datab… · xls file · web view · 2014-06-23applications properties complex mg alloys ss mic...

724
Sheet Description Records Last Update Hydride Alloy Listings 2706 AB5 477 2003 AB2 625 2002 AB AB Intermetallic Compou 179 2001 A2B 122 2001 MIC Misc. Intermetallic Com 431 2002 SS Solid Solution Alloys 263 2002 Mg Alloys Mg Alloys 375 2002 Complex Complex Hydrides 234 2002 Properties Hydride Properties 47 1999 Application Hydride Applications 373 2007 References References 1616 2007 AB5 Intermetallic Compou AB2 Intermetallic Compou A2B Intermetallic Compou

Upload: dangnhu

Post on 27-May-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Sheet Description Records Last UpdateHydride Alloy Listings 2706

AB5 477 2003AB2 625 2002AB AB Intermetallic Compounds 179 2001A2B 122 2001MIC Misc. Intermetallic Compounds 431 2002SS Solid Solution Alloys 263 2002Mg Alloys Mg Alloys 375 2002Complex Complex Hydrides 234 2002Properties Hydride Properties 47 1999Applications Hydride Applications 373 2007References References 1616 2007

AB5 Intermetallic CompoundsAB2 Intermetallic Compounds

A2B Intermetallic Compounds

CAUTION: For maximum usability of the Excel sheets, all cells are unprotected. It is strongly advised that users work on a copy of the Excel file and retain the original file in archival form.

Composition Comment 1 H/M Wt.% H ∆H, kJ/mol H2 P, atm @ T, ˚CCaNi5 (M) 1.05 1.9 31.9 0.5 25CaNi5 (M) 0.95 1.7 37.7 0.5 25CaNi5 (M) 1.05 1.9 32.2 0.33 20CaNi5 0.68 1.2 33.9 0.7 25CaNi4B 0.58 1.2 55.7 <0.01 27Ca.7Mm.3Ni5 1.03 1.9 26.6 3.8 25CeCo5 0.47 0.65 29 6 50CeCo5 0.47 0.65 -- -- --CeCo5 (M) 1.25 1.7 -- 1.2 21CeFe5 0.48 0.7 -- <1 100CeFe5 0.5 0.7 82 0.07 100CeNi5 1.03 1.4 14.2 50 25CeNi5 1.08 1.5 22.2 80 23Ce.8La.2Ni5 1.12 1.5 23.8 30 23Ce.6La.4Ni5 1.07 1.5 22.3 28 25Ce1-xLaxNi5 (x = 0.4-0.5) -- -- -- 12-20 20Ce.7La.3Ni5-yAly (y = 0.02-0.4) -- -- -- 3.2-21 20Ce1-xLaxNi4Co (x = 0.4-0.8) -- -- -- 5-20 20Ce.8La.2Ni4.7Cu0.3 1.13 1.5 21 18 23Ce.5La.5Ni2.5Cu2.5 0.84 1.1 22.9 2.2 23Ce.8Pr.2Ni2.5Cu2.5 0.78 1.05 -- 11 23CeNi5-yCuy (y = 2-3) 0.7-.9 0.9-1.2 17 2-6 0CeNi4.5Al.5 0.98 1.4 21.6 9 23CeNi4.5Mn.5 0.88 1.2 25.4 7 23CeNi4.25Mn.75 1.0 1.4 24.7 1.1 23DyNi4.5Al.5 0.7 1.0 27.3 20 20DyNi4Al 0.58 0.8 35.4 0.6 20ErNi4.5Al.5 0.6 0.8 25.4 25 0ErNi4Al 0.63 0.9 32.4 2.1 0ErNi3.5Al1.5 0.48 0.7 39.8 2.5 115EuNi5 0.92 1.2 26 1.3 25GdCo5 0.47 0.4 -- 24 21GdNi5 0.48 0.6 -- 120 23GdNi4.5Al.5 0.63 0.9 32.7 7 20GdNi4Al 0.62 0.9 41.5 0.2 20HoNi4.5Al.5 0.67 0.9 24.1 22 0HoNi4Al 0.63 0.9 35.9 4 60LaCo5 (M) 0.72 0.99 40 0.2 50LaCo5 (M) 1.37 1.9 -- 0.05 21LaCo5 0.77 1.1 -- -- --LaCo5 0.72 1.0 -- 1 105LaCo5 0.56 0.8 42.4 -- --LaCo5 (M) 0.75+ 1.1+ -- 0.08 40LaCo4.95Mn.05 (M) 1.44 1.6 -- 0.05 21LaCu5 0.42 0.55 -- 2 78LaCu5 0.5 0.7 -- 0.3 25LaCu5 0.62 0.8 42.7 5 101LaFe5 0.43 0.6 -- <1 100LaNi5 1.12 1.5 30.1 2.4 21LaNi5 1.08 1.5 30.8 1.8 25LaNi5 1.08 1.5 -- 4 50LaNi5 1.33 1.8 30.1 0.1 -40

LaNi5 1.07 1.5 -- 1.7 25LaNi5 1.07 1.5 31.8 1 15LaNi5 1.1 1.5 -- 0.007 -78LaNi5 (Chemically recover1.0 1.4 29.1 1.7 20LaNi5 (M) 1.39 1.90 -- 2.2 21LaNiy (y = 4.9-5.5) 0.92-1.05 1.2-1.4 -- 3-9 40LaNi5.63 0.9 1.3 -- 2.4 25La.8Ba.2Ni5 0.94 1.3 -- 3.0 25La.6Ca.4Ni5 (M) (+ other Ca levels) 1.1 1.7 -- 1.1 38La.8Ca.2Ni5 1.1 1.6 -- 1.5 25La1-xCexNi5 (x = 0-0.6) -- -- -- 3-14 21La.8Ce.2Ni4.8Sn.25 0.95 1.3 -- 1.1 25La1-xCexB5 (B5 = Ni3.55Co.75M0.1-1 0.14-1.4 -- <1-10 30La.8Ce.2Ca.1Ni3.55Co.75Mn.4Al.3 -- 1.45 -- 0.1 22La.4Ce.2Ca.5Ni3.55Co.75Mn.4Al.3 -- 1.2 -- <0.1 22La.8Er.2Ni5 (M) 1.07 1.45 -- 11 40La.8Gd.2Ni5 1.07 1.5 -- 8.9 40La.9Mg.1Ni5 0.96 1.4 -- 2.3 25La1-xNdxNi5 (x = 0-1) 0.8-1.03 1.1-1.4 -- 2-15 20La.8Nd.2Ni5 1.07 1.5 -- 5.7 40La.8Nd.2Ni2.4Co2.5Si.1 0.93 1.3 -- 0.2 20La1-xPrxNi5 (x = 0-1) 0.95-1.03 1.3-1.4 -- 2-20 20La1-xSmxNi5 (x = 0-0.5) 0.87-1.0 1.2-1.4 -- 2-10 20La.7Sm.3Ni4Fe 0.84 1.15 -- 6 50La.8Sr.2Ni5 1.05 1.48 -- 1.7 25La1-xTbxNi5 -- -- -- 3-30 40La.8Th.2Ni5 1.07 1.41 -- 17 40La.8Y.2Ni5 1.07 1.5 -- 10 40La1-xYxNi5 (x=0.3-0.5) 0.67-.83 1.0-1.2 -- 8-23 24La.8Y.2Ni4.8Mn.2 0.99 1.4 -- 1.1 0LaNi5-yBy (y = 0.5-1) (B=Al, C 0.5-1.05 0.7-1.4 -- 0.08-2 40La.8Zr.2Ni5 0.95 1.3 -- 6 40LaNi4Ag 0.92 1.1 -- 2.4 40LaNi4.9Al.1 1.06 1.50 -- 1.2 25LaNi4.7Al.3 1.02 1.44 34 0.42 25LaNi4.7Al.3 0.97 1.37 29.7 1.2 50LaNi4.6Al.4 0.97 1.38 36.4 0.64 48LaNi4.5Al.5 0.97 1.38 38.6 0.6 60LaNi4.5Al.5 0.93 1.3 -- 0.1 20LaNi4.5Al.5 0.87 -- -- 0.2 25LaNi4Al 0.72 1.1 -- 0.001 20LaNi4.25Al.75 0.77 1.13 44.1 0.054 40LaNi4.55Al.45 0.75 1.6 -- 2 80LaNi5-yAly (x=0-1.5) -- -- 30-61 2.0 25LaNi5-yAly (y = 0.1-1.0) 0.72-1.03 1.0-1.4 33-48 0.02-2 40LaNi4.4B.6 0.42 0.62 33.5 0.3 25LaNi4.33B.67 (M) 0.7 1.0 -- 0.3 23LaNi4.8C.2 1.0 1.4 -- 2.0 25LaNi4Co 1.0 1.4 -- 1.2 40LaNi4Co 1.03 -- -- 1 25LaNi5-yCoy (y = 0.5-4.0) 0.75-1 1.0-1.4 -- 0.1-2 40LaNi5-yCoy (y = 1-3) 1.0-1.1 1.4-1.5 33-44 0.2-1.4 40LaNi2.5Co2.5 (M) 0.87 1.2 -- 0.1 30

LaNi2.5Co2.5 0.73 1.0 -- 0.14 20LaNi3Co2 1.08 1.5 -- 0.23 25LaNiCo4 0.72 1.0 45 0.15 40LaNi4Co.6Al.4 (Rapidly solidified) 1.05 1.5 -- 8 60LaNi3.55Co.75Mn.4Al.3 0.95 -- -- 0.02 25LaNi4.25Co.5Sn.25 1.03 1.38 -- 0.4 25LaNi4Cr 0.78 1.1 -- 0.9 40LaNi4Cr 0.38 0.54 34 0.04 25LaNi4.5Cr.5 0.95 1.3 -- 0.4 20LaNi4Cr 0.58 0.8 -- 0.3 20LaNi4Cu 0.97 1.32 -- 1.6 40LaNi4Cu 0.77 1.0 33.9 4 60LaNi4.5Cu.5 0.95 1.3 -- 1.1 20LaNi4Cu 0.87 1.2 -- 0.5 20LaNi5-yCuy (y = 1-4) 0.6-1 0.8-1.4 31-39 0.8-2 42LaNi5-yCuy (y = 0-4) 0.63-1.1 0.8-1.5 -- 1.4-6 50LaNi5-yCuy (x=0-5) 0.5-1.03 0.7-1.4 -- 0.3-2.5 25LaNi4Fe 0.75 1.0 -- 1.1 40LaNi4Fe (+ Fe2.5) 0.6 0.8 34.5 0.11 40LaNi5-yFey (y = 0.25-1) 0.97-1.1 1.3-1.5 31-33 .5-1.3 25LaNi4.8Fe.2 0.96 1.3 -- 6 50LaNi4.6Ga.4 -- -- 35 0.3 20LaNi4.6Ge.4 0.85 1.2 34.3 0.78 30LaNi4.7Ge.3 0.98 1.3 -- 0.7 23LaNi4.93In.07 -- -- 35.2 1.37 30LaNi4.85In.15 -- -- 31.8 0.78 30LaNi4.6In.4 0.92 1.2 39.8 0.05 20LaNi4.6Mn.4 1.08 1.49 39.4 0.15 25LaNi4.5Mn.5 1.03 -- -- 0.1 25LaNi4.5Mn.5 1.07 1.5 -- 0.15 20LaNi4Mn 0.9 1.2 -- 0.02 20LaNi5-yMny (y = 0-0.63) 1.03-1.13 1.5 -- 0.09-2 25LaNi5-yMny (y = 0.05-0.94) 0.97-1.03 1.4 31-48 0.03-8 60LaNi5-y-zMnySnz (y = 0.31-1.25, z = 0.67-.93 -- 40-52.8 0.04-1 100LaNi4.5Pd.5 (M) 0.98 1.28 -- 2.1 25LaNi4.6Si.4 0.70 1.0 35.6 0.67 30LaNi4.7Sn.3 1.02 1.37 -- 0.3 25LaNi4.6Sn.4 0.97 1.26 38.5 0.08 20LaNi4.8Sn.2 1.00 1.4 -- 0.5 25LaNi4.8Sn.2 1.06 1.4 32.8 0.47 25LaNi5-ySny (y = 0.1-0.5) 0.9-1 1.2-1.4 31-41 1.3-13 100LmNi4.85Sn.15 (Lm = La-rich Mm) 1.08 1.5 -- 2.2 20LmNi4.4Co.2Mn.2Al.2 (Lm = La-rich Mm) 0.92 1.3 34.1 2.3 50LmNi4.5Co.1Mn.2Al.2 (Lm = La-rich Mm) 1.05 1.5 -- 0.3 20LaPt5 (M) 0.67 0.36 -- 1050 21MmCo5 0.5 0.7 32.8 1.1 25MmCo5 0.5 0.7 40.2 1.8 40MmCo4.25Ni0.75 0.56 0.77 -- 1.25 25MmCo3.5Ni1.5 0.52 0.72 -- 3.1 25MmNi5 (Mm = various comp1.07 1.47 -- 8-9 0MmNi5 1.06 1.46 21.1 23 25MmNi5 1.0 1.37 14.2 20 25MmNi5 1.0 1.4 -- 30 25

MmNi5 1.05 1.44 26.4 20.5 30MmNi5 -- 1.4 23.7 13.5 23M1Ni5 (M1=La-rich Mm) 0.92 1.3 -- 2.8 30(Mm,A)Ni5 (A = Al, B, Mn,Cu,Si-- -- -- 13-21 30Mm.8Ca.2Ni5 1.1 1.6 24.2 13 25Mm.5Ca.5Ni5 (+ Ca.1, Ca.25, Ca. 0.83 1.3 27.6 8.2 30Mm1-xCaxNi5 (M) (x = 0.2-0.9) 0.9-1.1 1.5-1.6 22-29 1.1-13 25Mm.8Ca.2Ni5-yAly (y=0-0.5) 0.7-1.1 1.05-1.6 -- 0.9-3.5 30M11-xCaxNi5 (x = 0-0.7) 0.95-1.05 1.4-1.6 -- 3-10 25Mm.5Ca.5Ni2.5Co2.5 0.75 1.1 34.7 9 50Mm1-xCaxNi5-yCuy (x = 0-1; y = 0-2.5) 0.45-1.05 0.7-1.5 -- 0.1-29 25Mm.9Ti.1Ni5 (+ Ti.25 & Ti.5) 0.7 1.3 31 16 30Mm.9Y.1Ni4.9Mn.1 1.00 1.4 -- 8 40Mm.82Y.18Ni4.95Mn.05 1.07 1.5 -- 5 25MmNi4.5Al.5 0.85 1.2 28 3.8 25MmNi4.5Al.5 0.82 1.17 23 3.2 30MmNi4.3Al.7 0.8 1.16 -- 0.6 25MmNi5-yAly (y = 0.5-0.9) 0.7-0.9 1.0-1.3 -- 0.1-3 25MmCFNi4.8Al.2 (MmCF = cerium-fr 0.95 1.33 31.4 2 25MmNi5-yAly (y = 0.4 & 0.8) (Mm=0.48-.6 0.7-.9 35-37 0.5-4 15MmNi4.7Al.3Zry (y = 0-0.2) 0.83-1 1.1-1.35 27-33 4.5-6 25MmNi4.5Al.5Zry (y = 0-0.2) 0.62-.85 0.9-1.2 -- 2.5-5 30MmNi4.6Al.2Fe.2V.03 0.98 1.4 28.1 9 30Mm(Ni,Al,Mn,M)5 (M = Co, Cr, Cu, Nb,-- -- -- 0.2-10 30Mm(Ni,B)5 (B = Al, Co, Cr, Cu, -- -- -- 0.1-11 30MmNi3Co2 (+ Co1.0 & Co2.5) 1.05 1.4 32.7 2.9 20MmNi3.5Co.7Al.8 0.85 1.24 39.8 0.23 40MmNi4.2Co.2Mn.3Al.3 0.98 1.38 36.5 0.4 40M1NiyCo.5Mn.3Al.4 (y=3.8-5) (M1=La-r 0.87-.97 1.1-1.4 -- 0.06-.5 30MmNi4.4-yCoyMn.3 Al.3 (y=0.2-0.8) 1.0 1.4 -- 0.1-1 40MmB5 (B5 = Ni3.55Co.75M0.8 1.1 -- 2 30MmNi4.5Cr.5 (+ Cr.75 & Cr1.0) .92 1.2-1.3 25.5 4.8 20MmNi4.5Cr.5-zMnz (z = 0-0.25) 0.85-.9 -- -- 2-5 20MmNi3.5Cu.5 0.83 1.13 23.4 8 25MmNi5-yCuy (y = 1-2.5) 0.8-.85 1.1-1.2 -- 5-16 25MmNi4.15Fe.85 0.82 1.14 25.3 11.2 25MmNi4.15Fe.85 0.82 1.14 29 6 18MmNi5-yFey (y = 0.5-1.5) 0.6-.95 0.8-1.3 -- 4-12 25MmNi5-yFey (y = 0.3-1.0) 0.7-1.02 1.0-1.4 22-29 7-14 20MmNi4.5Mn.5 (+ Mn.25, Mn.75, M 0.95 1.3 17.6 2.1 20MmNi4.5Mn.5 1.08 1.49 28 2.7 20MmNi5-yMny (y = 0.5-0.7) 1.0 1.4 -- 0.9-4 25MmNi5-yMny (y = 0.3-.9) 0.97 1.3 -- 0.3-9 25MmNi5-yMny (y = 0.4 & 0.8) (Mm=0.7-.75 1.0 24-28 2-8 15MmNi4.5Mn.5Zry (y = 0.025-0.2) 0.67-1 0.9-1.25 30-32 2-2.2 25MmNi4.5Si.5 (+ Si.4, Si.6, Si.8) 0.63 0.91 27.6 8 20MmNi4.6Sn.4 (Mm=Indian [high-Fe0.45 0.6 29.4 4.7 15NdCo5 (M) 0.57 0.77 -- 0.1 30NdCo5 0.45 0.62 42.7 0.7 22NdCo5 0.63 0.9 -- -- --NdCo5 0.62 0.8 -- -- --NdCu5 0.51 0.66 -- <1 100NdNi5 1.0 1.36 26.3 13 23

NdNi5 (M) 0.95 1.33 27.8 18 30NdNi5 0.75 1.03 28 -- --NdNi5 0.93 1.27 21.6 20 20PrCo5 0.62 0.8 -- 0.04 21PrCo5 0.5 0.7 34.3 13.5 100PrCo5 0.62 0.85 -- -- --PrCo5 (M) 1.0 1.4 -- 0.6 21PrCu5 0.43 0.57 -- <1 100Pr.8Ce.3Cu5 0.33 0.43 -- <1 100PrNi5 1.15 1.58 30.5 8 23PrNi5 (M) 1.0 1.4 26.4 20 20PrNi5 (M) 1.03 1.4 29 10 20PrNi2.5Cu2.5 (+ Cu1) 0.6 0.8 19.3 25 23PrNi4.5Fe.5 (M) 0.92 1.26 20.5 6 23RNi5 (R = various mischm1.01-1.06 1.5 25-28 2-12 25RNi4Al (R = La, Ce, Pr, Nd 0.53-.72 0.8-1.1 -- ≤1 24SmCo5 0.4 0.54 -- 2 21SmCo5 0.48 0.64 34.9 3.2 20SmCo5 0.5 0.7 30 5 25SmNi5 0.66 0.9 -- 30 23TbNi4.5Al.5 0.78 1.1 26.9 10 20TbNi4Al 0.67 0.9 33.7 0.9 20ThCo5 0.5 0.6 -- 48 21ThFe5 0.4 0.5 -- -- --ThNi5 0.5 0.6 -- -- --ThNi5 0.77 0.87 -- -- --ThNi4Al (+ ThNi3Al2) 0.42 0.5 -- 6 24ThNi5-yAly (y=1-2) 0.42-.5 0.5-.6 -- 0.1-7 25YCo5 0.63 0.99 -- 3-8 23YCo5 0.47 0.73 32.2 28 31YNi5 0.73 1.14 -- 12 23YNi5 (M) 0.58 0.91 -- 1000 21YNi5-yAly (y=0.5-1.5) 0.54-.75 1.0-1.2 -- 0.01-1 25YNi4Mn 0.75 1.2 -- 0.38 21YbNi5 0.48 0.62 -- 120 23LaNi3.92Al.98 0.76 1.1 42 5 250LaNi4.95Sn.05 0.9 1.2 -- 10.7 100LaNi5-yGey y=0.1-0.5 0.84-1.06 1.1-1.5 31.6-36 0.4-2 23LaNi5 Gas atomized 1.07 1.5 -- 1.7 23MmNi3.5Co.8Al.4Mn.3 Gas atomized 0.87 1.2 -- 0.2 23LaNi4.75Sn.25 Gas atomized 0.98 1.3 -- 0.6 23MmNi3.9Mn.4Fe.38Al.3Cu.02 0.74 1.0 -- 0.75 40MmNi3.9Mn.4Fe.38Al.3Cu.22 0.69 1.0 -- 0.6 40MmNi3.9Mn.4Fe.38Al.3Cu.42 0.66 0.9 -- 0.45 40MmNi4.3-yMn.33Al.4Co y=0.38-0.72 0.87 1.2 -- 0.15-.25 60Mm(Ni3.8Al.2Mn.6)(y-0.4y=5.0-5.8 0.52-.9 0.8-1.3 -- 0.4-6 40LmNi4.1Mn.6Co.2Al.1 Lm=La-rich Mm 0.92 1.3 -- 6 130LaNi4.6Al.4 -- -- -- 0.3 20La.8Ce.2Ni4.98Al.02 -- -- -- 4.2 20Ce.5La.5Ni5 1.0 1.4 -- 10 20Ce.6La.4Ni5 -- -- -- 14 20Ce.7La.3Ni5 1.0 1.4 -- 16 20Ce.7La.3Ni4.95Al.05 -- -- -- 13 20

Ce.7La.3Ni4.6Al.4 -- -- -- 2.7 20YCo5 0.57 0.9 28.5 10 0LaNi5 1.03 1.4 29.7 0.5 0LaNi5 1.03 -- 37.7 0.4 0ThFe5 0.28 0.3 -- -- --LaNi5 Low temperature da1.1 1.5 28.5 0.06 -55CaNi5 Lowest plateau only0.18 0.3 62 0.04 22CaNi5 Lowest plateau only0.17 -- 42 0.08 22LaNi5 1.0 1.4 29.5 1.5 21MmNi4.5Al.5 0.77 1.1 -- 1.8 25LaNi4.7Si.3 0.78 1.1 33.8 1.0 25LaNi4.5Si.5 0.68 1.0 36.5 0.5 25LaNi5 0.94 -- -- 2.0 22MmNi4.6Al.2Fe.2V.03 0.95 1.3 27.9 6 21LaNiy-1Cu y=5-6 0.43-.92 0.6-1.2 26-30.2 0.8-7.9 27Mm(Ni3.6Co.7Mn.4Al.3) y=4.4-5.6 0.7-.95 1.0-1.3 19.3-38.6 0.5-4 30La.8Ce.2Ni4.8Sn.25 0.91 1.2 32.4 1.1 25La.8Ce.2Ni4.25Co.5Sn.25 0.93 1.2 38.2 0.8 25LaNi4.25Co.5Sn.25 1.03 1.4 42.5 0.5 25LaNi4.8Sn.2 1.04 1.4 29.4 0.8 25MmNi3.55Co.75Mn.7-yAy=0-0.4 0.88-1.07 1.3-1.5 -- 0.04-0.2 25MmNi3.55Co.75Mn.6Al.1 1.07 1.5 -- 0.15 25LaNi4.5Mn.5 1.0 1.4 -- 1.6 100LaNi4.5Al.5 0.87 1.2 -- 2.1 100LaNi4.61Mn.26Al.13 0.95 1.4 -- 3.4 100Mm(Ni3.5Mn.4Al.3Co.7) y=0.88-1.12 0.45-.72 0.6-1.0 30.6-48 0.8-1.4 30LaNi4.55Al.45 0.91 1.3 -- 0.3 40La.8Y.2Ni4.8Mn.2 0.91 1.6 -- 0.38 25YNi4.5Al.5 0.7 1.1 22.4 20 20YNi4.25Al.75 0.68 1.1 24.3 6 21YNi4Al 0.62 1.0 40.8 3 60YNi5-yAly y=1.5-2 0.3-.52 0.6-.9 -- -- --LaNi4Co (M) 1.03 -- -- 1 25?LaNi3.55Mn0.4Al0.3Co0.75 0.93 -- -- 0.02 25?NdNi5-yAly y=0.5-1.5 0.55-.68 0.8-1.0 47-54 0.24-.42 20NdNi5-yAly y=1.89-2.97 0.15-.23 0.3-.4 -- -- --GdNi5-yAly y=0.5-1.74 0.43-.68 0.7-.9 30-50 0.04-.73 20GdNi5-yAly y=2.01-3.07 0.18-.25 0.3-.4 -- -- --LaNi5 1.07 1.5 30.2 1.7 25LaNi4.95Sn.05 0.98 1.3 32.0 14 100La.7Sm.3Ni4Fe 0.96 1.3 -- 6 50LaNi4.8Fe.2 1.08 1.5 -- 7 50LaNi4.7Si.3 0.78 1.1 -- 0.5 27MmNi5 1-15 wt.% excess -- 1.4 22.0-25.1 12.6-20 23MmNi4.6Al.4 0.57 0.8 -- 4 15MmNi4.2Al.8 0.50 0.7 -- <0.5 15MmNi4.6Mn4 0.65 0.9 -- 8 15MmNi4.2Mn.8 0.72 1.0 -- 2 15MmNi4.6Sn4 0.45 0.6 -- 5 15MmNi4.7Al.3 Brazilian Mm 0.85 1.2 -- 6 25LaNi4.6Si.4 Gas atomized 0.73 1.0 -- 1.2 25LaNi4.75Sn.25 0.97 1.3 -- 0.4 25LaNi5 1.33 1.8 -- -- --

