]

    MaxOvershoot[5:0]

    BwVal id

    FeedbackDivider

    LoopMeasurement

    Circuit

    Phase-

    FrequencyDetector DN

    Charge

    Pump

    Voltage-

    ControlledOscillatorVc o

  • 8/11/2019 CICC09 Slides19.3 PLL Loop Measurement

    11/2311

    Loop Measurement Circuit

    DD QQ DD QQ

    RefRiseRefRise

    RefFallRefFallVc oVc o Vc oVc o

    RefClkRefClk

    DD QQ DD QQ

    StartRiseStartRise

    Vc oVc o Vc oVc o

    StartStart

    FbDiv[5:0]FbDiv[5:0]

    To Feedback

    Divider

    To Feedback

    Divider

    BwValidBwValid

    BwEnBwEn

    RefRiseRefRise

    Edge DetectorEdge Detector

    Edge DetectorEdge Detector

    From

    JTAG

    From

    JTAG

    Control

    Unit

    Control

    Unit

    N[5:0]N[5:0]

    N[5:0]+K[5:0]N[5:0]+K[5:0]

    StepEnStepEn

    DD QQ

    RefClkRefClk

    FbClkFbClkBBPDBBPD

    DD QQ

    Vc oVc o

    BwVal idBwVal id

    Tcrossover

    Detector

    Tcrossover

    Detector

    To JTAGTo JTAG

    RefRiseRefRise

    BBPD2BBPD2

    Load_BBPDLoad_BBPD

    CompareCompare

    FbCnt[5:0]FbCnt[5:0]

    RefRiseRefRise

    Vc oVc o

    DD QQ

    SmplCnt[5:0]SmplCnt[5:0]

    UpdateOSUpdateOS

    RefFallRefFall

    MaxOvershoot[5:0]MaxOvershoot[5:0]

    NewMaxOSNewMaxOSMaxOvershoot

    Detector

    MaxOvershoot

    Detector

    From

    Feedback

    Divider

    From

    Feedback

    Divider

    Vc oVc o

    FbRiseFbRise

    Vc oVc o

    ClrClr

    DD QQ DD QQ

    EnEn BBPD1BBPD1DD QQ

    Vc oVc o

    EnEn

    Vc oVc o

    EnEn

    CounterCounterBWBW BwCnt[9:0]BwCnt [9:0]QQ

    To JTAGTo JTAG

    DD QQEnEn

    Hold D

    until

    En=1

    Hold D

    until

    En=1

    EnEn EnEn

    Delay D

    until En=1

    Hold D

    until Clr=1

    Delay D

    until En=1

    Hold D

    until Clr=1

  • 8/11/2019 CICC09 Slides19.3 PLL Loop Measurement

    12/2312

    Control Unit

    VcoVc o

    RefClkRefClk

    RefFallRefFall

    RefRiseRefRise

    StartStart

    StartRiseStartRise

    StepEnStepEn

    FbRiseFbRise

    BwEnBwEn

    DD QQ DD QQ

    RefRiseRefRise

    RefFallRefFallVc oVc o Vc oVc o

    RefClkRefClk

    DD QQ DD QQ

    StartRiseStartRise

    Vc oVc o Vc oVc o

    StartStart

    FbDiv[5:0]FbDiv[5:0]

    To Feedback

    Divider

    To Feedback

    DividerBwValidBwValid RefRiseRefRise

    Edge DetectorEdge Detector

    Edge DetectorEdge Detector

    From

    JTAG

    From

    JTAG

    N[5:0]N[5:0]

    N[5:0]+K[5:0]N[5:0]+K[5:0]

    StepEnStepEn

    Vc oVc o

    FbRiseFbRise

    Vc oVc o

    ClrClr

    DD QQ DD QQ

    Hold D

    until

    En=1

    Hold D

    until

    En=1

    EnEn EnEn

    Delay D

    until En=1

    Hold D

    until Clr=1

    Delay D

    until En=1

    Hold D

    until Clr=1

    To TcrossoverDetectorTo TcrossoverDetector

    BwEnBwEn

  • 8/11/2019 CICC09 Slides19.3 PLL Loop Measurement

    13/2313

    Control Unit and Phase Step

    Vc oVc o

    RefClkRefClk

    BwEnBwEn

    BwCnt[9:0]BwCnt[9:0] 11 22 33 5544 66 77 88 99 1010 1111 1212 131300

    FbDiv[5:0]FbDiv[5:0] 88 881111

    FbClkFbClk

    FbCnt[5:0]FbCnt[5:0] 1100 22 33 44 55 66 77 00 11 22 33 44 55 66 77 88 99 1010 1100 22 33 44 55 66 77 0077

    StepEnStepEn

    DD QQ DD QQ

    RefRiseRefRise

    RefFallRefFallVc oVc o Vc oVc o

    RefClkRefClk

    DD QQ DD QQ

    StartRiseStartRise

    Vc oVc o Vc oVc o

    StartStart

    FbDiv[5:0]FbDiv[5:0]

    To Feedback

    Divider

    To Feedback

    DividerBwValidBwValid RefRiseRefRise

    Edge DetectorEdge Detector

    Edge DetectorEdge Detector

    From

    JTAG

    From

    JTAG

    N[5:0]N[5:0]

    N[5:0]+K[5:0]N[5:0]+K[5:0]

    StepEnStepEn

    Vc oVc o

    FbRiseFbRise

    Vc oVc o

    ClrClr

    DD QQ DD QQ

    Hold D

    until

    En=1

    Hold D

    until

    En=1

    EnEn EnEn

    Delay D

    until En=1

    Hold D

    until Clr=1

    Delay D

    until En=1

    Hold D

    until Clr=1

    To TcrossoverDetectorTo TcrossoverDetector

    BwEnBwEn

  • 8/11/2019 CICC09 Slides19.3 PLL Loop Measurement

    14/2314

    Bandwidth/Tcrossover Test

    BwEnBwEn

    DD QQ

    RefClkRefClk

    FbClkFbClkBBPDBBPD

    DD QQ

    Vc oVc o

    BwVal idBwVal id

    To JTAGTo JTAG

    RefRiseRefRise

    BBPD2BBPD2

    Load_BBPDLoad_BBPD

    EnEn BBPD1BBPD1DD QQ

    Vc oVc o

    EnEn

    Vc oVc o

    EnEn

    CounterCounterBWBW BwCnt[9:0]BwCnt[9:0]QQ

    From Control UnitFrom Control Unit

    RefClkRefClk

    BwCnt[5:0]BwCnt[5:0]

    Load_BBPDLoad_BBPD

    FbClkFbClk

    BBPDBBPD

    BBPD1BBPD1

    BBPD2BBPD2

    BwValidBwVal id

    Vc oVco

    4646 4747 4848 4949 5050 5151 5252 5353 5454 5555 5656 5757 5858 5959 60604444 4545

  • 8/11/2019 CICC09 Slides19.3 PLL Loop Measurement

    15/2315

    Peaking/MaxOvershoot Test

    RefClkRefClk

    FbCnt[5:0]FbCnt[5:0] 11 22 33 44 55 66 77 00 11 22 33 44 55 66 77 00 11 22 33 44 55 66 77 00 11 22 33 44

    33 4422 33 22SmplCnt[5:0]SmplCnt[5:0]

    RefFallRefFall

    RefRiseRefRise

    Vc oVco

    UpdateOSUpdateOS

    4400MaxOvershoot [5:0]MaxOvershoot [5:0] 33

    CompareCompare

    FbCnt[5:0]FbCnt[5:0]

    RefRiseRefRise

    Vc oVc o

    DD QQ

    SmplCnt[5:0]SmplCnt[5:0]

    UpdateOSUpdateOS

    RefFallRefFall

    MaxOvershoot[5:0]MaxOvershoot[5:0]