MmNi3.31Co.64Mn.37Al.28 1.00 1.4 -- 0.3 20LaNi4.7Sn.3 0.88 1.2 -- 0.48 45LaNi4.6Mn.4 0.98 1.4 -- 0.4 50LaNi3.5Mn1.5 0.75 1.1 -- 0.3 100MmNi4.6Al.4 0.96 1.4 28 5 30MmNi4.4Al.6 0.85 1.2 30 2 30MmNi4.2Al.8 0.78 1.1 31 0.5 30MmNi4Al 0.75 1.1 32 0.1 30MmNi4.2Al.4Cr.4 0.90 1.3 31.8 2 30MmNi4.2Al.4Mn.4 0.97 1.4 31.0 2 30MmNi4.2Al.4Fe.4 0.85 1.1 30.0 3 30MmNi4.2Al.4Co.4 0.92 1.3 28.4 5 30LaNi4.84Sn.32 0.88 1.2 -- 0.7 38MmNi3.9-yMn.4AlyCo.7 y=0-0.8 0.78-1.03 1.1-1.4 -- 0.01-4 25MlNi3.7Co.75Mn.5Ti.05 Ml=La-rich Mm 0.98 1.4 -- 0.8 25La.65Nd.2Pr.15Ni3.55Co.75Mn.4Al.3 0.96 1.4 -- 0.5 23MmNi3.8Co1.0Mn0.4 1.03 1.4 -- 0.6 30MmNi3.4Co1.0Mn.4Cu.2 1.00 1.4 -- 0.7 30MmNi3.6Co.8Mn.4Al.2 1.00 1.4 -- 0.2 30MmNi3.4Co1.0Mn.5Al.1 1.02 1.4 -- 0.2 30MmNi3.4Co1.0Mn.5Al.1 (annealed) 1.02 1.4 -- 0.1 30MmNi3.5Co.8Mn.5Si.1 0.93 1.3 -- 0.2 30La1-xCexNi5 x=0-0.3 0.98-1.04 1.4 -- 1.7-10 25CeNi3.55Mn.4Al.3Co.75 0.87 1.2 -- 4 25LaNi3.55Mn.4Al.3Co.75 0.95 1.3 -- 0.2 25LaNi4.5Al.5 0.97 1.4 44.4 0.3 25MmNi3.05Co.95Al.16Mn.12 0.91 1.3 -- 0.18 40LaNi5-yAly y=0-0.5 0.79-1.02 1.1-1.4 29.2-37.5 0.5-6 50MmNi5-yAly y=0.7-1.0 0.69-0.76 1.0-1.1 31.0-44.9 0.1-1 50La.6Ce.4Ni3.77Co.6Mn.36Al.27 0.98 1.4 -- 0.5 30La.6Ce.4Ni3.77(CuFeCr).6Mn.36Al.27 0.93 1.3 -- 0.2 30La.5Ce.4Ti.1Ni3.77(CuFeCr).6Mn.36Al.27 0.80 1.2 -- 0.5 30Ce.8La.2Ni5-yCoy y=0-1.5 1.08-1.12 1.5 -- 2.6-4.2 20La.9Nd.05Pr.05Ni3.5Co.65Al.3Mn.4 0.90 1.3 -- 0.2 50MmNi3.94Mn.3Al.4Co.36 0.88 1.3 -- 0.1 22MmNi3.61Mn.3Al.4Co.69 0.85 1.3 -- 0.07 22LmNi3.55Al.3Mn.4Co.75Lm=La-rich Mm .92 1.29 -- 0.2 40LmNi3.5Al.3Mn.4Co.75MLm=La-rich Mm 1.07 1.49 -- 0.2 40LmNi3.55Al.3Mn.4Co.6MLm=La-rich Mm 1.03 1.40 -- 0.3 40LmNi3.55Al.3Mn.4Co.75Lm=La-rich Mm 1.07 1.49 -- 0.18 40NdNi5 0.70 0.9 27.9 16 20NdNi4.9Sn.1 0.90 1.2 27.9 10 20NdNi4.8Sn.2 0.86 1.1 25.7 6.5 20NdNi4.6Sn.4 0.78 1.0 26.4 1.4 20MmNi3.55Co.75Mn.4Al.3 0.95 1.3 -- 0.2 30LaNi4.4Zn.6 1.00 1.4 34.8 0.3 20LaNi5-yZny y=0-1.2 0.93-1.10 1.3-1.5 30.6-36.8 0.1-1.6 20MlNi3.8Co.5Mn.4Al.3Liyy=0-0.1 (Ml=La-ric 0.89 1.3 23.0-42.5 0.1-0.2 40(La,Ce,Nd,Pr)Ni5 La,Ce,Nd,Pr levels 1.0 1.4 29.0-31.7 2.3-6.1 25MmNiyCo.75Mn.4Al.3 y=3.05-4.05 0.93-0.98 1.3-1.4 31.4-42.7 0.2-2 20MlNi3.8Co.5Mn.4Al.3Zn Y=0-0.077 0.81-0.89 1.1-1.3 20.8-42.5 0.05-0.2 20CaNi5-yZny y=0.15-0.3 0.63 1.1 -- 0.5-0.7 50Ca.85Mm.15Ni5 0.68 1.12 29.3 0.9 25

Ca.8Mm.2Ni4.9Zn.1 1.08 -- 1.1 30 MmNi4.7Al.3 Brazilian Mm 0.90 1.2 -- 6 25MmNi4.6Al.4 Fe-containing Indi 0.58 0.8 -- 4 15MmNi4.2Al.8 Fe-containing Indi 0.50 0.7 -- 0.2 15MmNi4.6Mn.4 Fe-containing Indi 0.65 0.9 -- 8.2 15MmNi4.2Mn.8 Fe-containing Indi 0.72 1.0 -- 3 15MmNi4.6Sn.4 Fe-containing Indi 0.45 0.6 -- 5 15MmNi4.2Al.8 Fe-containing Indi 0.40 0.6 -- 0.8 25LaNi5 1.02 1.4 -- 4.5 50LaNi4.5Mn.5 1.02 1.4 -- 0.4 50LaNi4.75Al.25 1.02 1.4 -- 1 50MmNi4.5Al.5 1.10 1.45 -- 3 30MmNi3.56Co.7Al.4Mn.3 0.93 1.3 -- 1 22MmNi4.6Fe.4 1.07 1.5 -- 18 30DyNi5-yGay Y=0.75-2 0.20-0.63 0.3-0.8 -- <0.05-6 20DyNi4.25Ga.75 0.63 0.8 30.1 6 20MmNi3.55Co.75Mn.4Al. y=0-0.3 0.82-1.07 1.1-1.4 40.6-44.5 0.05-0.09 20MmNi3.6Co0.7Mn0.3Al0La-rich Mm 0.75 1.1 -- 0.2 45LaNi4.3-yCoyMn.4Al.3 y=0-0.75 0.85-0.88 1.2 -- -- --LaNi3.85-yCo.75Mn.4Al.y=0-0.2 0.83-0.98 1.2-1.4 -- -- --LaNi3.95-yCo.75MnyAl. y=0-0.4 0.81-0.91 1.1-1.3 -- -- --MmNi4.3-yCoyMn.4Al.3 y=0 & 0.75 0.65-0.83 0.9-1.2 -- -- --CFMNi4.3-yCoyMn.4Al.3y=0 & 0.75 (CFM=c 0.77-0.82 1.1-1.2 -- -- --MmNi4.2Al0.8 1.00 1.3 -- 20 0.1Ce0.8La0.2Ni5 1.10 1.5 20.8 74 60LaCo5 (M) 0.72 1.0 42.3 0.06 30PrCo5 (M) 0.78 1.1 -- -- --LaNi5 1.07 1.5 -- 3.35 40LaNi4.6Mn0.4 -- -- -- 0.31 40LaNi4Mn -- -- -- 0.009 40LaNi4.9Al0.1 -- -- -- 2.23 40LaNi4.7Al0.3 1.00 1.4 -- 0.63 40LaNi4.25Co0.75 -- -- -- 1.65 40LaNi3Co2 -- -- -- 0.50 40LaNi4.3Mn0.4Al0.3 -- -- -- 0.079 40LaNi3.85Mn0.4Co0.75 -- -- -- 0.24 40LaNi3.95Al0.3Co0.75 0.97 1.4 -- 0.30 40LaNi3.94Mn0.4Al0.3Co0.36 -- -- -- 0.047 40LaNi3.55Mn0.4Al0.3Co0.75 -- -- -- 0.038 40LaNi4Fe -- -- -- 0.97 40LaNi4Cu -- -- -- 1.83 40La0.5Ce0.5Ni5 0.92 1.3 -- 10.0 25LaNi5-ySny y=0.2-0.25 0.93 1.3 -- 0.30-0.72 27La1.02Ni4.75Sn0.25 0.90 1.2 -- 0.38 27LaNi4.6Si0.4 0.73 1.0 34.2 12 100LaNi4.6Ge0.4 0.78 1.1 34.0 8 100LaNi4.6Sn0.4 0.87 1.1 38.2 4 100LmNi3.6Al0.4Co0.7Mn0.Lm=La-rich Mm 0.95 1.3 -- -- --MmNi3.55Co0.75Mn0.4AMm=Ce-rich Mm, pu0.63 0.9 -- 2 60MmNi3.55Co0.75Mn0.4AMm=La-rich Mm, Ni 0.68 1.0 -- 0.5 60MmNi3.55Co0.75Mn0.4AMm=La-rich Mm, Fe0.63 0.9 -- 0.3 60La0.8Pr0.2Co5 (M) 0.62 0.9 38 0.11 20La0.6Pr0.4Co5 (M) 0.62 0.9 43 0.17 20

0.65

La0.4Pr0.6Co5 (M) 0.62 0.9 29 17 20La0.2Pr0.8Co5 (M) 0.53 0.7 38 0.23 20PrCo5 (M) 0.60 0.8 40 0.49 20CeCo5 (M) 0.42 0.6 39 1.45 20Ce0.8Pr0.2Co5 (M) 0.45 0.6 37 1.42 20Ce0.6Pr0.4Co5 (M) 0.43 0.6 38.5 1.26 20Ce0.4Pr0.6Co5 (M) 0.42 0.6 38.5 1.00 20Ce0.2Pr0.8Co5 (M) 0.42 0.6 39 0.23 20La0.8Ce0.2Co5 0.58 0.8 34 0.18 20La0.7Ce0.3Co5 (M) 0.53 0.7 42 0.17 20La0.4Ce0.6Co5 0.47 0.6 38 0.65 20La0.2Ce0.8Co5 0.40 0.6 44 0.72 20La0.1Ce0.9Co5 0.43 0.6 41 0.84 20CeCo5 0.38 0.5 40 1.45 20LaNi4Al 0.68 1.0 -- -- --La0.75Ce0.25Ni4Cu0.9Ti0.1 1.05 1.4 38.4 1.1 22La0.75Ce0.25Ni4Cu0.9Al0.1 1.03 1.4 32.9 1.0 22La0.75Ce0.25Ni4Cu0.8Al0.2 1.03 1.4 33.5 0.7 22La0.75Pr0.25Ni4.5Cu0.3Al0.2 0.98 1.4 34.2 0.8 22La0.3Mm0.7Ni4.5Cu0.3Al0.2 1.03 1.4 31.4 4.4 22MmNi4Cu0.7Ti0.1Sn0.1V0.1 1.03 1.4 37.1 6 22MmNi4Cu0.7Ti0.1Sn0.1Fe0.1 1.03 1.4 37.3 7.4 22LaNi4.9Mn0.1 1.00 1.4 29 1.5 35LaNi4.6Cu0.3Mn0.1 1.03 1.4 32 1 35LaNi4.8Sn0.2 0.87 1.2 33.5 1.1 35LaNi4.75Al0.25 0.85 1.2 33.7 1.2 35LaNi3Cu2 0.77 1.1 33 1.8 35LaNi2Cu3 0.70 0.9 32 1.1 35LaNi4.5Mn0.3Al0.3 0.93 1.3 39.3 0.2 35Ce0.5La0.5Ni5 1.00 1.4 -- 10 20Ce0.7La0.7Ni5 1.00 1.4 25 11 20La0.66Ce0.2Pr0.14Co5 0.70 1.0 41 0.9 50La0.65Ce0.28Pr0.07Co5 0.72 1.0 47 1.1 50La0.13Ce0.35Pr0.52Co5 0.55 0.8 40 3.6 50LaNi4.9Al0.1 1.00 1.4 33 1.5 35LaNi4.9Sn0.1 0.95 1.3 32 2.1 35LaNi4Al0.5Cu0.5 0.98 1.4 40.0 0.09 22LaNi3AlCu 0.70 1.0 -- 0.2 60LaNi4Fe0.5Cu0.5 0.93 1.3 36.1 0.48 22LaNi3FeCu 0.80 1.1 37.2 0.33 22LaNi2FeCu2 0.83 1.1 36.9 0.55 22LaNi3Cr0.5Cu1.5 0.80 1.1 35.5 0.62 22LaNi4.7Mn0.3 1.03 1.4 36.2 0.9 20LaNi4.7Al0.3 0.93 1.3 34.9 0.7 20LaNi4.65Mn0.2Al0.15 0.93 1.5 38.8 0.6 20LaNi6.37Mn0.33 0.52 0.8 23.2 2.0 20LaNi5.5Mn0.1Al0.05 0.68 1.0 26.0 1.6 20LaNi5.2Mn0.05Al0.05 0.56 0.8 26.8 1.3 20CeMn2.56Ni2.42 0.68 1.0 -- -- --CeMn3Ni2 5.16 0.7 -- -- --MlNi3.6Co0.85Mn0.40AlMl-La-rich Mm 0.92 1.3 -- 0.1 45MlNi4Co0.6Al0.4 Ml-La-rich Mm 0.88 1.3 -- 0.1 22MmNi4.5Al0.5 1.1 1.6 -- 2.1 22

LaNi4.82Si0.25 1.16 1.6 -- 1.1 20

Author, Year Ref. No.Properties DB No. Comment 2 Comment 3Sandrock, 1977 106 13Oesterreicher, 1980 43 --Yoshikawa, 1982 138 --Nahm, 1990 252 --Oesterreicher, 1980 43 --Sandrock, 1978 113 14Kuijpers, 1972 96 --Guidotti, 1977 105 --Lakner, 1980 101 --Reilly, 1972 195 --Lundin, 1975 253 --Lundin, 1977 149 35Klyamkin, 1995 407 35Klyamkin, 1995 407 --Dayan, 1981 382 --Mordkovich, 1995 408 --Mordkovich, 1995 408 --Mordkovich, 1995 408 --Klyamkin, 1995 407 --Pourarian, 1986 254 --Pourarian, 1986 254 --Pourarian, 1982 130 --Pourarian, 1985 423 --Pourarian, 1985 423 --Pourarian, 1985 423 --Sorgic, 1996 635 --Sorgic, 1996 635 --Sorgic, 1996 591 --Sorgic, 1996 591 --Sorgic, 1996 591 --Gavra, 1985 280 --van Mal, 1976 103 --Anderson,73 99 --Sorgic, 1996 635 --Sorgic, 1996 635 --Sorgic, 1996 635 --Sorgic, 1996 635 --Kuijpers, 1972 96 --Lakner, 1976 166 --Guidotti, 1977 105 --Shilov, 1981 530 --Shilov, 1983 531 --Patrikeev, 1984 505 --Klyamkin, 1993 587 --Shinar, 1978 131 --Takeshita, 1980 503 --Spada, 1987 255 --Reilly, 1972 195 --van Vucht, 1970 93 --Lundin, 1975 260 8Oesterreicher, 1976 524 --Semenenko, 1977 504 --

Goodell, 1980 256 --Murray, 1981 261 --Andreev, 1984 508 --Zhang, 1989 262 --Lakner, 1980 165 --Buschow, 1972 95 --Goodell, 1980 256 --Goodell, 1980 256 --Shinar, 1978 113 --Goodell, 1980 256 --van Vucht, 1970 93 --Kumar, 1995 263 --Adzic, 1995 264 --Visintin, 1996 633 --Visintin, 1996 633 --Van Mal, 1974 98 --Van Mal, 1974 98 --Goodell, 1980 256 --Uchida, 1982 131 --Van Mal, 1974 98 --Notten, 1995 412 --Uchida, 1982 131 --Uchida, 1982 131 --Nakamura, 1996 631 --Goodell, 1980 256 --Achard, 1977 271 --Van Mal, 1974 98 --Van Mal, 1974 98 --Mendelsohn, 1977 506 --Nakamura, 1996 450 --Percheron, 1994 269 --Van Mal, 1974 98 --Van Mal, 1974 98 --Goodell, 1980 256 --Huston, 1980 77 9Groll, 1989 266 --Mendelsohn,79 265 --Mendelsohn,79 265 --Sakai, 1990 570 --Latroche, 1995 620 --Sakai, 1990 570 --Diaz, 1979 270 31Nakamura, 1994 590 --Mendelsohn, 1977 108 --Diaz, 1979 270 --Mendelsohn, 1980 380 --Spada, 1983 438 --Goodell, 1980 256 --Van Mal, 1974 98 --Percheron, 1994 269 --vanMal, 1973 97 --Colinet, 1987 569 --Uchida, 1995 413 --

Sakai, 1990 570 --Goodell, 1980 256 25Colinet, 1987 569 --Mishima, 1963 605 --Percheron, 1994 269 --Kumar, 1995 263 --Van Mal, 1974 98 --Misawa, 1979 118 --Sakai, 1990 570 --Sakai, 1990 570 --Van Mal, 1974 98 --Mendelsohn, 1977 168 --Sakai, 1990 570 --Sakai, 1990 570 --Shinar,78 104 --Reilly, 1972 195 --Takeshita, 1980 503 --Van Mal, 1974 98 --Misawa, 1979 118 --Lamloumi, 1987 268 --Nakamura, 1996 631 --Mendlesohn, 1978 116 --Mendlesohn, 1979 486 --Witham, 1996 511 --Mendlesohn, 1980 487 --Mendlesohn, 1980 487 --Mendlesohn, 1978 116 --Lundin, 1978 272 2--Percheron, 1994 269 --Sakai, 1990 570 --Sakai, 1990 570 --Lundin, 1978 272 --Lartigue, 1980 273 --Bowman, 1994 274 --Goodell, 1980 256 --Mendlesohn, 1979 486 --Goodell, 1980 256 --Mendlesohn,78 116 --Cantrell, 1994 589 --Luo, 1995 275 32Luo, 1995 406 --Isselhorst, 1995 625 --Groll, 1989 266 --Isselhorst, 1995 625 --Takeshita, 1981 128 --Kitada, 1977 507 --Osumi, 1978 117 --Guidotti,77 105 --Guidotti,77 105 --Reilly, 1972 195 --Reilly, 1977 281 1--Lundin, 1977 149 --Sandrock, 1977 106 --

Osumi, 1979 119 --Verbetsky, 1996 634 --Hong, 1995 621 --Osumi, 1981 124 --Sandrock, 1977 106 --Osumi, 1978 117 --Sandrock, 1977 106 --Rodriguez, 1996 632 --Wang, 1996 232 --Osumi, 1980 122 --Sandrock, 1978 107 --Osumi, 1978 117 --Imoto, 1995 601 --Nakamura, 1995 414 --Sandrock, 1978 113 12Osumi, 1979 119 --Goodell, 1980 256 --Sandrock, 1978 113 --Mendelsohn,79 265 --Balasubramanian, 199 588 --Wang, 1989 267 --Na, 1994 277 --Lee, 1996 451 --Osumi, 1983 133 --Osumi, 1981 124 --Osumi, 1979 121 24Sakai, 1992 278 29Takeya, 1993 279 3--Hong, 1995 621 --Takeya, 1993 279 --Adzic, 1995 264 --Suzuki, 1981 125 --Osumi, 1981 126 --Sandrock, 1978 113 21Sandrock, 1978 113 --Huston, 1980 77 11Ron, 1987 276 --Sandrock, 1978 113 --Apostolov, 1985 567 --Osumi, 1979 120 23Wang, 1989 267 --Sandrock, 1978 113 --Lundin, 1978 272 --Balasubramaniam, 19 588 --Wang, 1989 267 --Osumi, 1982 127 --Balasubramaniam, 19 588 --Yamaguchi, 1982 179van Mal, 1976 103 --Guidotti, 1977 105 --Gualtieri, 1978 448 --Reilly, 1972 195 --Anderson,73 99 37

Gruen, 1977 168 37Gruen, 1977 162 --Uchida, 1982 131 37Kuijpers, 1974 602 --Clinton, 1975 102 --Guidotti, 1977 105 --Lakner, 1980 101 --Reilly, 1972 195 --Reilly, 1972 195 --Anderson,73 99 36Uchida, 1982 131 36Matsumoto, 1987 568 36Pourarian, 1986 254 --Pourarian, 1986 254 --Liu, 1983 132 --Takeshita, 1978 112 --Zijlstra, 1969 148 --Kuijpers, 1971 94 34Yamaguchi, 1983 156 --Anderson,73 99 --Sorgic, 1996 635 --Sorgic, 1996 635 --van Mal, 1976 103 --Buschow, 1975 187 --Buschow, 1975 187Takeshita, 1981 128Takeshita, 1977 164 --Takeshita, 1980 503 --Anderson,73 99 --Takeshita, 1974 101 --Anderson,73 99 --Takeshita, 1981 128 --Takeshita, 1980 503 --Mendelsohn, 1978 115Anderson,73 99 --Ivanova, 1997 639 --Luo, 1997 640 --Witham, 1997 641 --Bowman, 1997 642 --Bowman, 1997 642 --Bowman, 1997 642 --Yasuda, 1997 643 --Yasuda, 1997 643 --Yasuda, 1997 643Cocciantelli, 1997 644 --Higashiyama, 1997 645 --Wanner, 1997 646 --Mordkovich, 1992 666 --Mordkovich, 1992 666 --Mordkovich, 1992 666 --Mordkovich, 1992 666 --Mordkovich, 1992 666 --Mordkovich, 1992 666 --

Mordkovich, 1992 666 --Sarynin, 1977 667 --Mikheeva, 1976 668 --Mikheeva, 1976 668 --Gubbens, 1984 669 --Andreev, 1978 670 --Yagisawa, 1984 671 --Yagisawa, 1984 671 --Shilov, 1988 672 --Kim, 1990 673 --Meli, 1992 674 --Meli, 1992 674 --Kisi, 1994 675 --Lee, 1996 676 --Luo, 1996 677 --Fukumoto, 1996 678 --Zhang, 1996 679 --Zhang, 1996 679 --Zhang, 1996 679 --Zhang, 1996 679 --Wu, 1997 808 --Wu, 1997 808 --Nakamura, 1997 809 --Nakamura, 1997 809 --Nakamura, 1997 809 --Iwakura, 1997 810Nasako, 1998 811 --Nasako, 1998 811 --Sorgic, 1998 812 --Sorgic, 1998 812 --Sorgic, 1998 812 --Sorgic, 1998 812 --Latroche, 1998 813 --Latroche, 1998 813 --Bobet, 1998 814 --Bobet, 1998 814 --Bobet, 1998 814 --Bobet, 1998 814 --Luo, 1998 815 --Luo, 1998 815 --Nakamura, 1998 816 --Nakamura, 1998 816 --Srivastava, 1998 817 --Fyodorov, 1997 847 --Mungole, 1997 849 --Mungole, 1997 849 --Mungole, 1997 849 --Mungole, 1997 849 --Mungole, 1997 849 --Fernandez, 1998 853 --Ting, 1998 864 --Ting, 1998 864 -- Gas atomized + annealedVerbetsky, 1984 1150 70 atm @ -140C

Naito, 1993 1161 --Hightower, 1998 1166 -- annealedBagchi, 1997 1167 --Bagchi, 1997 1167 --Iwakura, 1995 1177 --Iwakura, 1995 1177 --Iwakura, 1995 1177 --Iwakura, 1995 1177 -- sloping plateauIwakura, 1995 1177 --Iwakura, 1995 1177 --Iwakura, 1995 1177 --Iwakura, 1995 1177 --Vogt, 1999 1178 --Senoh, 2000 1181 -- sloping plateauxShu, 2001 1182 -- sloping plateauZhang, 1998 1183 -- sloping plateauHu, 1998 1184 -- sloping plateauHu, 1998 1184 -- sloping plateauHu, 1998 1184 -- sloping plateauHu, 1998 1184 -- sloping plateauHu, 1998 1184 --Hu, 1998 1184 -- sloping plateauCorre, 1998 1185 --Joubert, 1998 1186 --Joubert, 1998 1186 --Oh, 1998 1187 --Imoto, 1999 1188 --Kodama, 1999 1189 --Kodama, 1999 1189 -- sloping plateauxHu, 1999 1190 -- sloping plateauHu, 1999 1190 -- sloping plateauHu, 1999 1190 -- sloping plateauHagstrom, 1999 1191 --Willey, 1999 1192 -- sloping plateauLatroche, 1999 1193 --Latroche, 1999 1193 --Yeh, 1999 1194 -- sloping plateauYeh, 1999 1194 -- sloping plateauYeh, 1999 1194 -- sloping plateauYeh, 1999 1194 -- sloping plateauTakaguchi, 2000 1196 --Takaguchi, 2000 1196 --Takaguchi, 2000 1196 --Takaguchi, 2000 1196 -- sloping plateauHu, 2000 1197 --Rozdzynska-Kielbik, 1198 --Rozdzynska-Kielbik, 1198 --Wang, 2000 1199 --Valoen, 2000 1200 --Ye, 2000 1201 -- sloping plateauxWang, 2001 1202 --Liang, 2001 1203 --Liang, 2001 1203 --

Liang, 2001 1203 --Fernandez, 1998 1204 --Mungole, 1999 1205 --Mungole, 1999 1205 --Mungole, 1999 1205 --Mungole, 1999 1205 --Mungole, 1999 1205 --Mungole, 2000 1206 --Nakamura, 2000 1207 --Nakamura, 2000 1207 -- sloping plateauNakamura, 2000 1207 --Jain, 2000 1208 --Gamboa, 2001 1209 --Venkateswara Sarma, 1210 --Miletic, 2000 1213 --Miletic, 2000 1213 --Ye, 2000 1214 --Zhang, 1999 1218 -- sloping plateauReilly, 1999 1232 --Reilly, 1999 1232 --Reilly, 1999 1232 --Reilly, 1999 1232 --Reilly, 1999 1232 --Jurczyk, 2000 1508 --Salamova, 2002 1509 --Ishikawa, 2002 1510 --Yamamoto, 2002 1511 --Joubert, 2000 1512 --Joubert, 2000 1512 --Joubert, 2000 1512 --Joubert, 2000 1512 --Joubert, 2000 1512 --Joubert, 2000 1512 --Joubert, 2000 1512 --Joubert, 2000 1512 --Joubert, 2000 1512 --Joubert, 2000 1512 --Joubert, 2000 1512 --Joubert, 2000 1512 --Joubert, 2000 1512 --Joubert, 2000 1512 --Joubert, 2000 1512 --Bowman, 2002 1513 --Bowman, 2002 1513 --Luo, 2002 1514 --Luo, 2002 1514 --Luo, 2002 1514 --Park, 2002 1515 -- No plateauYe, 2002 1516 --Ye, 2002 1516 --Ye, 2002 1516 --Burnasheva, 1978 1517 -- Lower plateauBurnasheva, 1978 1517 -- Lower plateau

Burnasheva, 1978 1517 -- Upper plateauBurnasheva, 1978 1517 -- Lower plateauBurnasheva, 1978 1517 -- Lower plateauBurnasheva, 1978 1517 -- Lower plateauBurnasheva, 1978 1517 -- Lower plateauBurnasheva, 1978 1517 -- Lower plateauBurnasheva, 1978 1517 -- Lower plateauBurnasheva, 1978 1517 -- Lower plateauBurnasheva, 1978 1518 --Burnasheva, 1978 1518 -- Lower plateauBurnasheva, 1978 1518 --Burnasheva, 1978 1518 --Burnasheva, 1978 1518 --Burnasheva, 1978 1518 --Yartys, 1982 1519 -- DeuteriumPetrova, 1989 1520 --Petrova, 1989 1520 --Petrova, 1989 1520 --Petrova, 1989 1520 --Petrova, 1989 1520 --Petrova, 1989 1520 --Petrova, 1989 1520 --Ganich, 1999 1521 --Ganich, 1999 1521 --Filatova, 1999 1522 --Filatova, 1999 1522 --Ganich, 1999 1523 --Ganich, 1999 1523 --Filatova, 2000 1524 --Mordkovich, 1993 1525 --Mordkovich, 1993 1525 --Sarynin, 1981 1526 --Sarynin, 1981 1526 --Sarynin, 1981 1526 --Filatova, 2001 1527 --Filatova, 2001 1527 --Burnasheva, 1984 1528 --Burnasheva, 1984 1528 -- Sloping plateauBurnasheva, 1984 1528 --Burnasheva, 1984 1528 --Burnasheva, 1984 1528 --Burnasheva, 1984 1528 --Verbetsky, 1989 1529 --Verbetsky, 1989 1529 --Verbetsky, 1989 1529 --Verbetsky, 1989 1529 --Verbetsky, 1989 1529 --Verbetsky, 1989 1529 --Burnasheva, 1981 1530 --Burnasheva, 1981 1530 --Ma, 2002 1531 --Chen, 2002 1532 --Jain, 2002 1533 --

Jain, 2002 1534 --

Composition Comment 1 H/M Wt.% H ∆H, kJ/mol H2 P, atm @ T, ˚CCaAl2 0.19 0.6 -- -- --CaAl2 0.67 2.1 -- -- --CaAl1.8B.2 (M) 0.2 0.7 -- 3 40CeAl1.25Cr.75 0.45 0.6 -- <0.05 21CaMg2 1.67 5.4 -- -- --CaNi2 1.13 2.1 85 (cal) <0.05 25Ca.5Mg.5Ni2 0.87 1.7 -- No plateau --Ca.25Mg.75Ni2 0.58 1.2 -- -- --CeAl1.5Co.5 0.77 1.1 -- -- --CeCo2 >0.5 (Dp) -- -- -- --CeCo2 1.37 1.6 -- -- --CeCo2 1.17 1.4 -- -- --CeCo2 1.33 1.5 -- <10-5 50CeCo2 1.4 1.6 -- -- --CeCoAl 1.33 (Dp) -- -- -- --CeCo1.5Al.5 1.47 1.8 -- -- --CeCoAl 1.2 1.6 -- -- --CeCo1.5Ni.5 1.67 1.9 -- -- --CeFe2 >1 (Dp) -- -- -- --CeFe2 1.17 1.3 -- -- --CeMg2 2.07 3.2 -- -- --CeMnAl 0.67 0.9 -- <0.05 21CeNi2 >0.5 (Dp) -- -- -- --CeNi2 1.3 1.5 -- -- --CeNi2 1.1 1.3 -- -- --CeNi2 1.33 1.5 -- <10-5 50CeNi2-yAly (y = 0.2-1.6) 0.53-1.33 0.8-1.7 -- -- --CeNiCo 1.4 1.6 -- -- --CeRu2 1.73 1.5 -- Low <200DyCo2 1.2 1.3 -- -- --DyCo2 1.13 1.2 -- -- --DyFe2 1.17 1.3 -- -- --DyFe2 (M) 1.4 1.5 58 0.0001 80DyFe2 1.13 1.2 -- -- --DyFe2 (M) 2.5 2.7 -- 0.03 21DyMn2 >0 >0 -- -- --DyMn2 1.13 1.2 -- -- --DyMn2 1.42 1.7 -- -- --DyNi2 1.17 1.2 -- -- --DyNi2 0.67 0.7 -- -- --ErCo2 1.22 1.3 -- -- --ErCo2 1.17 1.2 -- -- --ErFe2 1.3 1.4 -- -- --ErFe2 1.31 1.4 -- -- --ErFe2 1.0 1.1 -- -- --ErFe2 (M) 1.4 1.5 57.9 0.001 80ErFe2 1.33 1.4 -- 1 205ErFe2 (M) 1.07 1.1 56.2 0.013 130ErFe2-yAly (y = 0-0.6) 1.07-1.31 1.2-1.4 -- -- --ErFe2-yMny (y = 0-1.4) 1.3-1.53 1.4-1.6 -- -- --ErFe2-yCoy (y = 0-2) 1.21-1.41 1.3-1.5 -- -- --ErFe2-yNiy (y = 0-1.2) 1.22 1.3 -- -- --

ErMn2 1.63 1.75 -- 0.02 22ErNi2 0.87 0.9 -- -- --ErNi2 1.17 1.2 -- -- --ErNi2 1.43 1.5 -- -- --ErNi2 0.9 0.9 -- -- --GdCo2 >.5 (Dp) -- -- -- --GdCo2 1.36 1.5 31 (calc) -- --GdCo2 1.33 1.4 54 -- --GdCo2 1.5 1.6 -- -- --GdCo2 (M) 1.37 1.5 48 2 200GdCo2 1.3 1.4 -- -- --GdFe2 >1 (Dp) -- -- --GdFe2 1.33 1.5 -- -- --GdFe2 1.37 1.5 29 <1 292GdFe2 (M) 1.46 1.6 -- 0.0001 20GdFeAl 1.0 1.2 -- 0.75 27GdMn2 >0 >0 -- -- --GdMn2 1.0 1.1 87.5 1 360GdMn2 1.42 1.6 -- -- --GdNi2 1.33 1.4 -- -- --GdNi2 1.17 1.3 -- -- --GdNi2 1.37 1.5 90 <1 300GdNiAl 0.67 0.8 -- 0.5 27GdRh2 1.1 0.9 -- 0.8 100GdRh2 1.07 0.9 49 6 142GdRu2 1.23 1.0 -- 0.7 200GdRu2 1.23 1.0 60 3 225HfBe2 0.37 0.56 -- -- --HfV2 1.06 1.1 -- -- --HfV2 0.9 1.0 -- No plateau? --Hf.57Ti.43Ni1.7V.3 0.63 (est) 0.8 -- -- --HoCo2 1.2 1.3 -- -- --HoFe2 1.5 1.6 -- -- --HoFe2 1.2 1.3 -- -- --Ho.6Zr.4Co2 0.83 1.0 33 0.2 50Ho.8Zr.2Co2 1.1 1.2 25 0.2 50HoNi2 1.2 1.3 -- -- --HoRu2 1.4 1.1 -- 1 155LaAl2 <0.03 <0.05 -- -- --LaCo2 1.27 1.5 -- -- --LaMg2 1.33 2.1 -- -- --LaMg2 2.13 3.3 -- -- --LaMnAl (M) 0.92 1.2 -- 15 21LaNi2 1.5 1.7 -- -- --LaNi2 1.67 1.9 79.5 -- --LaNi2 0.93 1.1 -- -- --LaNi2 1.4 1.6 -- -- --LaNi2 1.53 1.8 -- -- --LaNi2 1.5 1.7 -- -- --La1-xMgxNi2 (x = 0.25-0.67) 0.7-1.4 1.2-1.8 -- -- --LaPt2 <0.1 -- -- -- --LaRh2 1.63 1.4 -- 0.7 200LaRh2 (M) 1.63 1.4 44.3 2 244

LaRu2 1.5 1.3 -- Low <200LiPd2 0.56 0.8 51 0.16 300LuFe2 1.33+ 1.4+ -- -- --LuNi2 0.83 0.85 -- -- --LuNi2 1.33 1.4 -- -- --LuNi2 0.87 0.9 -- -- --MgNi2 0 0 -- -- --MmCo2 0.93 1.1 -- -- --MmMnAl 0.75 1.0 -- <0.05 21NdCo2 1.27 1.4 -- -- --MgCu2 0 0 -- -- --NdFe2 0.97 1.1 -- -- --NdMg2 1.33 2.05 -- -- --NdNi2 1.13 1.3 -- -- --PrCo2 1.33 1.5 >67 <0.001 100PrCo2 1.33 1.5 -- -- --PrNi2 1.33 1.5 -- -- --PrGa2 0.11 0.1 -- -- --ScCo2 0.73 1.3 -- -- --ScFe2 1.03 2.0 -- -- --ScFe2 1.0 1.9 -- -- --ScFe2 1.03 2.0 -- 1 140ScMn2 1.27 2.4 -- -- --ScMn2 1.27 2.4 -- 1 140ScMn2 1.2 2.3 63 -- --ScNi2 0..67 1.2 -- -- --ScRu2 <0.1 -- -- -- --Sc.5Y.5Fe2 0.93 1.5 -- -- --(Sc.4Y.4Ti.2)Co2 0.83 1.4 -- -- --SmCo2 1.06 1.2 -- -- --SmCo2 1.33 1.5 -- 0.01 40SmFe2 0.93 1.1 -- -- --SmFe2 1.06 1.2 -- -- --SmMg2 >0 >0 -- -- --SmMg2 1.0 1.5 -- -- --SmMn2 1.4 (Dp) -- -- -- --SmNi2 1.23 1.4 -- -- --SmNi2 1.27 1.4 -- -- --SmRu2 1.53 1.3 -- -- --SmRu2 1.53 1.3 -- -- --TbCo2 1.1 1.2 -- -- --Tb.27Dy.73Fe2 1.36 1.5 -- 0.15 200TbNi2 1.0 1.1 -- -- --Th1.5Ce.5Al 0.58 0.4 133 0.0003 650ThMn2 1.19 1.0 -- -- --ThNi2 0.7 0.6 -- -- --ThNi2 1.33 1.1 44.7 No plateau --ThRu2 1.67 1.1 -- -- --ThZr2 2.0 0.5 413 0.08 910TiBe2 1.0 4.4 -- >1 22TiCo2 <0.1 -- -- -- --TiCr1.8 (M) 1.25 2.43 20.2 40 -20TiCr2 0.22 0.4 -- -- --

TiCr2 0.67 1.3 -- 30 -16TiCr2 0.4 0.8 23 40 20?TiCr2 0.67 1.3 -- -- --TiCr2 0.9 1.8 -- -- --TiCrMn 0.91 1.7 -- 15 -16Ti1.2CrMn 1.05 2.0 25.5 5.7 -10Ti1.2Cr1.9Mn.1 0.91 1.8 20.1 19.4 -10TixCr1.2Mn.8 (x = 1.1-1.3) 0.94-1 1.8-2.1 25-26 4.6-10 -10TiCr1.2V.8 1.73 3.4 -- -- --TiCr1.4V.6 1.17 2.3 -- -- --TiFe2 0 0 -- -- --TiMn1.5 0.99 1.9 28.7 7 20TiMn1.5 1.0 1.9 27.9 1.8 0TiMn2-y (y = 0.3-0.75) 0.4-1.2 0.8-2.3 -- 4-40 50TiMn2 0.03 0.06 -- -- --TiMnyB.1 (y = 1.3-1.4; B 0.92-1 1.7-1.9 -- 4-10 20TiMn1.25Cr.25 1.1 2.1 -- 6 20TiMn1.2Fe.37 0.72 1.4 -- 9 10TiMn1.3Fe.11 0.89 1.7 32.7 6 24TiMn1.4Fe.11 0.88 1.7 -- 4.5 0TiMn1.2V.8 1.10 2.1 -- 4.5 50TiMn1.4V.62 1.14 2.15 -- 3.5 20TiMnV.9Cr.1 1.28 2.45 -- 0.8 45TiMn1.28V.6Fe.15 1.13 2.15 -- 8 20TiV1.4Cr.6 1.9 3.7 -- -- --TiV1.6Co.4 1.6 3.1 -- -- --TiV2-yFey (y = 0.2-0.8) 0.97-2.0 1.9-3.5 -- -- --TiV1.5Fe.4Mn.1 1.7 3.3 -- 7 50TiV2-yMny (y = 0.4-1) 1.17-2.0 2.2-3.8 -- -- --TiVMn 1.24 2.4 -- 2 70Ti.98Zr.02Mn1.5V.43Fe.09Cr.0.99 1.9 27.4 9 20Ti1-xZrxCr2 (x = 0-0.3) 0.4 0.8 -- 3-40 20?Ti1-xZrxCrMn (x = 0-0.2) 1.0 2.0 -- 2.5-13 -20Ti1-xZrxMny (x = 0-0.2, y = 0.9-1 1.7-1.8 -- 2-6.5 20Ti1-xZrxMn2-y(x = 0-1, y = 0. 0.9-1.1 1.6-1.9 -- <1-30 30 Ti.5Zr.5Mn.9Cr.9Ni.4 1.05 1.6 -- 3 40Ti.5Zr.5(Mn.5CNiy (x=0-1.4) 1.05 1.6 -- 1-60 40Ti1-xZrxNiV.6 (x = 0.2-0.4) 0.9-1.0 1.6-1.7 -- 0.7-2 30Ti.5Zr.5Mn2 1.1 1.8 40? 1.5 70Ti.5Zr.5Ni1.3V (B = Al, Cr, Fe 0.86-1.08 1.4-1.8 -- No plateau --Ti1-xZrxMn1.7(x = 0.3-0.5) 0.88-1.05 1.5-1.7 -- 0.1-1 20Ti.6Zr.4Mn1.9Cu.1 1.0 1.7 40.6? 0.5 20Ti.8Zr.2Mn1.2Cr.8 1.1 2.0 28.9 5 20Ti.6Zr.4Mn1.4Cr.4Cu.2 1.07 1.8 48? 0.3 20Ti.5Zr.5Mn1.2Fe.3 1.14 1.9 39 1.5 120Ti.5Zr.5Mn1.36Fe.34 0.94 1.5 -- 3 100Ti.5Zr.5(Mn1-y(y = 0.2-0.8) 0.5-1.1 0.8-1.8 -- 4-70+ 100Ti.475Zr.475La.05Mn.8Cr.8Ni1.08 1.8 -- 2 40Ti.8Zr.2Mn1.5Fe.5 0.95 1.7 25.4 11 30Ti.7Zr.3Mn1.9Mo.1 1.07 1.7 41? 0.9 17Ti.8Zr.2Mn1.5Cr.5 1.1 2.0 27.5 10 30Ti.77Zr.23Mn.67Cr.67Cu.67 0.94 1.6 -- 8 30Ti.8Zr.2Mn1.5Cu.5 0.9 1.6 27 3 30

Ti.8Zr.2Mn1.8Mo.2 1.0 1.7 29 4 20Ti.8Zr.2Mn2-y (y = 0.1-0.3) 0.99-1.03 1.65-2.5 -- 2-6 20Ti.8Zr.2Mn1.5V.5 1.1 2.0 45.6 0.5 30Ti.8Zr.2Mn1.6V.2Cr.2 1.07 1.9 30.5 2 20Ti.8Zr.2Mn1.7V.2Mo.1 1.13 2.0 35 1 14Ti.8Zr.2Mn1.4V.2Cr.4 1.07 1.9 29 9 20Ti.8Zr.2Mn1.2V.2Cr.6 1.07 1.9 30.5 2.2 20Ti.8Zr.2Mn.8Cr1.0Fe.2 0.97 1.8 28 12 20Ti.6Zr.4NiV.6 (y = 0-0.4) 0.95 1.6-1.7 -- 0.4-3 30Ti1-xZrxV1.7F (x = 0.3-0.5) 1.67-1.7 2.8-3.0 -- -- --TmFe2 1.43 1.5 -- -- --TmFe2 1.0 1.1 -- -- --TmFe2 (M) 1.47 1.6 56.8 0.003 80TmNi2 1.2 1.25 -- -- --UMn2 0.18 0.16 -- -- --UTi2 2.16 1.9 -- 0.2 400UZr2 2.16 1.5 -- No plateau --YCo2 1.4 2.0 31 (calc) -- --YCo2 1.23 1.8 -- 0.05 25YCo2 1.2 1.7 -- -- --YCo2 1.4 2.0 -- -- --YFe2 >1 (Dp) -- -- -- --YFe2 1.33 2.0 -- -- --YFe2 1.4 2.1 -- -- --YFe2 1.17 1.7 -- -- --YFe2 1.23 1.8 -- -- --YFe2 1.4 2.1 -- <10-5 50YFe2 (M) 1.43 2.1 -- 0.001 20YFe1.8Co.2 1.33 2.0 -- -- --YMg2 1.06 2.3 -- -- --YMn2 1.13 1.7 -- -- --YMn2 1.43 2.1 -- -- --YNi2 1.23 1.8 -- -- --YNi2 >0.5 (Dp) -- -- -- --YNi2 1.2 1.7 44 (calc) -- --YNi2 1.2 1.7 -- -- --YRu2 1.1 1.1 -- Low <200YbNi2 1.03 (Dp) -- -- -- --ZrAl2 0.17 0.35 -- <0.1 20ZrNiAl 0.18 0.3 -- <0.001 40ZrBe2 0.77 2.1 -- <0.01 22ZrCo2 <0.1 -- -- -- --ZrCo2 0.11 0.16 -- -- --ZrCo2 0.1 0.1 -- -- --ZrCo1.5Mo.5 0.03 <0.1 -- -- --Zr(B1-yCy)2 (B = Fe, Co; C 0.97-1.23 1.4-1.8 30-49 0.001-5 50ZrCo1.5Al.5 0.63 1.0 -- 0.4 20Zr(Co1-yAly)2 (y = 0-1) 0.12-.67 0.2-1.05 -- <0.1-30 20ZrCoCr 1.07 1.6 40.2 0.7 50ZrCoV 1.23 1.8 49.4 0.0023 50ZrCo1.5V.5 1.0 1.5 34.3 1.5 50ZrCr2 1.20 1.8 -- -- --ZrCr2 1.16 1.8 -- -- --