    NewMaxOSNewMaxOS

    From

    Feedback

    Divider

    From

    Feedback

    DividerTo JTAGTo JTAG

    DD QQEnEn

    BwVal idBwVal id

  • 8/11/2019 CICC09 Slides19.3 PLL Loop Measurement

    16/2316

    Outline

    Motivation

    Loop Measurement Circuit

    Algorithm

    Architecture

    Silicon Results

    Conclusion

  • 8/11/2019 CICC09 Slides19.3 PLL Loop Measurement

    17/2317

    Simulations vs. Measurements

    100 MHz refclk, feedback divisor = 50 (2x25)

    Case R

    lp f

    (k)

    Icp

    (A)

    Bandwidth (MHz) Peaking (dB)

    Simulated

    Measured

    Simulated

    Measured

    Part

    1

    Part

    2

    Part

    3

    Part

    1

    Part

    2

    Part

    3

    1 3.2 2.5 1.8 3.4 3.4 3.0 8.5 4.2 4.1 4.2

    2 3.2 5 2.6 3.1 3.2 3.2 6.2 4.3 4.0 4.2

    3 3.2 10 4.0 5.0 5.4 5.3 4.3 3.0 2.8 2.8

    4 3.2 20 6.6 9.3 10.0 10.0 2.9 1.8 1.5 1.7

    5 4.8 10 4.8 6.2 6.8 6.5 2.6 1.7 1.5 1.3

    6 4.8 20 9.0 13.2 14.8 14.2 1.7 0.9 0.7 0.7

    7 6.4 5 3.3 4.3 4.5 4.5 2.8 1.9 2.0 1.7

    8 6.4 10 6.0 8.1 9.1 9.0 1.8 1.1 1.0 1.0

    9 6.4 20 12.0 17.6 19.7 18.7 1.2 0.7 1.1 1.0

    10 6.4 30 18.1 25.6 27.1 26.2 0.8 2.1 2.6 2.8

    11 6.4 40 23.3 25.7 26.8 26.1 1.2 2.2 2.5 2.8

    12 6.4 70 35.2 25.7 26.7 25.9 3.0 2.1 2.3 2.6

  • 8/11/2019 CICC09 Slides19.3 PLL Loop Measurement

    18/2318

    Measured Tcrossovervs. 1/BW

    1/BW(s)

    Tcrossover

    (s)

    0.00

    0.03

    0.06

    0.09

    0.12

    0.15

    0.0 0.1 0.2 0.3 0.4

    50% measured

    75% simulated

    75% measured

    TrefclkPhase Step

  • 8/11/2019 CICC09 Slides19.3 PLL Loop Measurement

    19/2319

    Measured MaxOvershootvs. Peaking

    Max

    Overs

    hoo

    t(ns)

    Peaking(dB)

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    0 1 2 3 4 5

    50% simulated

    50% measured

    75% simulated75% measured

    TrefclkPhase Step

  • 8/11/2019 CICC09 Slides19.3 PLL Loop Measurement

    20/2320

    Power and Area

    Power (simulated) = 2.5 mW

    Output frequency = 2.5 GHz VDD = 1.2 V

    Clocks gated when not in use

    Area = 2,750 m2 45-nm SOI-CMOS

    Can easily be reduced by 4050% by replacingnon-critical sense-amplifier flip-flops with smaller

    master-slave flip-flops and optimizing overshootcomparator

    Layout area not a serious concern in this design

  • 8/11/2019 CICC09 Slides19.3 PLL Loop Measurement

    21/23

    21

    Outline

    Motivation

    Loop Measurement Circuit

    Algorithm

    Architecture

    Silicon Results

    Conclusions

  • 8/11/2019 CICC09 Slides19.3 PLL Loop Measurement

    22/23

    22

    Conclusion

    An on-chip, all-digital state machine can be

    used to accurately estimate PLL bandwidthand peaking with potentially large savings intester time.

    This flexible circuit may be used from waferlevel to product level, minimizing die/packagewaste and allowing for adaptive PLL loopcalibration.

  • 8/11/2019 CICC09 Slides19.3 PLL Loop Measurement

    23/23

    23

    Acknowledgments

    Alvin Loke - AMD

    Gerry Talbot - AMD