ZrCr2 1.2 1.8 42 0.003 27ZrCr2 1.33 2.0 -- -- --ZrCr2 1.27 1.9 -- -- --ZrCr2 1.37 2.1 -- -- --ZrCr2 1.37 2.1 -- -- --ZrCr2 -- -- 36 (cal) -- --ZrCr2 1.2 1.8 -- 0.3 100ZrCr2Co.8 0.66 1.0 45.3 2 100ZrCrCo.6V.4 1.1 1.6 -- 1 180ZrCr.8Co.8V.4 1.22 1.8 -- 1 130Zr(CryCu1-.5yN(y=0.6-0.9) 0.97-1.22 1.4-1.8 -- -- --ZrCr2Fe.8 0.79 1.2 46.5 0.8 100ZrCrFe 1.07 1.6 36 2 51ZrCr1.2Fe.8 (+ Fe1.2 & Fe10.95 1.4 50.2 0.75 70ZrCr1-yFe1+y (y = 0.2-0.5) 0.9-1 1.3-1.5 24-29 0.4-5 30ZrCrFe1.6 0.75 1.2 29.1 2.5 30ZrCr1.75Ge.25 0.87 1.3 -- <1 200ZrCr1.2Ni.8 1.33 2.0 56.4 0.25 70Zr(Cr1-yNiy)2 (y=0.125-0.5) 1.1-1.2 1.6-1.8 -- <2 23ZrCr2Ni.8 0.92 1.4 37.9 1 100ZrCr2-ySiy (y=0.25-0.5) 0.6-.9 1.0-1.4 -- <1 200Zr(Cr1-yVy)2 (y=0.2-0.4) 1.27-1.33 1.9-2.0 -- No plateau --ZrFe2 0.1 0.15 -- -- --ZrFe2 0.05 0.1 -- -- --ZrFe2 0 0 -- -- --ZrFe2 0.07 0.1 -- -- --ZrFe1.6Al.4 >0.67 >1.0 36 10 24ZrFe1.5Al.5 0.65 1.0 -- 0.1 20Zr(Fe1-yAly)2 (y = 0-1) 0.05-.73 0.1-1.1 -- <0.1-25 20ZrFe1.4Cr.6 1.0 1.5 29.9 3 20ZrFe1.5Cr.5 1.03 1.5 25.6 5 20Zr(FeyCr1-y)2 (y = 0.45-0.8) 0.84-1 1.2-1.5 -- 0.15-3 20ZrFe1.4Cr.6 -- -- -- 0.8 23?ZrFeCr 1.13 1.7 49.4 0.1 50ZrFe1.5Cr.5 0.95 1.4 24.3 5.5 50ZrFe1.4Cr 1.12 1.7 21 1 23ZrFe1.5Cr 0.97 1.5 23 1.5 23Zr(FeyCr1-y)2 (y = 0.5-0.8) 0.97-1.1 1.4-1.6 -- 0.1-5 30ZrFeMn 0.93 1.6 31 10 150Zr(FeyMn1-y)2(y = 0.5-0.8) 0.63-1 0.9-1.5 24-35 0.2-20 40Zr(FeyMn1-y)2(y = 0.3-0.9) 0.68-1.13 1.0-1.7 6.5-22 2.5-60 100ZrFeMnCr.25 1.05 1.6 -- 0.5 45ZrFeMnNi.4 0.5 0.8 -- 5 23ZrFeMo 0.97 1.2 29.8 0.6 30ZrFeV 1.07 1.6 48.1 0.0012 50ZrFe1.5V.5 1.07 1.6 32.2 0.25 50ZrMn1.8 0.82 1.2 -- 0.06 50ZrMn1.8 1.09 1.6 38.8 0.1 50ZrMn2 0.67 1.0 -- -- --ZrMn2 0.3 0.45 -- -- --ZrMn2 1.2 1.8 53.2 0.03 80ZrMn2 1.03 1.5 -- -- --ZrMn2 1.3 1.9 -- -- --

ZrMn2 -- -- 38 (cal) -- --ZrMn2 1.0 1.5 36 3 210ZrMn2 0.9 1.4 -- 1 150ZrMn2 1.15 1.7 37.4 0.01 50ZrMn2.4 1.06 1.6 -- 0.7 50ZrMn2.5 0.94 1.4 32 0.07 50ZrMn2.7 0.82 1.3 33.6 3 100ZrMn2.8 -- -- 29.9 0.3 23?ZrMn2.8 1.05 1.6 -- 2 50ZrMn2.8 0.95 1.5 18.4 0.4 23ZrMn3 0.82 1.3 29.2 0.6 50ZrMn3.8 0.75 1.2 17 0.7 30ZrMn2Co.8 -- -- 20.9 4 23?ZrMn2Co.8 0.58 0.9 19.3 3.5 23ZrMn1.8Co0.2 0.81 1.2 -- 6 200ZrMn1.6Co.4 0.9 1.3 -- 3 150ZrMn2-yCoy (y = 0.5-1.0) 1.03-1.13 1.5-1.7 35-44 0.08-1 50ZrMn1.52Co.4V0.08 0.8 1.2 -- 8 200ZrMn2Cu.8 -- -- 31.6 0.06 23?ZrMn2Cu.8 0.92 1.4 27 0.06 50ZrMn1.2Fe0.4 (+ ZrMnFe) 1.07 1.5 33 0.4 50ZrMn2Fe.8 0.89 1.4 12.7 0.7 23ZrMn2Fe.8 -- -- 25 0.5 23?ZrMn2Fe.8 0.75 1.2 29.3 2 30ZrMn1.8Fe0.2 -- 1.2 -- 8 200ZrMn2Fe1.2 0.48 0.7 6.8 3 25ZrMn1.53Fe1.27 0.68 1.0 9 4 23ZrMn1.22Fe1.11 0.99 1.5 13 1 23ZrMn1.22Fe1.14 0.82 1.2 31 2 40ZrMn1.11Fe1.22 0.99 1.5 13.3 5 100ZrMn1.11Fe1.22 0.84 1.3 29.4 2 30ZrMn2.6Fe.2 0.92 1.4 15 0.12 100ZrMn2.8Fe.4 0.76 1.2 23 0.12 100Zr(Mn1-yNby)2(y=0-0.2) 1.08-1.18 1.6 -- 0.6-3 200Zr(Mn1-yNby)2(y=0-0.2) 0.78-1.05 1.2-1.5 -- 5-10 200ZrMn2Ni.8 -- -- 25 1.6 23?ZrMn2.8Ni.4 0.83 1.3 -- 4 23ZrMn2Ni.8 0.84 1.3 18.6 3 23ZrMn1.8Ni0.2 (M) 0.74 1.1 -- 6 200ZrMn1.8V0.2 0.87 1.3 -- 1 200ZrMn2-xVx (x=0.1-0.2) 0.8 1.2 -- 1-2 200ZrMo2 0.27 0.3 -- -- --ZrMo2 0.27 0.3 38.5 No plateauZrMo2 0.37 0.4 -- -- --ZrMo2 0.47 0.5 -- -- --ZrxNi1.2Cr.4M(x = 0.8-1.1) 1-1.15 1.4-1.7 -- 1-50 45Zr(Ni.6V.4)2.4 1.08 1.6 -- No plateau --Zr(Ni.6V.2Mn.2)2.4 1.05 1.6 39.9 0.3 30ZrNi1.2Mn.6Cr.2 1.0 1.45 -- 4.5 70ZrNi1.2Mn.5Cr.2V.1 1.08 1.6 -- 3 70Zr.8Ce.2Mn2 1.13 1.6 -- 0.25 100Zr.7Ce.3Mn2 (M?) 1.1 1.6 -- 0.6 100Zr.6Ho.4Co2 0.8 1.0 29.3 2 50

ZrxTi1-xCr2 (x = 0-1) 0.67-1.37 1.3-2.1 -- -- --ZrxTi1-x(FeyM(x & y = 0.2-0.80.44-1.08 0.8-1.6 -- -- --Zr.7Ti.3CrFe 1.07 1.7 30 0.8 23Zr.5Ti.5CrFe 1.1 1.8 27 4 23Zr1-xTixCr.8F (y = 0-0.2) 0.9-1.03 1.4-1.55 26-29 0.31.5 30Zr.8Ti.2Cr1.25Mn 1.11 1.8 -- 0.08 65Zr1-xTixNi1.1 (x = 0-0.4) 1.0-1.15 1.6-1.7 26-35 1.2-10 30Zr.9Ti.1Cr1-y (y = 0-0.4) 0.93-1 1.4-1.5 24-31 0.2-4 30Zr.8Ti.2Cr1-y (y = 0-0.4) 0.8-.9 1.2-1.4 26-29 0.4-6 30Zr1-xTixCr1-y (x=0-0.5; y = 0-0.9-1.0 1.4-1.6 30-36 0.2-10 30Zr.8Ti.2FeMny(y=0-1) 0.9-.97 1.4-1.5 30-33 0.4-1.6 30Zr.8Ti.2FeMn 0.9 1.4 30 1.6 30Zr1-xTixFe1.5 (x=0-0.3) 0.87-1.03 1.4-1.5 -- 0.2-1 50ZrxTi1-xMn2 (x = 0-1) 0.03-1.3 0.06-1.9 -- -- --Zr.7Ti.3Mn2 1.1 1.7 -- 0.1 30Zr.6Ti.4Mn2 1.07 1.7 -- 0.2 23Zr.79Ti.21MnFe1.02 0.95 1.5 33 1.5 30Zr.5Ti.5Mn1.2Fe.3 1.0 1.6 -- 3 150Zr.75Ti.25Mn1.1Fe.9 -- -- -- 0.9 23?Zr.7Ti.3Mn2Fe.8 0.5 0.8 14 2.6 25Zr.8Ti.2MnFe 1.1 1.7 11 1 23Zr.7Ti.3MnFe 1.1 1.7 10 2 23Zr1-xTixMnFe (x=0-0.3) 0.7-.93 1.1-1.4 28-34 0.4-9 30Zr.8Ti.2Ni1.3 (y = 0-0.2) -- 1.62-1.7 31-35 1-4 30Zr.8Ti.2Ni1.1+ (y = 0-0.32) -- 1.6-1.72 29-37 0.6-7 30Zr.76Ti.24Ni1.16Mn.63V.14Fe-- 1.6 29.7 5 30Zr.65Ti.35Nix (x = 1.0-1.2, y 0.76-.94 1.2-1.5 36-39 0.05-.4 40ZrV2 1.38 2.1 -- -- --ZrV2 1.38 2.1 -- -- --ZrV2 1.55 2.4 155 No plateau --ZrV2 1.8 2.7 -- -- --Zr(V1-xCrx)2 -- -- -- -- --Zr.75Ti.25V1.7Fe.3 0.9 1.5 -- -- --TiCr2 0.9 1.8 29.7 2 -40TiCr1.8Mo.2 1.42 2.6 -- 1 -40TiCr1.8V.2 1.5 2.9 -- 0.2 -40Ti.9Zr.1Mn1.4Cr.4V.2 0.94 1.7 -- 6 27Ti.9Zr.1Mn1.4Cr.4V.2S.03 0.92 1.7 -- 3 5Ti.9Zr.1Mn1.4Cr.4V.2C.03 .92 1.7 -- 10 27YFe2 (M) 1.17 1.7 -- 0.01 100ZrCrCo.8V.2 1.5 2.2 -- 3 150Zr.9Ti.1CrCo.8V.2 1.15 1.7 -- 4 150Zr.8Ti.2CrCo.8V.2 1.07 1.7 -- 4 150Zr.9Ti.1CrNi.8V.2 1.18 1.8 -- 2 150Zr.9Ti.1CrFe.8V.2 1.17 1.8 -- 2 150LaMg2 2.33 3.6 -- -- --CeMg2 2.33 3.6 -- -- --YNiAl 0.4 0.7 -- -- --GdNiAl 0.45 0.6 -- -- --TbNiAl 0.47 0.6 -- -- --ErNiAl 0.47 0.6 -- -- --LuNiAl 0.33 0.4 -- -- --DyNiAl 0.4 -- -- -- --

Ho.6Zr.4Fe2 1.83 16-20 No plateauHo.8Zr.2Fe2 2.70 24 No plateauHo.6Zr.4Co2 0.68 30 0.06 27Ho.8Zr.2Co2 0.83 13 0.06 27ErFe2-yMny y=0.4-1.0 1.37-1.53 -- -- --TiMn1.5 -- -- 27 5 0TiMn1.4Ni.1 -- -- 28 2 0TiCr1.8 -- -- 19 70 0Ti.8Zr.2Cr1.8 -- -- 23 3 0TiCrMn -- -- 24 18 0Ti.8Zr.2CrMn -- -- 30 2 0YFe2 1.33 2.0 -- -- --CeFe2 1.33 1.6 -- -- --SmFe2 1.33 1.5 -- -- --Zr.9Ti.1MnFe 0.95 1.5 -- 0.6 30Zr.9Ti.1CrFe 1.03 1.6 -- 0.2 30Zr.9Ti.1V.5Fe1.5 0.99 1.5 -- 0.2 50TiMn2 0.93 1.7 24.6 20 0ZrNi1.2Cr.8 1.07 1.6 -- 0.4 25ZrNi1.2Cr.8La.05 1.16 1.7 -- 0.2 25Ti0.9+xZr.1Mnx=0-0.15 0.92-1.0 1.7-1.9 -- 12-24 30Ti0.9Zr.1MnCr.9V.1 0.92 1.7 22.5 24 30Ti1-xZrxMnCr.x=0.1-0.15 0.92-1.03 1.7-1.9 -- 10-24 30Ti0.95-xZrxMnx=0.15-0.2 0.93-1.0 1.7-1.8 -- 10-24 30Ti0.9Zr.1Mn1.4Cr.4V.2 0.98 1.8 -- 13 30Ti0.9Zr.1MnCry=0.2-0.4 0.98-1.08 1.8-2.0 -- 2.7-13.6 30Ti0.85Zr.15MnCr.8V.1Cu.1 0.94 1.7 -- 13 30Zr.7Ti.3Ni1.0V.4Mn.3Cr.3 1.07 1.7 -- 0.1 30YFe2 (M) 1.17 -- -- 0.008 200Zr.8Ti.2Ni1.2V.6Si.2 1.2 1.9 -- 2 67Zr.8Ti.2Ni1.2V.6Mn.2 1.2 1.8 -- 1 67Zr.8Ti.2Ni1.2V.6Co.2 1.2 1.8 -- 4 67Zr.8Ti.2Ni1.2V.6Mo.2 1.2 1.8 -- 3 67TiMnV.5 (M) 1.36 2.6 -- 0.2 25?Ti.8Zr.2NiV.5Mn.5 0.98 1.7 -- -- 50CeMn.5Al.75 (M) 0.43 0.6 -- -- 27CeMn.5Al.75 0.43 0.6 -- -- 27CeMnAl (M) 0.8 1.1 -- 0.4 27YNiAl 0.4 0.7 -- -- --SmNiAl 0.5 0.5 -- -- --GdNiAl 0.45 0.6 -- -- --ErNiAl 0.47 0.6 -- -- --TmNiAl 0.47 0.6 -- -- --TbNiAl 0.47 0.6 -- -- --Zr.2Ho.8CoFe (M) 3.0? 3.3? 2-16? 9 27ZrNi1.4Mn.5V.5 1.06 1.6 -- 0.3 30ZrNi1.4+yMn.5y=0-0.6 0.27-1.06 0.4-1.6 -- 0.3-30 30Zr(Fe.75Cr.25)2 1.0 1.5 -- 2 45Zr(Fe.55Cr.55)2 1.0 1.5 -- 0.7 45Ti.98Zr.02V.43Fe.09Cr.05Mn1-- 1.6 23.3 20 20Zr(V.2Mn.2Ni. x=0-0.5 0.92-1.05 1.4-1.6 -- 0.3-2 30Zr.9Ti.1Ni1.1V.2Mn.6Co.1 1.0 1.5 -- 0.8 40Zr.9Ti.1Ni1.3V.2Mn.6La.05 0.95 1.4 -- 1.2 40

Ti.73Zr.27Mn1.25Cr.75Cu.1 0.95 1.7 -- 4 20ZrNi1.4+yMn.3y=0-0.6 0.42-1.05 0.6-1.6 -- No plateau 30TiV1.2Cr.4Fe.4 0.5 1.0 -- No plateau 25-410Ti.6Zr.4Mn1.6Cu.3Si.1 0.77 1.3 -- 1.0 20Ti.6Zr.4Mn1.5Cu.3Si.2 0.5 0.9 -- 11 20Ti.8Zr.3Mn1.6Cr.2Al.1 0.36 0.7 -- 3.4 20Ti.8Zr.3Mn1.5V.4Cr.2 0.99 1.7 -- 0.43 20Ti.8Zr.3Mn1.5V.4Cr.2 0.72 1.2 -- 0.65 20Ti.8Zr.3Mn1.4Mo.1V.1Cr.2 1.14 1.8 -- 0.07 20Ti.8Zr.3Mn1.4Mo.05Cu.05V.21.10 1.9 -- 0.18 20Ti.8Zr.3Mn1.4La.05V.2Cr.2 1.02 1.8 -- 0.07 20Ti.9Zr.3Mn1.3Cu.05Mo.05V.21.14 2.0 15.2 0.06 20Zr.9Ti.1Ni1.1Mn.6V.2Co.1 1.1 1.6 -- 0.7 40ZrMoCr 1.07 1.3 27.6 0.2 25ZrMo2 (M) 0.93 1.0 22.0 0.4 -78CeMg2 2.02 3.1 101 0.1 216TiV1.8Ni.2 1.87 3.6 35.3 0.08 90TiV1.6Ni.4 1.7 3.3 33.2 1 120TiV1.4Ni.6 1.53 2.9 28.8 0.4 60Ce(Fe1-xAlx)2x=0-0.1 1.33-1.47 1.6-1.7 -- -- --Ce(Fe1-xAlx)2x=0.7-0.85 0.33-0.67 0.5-0.9 -- -- --ErFe2 1.6 1.7 -- 0.06 24ZrCrFeMn.8 0.89 1.4 32 0.6 23ZrCrFeCo.8 0.74 1.1 20 10 0ZrCrFeNi.8 0.68 1.1 21 8 0ZrCrFeCu.8 0.76 1.2 28 3 23ZrCrFe1.6 0.86 1.3 -- 2 23ZrCrFe1.8 0.87 1.3 19 6 23ZrCr.6Fe1.4 1.03 1.5 27 0.8 23Zr.8Ti.2Cr.6Fe1.4 1.03 1.6 27 3 23Zr.7Ti.3Cr.6Fe1.4 0.97 1.5 22 7 23Ti.35Zr.65Ni1.2V.6Mn.2Cr.2 -- 1.55 -- No plateauTi.8Zr.2V.6Mn.2Pd.1Ni.8Fe.2 0.90 1.3 46.5 0.01 25Zr1-xTix(Mn.2Vx=0-0.6 1.00-1.04 1.6-1.7 -- 0.02-0.2 30Zr.5Ti.5Mn.4V.6Ni.85Co.15 0.98 1.6 -- 0.15 30Zr.5Ti.5Mn.4V.6Ni.85Fe.15 1.00 1.6 -- 0.1 30Zr.5Ti.5Mn.4V.6Ni.85Cu.15 0.97 1.6 -- 0.07 30Zr.5Ti.5Mn.4V.6Ni.85Mo.15 1.02 1.6 -- 0.04 30Zr.5Ti.5Mn.4V.6Ni.85Al.15 0.93 1.6 -- <0.02 30Ti.95Zr.05Mn1.95 1.04 1.9 -- 29 25Ti.95Zr.05Mn1.45Co.5 1.05 1.9 -- 32 25Ti.95Zr.05Mn1.45Ni.5 1.04 1.9 -- 36 25Ti.95Zr.05Mn1.45Cr.5 1.00 1.9 -- 28 25Ti.95Zr.05Mn1.45V.5 1.09 2.0 -- 20 25Ti.95Zr.05Mn1.45Al.5 0.69 1.4 -- 21 25HfTi2 1.98 2.1 -- -- --UNiAl (M) 0.73 0.7 -- 50 127TiCrMn.85Fe.3V.15 0.85 1.6 20.9 6 20Ti.95Zr.05Cr1.2Mn.8 0.92 1.7 21.9 5.5 20TiMn1.5V.45FeHydralloy C0 0.71 1.32 -- 9 60YMn2 1.5 2.2 -- -- --ZrCrNi 0.96 1.4 -- 8 30Ti.8Zr.2V.5Mn.y=0-0.5 0.74-0.92 1.3-1.6 -- -- --

Ti.5Zr.5V.5Mn.y=0-0.2 0.74-0.92 1.3-1.6 -- 0.02-0.8 --TbNiAl 0.37 0.5 -- -- --Zr1-xTixMn.7Vx=0-0.2 0.94-1.06 1.5-1.6 -- 0.08-0.5 30Zr.9Ti.1(Mn.7Vy=0.84-1.0 0.86-1.12 1.5-1.7 -- 0.03-0.2 30Zr1-xTixNi.95 x=0.1-0.6 0.92-1.16 1.5-1.8 -- 0.1-7 25Ti.75Zr.25Cr1.5Ni.5 1.09 1.7 -- 0.1 40Ti.75Zr.25CrNi 0.98 1.5 -- 1 40Ti.5Zr.5Cr1.5Ni.5 0.84 1.4 -- 2 40Ti.25Zr.75Cr1.5Ni.5 0.77 1.4 -- -- 40Zr.9Ti.1(Mn.7Vy=0.84-1.0 1.12 .7 -- 0.1 30Dy(Mn.99Fe.01)2 1.4 1.5 -- -- --ZrCr2 1.27 1.9 -- -- --Ti.52Zr.48Ni1.01V.39Cr.22Mn0.79 1.4 -- 0.8 22ZrMnFe 0.05 0.1 20.4 -- --ZrV1.5-yCryNi y=0-0.3 0.81-1.02 1.2-1.6 42-50 -- --GdCo2 1.25 1.0 -- -- --TiCr1.8 0.96 1.9 19.7 20 -32ZrCrFe1.2 0.94 1.4 34 7 120UNiAl (M) 0.67 0.5 74.6 0.0003 100Ti.95Zr.05Cr1.2Mn.8 0.97 1.8 -- 45 20Ti.95Zr.05Cr1.2Mn.75V.05 0.93 1.8 -- 36 20Ti.95Zr.05Cr1.2Mn.6Co.2 0.97 1.8 -- 65 20Ti.95Zr.05Cr1.2Mn.7V.1 0.97 1.8 -- 26 20ZrCoV1-yCry y=0-1 0.76-1.15 1.1-1.7 -- -- --ZrCoV.2Cr.8 y=0-1 1.00 1.5 -- 2 100Ti.95Zr.05Mn1.48V.43Fe.08Al1.05 1.9 -- 6 20Zr.9Ti.1V.2Mn.6Co.1Ni1.1 1.02 1.5 -- 4 40HfV2 0.81 0.9 -- -- --HfCr2 0.90 1.2 -- -- --HfMn2 0.71 0.7 -- -- --HfMo2 0.28 0.2 -- -- --ZrMn.5V.5Ni1.4 1.06 1.6 -- 0.2 30Zr.7Ti.3Cr.3Mn.3V.4Ni1.0 1.06 1.8 -- 0.2 50ZrV.7Mn.5Ni1.2 1.06 1.6 -- 0.1 60Zr.9Ti.1Mn.6V.2Co.1Ni1.1 1.06 1.6 -- 0.5 40Zr.5Ti.5Mn.4V y=0-0.6 0.85-1.1 1.4-1.8 -- 0.1-0.3 30ZrCr2 1.27 1.9 -- -- --TiCrMn 1.1 2.1 19.6 190 40CeMn1.5Al.5 1.0 1.3 -- -- --ZrMn.6V.2Co.1Ni1.2 1.13 1.6 -- 0.9 40Zr(Mn.4Ni.6)1.9 1.21 1.7 -- 0.15 30Zr(Mn.2V.2Ni.6y=0.1-0.4 1.14-1.30 1.65-1.8 -- 0.02-0.06 30Zr1-xTix(Mn.2Vx=0-0.6 1.00-1.18 1.6-1.7 -- 0.02-0.2 30Zr.7Ti.3(Mn.2Vy=0-0.15 1.04-1.14 1.6-1.8 -- 0.04-0.05 30Zr.65Ti.35(Mn.3V.14Cr.11Ni.41.09 1.7 -- 0.03 30MgYNi4 0.61 1.05 35.8 4 40ZrTi2 1.28 2.0 -- -- --Zr1-xTixV1.2Crx=0.25-0.6 0.87-1.05 1.5-1.7 34.5-36.9 -- --ZrMn.6Ni1.4 0.65 0.9 -- 3.4 25Zr.8Ti.2Mn.6Ni1.4 0.53 0.8 -- 21 25Zr.8V.2Mn.6Ni1.4 0.10 0.2 -- -- --Ti.8Zr.2Mn.6Ni1.4 0.53 1.0 -- -- --ZrMn.8Ni1.2 1.20 1.7 -- 0.5 25

ZrMn.6V.2Ni1.2 1.22 1.8 -- 0.14 25ZrMn.6V.2Co.1Ni1.2 1.15 1.6 -- 0.5 25YNi2 1.27 (Dp) 1.8 -- -- --CeNiAl 0.64 0.9 -- -- --YFe2 1.67 -- -- --ErFe2 1.67 -- -- --Ti1-xZrxMn.8Cx=0.1-0.25 0.93-1.03 1.8-1.9 -- 7-30 30(Ti.8Zr.2)1+xMx=0-0.15 1.00-1.08 1.8-1.95 -- 3-9 30(Ti.75Zr.25)1 x=0-0.15 1.03-1.09 1.85-1.95 -- 1.5-6 30Ti.8Zr.2MnCr 1.00 1.8 -- 10 30(Ti.75Zr.25)1.05Mn.8Cr1.05V 1.02 1.8 -- 3 30Ti.9Zr.1Mn1.4Cr.45Fe.15 1.18 2.2 -- 60 20TiCr1.7Fe.1 1.64 3.2 -- -- --Ti.9Zr.1Cr1.8 1.82 3.4 -- -- --Ti.5Zr.5V.5Ni1.3Zr.2 0.98 1.6 38.8 -- --Zr(Fe.75Cr.25)2 0.94 1.4 25.6 3 45Ti.95Zr.05Mn2y=-0.05-0.35 0.88-1.02 1.6-1.9 -- 25 25TiMn1.95 1.04 2.0 -- 31 25TiMn1.45Co.5 1.04 1.9 -- 32 25TiMn1.45Ni.5 1.04 1.9 -- 36 25TiMn1.45V.5 1.09 2.1 -- 20 25TiMn1.45Cr.5 1.00 1.9 -- 38 25TiMn1.45Al.5 0.70 1.5 -- 22 25ZrMnFe.7Co.3 0.83 1.2 17.6 4 30Zr.2Ho.8Fe.5Co1.5 1.2 1.3 10-30 4 27Zr(Cr1-yMo)y y=0-0.5 0.76-1.21 1.4-1.9 -- -- --ZrFe1.4Cr.6 0.98 1.45 -- 1 30Zr1-2xMmxTixx=0.05-0.2 0.92-1.18 1.35-1.75 -- -- --Zr1-xMmxFe1.x=0.05-0.2 1.00-1.10 1.4-1.6 -- -- --Zr1-xTix(Ni.6Mx=0-0.5 0.7-0.90 1.2-1.3 21.8-26.8 1-15 40Ti.9Zr.2Mn1.8V.2 1.17 2.1 26.0 3 25Ti.9Zr.2Mn1.6Ni.2V.2 1.19 2.1 31.7 2.7 25Ti.9Zr.15Mn1.6Cr.2V.2 1.16 2.1 15.4 7.0 25Ti.9Zr.2Mn1.4Cr.4V.2 1.15 2.1 26.7 1.9 25Ti.9Zr.2Mn1.8(VFe=ferrovana 1.14 2.0 29.1 3 25Ti.9Zr.2Mn1.6NVFe=ferrovana 1.10 2.0 23.2 3.6 25Ti.9Zr.2Mn1.6CVFe=ferrovana 1.14 2.1 30.0 7 25Ti.9Zr.2Mn1.4CVFe=ferrovana 1.17 2.1 25.5 3 25Zr.9Ti.1CrNi 1.3 2.0 -- -- --ZrCrNi 0.90 1.3 -- -- --Zr.9Ti.1Cr.55Fe1.45 1.6 1.03 2 10TiMn1.5 0.79 1.5 -- 5 22ZrMnNi1+y y=0-0.4 0.18-0.58 0.3-0.9 -- 0.45-2.5+ 30

Author, Year Ref. No. Propertes DB No. Comment 2 Comment 3Beck, 1962 45 --Shaltiel, 1978 66 --Tanaka, 1995 416 --Gross, 1996 630 --Shaltiel, 1978 66 --Oesterreicher, 1980 43 --Oesterreicher, 1980 43 --Oesterreicher, 1980 43 --Jacob, 1981 459 --Beck, 1962 45 --Guidotti, 1977 105 --Burnasheva, 1977 520 --van Essen, 1980 355 --Jacob, 1981 459 --Kost, 1979 515 --Jacob, 1981 459 --Jacob, 1981 459 --Jacob, 1981 459 --Beck, 1962 45 --Burnasheva, 1977 520 --Kost, 1979 515 --Gross, 1996 630 --Beck, 1962 45 --Guidotti, 1977 105 --Burnasheva, 1977 520 --van Essen, 1980 355 --Jacob, 1981 459 --Jacob, 1981 459 --Shaltiel, 1977 14 --Burnasheva, 1977 520 --Cohen, 1980 517 --Burnasheva, 1979 519 --Kierstead, 1980 356 --Cohen, 1980 517 --Pourarian, 1980 357 --Beck, 1962 45 --Cohen, 1980 517 --Przewoznik, 1996 525 --Burnasheva, 1979 519 --Cohen, 1980 517 --Gualtieri, 1977 50 --Burnasheva, 1979 519 --Gualtieri, 1976 516 --Gualtieri, 1977 50 --Burnasheva, 1979 519 --Kierstead, 1980 356 --Shilov, 1981 530 --Flanagan, 1987 358 --Gualtieri, 1977 50 --Gualtieri, 1977 50 --Gualtieri, 1977 50 --Gualtieri, 1977 50 --

Viccaro, 1980 359 --Gualtieri, 1977 50 --Burnasheva, 1979 519 --Kost, 1979 515 --Ensslen, 1983 385 --Beck, 1962 45 --van Mal, 1976 360 --Buschow, 1977 54 --Shaltiel, 1977 14 --Shaltiel, 1979 361 --Burnasheva, 1979 519 --Beck, 1962 45 --Buschow, 1975 518 --Shaltiel, 1979 361 --Kierstead, 1982 61 --Drulis, 1984 553 --Beck, 1962 45 --Shaltiel, 1979 361 --Przewoznik, 1996 525 --Malik, 1977 514 --Burnasheva, 1977 520 --Shaltiel, 1979 361 --Drulis, 1984 553 --Shaltiel, 1977 14 --Shaltiel, 1979 361 --Shaltiel, 1977 14 --Shaltiel, 1979 361 --Maeland, 1983 362 --Beck, 1962 45 --Kemali, 1995 405 --Ronnebro, 1995 617 --Burnasheva, 1979 519 --Gualtieri, 1976 516 --Burnasheva, 1979 519 --Ramesh, 1993 363 --Ramesh, 1993 363 --Burnasheva, 1979 519 --Shilov, 1981 530 --Shaltiel, 1978 66 --Burnasheva, 1979 519 --Shaltiel, 1978 66 --Kost, 1979 515 --Gross, 1996 630 --Oesterreicher, 1976 524 --Maeland, 1976 387 --Guidotti, 1977 105 --Mikheeva, 1978 535 --Kost, 1979 515 --Oesterreicher, 1980 364 --Oesterreicher, 1980 364 --Shaltiel, 1977 14 --Shaltiel, 1977 14 --Shaltiel, 1979 361 --

Shaltiel, 1977 14 --Sakamoto, 1995 411 --Buschow, 1980 56 --Burnasheva, 1979 519 --Buschow, 1980 56 --Ensslen, 1983 385 --Reilly, 1968 88 --Guidotti, 1977 105 --Gross, 1996 630 --Burnasheva, 1979 519 --Reilly, 1967 87 --Burnasheva, 1977 520 --Shaltiel, 1978 66 --Burnasheva, 1977 520 --Clinton, 1975 102 --Burnasheva, 1979 519 --Burnasheva, 1977 520 --Beck, 1962 45 --Burnasheva, 1981 64 --Kost, 1979 515 --Burnasheva, 1981 64 --Shilov, 1981 530 --Kost, 1979 515 --Shilov, 1981 530 --Shilov, 1983 531 --Burnasheva, 1981 64 --Shaltiel, 1978 66 --Burnasheva, 1981 64 --Burnasheva, 1981 64 --Kost, 1979 515 --Kanematsu, 1989 558 --Burnasheva, 1977 520 --Kost, 1979 515 --Beck, 1962 45 --Shaltiel, 1978 66 --Kost, 1979 515 --Burnasheva, 1977 520 --Kost, 1979 515 --Kost, 1979 515 --Shilov, 1978 510 --Burnasheva, 1979 519 --Manwaring, 1993 379 --Burnasheva, 1977 520 --Van Vucht, 1963 492 --Beck, 1962 45 --Beck, 1962 45 --Buschow, 1975 187 --Shaltiel, 1977 14 --Bartscher, 1988 556 --Maeland, 1983 362 --Shaltiel, 1978 66 --Johnson, 1978 335 18Beck, 1962 45 18

Reilly, 1976 490 18Machida, 1978 371 18Jacob, 1980 65 18Padurets, 1982 498 18Reilly, 1976 490 --Osumi, 1983 40 --Osumi, 1983 40 --Osumi, 1983 40 --Jacob, 1981 459 --Jacob, 1981 459 --Semenenko, 1982 532 --Gamo, 1981 31 26Andreev, 1982 522 26Someno, 1980 381 26Jacob, 1980 65 --Gamo, 1980 31 --Hong, 1991 365 --Gamo, 1980 36 --Gamo, 1980 36 --Gamo, 1980 36 --Bernauer, 1984 521 --Bernauer, 1984 521 39Bernauer, 1984 521 --Bernauer, 1984 521 --Jacob, 1981 459 --Jacob, 1981 459 --Jacob, 1981 459 --Bernauer, 1987 610 --Jacob, 1981 459 --Bernauer, 1989 344 --Bernauer, 1989 341 28Machida, 1978 371 --Bernauer, 1989 344 --Gamo, 1980 31 --Moriwaki, 1991 366 --Liu, 1996 526 --Liu, 1996 526 --Gao, 1995 403 --Gamo, 1979 34 --Miyamura, 1993 372 --Gamo, 1980 31 --Gamo, 1979 34 --Machida, 1978 371 --Gamo, 1979 35 --Komazaki, 1983 29 --Komazaki, 1983 29 --Komazaki, 1983 29 --Liu, 1995 415 --Hong, 1993 373 --Gamo, 1979 34 --Hong, 1993 373 --Zhan, 1995 627 --Hong, 1993 373 --

Gamo, 1980 31 --Gamo, 1980 31 --Hong, 1993 373 --Gamo, 1979 35 --Gamo, 1979 35 --Gamo, 1980 31 --Gamo, 1979 35 --Gamo, 1979 35 --Gao, 1995 403 --Jacob, 1981 459 --Gualtieri, 1976 516 --Burnasheva, 1979 519 --Kierstead, 1982 374 --Burnasheva, 1979 519 --Beck, 1962 45 --Asada, 1995 628 --Asada, 1995 628 --van Mal, 1976 360 --Shaltiel, 1977 14 --Burnasheva, 1979 519 --van Essen, 1980 355 --Beck, 1962 45 --Buschow, 1975 518 --van Mal, 1976 360 --Burnasheva, 1977 520 --Fujii, 1983 59 --van Essen, 1980 355 --Kierstead, 1982 61 --Fujii, 1983 59 --Kost, 1979 515 --van Mal, 1976 360 --Przewoznik, 1996 525 --Burnasheva, 1977 520 --Beck, 1962 45 --van Mal, 1976 360 --van Essen, 1980 355 --Shaltiel, 1977 14 --Ensslen, 1983 385 --Jacob, 1978 16 --Yoshida, 1995 622 --Maeland, 1983 362 --Pebler, 1967 13 --Shaltiel, 1977 14 --Padurets, 1978 513 --Semenenko, 1980 638 --Shaltiel, 1979 51 --Jacob, 1978 16 --Jacob, 1978 16 --Shaltiel, 1977 14 --Shaltiel, 1977 14 --Shaltiel, 1977 14 --Trzeciak, 1956 483 38Beck, 1962 45 38

Pebler, 1967 13 38Shaltiel, 1977 14 38Padurets, 1978 513 38Jacob, 1980 65 38Semenenko, 1980 638 38Pedziwiatr, 1983 28 38Perevesenzew, 198 557 38Drasner, 1991 564 --Bououdina, 1996 585 --Bououdina, 1996 585 --Soubeyroux, 1995 623 --Drasner, 1991 564 --Yu, 1985 555 --Boulghallat, 1993 375 --Lee, 1990 378 --Uchida, 1986 370 --Drasner, 1993 583 --Boulghallat, 1993 375 --Drasner, 1990 561 --Drasner, 1991 564 --Drasner, 1993 583 --Perevesenzew, 198 557 --Pebler, 1967 13 --Shaltiel, 1977 14 --Padurets, 1978 513 --Semenenko, 1980 638 --Fujii, 1982 22 --Jacob, 1978 16 --Jacob, 1978 16 --Ivey, 1984 29 --Ivey, 1984 29 27Ivey, 1986 377 --Pedziwiatr, 1983 28 --Shaltiel, 1977 14 --Shaltiel, 1977 14 27Sinha, 1985 554 --Sinha, 1985 554 --Qian, 1989 376 --Suzuki, 1982 27 --Suzuki, 1983 30 --Shitikov, 1984 552 --Sinha, 1985 554 --Sinha, 1985 554 --Semenenko, 1980 638 --Shaltiel, 1977 14 --Shaltiel, 1977 14 --van Essen, 1980 17 --Luo, 1992 582 --Beck, 1962 45 --Pebler, 1967 13 22Shaltiel, 1977 14 22Padurets, 1978 513 22Jacob, 1980 65 22

Pedziwiatr, 1983 28 22Fujii, 1987 369 22Yonezu, 1991 563 22Luo, 1992 582 22van Essen, 1980 17 --Luo, 1992 582 --Uchida, 1986 370 --Pedziwiatr, 1983 28 --van Essen, 1980 17 --Pourarian, 1981 19 --Luo, 1992 582 --Pourarian, 1981 19 --Pedziwiatr, 1983 28 --Pourarian, 1984 551 --Fujitani, 1991 368 --Yonezu, 1991 563 --Shaltiel, 1977 14 --Yonezu, 1991 563 --Pedziwiatr, 1983 28 --Pourarian, 1984 551 --Shaltiel, 1977 14 --Sinha, 1982 509 --Pedziwiatr, 1983 28 --Uchida, 1986 370 --Fujitani, 1991 368 --Sinha, 1982 509 --Sinha, 1983 23 --Sinha, 1983 23 --Uchida, 1986 370 --Sinha, 1983 23 --Uchida, 1986 370 --Pourarian, 1982 512 --Pourarian, 1982 512 --Kodama, 1996 584 --Kodama, 1996 584 --Pedziwiatr, 1983 28 --Pourarian, 1984 551 --Pourarian, 1984 551 --Fujitani, 1991 368 --Fujitani, 1991 368 --Yonezu, 1991 563 --Beck, 1962 45 --Pebler, 1967 13 --Shaltiel, 1977 14 --Semenenko, 1980 638 --Moriwaki, 1991 367 --Gao, 1996 586 --Gao, 1995 404 --Moriwaki, 1991 367 --Moriwaki, 1991 367 --Wallace, 1983 528 --Wallace, 1983 528 --Ramesh, 1993 363 --

Jacob, 1980 65 --Suzuki, 1982 26 --Yu, 1985 555 --Yu, 1985 555 --Lee, 1990 378 --Sinha, 1985 554 --Morii, 1995 410 --Lee, 1990 378 --Lee, 1990 378 --Park, 1990 560 --Park, 1991 562 --Park, 1991 562 41Park, 1992 581 --Jacob, 1980 65 --Fujii, 1981 18 --Fujii, 1981 18 --Uchida, 1986 370 41Suzuki, 1982 26 --Pedziwiatr, 1983 28 --Sinha, 1982 20 --Sinha, 1982 25 --Sinha, 1982 25 --Park, 1992 581 --Morii, 1995 410 --Morii, 1995 410 --Morii, 1995 410 --Yang, 1995 402 --Trzeciak, 1956 483 --Beck, 1962 45 --Pebler, 1967 13 --Padurets, 1978 513 --Mendelsohn, 1981 21 --Jacob, 1981 459 --Kabutomori, 1995 479 18Kabutomori, 1995 479 --Kabutomori, 1995 479 --Morita, 1997 647 --Morita, 1997 647 --Morita, 1997 647 --Paul-Boncour, 1997 648 --Bououdina, 1997 649 --Bououdina, 1997 649 --Bououdina, 1997 649 --Bououdina, 1997 649 --Bououdina, 1997 649 --Gingl, 1997 650 --Gingl, 1997 650 --Kolomiets, 1997 651 --Kolomiets, 1997 651 --Kolomiets, 1997 651 --Kolomiets, 1997 651 --Kolomiets, 1997 651 --Kolomiets, 1997 651 --

Kesavan, 1995 680 --Kesavan, 1996 681 --Ramesh, 1991 682 --Ramesh, 1991 682 --Sankar, 1977 683 --Andreev, 1984 684 26Andreev, 1984 684 --Andreev, 1984 684 18Andreev, 1984 684 --Andreev, 1984 684 --Andreev, 1984 684 --Buschow, 1976 685 --Buschow, 1976 685 --Christodoulou, 1993 686 --Park, 1993 687 --Park, 1993 687 --Park, 1993 687 --Klyamkin, 1994 688 --Sun, 1996 689 --Sun, 1996 689 --Liu, 1996 690 --Liu, 1996 690 --Liu, 1996 690 --Liu, 1996 690 --Liu, 1996 690 --Liu, 1996 690 --Liu, 1996 690 --Liu, 1997 818 --Paul-Boncour, 1997 819 --Chen, 1997 820 --Chen, 1997 820 --Chen, 1997 820 --Chen, 1997 820 --Yu, 1997 821 --Lee, 1997 822 --Spatz, 1997 823 --Spatz, 1997 823 --Spatz, 1997 824 --Kolomiets, 1997 825 --Kolomiets, 1997 825 --Kolomiets, 1997 825 --Kolomiets, 1997 825 --Kolomiets, 1997 825 --Kolomiets, 1997 825 --Kesavan, 1998 826 --Kim, 1998 827 --Kim, 1998 827 --Esayed, 1997 846 --Esayed, 1997 846 --Hahne, 1998 850 28Gao, 1998 851 4--Gao, 1998 855 --Gao, 1998 855 --

Gamo, 1998 856 --Kim, 1998 857 --Sakuma, 1995 859 --Au, 1995 860 --Au, 1995 860 --Au, 1995 860 --Au, 1995 860 --Au, 1995 860 --Au, 1995 860 --Au, 1995 860 --Au, 1995 860 --Au, 1995 860 --Suda, 1998 861 --Mitrokhin, 1981 1148 -- sloping plateauSemenko, 1996 1154 --Verbetsky, 1989 1155 --Chen, 1994 1163 --Chen, 1994 1163 --Chen, 1994 1163 --Raj, 1992 1164 -- (amorp)Raj, 1992 1164 --Shashikala, 1996 1165 -- sloping plateauWallace, 1985 1168 -- sloping plateauWallace, 1985 1168 -- sloping plateauWallace, 1985 1168 -- sloping plateauWallace, 1985 1168 --Wallace, 1985 1168 -- sloping plateauWallace, 1985 1168 -- sloping plateauWallace, 1985 1169 --Wallace, 1985 1169 --Wallace, 1985 1169 --Lee, 1997 1179 --Yang, 1999 1180 --Lee, 2000 1237 -- sloping plateauxSong, 2001 1238 -- sloping plateauSong, 2001 1238 -- sloping plateauSong, 2001 1238 -- sloping plateauSong, 2001 1238 -- sloping plateauSong, 2001 1238 -- sloping plateauBobet, 2000 1239 --Bobet, 2000 1239 --Bobet, 2000 1239 --Bobet, 2000 1239 --Bobet, 2000 1239 --Bobet, 2000 1239 --Kozhanov, 1998 1240 --Yamamoto, 1998 1241 --Hagstrom, 1998 1242 --Hagstrom, 1998 1242 --Hagstrom, 1998 1242 --Latroche, 1998 1243 --Jung, 1998 1244 --Yu, 1998 1245 -- No plateaux

Yu, 1998 1245 -- sloping plateauxYartys, 1998 1246 --Kim, 1998 1247 -- sloping plateauxKim, 1998 1247 -- sloping plateauxKlein, 1998 1248 --Bououdina, 1998 1249 -- sloping plateauBououdina, 1998 1249 -- sloping plateauBououdina, 1998 1249 -- sloping plateauBououdina, 1998 1249 -- No plateauKim, 1999 1250 -- sloping plateauxPrzewoznik, 1999 1252 --Kohlmann, 1999 1253 38Chuang, 1999 1254 -- sloping plateauFukada, 1999 1255 -- 0.4 atm at 0˚C No plateauLupu, 1999 1256 -- No plateauxMushnikov, 1999 1257 --Beeri, 1999 1258 18Ivanova, 1999 1259 -- calor.Yamanaka, 1999 1260 --Hagstrom, 1999 1191 --Hagstrom, 1999 1191 --Hagstrom, 1999 1191 --Hagstrom, 1999 1191 --Soubeyroux, 1999 1261 --Soubeyroux, 1999 1261 --Skripnyuk, 1999 1262 28Suda, 1999 1263 --Mukai, 1999 1230 -- No plateauMukai, 1999 1230 -- No plateauMukai, 1999 1230 -- No plateauMukai, 1999 1230 -- No plateauKim, 1999 1264 -- Sloping plateauKim, 1999 1264 -- Sloping plateauLee, 1999 1265 --Liu, 2000 1266 --Song, 2000 1267 -- Sloping plateauxIrodova, 2000 1268 38 DeuteriumBeeri, 2000 1269 -- at T=-60CGross, 2000 1270 -- DeuteriumLai, 2000 1271 --Lee, 2000 1272 --Lee, 2000 1272 --Lee, 2000 1272 -- Sloping plateauxLee, 2000 1272 --Lee, 2000 1272 --Aono, 2000 1273 --Skripov, 2000 1274 -- deuteriumLupu, 2000 1275 -- No plateauxHsu, 2000 1276 --Hsu, 2000 1276 --Hsu, 2000 1276 -- No plateauHsu, 2000 1276 -- No plateauHsu, 2000 1276 --

Hsu, 2000 1276 --Hsu, 2000 1276 --Nakhl, 2001 1277 --Bobet, 2001 1278 --Paul-Boncour, 2001 1279 -- P=10 kbarsPaul-Boncour, 2001 1279 -- P=10 kbarsPark, 2001 1280 --Park, 2001 1280 --Park, 2001 1280 --Park, 2001 1280 --Park, 2001 1280 --Verbetsky, 1998 1219 -- at -78CVerbetsky, 1999 1281 -- at -78C No plateauVerbetsky, 1999 1281 -- at -77C No plateauVerbetsky, 1999 1282 -- No plateauFang, 2000 1283 --Bobet, 2000 1284 --Bobet, 2000 1284 --Bobet, 2000 1284 --Bobet, 2000 1284 --Bobet, 2000 1284 --Bobet, 2000 1284 --Bobet, 2000 1284 --Prakash, 2000 1285 -- Sloping plateauKesavan, 2000 1286 -- Sloping plateauBououdina, 2000 1287 --Davidson, 2001 1288 --Davidson, 2001 1288 -- No plateauxDavidson, 2001 1288 -- No plateauxDu, 2001 1289 -- Sloping plateauxXu, 2001 1290 --Xu, 2001 1290 --Xu, 2001 1290 --Xu, 2001 1290 --Xu, 2001 1290 --Xu, 2001 1290 --Xu, 2001 1290 --Xu, 2001 1290 --Visintin, 2001 1291 -- at 60C No plateauVisintin, 2001 1291 -- at 80C No plateauPark, 2001 1292 --Singh, 2001 1293 26Kwon, 2002 1294 --

Composition Comment 1 H/M Wt.% H ∆H, kJ/mol H2P, atm @ T, ˚CBeNi 0.5 1.5 -- -- --CeAg >1 (Dp) -- -- -- --CeNi >0.5 (Dp) -- -- -- --DyAg >1 (Dp) -- -- -- --DyAl >0.5 (Dp) -- -- -- --ErAg 0.47 0.3 35.2 0.01 790ErNi 1.55 1.4 105 (cal) -- --GdAl >0 (Dp) -- -- -- --GdCu >1 (Dp) -- -- -- --HfAl 0.5 0.5 -- 1 50HfCo 1.49 1.2 -- -- --HfCo 1.6 1.3 59 (calc) 0.001 50HfCo 1.5 1.3 43 (cal) 1 270HfNi (M) 1.6 1.3 50 (calc) 0.02 50HfNi (M) 1.5 1.3 40 (cal) 1 190LaAg >1 (Dp) -- -- -- --LaAl >0 (Dp) -- -- -- --LaCd 1.4 (Dp?) 1.1 -- -- --LaMg 1.5 (Dp) 1.8 -- -- --LaNi 2.05 2.0 -- -- --LaNi 1.5 1.5 -- -- --LaNi 1.8 1.8 -- -- --LaNi 1.3 1.3 118 -- --LaNi 1.92 1.9 100 (cal) -- --LaNi 1.55 1.6 -- -- --LaNi 2.0 2.0 126 (cal) -- --LaPt 1.4 0.8 -- -- --LaZn >1? (Dp) -- -- -- --LiPd 0.41 0.7 75.3 -- --Li.94Pd 0.5 0.9 69.2 0.02 300LiPt 0.33 0.6 134 -- --LuNi 1.45 1.2 100 (cal) -- --PrAg >1? (Dp?) -- -- -- --PrGa >0.5 (Dp) -- -- -- --PrMg >1 (Dp) -- -- -- --PrSb 0.22 0.2 -- -- --SmMg >1 (Dp) -- -- -- --ThCo 1.7 1.2 -- -- --ThCo 2.0 1.4 46.8 <0.05 40ThNi 1.8 1.2 45.3 0.01 40TiAg >0.5 (Dp) -- -- -- --TiAl 0.25 (Dp) 0.7 -- -- --TiCo 0.76 1.4 57.4 4 155TiCo (M) 0.72 0.7 -- 5.2 116TiCo 0.58 1.1 61.1 2.2 150TiCo (M) 0.78 1.45 54 2 152TiCo 0.7 1.3 57.8 2.2 150TiCu 0.21 (Dp) 0.4 -- -- --TiCu 1.0 (Dp) 1.8 -- -- --TiCu (M) 0.88 (Dp) 1.6 126 0.15 500TiCu 0.97 (Dp) 1.7 75 0.004 200TiCu 0.7 (Dp) 1.3 -- 0.2 500

TiCu 0.31 (Dp) 0.6 -- 0.19 500TiCu 1.0 1.8 -- -- --Ti.9La.1Co 0.88 1.5 60 3.2 150TiCo1-yFey (x = 0-0.5) 0.6-.7 1.1-1.3 42-58 2.8-18 150TiCo.5Fe.5 0.6 1.1 42.3 4 100TiCo1-yMny 0.7-.8 1.3-1.6 47-58 2.2-9 150TiCo.5Mn.5 0.85 1.6 46.9 3.2 120TiFe (M) 0.98 1.9 28.1 5.2 30TiFe.88 1.05 2.0 -- 4 40TiFe (M) 0.9 1.7 26.7 11 51TiFe1-yAly (y=0.04-0.1) 0.65-.7 1.3-1.4 -- 4-7 40TiFe.76Al.24 0.53 1.1 -- No plat --TiFe.9Al.1 0.65 1.3 30 1.2 25TiFe.94Al.06 0.6 1.2 -- 5 30TiFe1-yAly (y=0.02-0.1) 0.55-.59 1.1 21-29 3-8 30TiFe.8Be.2 0.67 1.4 30.5 0.7 21TiFe.9Co.1 0.94 1.8 -- 3.3 40TiFe.5Co.5 0.58 1.1 41.4 12 150TiFe1-yCoy (y = 0.25-0.75) 0.52-0.58 1.0-1.1 31-47 4-30 150TiFe1-yCoy (M?) (y = 0.1-0.2) -- -- 31-33 0.9-1.6 25TiFe1-yCry (M) (y = 0.1-0.2) -- -- 30-36 0.2-1 25TiFe.95Cr.05 (M) 0.90 1.7 -- 4 40TiFe.9Cr.1 (M) 0.88 1.7 -- 1.6 40TiFe.9Cr.1 0.58 1.1 30.5 20 150TiFe.8Cr.2 (M) .95 1.8 -- 0.4 40TiFe1-yCry (M) (y = 0.05-0.1) 0.83 1.6 -- 2-5 50TiFe.9Cu.1 0.62 1.2 -- 2.3 40Ti1-xCuxFe (x = 0.02-0.1; 0.4-.65 0.8-1.2 -- 0.8-3 30TiFe (1 w/o Mm) 0.9 1.7 -- 7 40TiFe (+4.5 w/o Mm) 0.85 1.6 -- 3 27TiFe1-yMny (y = 0.1-0.3) 0.92-0.98 1.8-1.9 -- 1-6 40TiFe.9Mn.1 (M) 1.0 1.9 29.5 2.6 25TiFe.9Mn.1 0.6 1.2 27.2 30 100TiFe.7Mn.2 1.0 2.0 34.7 1.4 40TiFe.7Mn.3 0.83 1.6 -- 1.3 40TiFe.95Mn.05 (M) 0.8 1.6 29.3 9 50TiFe1-yMny (M) (y = 0.05-0.2) -- -- 28-32 0.8-3.4 25TiFe1-yMny (M) (y = 0.1-0.2) 0.9-.98 1.7-1.9 -- 4-6 50TiFe1-yMny (y=0.1-0.3) 0.84-.92 1.6-1.8 -- 0.5-2 27TiFe.9Mo.1 0.93 1.7 -- 3 40TiFe.96Nb.04 0.92 1.7 -- 4 40TiFe.9Ni.1 0.85 1.6 -- 0.9 40TiFe.8Ni.2 0.7 1.3 41.2 0.33 50TiFe1-yNiy (y = 0.1-0.5) -- -- 35-45 0.005-.625TiFe.8Ni.2 0.5 1.0 41.9 0.28 50TiFe.8Ni.2 0.63 1.2 -- 9 150TiFe1-yNiy -- -- 49-54 -- --TiFe.6Ni.4 0.77 1.5 48.6 0.035 50TiFe.8Ni.15Nb.05 0.56 1.1 -- 7 150TiFe.8Ni.15V.05 0.68 1.3 41 7 150TiFe1-ySiy (y=0.02-0.1) 0.65-.88 1.3-1.7 -- 2-3.5 40TiFe.95V.05 (M) 0.97 1.7 -- 5 40Ti.46Fe.45V.05Mn.05 0.9 1.7 28.6 2 22

Ti1-xNbxFe (x = 0.04-0.12; 0.56-.66 1.0-1.2 -- 2.5-4 30Ti1-xVxFe1-yMny (x=0.01-0.04, y 0.8-.93 1.5-1.8 -- -- --Ti1-xZrxFe (x = 0-0.2) 0.56-.9 1.0-1.7 -- 3-7 30Ti.9Zr.1Fe 0.56 1.0 28.9 3.3 30Ti.96Zr.04Fe.95Nb.04 0.9 1.7 31.8 1.4 30TiMn 1.0 1.9 -- -- --TiNi 1.3 1.2 -- No plat --TiNi 0.7 1.3 -- 1 200TiNi 0.77 1.4 58-60 No plat --TiNi 0.7 1.3 -- 1 200TiNi 0.7 1.3 -- -- --TiNiCr.1 0.63 1.2 -- -- --TiNiFe.1 0.6 1.1 -- -- --TiNiMn.1 0.6 1.1 -- -- --UCo 0.9 0.6 55 0.08 150YAl >0.5 (Dp) -- -- -- --YCu >1 (Dp) -- -- -- --YNi >0.5 (Dp) -- -- -- --YbNi 1.35 1.2 147(cal) -- --YbPd 1.35 1.0 67(cal) -- --ZrAg (M) 0.5 0.5 -- <10-3 280ZrCo 1.11 0.7 -- 0.4 365ZrCo (M) 1.22 1.6 67 0.013 200ZrCo 0.87 1.2 90 0.05 252ZrCo 1.5 2.0 66 (cal) 1 430ZrCo.84Ni.16 (M) 1.2 1.6 83 0.01 250ZrNi 1.4 1.8 76.8 0.26 250ZrNi 1.44 1.9 -- -- --ZrNi 0.9 1.2 47.5 0.005 300ZrNi 1.5 2.0 64 (cal) 1 300ZrNi 1.28 1.7 40.1 0.2 250ZrNi.8Co.2 1.35 1.8 -- 0.06 232Zr.78Ti.19Mm.03Ni.97 1.2 1.7 -- 0.4 232Zr.96Mm.04Ni.9 1.3 1.7 -- 0.13 232Zr.97Mm.03Ni.87Al.09 1.06 1.4 -- 0.13 232Zr.97Mm.03Ni.77Cu.19 1.2 1.6 -- 0.11 232Zr.97Mm.03Ni.96Sn.1 1.11 1.4 -- 0.15 232TiFe1-yPdy y = 0.05-0.2 0.88-.95 1.6-1.7 -- 0.1-0.7 0Ti.9Fe.9B.2 0.73 1.5 7.6? 14 27ZrCo 1.3 1.7 76.3 0.005 200Zr.7Hf.3Co 1.27 1.4 80.3 0.03 200Zr.5Hf.5Co 1.07 1.1 76.2 0.2 200YAl 0.7 1.2 -- -- --CeAl 0.65 0.8 -- -- --PrAl 0.6 0.7 -- -- --ScAl 0.4 1.1 -- -- --TiCo.8V.2 0.9 1.8 -- -- --TiCo.9V.1 0.75 1.5 -- -- --LaNi 1.75 1.7 -- 0.5-1 20CeNi 1.4 1.8 -- 0.05-0.020ErNi 1.7 1.5 -- 2-5 22TiFe1-yNiy y=0.1-0.3 0.75-0.8 1.4-1.5 -- 0.3-1.8 50TiFe.9Ni.1 0.75 1.4 35.6 1.8 50

TiFe1-yAly y=0.025-0.1 0.65-0.72 1.3-1.4 -- 3-10 50TiFe.9Al.1 0.65 1.3 -- 3 50TiFe.9Co.1 0.78 1.5 30.6 5 50Zr.7Ti.3Co.7Ni.3 0.78 1.1 -- 0.2 100Sc1-xTixNi x=0-0.5 0.77-1.45 1.5-2.7 -- <0.1 25GdZn 1.00 0.9 -- -- --GdZn.9Mg.1 0.90 0.7 -- -- --GdMg 1.00 1.1 -- -- --Ti1-xZrxFe x=0.1-0.5 0.81-1.15 1.6-1.8 -- 2.5-4.5 40Ti.48Fe.47V.025Mn.025 0.90 1.7 -- 2 22Zr1.02Ni0.98 1.2 1.6 -- -- --Ti.42Zr.08Fe.50 0.61 0.7 -- 12 50Ti1.3Fe 0.98 1.9 -- 2 25Ti1.3Fe + 1.5 wt.% Mm 0.80 1.6 -- 1.5 25Ti1.3Fe + 6 wt.% Mm 0.91 1.8 -- 1.5 25Ti1.1Fe 0.9 1.6 -- 5 50Ti1.1FeB.001 0.61 1.1 -- 10 50Ti1.1FeC.001 0.71 1.3 -- 6 50HfNi 1.58 1.3 -- 0.7 50HfCo 1.53 1.3 --HfPd 0.35 0.2 --

Author, Year Ref. No. Properties DB No. Comment 2 Comment 3Chernikov, 1983 432 --Beck, 1962 45 --Beck, 1962 45 --Beck, 1962 45 --Beck, 1962 45 --Philipp, 1991 384 --Ensslen, 1983 385 --Beck, 1962 45 --Beck, 1962 45 --van Essen, 1979 386 --Beck, 1962 45 --van Essen, 1979 386 --Nemirovskaya, 1991 606 --van Essen, 1979 386 --Nemirovskaya, 1991 606 --Beck, 1962 45 --Beck, 1962 45 --Beck, 1962 45 --Beck, 1962 45 --Anderson, 1973 99 --van Mal, 1976 103 --Oesterreicher, 1976 524 --Maeland, 1976 387 --Busch, 1978 189 --Mikheeva, 1978 535 --Ensslen, 1983 385 --Anderson, 1973 99 --Beck, 1962 45 --Nacken, 1977 388 --Sakamoto, 1995 411 --Nacken, 1977 388 --Ensslen, 1983 385 --Beck, 1962 45 --Beck, 1962 45 --Beck, 1962 45 --Beck, 1962 45 --Beck, 1962 45 --Beck, 1962 45 --Buschow, 1975 187 --Buschow, 1975 187 --Beck, 1962 45 --Semenenko, 1982 532 --Yamanaka, 1975 73 42Reilly, 1976 490 42Someno, 1979 381 42Burch, 1979 500 42Osumi, 1980 80 42Beck, 1962 45 --Yamanaka, 1975 73 --Kadel, 1978 523 --Maeland, 1978 389 --Someno, 1979 381 --

Arita, 1979 495 --Pauurets, 1982 498 --Kato, 1981 83 --Suzuki, 1981 82 --Suzuki, 1981 82 --Osumi, 1980 80 --Osumi, 1980 80 --Reilly, 1974 319 7Reilly, 1974 319 --Yamanaka, 1975 73 --Sandrock, 1978 321 --Sandrock, 1978 321 --Bruzzone, 1981 422 --Lim, 191984 548 --Lim, 1984 547 --Bruzzone, 1980 421 --Reilly, 1976 383 --Someno, 1979 381 --Someno, 1979 381 --Mintz, 1981 390 --Mintz, 1981 390 --Reilly, 1976 383 --Reilly, 1976 383 --Someno, 1979 381 --Reilly, 1976 490 --Lee, 1994 391 --Reilly, 1976 383 --Nagai, 1986 392 --Sandrock, 1978 321 --Bronca, 1985 549 --Johnson, 1977 393 --Johnson, 1978 330 16Someno, 1979 381 --Reilly, 1976 383 --Sandrock, 1976 76 --Mintz, 1981 390 --Mintz, 1981 390 --Lee, 1994 391 --Mitrokhin, 1993 593 --Reilly, 1976 383 --Sasaki, 1981 394 --Reilly, 1972 195 --Huston, 1980 77 15Mintz, 1981 390 --Mintz, 1981 390 --Oguro, 1983 78 --Bershadsky, 1993 395 --Bershadsky, 1993 395 --Oguro, 1983 78 --Oguro, 1983 78 --Sandrock, 1978 321 --Reilly, 1976 383 --Mitrokhin, 1993 396 --

Nagai, 1986 392 --Liu, 1982 499 --Jang, 1986 397 --Jang, 1986 397 --Sasai, 1983 79 --Chernikov, 1983 432 --Reilly, 1966 489 --Yamanaka, 1975 73 --Burch, 1979 500 --Hata, 1980 74 --Pauurets, 1982 498 --Hata, 1980 74 --Hata, 1980 74 --Hata, 1980 74 --Yamamoto, 1991 398 --Beck, 1962 45 --Beck, 1962 45 --Beck, 1962 45 --Ensslen, 1983 385 --Ensslen, 1983 385 --Deschanvres, 1964 497 --Reilly, 1966 489 --Irvine, 1978 70 --Devillers, 1989 399 --Nemirovskaya, 1991 606 --Irvine, 1980 400Libowitz, 1958 68 19Beck, 1962 45 --Luo, 1990 550 --Nemirovskaya, 1991 606 --Cantrell, 1995 409 --Sandrock, 1987 336 --Sandrock, 1987 336 --Sandrock, 1987 336 --Sandrock, 1987 336 --Sandrock, 1987 336 --Sandrock, 1987 336 --Yamashita, 1997 654 --Rajalakshmi, 1998 852 --Konishi, 1995 858 --Konishi, 1995 858 --Konishi, 1995 858 --Semenenko, 1985 1151 -- (Dp)Semenenko, 1985 1151 -- (Dp)Semenenko, 1985 1151 -- (Dp)Semenenko, 1985 1151 -- (Dp)Verbetsky, 1986 1153 --Verbetsky, 1986 1153 --Verbetsky, 1991 1156 --Verbetsky, 1991 1156 --Verbetsky, 1991 1156 --Lee, 1999 1211 --Lee, 1999 1211 --

Lee, 1999 1211 --Lee, 1999 1211 -- sloping plateauLee, 1999 1211 --Shimizu, 1999 1212 --Balema, 2000 1215 --Reule, 2000 1216 --Reule, 2000 1216 --Reule, 2000 1216 --Nishimiya, 2000 1217 -- no plateau at x=0.5Verbetsky, 1998 1219 --Simonovic, 1999 1220 --Rajalakshmi, 1999 1221 --Ma, 2000 1222 -- sloping plateauMa, 2000 1222 -- sloping plateauMa, 2000 1222 -- sloping plateauLee, 2000 1223 --Lee, 2000 1223 --Lee, 2000 1223 -- sloping plateauMukai, 1999 1230 --Mukai, 1999 1230 --Mukai, 1999 1230 --

Composition Comment 1 H/M Wt.% H ∆H, kJ/mol H2Eu2Ir 1.67 (Dp) 1.0 --Hf2Co 1.54 1.1 --Hf2Co 1.21 0.9 --Hf2Co 1.27 0.9 --Hf2Cu 0.97 0.7 --Hf2Cu 0.94 0.7 --Hf2Cu (M) 2.13 1.5 --Hf2Fe 1.03 0.75 --Hf2Fe 1.53 1.1 60-80Hf2Mn 1.50 1.1 --Hf2Mn 1.3 0.95 --Hf2Ni 1.03 0.75 --Hf2Pd 0.63 0.4 --Hf2Pd (M) 1.52 1.0 --Hf2Pt 0.44 0.25 --Hf2Rh 0.7 0.45 --Hf2Rh 0.73 0.5 --Mg2Co (Mg2Co phase not stable without 1.67 4.5 --Mg2Co (M) (Mg2Co phase not stable without 1.57 4.2 108Mg2Cu 1.0 2.6 (Dp) 72.9Mg2Fe (Mg2Fe phase not stable without H2.0 5.5 --Mg2Ni 1.33 3.6 64.5Mg2Ni 1.33 3.6 64.6Mg1.92Al.08Ni 1.3 3.5 70.5Mg2Ni1-yBey (y = 0.15-0.25) 1.33 3.9-4.1 71-80Mg2Ni1-yCuy (y = 0-1) 1-1.3 2.6-3.5 53-73Mg2Ni.75Cu.25 -- -- 53.2Mg2Ni.75Co.25 1.15 3.1 64.5Mg2Ni.75Cr.25 1.1 3.0 59.9Mg2Ni.75Fe.25 1.03 2.8 63.2Mg2Ni.75V.25 1.06 2.9 62.4Mg2Ni.75Zn.25 1.22 3.3 61.5Th2Al 1.25 0.8 130Th1.5Ce.5Al 0.58 0.4 133Th2Al 1.33 0.8 --Ti2Al 0.73 (Dp) 1.2 --Ti2Co 0.08 0.2 --Ti2Co (M) 0.9 1.7 --Ti2CoOx (x = 0.18-0.33) 0.87-.9 1.7 --Ti2Cr (O-stabilized) 0.43 0.9 --Ti2Cu 1.18 2.2 --Ti2Cu (M) 1.17 (Dp) 2.2 130Ti2Cu 0.9 1.7 --Ti2Cu 0.53 (Dp) 1.0 --Ti2Cu 1.0 (Dp) 1.8 --Ti2Fe (O-stabilized) 0.21 0.4 --Ti2FeO.3 0.23 0.5 --Ti2FeO.5 0.33 0.7 --Ti2Mn (O-stabilized) 0.47 0.9 --Ti2Ni 0.97 1.9 --Ti2Ni (M) 0.83 1.6 --Ti2Ni 1.13 (Dp) 2.2 --

Ti2Ni (M) 0.9 1.7 --Ti2Ni 1.07 2.0 --Ti2NiOx 0.53-.9 1.0-1.7 --Ti2NiO.3 0.57 1.1 --Ti2Pd 0.63 1.4 90Ti2Pd 0.67 1.0 --Ti2Pd.5Cu.5 0.5 (Dp) 85 --Ti2Pt (O-stabilized) 0.35 0.4 --Zr2Co 1.53 (Dp) 1.9 --Zr2Cr (O-stabilized) 1.0 1.3 --Zr2Cu (M) 1.1 1.3 144Zr2Cu (M) 1.1 (Dp) 1.3 142Zr2Cu 1.43 1.7 --Zr2Fe 1.33 (Dp) 1.7 --Zr2Ni 1.04 1.3 --Zr2Ni 1.04 1.3 183Zr2Ni 1.5 1.8 (Dp) --Zr2Ni 1.67 2.0 --Zr2Pd 0.9 0.9 --Zr2Pd 1.6 1.6 --Zr2Pd (M) 1.83 1.9 --Zr2Rh 1.42 1.5 --ZrTiNi 1.23 1.9 --Hf2Fe 1.73 1.2 --Hf2Ni.5Mn.5 1.73 1.2 --Mg2Ni.75Fe.25 (M) 1.19 3.3 65.2Zr2FeO.3 1.25 1.5 --Zr2Fe(B2O3).1 1.42 1.7 --(Hf.2Zr.8)2Fe 1.40 1.5 --(Hf.4Zr.6)2Fe 1.65 1.6 --(Hf.6Zr.4)2Fe 1.61 1.4 --(Hf.8Zr.2)2Fe 1.59 1.3 --Hf2Fe 1.60 1.2 --Mg1.9B.1Ni 1.02 2.8 --Mg1.9Si.1Ni 1.08 2.9 --Mg1.9Al.1Ni 1.28 3.5 --Mg2Ni 1.28 3.5 --Mg1.9Al.1Ni.8Mn.2 -- -- --Mg1.9Al.1Ni.8Cu.2 -- -- --Mg1.9Al.1Ni.8Co.2 -- -- --Mg1.9Ca.1Ni.8Cu.2 -- -- --Mg2Ni Nanocrystalline 1.13 3.1 --Mg2Ni Vapor synthesized 1.27 3.5 64.4Mg2Ni Vapor synthesized 1.27 3.5 64.4Mg2Ni Melted 1.27 3.5 68.6Mg2Ni Melted 1.33 3.6 68.8Y2Al 1.5 1.4 --Pr2Al 1.47 1.4 --Ho2Al 1.5 1.2 --Er2Al 1.57 1.1 --Ti2Co 1.07 2.1 --Mg2Ni 1.23 3.3 63.2Zr2Fe 1.67 2.1 --

Mg1.9Ti.1Ni Nanocrystalline 1.1 2.9 62.5Mg2Ni Nanocrystalline 1.2 3.3 67Hf2Fe 1.33 1.2 --Mg2Ni Solid-state synthesized 1.2 3.3 65.9Mg1.75Ti.25Ni.75Cu.25 0.67 2.0 --Hf2Ni.5Mn.5 1.63 1.2 --Hf2Ni.5Fe.5 1.63 1.2 --Hf2Ni.5Cu.5 1.00 0.7 --Mg2Ni.75Co25 1.25 3.4 --Mg2Ni 1.94 5.2 --Th2Al 1.3 0.8 --Mg2Ni Hydriding combustion synthesis 1.33 3.6 71.3Hf2Fe 1.13 0.8 --Hf2Co 0.95 0.7 --Hf2Ni 0.92 0.7 --Hf2Cu 0.49 0.4 --Hf2Pd 0.39 0.3 --Mg2Ni 1.33 3.7 62.2Mg2Fe Mg2Fe not stable without H 2.0 5.5 77.2Mg2Co Mg2Co not stable without H 1.67 4.5 76Mg1.9Ti0.1Ni0.9Mn0.1 1.17 3.1 --Mg2Ni 1.67 4.4 --Mg2Ni 1.15 3.1 31.3Mg1.75Ni 1.06 2.8 26.6Mg1.5Ni 1.02 2.6 29.1Mg2Ni 1.18 3.2 61Mg2Ni0.75Ti0.25 1.17 3.2 56Mg2Ni0.75Cr0.25 1.18 3.2 61Mg2Ni0.75Mn0.25 1.18 3.2 58Mg2Ni0.75Fe0.25 1.17 3.2 60Mg2Ni0.75Co0.25 1.18 3.2 61Mg2Ni0.75Cu0.25 1.18 3.2 59Mg2Ni0.75Ti0.25 1.18 3.2 59Mg2Ni1-xZrx x=0 to 0.3 -- 3.2-3.5 59.8-64.0Mg2Ni0.7Zr0.3 1.4 3.5 59.8

P, atm @ T, ˚C Author, Year Ref. No. Properties DB No. Comment 2-- -- Moyer, 1980 457 ---- -- Beck, 1962 45 --<10-5 50 van Essen, 1979 386 ---- -- Jones, 1980 430 --<10-5 50 van Essen, 1979 386 ---- -- Maeland, 1980 428 --1500 20 Klyamkin, 1994 595 -- (2000 atm at 20˚C)<10-5 50 van Essen, 1979 386 --0.38 277 Aubertin, 1989 425 ---- -- Beck, 1962 45 --<10-5 50 van Essen, 1979 386 --<10-5 50 van Essen, 1979 386 ---- -- Maeland, 1980 428 --1000 20 Klyamkin, 1994 595 -- (2000 atm at 20˚C)-- -- Beck, 1962 45 --<10-5 50 van Essen, 1979 386 ---- -- Jones, 1980 430 ---- -- Selvam, 1991 426 --5.7 418 Yoshida, 1993 594 --6 295 Reilly, 1967 87 ---- -- Selvam, 1991 426 --3.2 299 Reilly, 1968 88 172.5 300 Lutz, 1977 420 --4 295 Hirata, 1983 427 --3-6 337 Lupu, 1982 419 --3.5-8 300 Darnaudery, 1983 417 --1 227 Darnaudery, 1983 418 --1 279 Darnaudery, 1983 418 --1 248 Darnaudery, 1983 418 --1 253 Darnaudery, 1983 418 --1 250 Darnaudery, 1983 418 --1 246 Darnaudery, 1983 418 --0.001 500 Van Vucht, 1963 492 --0.0003 650 Van Vucht, 1963 492 --<10-9 50 Buschow, 1982 283 ---- -- Semenenko, 1982 532 ---- -- Beck, 1962 45 ---- -- Mintz, 1980 3 ---- -- Mintz, 1980 3 ---- -- Beck, 1962 45 ---- -- Beck, 1962 45 --0.12 500 Kadel, 1978 523 ---- -- Maeland, 1978 389 --0.02 500 Arita, 1979 495 ---- -- Padurets, 1982 498 ---- -- Beck, 1962 45 ---- -- Mintz, 1980 3 ---- -- Stioui, 1981 493 ---- -- Beck, 1962 45 ---- -- Beck, 1962 45 --0.11 150 Buchner, 1972 71 ---- -- Yamanaka, 1975 73 --

-- -- Mintz, 1980 3 ---- -- Padurets, 1982 498 -- (Dp>300 C)-- -- Mintz, 1979 441 ---- -- Mintz, 1980 3 --No plateau -- Kadel, 1978 523 ---- -- Maeland, 1980 428 --No plateau -- Kadel, 1978 523 ---- -- Beck, 1962 45 ---- -- van Essen, 1979 386 ---- -- Beck, 1962 45 --0.003 600 Pebler, 1966 12 --0.02 700 Kadel, 1979 429 ---- -- Maeland, 1980 428 ---- -- van Essen, 1979 386 ---- -- Trzeciak, 1956 483 --0.003 604 Pebler, 1966 12 ---- -- van Essen, 1979 386 ---- -- Akopyan, 1983 496 ---- -- Maeland, 1980 428 --<0.1 25 Spada, 1987 424 --500 20 Klyamkin, 1994 595 -- (2000 atm at 20˚C)-- -- Suryanarayana, 1994 596 ---- -- Semenenko, 1980 511 --1500 22 Klyamkin, 1997 655 -- 2000 atm at 22˚CNo plateau -- Klyamkin, 1997 655 -- 2000 atm at -78˚C1.9 300 Yuan, 1997 828 -- Includes free Mg-- -- Zavaliy, 1998 829 ---- -- Zavaliy, 1998 829 ---- -- Zavaliy, 1998 829 ---- -- Zavaliy, 1998 829 ---- -- Zavaliy, 1998 829 ---- -- Zavaliy, 1998 829 ---- -- Zavaliy, 1998 829 --0.9 250 Tsushio, 1998 830 --1.0 250 Tsushio, 1998 830 --1.0 250 Tsushio, 1998 830 --1.1 250 Tsushio, 1998 830 --0.95 250 Tsushio, 1998 830 --1.7 250 Tsushio, 1998 830 --0.42 250 Tsushio, 1998 830 --1.4 250 Tsushio, 1998 830 --1 300 Dehouche, 1998 854 --0.07 180 Guthrie, 1998 863 -- Twinned0.09 180 Guthrie, 1998 863 -- Non-twinned0.05 180 Guthrie, 1998 863 -- Twinned0.06 180 Guthrie, 1998 863 -- Non-twinned-- -- Semenenko, 1985 1151 -- (Amorp)-- -- Semenenko, 1985 1151 -- (Amorp)-- -- Semenenko, 1985 1151 -- (Amorp)-- -- Semenenko, 1985 1151 -- (Amorp)-- -- Verbetsky, 1986 1153 --3.1 300 Song, 1998 1224 ---- -- Yartys, 1998 1225 -- (Dp>400˚C)

2.5 300 Liang, 1999 1226 --2.2 300 Liang, 1999 1226 ---- -- Forker, 1999 1227 --3.2 300 Sun, 1999 1228 --2.3 300 Yuan, 1999 1229 ---- -- Klyamkin, 1999 1231 -- P=10 atm-- -- Klyamkin, 1999 1231 -- P=10 atm-- -- Klyamkin, 1999 1231 -- P=10 atm1 300 Yang, 2000 1233 ---- -- Chen, 2000 1234 -- P=60,000 atm @ 600C-- -- Sorby, 2000 1235 --2.6 300 Li, 2000 1236 ---- -- Mukai, 1999 1230 ---- -- Mukai, 1999 1230 ---- -- Mukai, 1999 1230 ---- -- Mukai, 1999 1230 ---- -- Mukai, 1999 1230 --57 450 Reiser, 2000 1463 --25 450 Reiser, 2000 1463 --16 450 Reiser, 2000 1463 --0.8 250 Yuan, 2001 1489 ---- -- Chen, 2002 1491 -- P=60,000 atm (LiAlH4 H2 source)3.7 300 Kuji, 2002 1492 -- Ball milled4.5 300 Kuji, 2002 1492 -- Ball milled3.7 300 Kuji, 2002 1492 -- Ball milled1.1 250 Yang, 2002 1493 -- Ball milling + diffusion synthesis1.2 250 Yang, 2002 1493 -- Ball milling + diffusion synthesis0.9 250 Yang, 2002 1493 -- Ball milling + diffusion synthesis1.0 250 Yang, 2002 1493 -- Ball milling + diffusion synthesis1.0 250 Yang, 2002 1493 -- Ball milling + diffusion synthesis0.5 250 Yang, 2002 1493 -- Ball milling + diffusion synthesis1.2 250 Yang, 2002 1493 -- Ball milling + diffusion synthesis1.3 250 Yang, 2002 1493 -- Ball milling + diffusion synthesis1 248-253 Zhang, 1998 1465 --10 340 Zhang, 1998 1465 --

Comment 3

P=60,000 atm @ 600C

P=60,000 atm (LiAlH4 H2 source)

Ball milling + diffusion synthesisBall milling + diffusion synthesisBall milling + diffusion synthesisBall milling + diffusion synthesisBall milling + diffusion synthesisBall milling + diffusion synthesisBall milling + diffusion synthesisBall milling + diffusion synthesis

Composition Comment 1 H/M Wt.% H ∆H, kJ/mol H2 P, atm @ T, ˚CBa2Mg17 (M) 1.48 3.9 -- 7.0 352CaNi3 1.14 2.1 58 -- --Ce2Co3 1.16 1.3 -- -- --Ce2Co7 0.74 1.0 -- 0.5 50Ce2Co7 0.7 0.9 43.3 0.9 100Ce2Co7 0.8 1.0 -- -- --CeCo3 0.95 1.2 -- -- --CeCo3 (M) 0.82 1.0 38.1 0.3 79CeCo3 1.22 1.6 38.1 0.2 50CeCo3 1.05 1.3 -- 0.2 50Ce5Co19 0.73 1.0 -- -- --CeCo5 0.67 0.9 -- -- --Ce2Co17 0.08 0.1 -- -- --Ce2Co17 0.25 0.4 -- -- --Ce2Fe17 0.25 0.4 -- -- --Ce2Fe14B 0.26 0.4 -- -- --Ce5Mg41 2.11 (Dp) 5.3 -- -- --CeMg9 1.5 4.0 -- 5.0 349CeMg12 2.1 6.0 -- 3 325Ce3Ni 2.1 1.7 -- -- --Ce3Ni 2.25 1.9 -- <.001 30Ce2Ni7 0.49 0.6 -- -- --Ce2Ni7 0.49 0.6 -- 0.2 50CeNi3 0.8 1.0 -- -- --CeNi3 0.75 0.9 -- 0.09 50CeNi3 1.4 1.8 -- No plateau --Ce7Ni3 1.92 1.6 152 (cal) -- --CeNi2.2Mn.8 1.56 1.7 -- No plateau --Dy2Co7 (M) 0.89 1.1 35.8 2 50DyCo3 1.07 1.3 -- -- --DyCo3 1.2 1.4 42.7 0.3 50DyCo3 1.07 1.3 42 3 100DyCo3(M) 1.00 1.2 -- 0.02 0DyFe3 0.8 1.0 47.1 0.4 150DyFe3(M) 0.95 1.1 45.7 0.001 20Dy2Fe17 0.21 0.3 -- -- --Dy3Fe8Ox (x<0.5) 0.82 1.0 -- 0.9 80Er2Co7 (M) 1.07 1.3 29.6 8 50ErCo3 1.07 1.2 -- -- --ErCo3 1.17 1.3 39.8 0.2 50ErCo3 1.05 1.2 38 10 100ErCo3 1.07 1.2 -- 1 120ErFe3 0.7 0.8 42.9 1.15 150ErFe3 0.67 0.8 -- -- --Er2Fe17 0.17 0.3 -- -- --ErNi3 0.88 1.0 -- 1.3 25ErNi3 1.27 1.5 23.8 1.2 -40Er6Fe23 (M) 0.48 0.6 -- 0.01 0Er6Fe23 0.62 0.8 19 2 0Gd2Co7 (M) 0.76 0.9 40 6 100GdCo3 (M) 1.15 1.4 -- -- --GdCo3 1.2 1.4 -- -- --

GdCo3 (M) 1.15 1.4 45 3 150GdCo3(M) 1.07 1.3 -- 0.01 80GdCo3 (M) 1.12 1.3 42.6 0.015 20GdCo3-yGay (M) (y=0.6-1.0) 0.4-.77 0.5-.9 -- -- --GdFe3 0.8 1.0 50.4 0.18 150Gd2Fe17 0.23 0.3 -- -- --(Gd,Dy)Mn12 0.17? (Dp) 0.3? -- -- --Gd2Se4 0.86? (Dp) 0.8? -- -- --Ho3Fe8Ox (x<0.5) 0.59 0.7 -- 0.9 50Ho2Co7 (M) 0.87 1.1 36.7 5 50HoCo3 1.05 1.2 -- -- --HoCo3 1.15 1.3 -- -- --HoCo3 1.05 1.2 36 6 100HoFe3 0.8 1.0 44.6 0.63 150Ho6Fe23 0.55 0.7 -- -- --Ho6Fe23 0.62 0.8 24.3 0.3 0Ho2Fe17 0.20 0.3 -- -- --La3Al 1.35 1.2 -- -- --La2Co3 1.04 1.1 -- -- --LaCo3 0.72 0.9 -- -- --La5Co19 0.85 1.1 -- -- --La2Co7 0.91 1.2 -- -- --La2Co17 0.38 0.7 -- -- --LaCo13 0.2 0.3 -- -- --La2Mg17 0.63 1.7 -- 4? 100La2Mg17 2.11 (Dp) 5.5 -- -- --La2Mg17 1.7 (Dp) 4.5 -- -- --La2Mg17 2.33 6.05 -- 2-18 25?La2Mg17 0.6-1.2 1.7-3.1 -- <1 265+La1.8Ca.2Mg17 1.2 (Dp) 3.3 -- -- --La1.6Ca.4Mg17 1.4 (Dp) 3.9 -- -- --LnMg12 (Ln = Ce, La, Mm) 2.08 (Dp) 5.9 -- 3 325La7Ni3 2.1 1.8 (Dp) -- -- --La7Ni3 1.93 1.7 152 (cal) -- --La3Ni 2.2 1.8 -- -- --La3Ni 2.1 1.8 -- -- --La3Ni 2.32 1.9 -- <.001 30La2Ni3 0.88 1.0 -- -- --LaNi3 1.25 1.6 -- -- --LaNi3 0.97 1.2 -- -- --LaNi3 1.32 1.7 -- -- --La2Ni7 1.11 1.4 -- 3 50La2Ni7 1.04 1.35 -- -- --La2Ni7 1.26 1.6 -- -- --LuCo3 (M) 0.9 1.0 32 5.9 20Lu6Fe23 0.48 0.6 39.7 2 0Lu2Fe17 0.15 0.2 -- -- --Mg2Al3 0.59 2.3 (Dp) -- 10 326Mg4Al5 0.58 2.2 -- 12 301Mg5Al4 1.45 5.4 -- 7 326MgAl 0.8 3.0 -- 23 352Mg2AlLi.28 0.91 3.8 -- 15 352MgAl.89Mn.19 1.55 5.0 -- 9 350

Mg6Pd 0.34 0.9 80.3 0.014 160Mg51Zn20 1.34 3.6 80.9 8 330MmCo2 0.93 1.1 -- -- --MmCo3 1.07 1.3 -- -- --Mm5Co19 0.92 1.2 -- -- --Mm2Co7 0.98 1.3 -- -- --MmMg9 1.8 4.8 -- 2.2 310Mm2Ni7 0.56 0.7 -- -- --Nb3Sn 0.22 0.2 -- -- --Nb3Al 0.425 0.6 -- -- --NdCo3 0.95 1.2 -- -- --NdCo3(M) 1.07 1.3 -- 0.02 80NdCo3 (M) 1.07 1.3 54.5 0.29 20Nd2Co7 (M) 0.96 1.2 56.7 0.9 125Nd2Co7 1.02 1.3 -- -- --Nd2Fe17 0.25 0.4 -- -- --Nd2Fe14B 0.29 0.5 -- -- --Nd3Ni 2.39 1.9 -- <.001 30Pr3Al 1.49 1.3 -- -- --Pr2Co7 0.56 0.7 33.3 10 100Pr2Co7 (M) 0.9 1.1 54.6 2 150Pr2Co7 1.07 1.4 -- -- --PrCo3 1.0? 1.3? 54.2 0.02 100PrCo3 1.22 1.5 -- -- --Pr2Fe17 0.26 0.4 -- -- --Pr2Fe14B 0.29 0.5 -- -- --Pr2.5Mg.5Ni 2.57 2.4 -- 50 30Pr2DyNi 2.39 1.9 -- 15 30Pr3Ni.5Cu.5 2.21 1.8 -- 2 30Pr2Ni7 1.11 1.4 -- 8.3 25SmCo3 0.5 0.6 59.4 0.2 69SmCo3 1.32 1.6 -- 1 175Sm2Co17 0.26 0.4 -- -- --Sm2Fe17 0.25 0.4 -- -- --Sm2Fe14B 0.35 0.6 -- -- --SmMg3 0.5? (Dp) 0.9? -- -- -- Sm3Ru 2.12 1.5 -- -- --SmTiFe11 0.09 0.15 -- -- --Tb2Co7 (M) 0.86 1.1 40.4 2 50TbCo3 (M) 1.2 1.4 46.9 0.6 75TbCo3 (M) 1.12 1.3 44 1.5 100TbFe3 0.9 1.1 48 0.23 150Tb2Fe17 0.19 0.3 -- -- --Th2Co7 0.53 0.5 -- 0.25 40Th7Co3 3.0 1.7 -- <0.5 40Th7Co3 2.2 1.2 -- -- --Th2Fe17 0.068 0.11 -- -- --Th2Fe7 (M) 0.68 0.7 -- 0.6 40ThFe3 0.75 0.7 -- <0.1 40Th.8Er.2Fe3 0.47 0.5 -- -- --Th7Fe3 3.1 1.7 -- <0.1 40Th7Fe3 3.0 1.7 -- -- --Th7Fe3 2.4 (Dp) 1.3 -- -- --

Th2Fe17 0.26 0.4 -- -- --Th2Fe14B 0.24 0.3 -- -- --Th6Mn23 0.89 1.0 -- -- --Th6Mn23 1.03 1.1 -- -- --Th6Mn23 1.0 1.1 -- 0.22 24Th2Ni17 0.105 0.1 -- No plateau --Th7Ni3 2.6? 1.4? -- -- --Th7Ni3 2.8 1.5 -- 0.01 40Th7Ni3 2.4 1.3 -- -- --ThNiAl 0.99 0.9 47 0.007 40Ti3Ag 1.33 (Dp) 2.1 -- -- --Ti3Al 0.94 2.2 -- -- --Ti3Al 1.26 2.9 47 0.8 50Ti3Al 1.3 3.0 -- -- --TiAl3 0 0 -- -- --Ti3Au 1.17 1.4 -- -- --TiCu3 0.5 (Dp) 0.8 -- -- --TiCu3 0.2 (Dp) 0.3 -- 0.56 500TiCu3 0.37 (Dp) 0.6 -- -- --Ti3Pt 0.5 0.6 -- -- --Ti3Sb 0.52 0.8 110 No plateau --Ti3Sb 0.65 1.0 -- -- --Ti3Sn 0.23 0.35 -- -- --Ti3Sn 0.22 0.34 101 No plateau --Tm2Fe17 0.17 0.2 -- -- --U6Co 2.23 1.0 -- -- --UCoAl 0.4 0.4 -- -- --UMnAl 0.05 0.05 -- -- --UNiAl 0.91 0.8 48 No plateau --U5Ni4Pd 0.1 0.1 -- -- --V3Sn 0.25 0.4 -- -- --Y3Co2 2.2 2.8 -- -- --YCo3 (M) 0.5 0.6 -- 0.6 43YCo2.9Ni.1 (M) 0.47 0.6 -- 0.27 28YCo3 1.07 1.6 -- -- --YCo3 0.25 0.4 -- 5x10-3 50YCo3 1.0 1.5 -- -- --YCo3 1.02 1.5 44 0.45 75Y2Co7 0.17 0.3 -- 10-2 50Y2Co7 0.89 1.3 38 0.25 20Y4Co3 1.66 2.1 -- -- --Y3Co 2.1 2.5 -- -- --YCo3-yGay (M) (y=0.6 & 0.9) 0.5 0.7 -- -- --YCo2.4Fe.6 (M) 1.0 1.5 -- 0.8 120YCo2.4Ni.6 (M) 0.92 1.4 -- 3.5 120Y3Fe8Ox (x<0.5) 0.64 1.0 -- 0.9 50YFe3 1.2 1.9 -- <10-5 50Y6Fe23 0.74 1.2 -- <10-5 50Y6Fe23 0.66 1.1 -- No plateau --Y2Fe17 0.18 0.3 -- -- --Y2Fe14B 0.26 0.5 -- -- --YFe1.5Ni1.5 (M) 0.87 1.3 -- 2 120YMn12 0.12 0.2 -- -- --

Y6Mn23 0.72 1.1 -- -- --Y6Mn23 0.86 1.4 -- -- --Y6Mn23 0.81 1.3 -- No plateau --Y3Ni2 1.5 1.9 -- -- --Y3Ni 2.0 2.4 -- -- --Y2Ni7 0.22 0.3 -- 2.5 50YNi3 0.3 0.45 -- 0.25 50Y5Si3 0.23 0.4 53.3 0.3 398Y4.3Sc.7Si2.6Ge.4 0.35 0.5 39.4 1.5 426YTiFe11 0.08 0.15 -- -- --Y1-xZrxCo2.9 (x=0-0.3) 0.54-1.03 0.8-1.5 -- 0.01-6 22Zr3Ag 1.33 (Dp) 1.4 -- -- --Zr3Ag (M) 1.12 1.2 -- 0.02 750Zr5Al3 1.0 1.5 -- -- --Zr1-yAly (y=0.25-0.75) 0-1.17 0-1.5 67-121 -- --Zr5Al3Oy (y=0.5-2.0) 0.29-0.56 0.5-.9 -- -- --Zr3Co 1.6 (Dp) 1.9 -- -- --Zr3Fe 1.6 (Dp) 1.9 -- -- --Zr2Ni5 0.32 0.5 35 0.8 60Zr7Ni10 1.05 1.4 47 0.25 60Zr7Ni10 1.01 1.4 -- 0.15 80Zr8.85Ni11.15 0.93 1.3 -- No plateau --Zr36Ni64 0.78 1.1 -- 0.4 60Zr8Ni21 0.34 0.5 -- No plateau --Zr2Ni7 0.29 0.4 -- No plateau --Zr5Sb3 0.62+ (Dp) 0.6+ -- -- --Zr3V3O 0.79 1.2 152 0.1(calc) 700Ce2Fe17 0.24 0.4 -- No plateau 23Pr2Fe17 0.2 0.3 -- No plateau 23Ho2Fe17 0.18 0.3 -- No plateau 23Nd2Fe17 0.18 0.3 -- No plateau 23Nd6Fe13Ge 0.97 1.2 -- -- --Nd6Fe13Ga 1.06 1.3 -- -- --Ti3PO.58 0.10 -- -- -- --YFe11Ti 0.14 0.2 -- -- --HoFe11Ti 0.14 0.2 -- -- --YFe10.5Mo1.5 0.07 0.1 -- -- --HoFe10.5Mo1.5 0.07 0.1 -- -- --HoFe11Mo 0.1 0.1 -- -- --HoFe10Mo2 0.14 0.2 -- -- --YFe3 1.25 1.9 -- -- --NdCo3 1.02 1.3 -- -- --Ho6Mn23 (M) 0.42 0.5 34.6 -- --Er6Mn23 (M) 0.41 0.5 32.3 -- --Ho6Mn23 (M) 0.77 -- -- -- --YNi3 1.0 1.5 -- -- --Zr6Cu16Al7 0.28 0.5 -- -- --Sm2Fe14C 0.22 0.3 -- -- --Tm2Fe14C 0.11 0.2 -- -- --Er2Fe14C 0.10 0.2 -- -- --V3Ga 0.42 0.7 -- -- --SmFe3 0.77 1.0 -- 0.7 350YFe8.6Ti1.1 0.11 0.2 -- -- --

Ce5Fe2B6 0.58 0.9 -- -- --Pr5Fe2B6 0.71 1.0 -- -- --Nd5Fe2B6 0.66 1.0 -- -- --Sm5Fe2B6 0.61 0.9 -- -- --Gd5Fe2B6 0.50 0.7 -- -- --Tb5Fe2B6 0.68 0.9 -- -- --Nd2Fe17 0.23 0.3 -- No plateau --Ce2Fe17 0.24 0.4 -- No plateau --Pr2Fe17 0.21 0.3 -- No plateau --Ho2Fe17 0.18 0.3 -- No plateau --Gd3Ni6Al2 0.78 1.0 33.6 5.6 300Ce2Fe17 0.26 0.4 -- -- --Ce2Fe16Ga 0.26 0.4 -- -- --Ce2Fe15Ga2 0.19 0.3 -- -- --Er3Ni 2.0 1.4 -- -- --Ce3Al 2.1 1.9 -- -- --Y3Al2 0.64 1.0 -- -- --Ho3Al2 0.34 0.3 -- -- --Er3Al2 0.36 0.3 -- -- --Ce3Al 2.1 1.9 111.8 -- --La2.4Er3.8Co11Ga3 0.94 1.0 -- 0.04 30La2.4Er3.8Co4Ni7Ga3 0.90 1.0 -- 0.05 30La2.4Er3.8Co2Ni9Ga3 0.88 1.0 -- 0.08 30LaCaMgNi9 1.10 1.8 33.0 2.5 20CaTiMgNi9 1.00 1.9 33.4 1 20LaCaMgNi6Al.3 0.99 1.9 30.0 0.4 20LaCaMgNi6Mn.3 1.08 1.8 32.3 1 20Ti3Al 1.5 3.4 -- -- --Sm2Fe17 0.26 0.4 -- -- --Sm2Fe14Ga3 0.07 0.1 -- -- --CeFe11Ti 0.08 0.1 -- -- --SmFe11Ti 0.08 0.1 -- -- --GdFe11Ti 0.08 0.1 -- -- --Zr6FeAl2 1.11 1.5 -- -- --Zr6CoAl2 1.11 1.5 -- -- --Zr6NiAl2 1.08 1.5 -- -- --Zr6FeGa2 1.03 1.2 -- -- --Zr6CoGa2 1.08 1.3 -- -- --Zr6NiGa2 1.10 1.3 -- -- --Zr6FeSn2 1.17 1.2 -- -- --Zr6CoSn2 1.03 1.1 -- -- --Zr6NiSn2 1.20 1.3 -- -- --Dy2Co7 (M) 0.94 1.1 34.2 2 50Nd2Fe14BH3.8 0.22 0.4 -- -- --Nd2Fe13SiBH3.8 0.20 0.3 -- -- --Rb4Mg3 1.43 2.4 -- -- --Zr3Fe 1.67 2.0 -- -- --(Y.5Ca.5)(MgCa)Ni9 1.10 2.0 25.8 2 -10LaMg2Cu2 1.55 2.4 64.2 0.4 170LaCo13 0.25 0.4 -- -- --Zr4Fe2O.6 1.30 1.6 -- -- --TbNiAl 0.35 0.6 -- -- --Ce6Ni2Si3 0.99 1.0 -- -- --

La6Ni2Si3 1.09 1.2 -- -- --Ce2Ni.8Si1.2 0.92 1.0 -- -- --La2Ni.8Si1.2 0.94 1.0 -- -- --Ce2NiSi 1.10 1.0 -- -- --La2NiSi 0.97 1.1 -- -- --Ce2Ni1.2Si.8 1.22 1.3 -- -- --La2Ni1.2Si.8 1.10 1.2 -- -- --U(Fe.3Ni.7)Al 0.27 0.2 -- -- --Gd3Fe28Ta 0.24 0.3 -- -- --Tb3Fe28Ta 0.22 0.3 -- -- --Y3Fe28Ta 0.27 0.4 -- -- --Zr3Co 1.72 2.0 -- -- --Ti4Cu2O 0.47 0.8 27-34 -- --LaMg2Ni9 0.2 0.33 -- 3 30(La.65Ca.35)(Mg1.32Ca.68)Ni9 1.08 1.87 26.8 2 10Zr.1Tb.9Fe1.5Co1.5 0.87 1.1 19-23 0.5 75LaNi3 1.12 1.4 -- -- --CaNi3 1.10 2.0 35.0 0.4 20La.5Ca.5Ni3 1.10 1.6 43.5 0.6 20LaCaMgNi9 1.10 1.8 33.0 2.5 20La.5Ca1.5MgNi9 (M) 1.08 1.9 35.4 0.7 20CaTiMgNi9 1.00 1.9 33.4 1.1 20LaCaMgNi6Al3 0.99 1.8 30.0 0.4 20LaCaMgNi6Mn3 1.08 1.8 32.3 1.3 20Sm2Fe17-yGay y=0-2 0.15-0.23 0.2-0.3 -- -- --Nb3(Al.84Nb.16) 0.63 0.8 -- -- --Zr3V3O.6 1.60 2.2 -- -- --La6Ni2Si3 1.09 1.2 -- -- --La15Ni8Si9 0.97 1.1 -- -- --Ce6Ni2Si3 0.99 1.0 -- -- --Ce15Ni9Si8 1.09 1.2 -- -- --La5Mg2Ni23 1.07 1.5 -- 0.4 60Ti4Ni2O 0.49 0.9 -- 1.2 0Ti4Ni2N 0.67 1.2 -- 0.4 0Ti4Ni2C 0.58 1.1 -- 0.4 40Ti2Ni 0.89 1.7 -- -- --TiNi 0.71 1.3 -- -- --Nd6Fe13Ga 0.61 0.7 -- -- --Ti3Al 1.19 2.7 -- -- --Y5Si3C.3 0.74 1.1 44.7 -- --Y5Si3C.5 0.92 1.4 39.5 -- --Gd3Ni 2.12 1.6 -- -- --Ho3Ni 1.25 0.9 -- -- --Er3Ni 2.00 1.4 -- -- --Y3Ni 2.00 2.4 -- -- --(Ti1-xZrx)4Ni2O.3 x=0-0.75 0.90-1.36 1.6-2.1 -- -- --Ti3Al 1.45 3.3 -- -- --Ti75-xAl25Zrx x=15 & 25 1.30-1.32 2.6-2.4 -- -- --Ti75-xAl25Hfx x=15 & 25 1.30-1.28 2.1-2.7 -- -- --Ti75-xAl25Vx x=15 & 25 1.03-0.51 2.4-1.2 -- -- --Ti75-xAl25Fex x=15 & 25 0.93-0.00 2.1-0.0 -- -- --Ti75-xAl25Nix x=15 & 25 0.87-0.63 1.9-1.4 -- -- --Ti75-xAl25Cux x=15 & 25 0.81-0.60 1.8-1.3 -- -- --

Ti75-xAl25Cox x=15 & 25 0.72-0.42 1.6-0.9 -- -- --Ti75-xAl25Mnx x=15 & 25 0.67-0.71 1.5-1.6 -- -- --Ti75-xAl25Crx x=15 & 25 0.28-0.00 0.6-0.0 -- -- --RFe11Ti R= Y, Nd, Sm, Gd, Tb,0.08 0.1 -- -- --Nd2Fe13GaB 0.23 0.3 -- -- --Nd2Fe12.2Ga1.8B 0.20 0.3 -- -- --V75Ni25 Sigma phase 0.46 0.9 -- -- --V75Nb5Ni20 Sigma phase 0.54 1.0 -- -- --V75Ti5Ni20 Sigma phase 0.59 1.1 -- -- --Nb51.5Ni48.5 Mu phase 0.09 0.1 -- -- --V80Ni20 A15 phase 0.86 0.9 -- -- --Zr3V3B.24O.36 1.33 1.8 -- -- --Zr3V3B.40O.60 1.07 1.6 -- -- --Ti45Zr38Ni17 Quasicrystalline 1.55 2.3 -- -- --TbNiSi 0.59 0.7 -- -- --YNiAl 0.40 0.7 -- -- --SmNiAl 0.40 0.5 -- -- --GdNiAl 0.45 0.6 -- -- --TbNiAl 0.47 0.6 -- -- --DyNiAl 0.40 0.5 -- -- --ErNiAl 0.27 0.3 -- -- --TmNiAl 0.47 0.6 -- -- --LuNiAl 0.33 0.4 -- -- --Ce2Ni.8Si1.2 0.92 1.0 -- -- --Ce2NiSi 1.10 1.2 -- -- --Ce2Ni1.2Si.8 1.22 1.3 -- -- --Ce6Ni2Si3 0.99 10 -- -- --Ti3Al 1.47 3.4 -- -- --La1.9Ca.1Mg17 1.40 3.8 -- 1-2 400La1.8Ca.2Mg17 1.46 4.0 -- 1-2 400Zr6NiAl2 1.07 1.4 -- -- --Zr5FeSn 1.41 1.5 -- -- --Zr6Co1.5Sn1.5 1.12 1.2 -- -- --Zr6Ni1.5Sn1.5 1.16 1.3 -- -- --Zr5FeSb2 1.41 1.4 -- -- --Zr6CoSb2 1.26 1.4 -- -- --Zr6NiSb2 1.26 1.3 -- -- --Zr.2Tb.8Fe1.5Co1.5 0.63 0.8 19-20 1 75WO3 0.24 0.1 -- -- --LaNiIn 0.41 0.4 -- -- --CeNiIn 0.41 0.4 -- -- --NdNiIn 0.41 0.4 -- -- --LaNiSn 0.67 0.6 -- -- --Mg2Ni3 0.68 1.5 -- -- --Ti3Sn 0.25 0.4 -- -- --TbNiAl 0.41 0.5 -- -- --Sm2Fe17 0.25 0.4 60-90 -- --CePtAl 0.37 0.3 24 1.2 22Pd9Si2 0.02 0.03 -- -- --Pd3P.8 0.05 0.04 -- -- --Ti75-xAl25Tax x=15 & 25 1.23-0.78 1.9-1.0 -- -- --Ti75-xAl25Nbx x=15 & 25 1.15-0.98 2.3-1.8 -- -- --Ti75-xAl25Wx x=15 & 25 0.60-0.36 0.9-0.5 -- -- --

Ti75-xAl25Mox x=15 & 25 0.72-0.32 1.4-0.6 -- -- --Ti75-xAl25Pdx x=15 & 25 0.69-0.00 1.3-0.0 -- -- --Ti75Al25 1.45 3.3 -- -- --Ti80Al20 1.08 2.5 -- -- --CeCo3 1.52 1.9 -- -- --GdFe3 1.52 1.9 -- -- --CeNi2Co 1.35 1.7 -- -- --Zr2Ni1.5V1.5 0.80 1.2 -- -- --

Author, Year Ref. No. Properties DB No. Comment 2 Comment 3Reilly, 1974 491 --Oesterreicher, 1980 43 --Guidotti, 1977 105 --van Essen, 1980 355 --Goudy, 1976 186 --Guidotti, 1977 105 --Guidotti, 1977 105 --Tauber, 1976 529 --Burnasheva, 1977 543 --van Essen, 1980 355 --Guidotti, 1977 105 --Fokin, 1982 539 --Guidotti, 1977 105 --Fokin, 1982 539 --Fruchart, 1995 618 --Pourarian, 1986 575 --Darriet, 1980 433 --Reilly, 1974 491 --Darriet, 1984 540 --van Mal, 1976 360 --Au, 1994 599 --Guidotti, 1977 105 --van Essen, 1980 355 --Guidotti, 1977 105 --van Essen, 1980 355 --Verbetsky, 1996 636 --Busch, 1978 189 --Verbetsky, 1996 636 --Goudy, 1976 186 --Malik, 1978 537 --Burnasheva, 1977 543 --Wallace, 1980 439 --Dunlap, 1980 447 --Goudy, 1976 186 --Kierstead, 1980 449 --Fruchart, 1995 618 --Dariel, 1979 541 --Goudy, 1976 186 --Gualtieri, 1978 448 --Burnasheva, 1977 543 --Wallace, 1980 439 --Shilov, 1981 530 --Goudy, 1976 186 --Narasimhan, 1977 534 --Fruchart, 1995 618 --Goudy, 1976 186 --Verbetsky, 1996 636 --Boltich, 1981 544 --Smith, 1983 612 --Goudy, 1976 186 --Malik, 1978 537 --Burnasheva, 1977 542 --

Wallace, 1980 439 --Dunlap, 1980 447 --Kierstead, 1981 444 --Yartys', 1992 597 --Goudy, 1976 186 43Fruchart, 1995 618 --Beck, 1962 45 --Beck, 1962 45 --Dariel, 1979 541 --Goudy, 1976 186 --Malik, 1978 537 --Burnasheva, 1977 542 --Wallace, 1980 439 --Goudy, 1976 186 --Boltich, 1981 544 --Smith, 1983 612 --Fruchart, 1995 618 --Beck, 1962 45 --Guidotti, 1977 105 --Guidotti, 1977 105 --Guidotti, 1977 105 --Guidotti, 1977 105 --Guidotti, 1977 105 --Guidotti, 1977 105 --Yajima, 1977 188 --Darriet, 1980 433 --Khrussanova, 1985 436 --Dutta, 1990 442 --Slattery, 1995 433 --Khrussanova, 1985 436 --Khrussanova, 1985 436 --Darriet, 1980 433 --Osterreicher, 1976 524 --Busch, 1978 189 --van Mal, 1976 360 --Mikheeva, 1978 535 --Au, 1994 599 --van Mal, 1976 360 --Osterreicher, 1976 524 --Guidotti, 1977 105 --Mikheeva, 1978 535 --Osterreicher, 1976 524 --Guidotti, 1977 105 --Mikheeva, 1978 535 --Kierstead, 1984 571 --Smith, 1983 612 --Fruchart, 1995 618 --Reilly, 1976 490 --Reilly, 1974 491 --Reilly, 1976 490 --Reilly, 1974 491 --Reilly, 1976 490 --Reilly, 1976 490 --

Kume, 1987 576 --Bruzzone, 1983 431 --Guidotti, 1977 105 --Guidotti, 1977 105 --Guidotti, 1977 105 --Guidotti, 1977 105 --Reilly, 1974 491 --Guidotti, 1977 105 --Beck, 1962 45 --Li, 1995 435 --Burnasheva, 1977 542 --Dunlap, 1980 447 --Kierstead, 1981 444 --Goudy, 1976 186 --Guidotti, 1977 105 --Fruchart, 1995 618 --Pourarian, 1986 575 --Au, 1994 599 --Beck, 1962 45 --Clinton, 1975 102 --Goudy, 1976 186 --Guidotti, 1977 105 --Clinton, 1975 102 --Burnasheva, 1977 542 --Fruchart, 1995 618 --Pourarian, 1986 575 --Au, 1994 599 --Au, 1994 599 --Au, 1994 599 --Goudy, 1976 186 --Tauber, 1976 529 --Shilov, 1981 530 --Christodoulou, 1993 607 --Fruchart, 1995 618 --Pourarian, 1986 575 --Yamanaka, 1975 73 --Shilov, 1978 510 --Zhang, 1989 578 --Goudy, 1976 186 --Burnasheva, 1977 543 --Wallace, 1980 439 --Goudy, 1976 186 --Fruchart, 1995 618 --Buschow, 1975 187 --Buschow, 1975 187 --Malik, 1980 536 --Buschow, 1977 187 --Buschow, 1977 187 --Buschow, 1977 187 --Narasimhan, 1977 534 --Buschow, 1977 187 --Malik, 1980 536 --Schlapbach, 1982 437 --

Fruchart, 1995 618 --Andreev, 1990 580 --Beck, 1962 45 --Malik, 1977 538 --Malik, 1984 572 --Buschow, 1977 187 --Beck, 1962 45 --Buschow, 1977 187 --Malik, 1980 536 --Drulis, 1982 434 --Beck, 1962 45 --Beck, 1962 45 --Rudman, 1978 191 --Semenenko, 1982 532 --Semenenko, 1982 532 --Beck, 1962 45 --Yamanaka, 1975 73 --Arita, 1979 495 --Padurets, 1982 498 --Beck, 1962 45 --Rao, 1982 533 --Skripov, 1994 600 --Beck, 1962 45 --Rudman, 1978 193 --Fruchart, 1995 618 --Beck, 1962 45 --Drulis, 1982 434 --Drulis, 1982 434 --Drulis, 1982 434 --Drulis, 1982 434 --Beck, 1962 45 --Chernikov, 1983 432 --Tauber, 1976 529 --Tauber, 1976 529 --Burnasheva, 1977 542 --van Essen, 1980 355 --Chernikov, 1983 432 --Yamaguchi, 1985 573 --van Essen, 1980 355 --Yamaguchi, 1985 573 --van Mal, 1976 360 --van Mal, 1976 360 --Yartys', 1992 597 --Yamaguchi, 1989 615 --Yamaguchi, 1989 615 --Dariel, 1979 541 --van Essen, 1980 355 --van Essen, 1980 355 --Smith, 1983 612 --Fruchart, 1995 618 --Pourarian, 1986 575 --Yamaguchi, 1989 615 --van Mal, 1976 360 --

van Mal, 1976 360 --Malik, 1977 538 --Malik, 1984 572 --van Mal, 1976 360 --van Mal, 1976 360 --van Essen, 1980 355 --van Essen, 1980 355 --McColm, 1986 574 --McColm, 1987 611 --Zhang, 1989 578 --Kanematsu, 1993 598 --Beck, 1962 45 --Deschanvres, 1964 497 --Clark, 1988 577 --Clark, 1990 579 --Clark, 1988 577 --van Essen, 1979 386 --van Essen, 1979 386 --Spit, 1982 446 --Spit, 1982 446 --Joubert, 1995 619 --Joubert, 1995 619 --Spit, 1982 446 --Joubert, 1995 619 --Joubert, 1995 619 --Beck, 1962 45 --Mendelsohn, 1982 440 --Fruchart, 1997 656 --Fruchart, 1997 656 --Fruchart, 1997 656 --Fruchart, 1997 656 --Yartys, 1997 657 --Yartys, 1997 657 --Andersson, 1997 658 --Obbade, 1997 659 --Obbade, 1997 659 --Obbade, 1997 659 --Obbade, 1997 659 --Obbade, 1997 659 --Obbade, 1997 659 --Buschow, 1976 685 --Bartashevich, 1993 691 --Smith, 1987 692 --Smith, 1987 692 --Smith, 1987 692 --Buschow, 1979 693 --zu Reckendorf, 1990 694 --Obbade, 1991 695 --Obbade, 1991 695 --Obbade, 1991 695 --Skripov, 1994 696 --Christodoulou, 1993 835 --Revel, 1993 836 --

Yartys, 1997 837 --Yartys, 1997 837 --Yartys, 1997 837 --Yartys, 1997 837 --Yartys, 1997 837 --Yartys, 1997 837 --Isnard, 1997 838 --Isnard, 1997 838 --Isnard, 1997 838 --Isnard, 1997 838 --Pechev, 1997 839 --Isnard, 1997 840 --Isnard, 1997 840 --Isnard, 1997 840 --Nikitin, 1997 848 --Semenenko, 1985 1151 -- (Amorp)Semenenko, 1985 1151 -- (Dp)Semenenko, 1985 1151 -- (Dp)Semenenko, 1985 1151 -- (Dp)Yakovleva, 1992 1157 -- (cal)Pourarian, 1996 1170 -- absorption?Pourarian, 1996 1170 -- absorption?Pourarian, 1996 1170 --Chen, 2000 1295 --Chen, 2000 1295 --Chen, 2000 1295 -- Sloping plateauChen, 2000 1295 --Hashi, 2001 1296 --Mommer, 1998 1297 --Mommer, 1998 1297 --Isnard, 1998 1298 --Isnard, 1998 1298 --Isnard, 1998 1298 --Zavaliy, 1999 1299 --Zavaliy, 1999 1299 --Zavaliy, 1999 1299 --Zavaliy, 1999 1299 --Zavaliy, 1999 1299 --Zavaliy, 1999 1299 --Zavaliy, 1999 1299 --Zavaliy, 1999 1299 --Zavaliy, 1999 1299 --Ming, 1999 1300 --Chacon, 1999 1301 --Chacon, 1999 1301 --Gingl, 1999 1302 -- DeuteriumYartys, 1999 1303 -- DeuteriumKadir, 1999 1304 -- Sloping plateauKadir, 1999 1305 --Nikitin, 1999 1306 --Yartys, 1999 1307 -- DeuteriumYartys, 1999 1308 -- DeuteriumLushnikov, 1999 1309 --

Lushnikov, 1999 1309 --Lushnikov, 1999 1309 --Lushnikov, 1999 1309 --Lushnikov, 1999 1309 --Lushnikov, 1999 1309 --Lushnikov, 1999 1309 --Lushnikov, 1999 1309 --Raj, 2000 1310 --Skolozdra, 2000 1311 --Skolozdra, 2000 1311 --Skolozdra, 2000 1311 --Riabov, 2000 1312 --Takeshita, 2000 1313 -- No plateauKadir, 2000 1314 --Kadir, 2000 1314 --Sivakumar, 2000 1315 -- Sloping plateauChen, 2000 1316 -- Amorphous, no plateauChen, 2000 1316 --Chen, 2000 1316 --Chen, 2000 1316 --Chen, 2000 1316 --Chen, 2000 1316 --Chen, 2000 1316 -- Sloping plateauChen, 2000 1316 --Teresiak, 2000 1317 --Andersson, 2000 1318 -- DeuteriumZavaliy, 2000 1319 -- DeuteriumMorozkin, 2000 1320 --Morozkin, 2000 1320 --Morozkin, 2000 1320 --Morozkin, 2000 1320 --Kohno, 2000 1321 --Takeshita, 2000 1322 -- Sloping plateauTakeshita, 2000 1322 -- Sloping plateauTakeshita, 2000 1322 -- Sloping plateauTakeshita, 2000 1322 -- No plateauTakeshita, 2000 1322 -- No plateauYartys, 2000 1323 -- DeuteriumSornadurai, 2000 1324 --Hassen, 2000 1325 --Hassen, 2000 1325 --Nikitin, 2001 1326 --Nikitin, 2001 1326 --Nikitin, 2001 1326 --Nikitin, 2001 1326 --Zavaliy, 2001 1327 --Ishikawa, 2001 1328 --Ishikawa, 2001 1328 --Ishikawa, 2001 1328 --Ishikawa, 2001 1328 --Ishikawa, 2001 1328 --Ishikawa, 2001 1328 --Ishikawa, 2001 1328 --

Ishikawa, 2001 1328 --Ishikawa, 2001 1328 --Ishikawa, 2001 1328 --Nikitin, 2001 1329 --Chacon, 2000 1330 -- DeuteriumChacon, 2000 1330 -- DeuteriumJoubert, 2001 1331 -- Not saturated? No plateauJoubert, 2001 1331 -- Not saturated? No plateauJoubert, 2001 1331 -- Not saturated? No plateauJoubert, 2001 1331 -- Not saturated? No plateauJoubert, 2001 1331 -- No plateauYartys, 2001 1332 -- DeuteriumYartys, 2001 1332 -- DeuteriumKonstanchuk, 2001 1333 -- at 230C and 1.2 atmBrinks, 2001 1334 --Kolomiets, 1999 1335 --Kolomiets, 1999 1335 --Kolomiets, 1999 1335 --Kolomiets, 1999 1335 --Kolomiets, 1999 1335 -- DeuteriumKolomiets, 1999 1335 --Kolomiets, 1999 1335 --Kolomiets, 1999 1335 --Morozkin, 1999 1336 --Morozkin, 1999 1336 --Morozkin, 1999 1336 --Morozkin, 1999 1336 --Maeland, 1999 1337 --Pal, 1999 1338 --Pal, 1999 1338 --Akselrud, 1999 1339 --Akselrud, 1999 1339 --Akselrud, 1999 1339 --Akselrud, 1999 1339 --Akselrud, 1999 1339 --Akselrud, 1999 1339 --Akselrud, 1999 1339 --Sivakumar, 2000 1340 -- Sloping plateauDobrovolsky, 2001 1341 --Yartys, 2002 1342 -- DeuteriumYartys, 2002 1342 -- DeuteriumYartys, 2002 1342 -- DeuteriumYartys, 2002 1343 -- DeuteriumTakamura, 2002 1344 -- P=50,000 atmVennstrom, 2002 1345 -- DeuteriumBrinks, 2002 1346 -- DeuteriumKuji, 2002 1347 -- No plateauBobet, 2002 1348 --Udovic, 2002 1349 --Udovic, 2002 1349 --Ishikawa, 2002 1350 --Ishikawa, 2002 1350 --Ishikawa, 2002 1350 --

Ishikawa, 2002 1350 --Ishikawa, 2002 1350 --Hashi, 2002 1351 --Hashi, 2002 1351 --Lushnikov, 2002 1352 -- P=1800 atm No plateauLushnikov, 2002 1352 -- P=1800 atm No plateauLushnikov, 2002 1352 -- P=1800 atm No plateauTanaka, 2002 1253 -- No plateau

Composition Comment 1 H/M Wt.% H ∆H, kJ/mol H2Nb1-xFex (x=0.004-0.01) 1.85-1.90 2.0-2.1 --Nb.994Ge.006 1.95 92.1 --Nb1-xSix (x=0.01-0.026) 1.85-1.92 2.0-2.1 --Ni1-xCux (x=0.1-0.5) 0.23-.70 0.4-1.2 --Ni.8Cu.2 -- -- 5.1Ni.979Fe.021 0.93 1.6 --Ni.943Fe.057 0.84 1.4 --Pd.75Ag.25 0.39 0.4 --Pd1-xAgx (x=0-0.4) 0.24-.71 0.2-.7 --Pd.9Ag.1 0.58 0.5 --Pd.9Ag.1 0.51 0.5 --Pd.8Ag.2 0.45 0.4 --Pd.7Ag.3 0.34 0.3 46.0Pd.6Ag.4 0.23 0.2 --Pd1-xBx (x=0.033-0.162) 0.1-.6 0.1-.6 --Pd.95Bi.05 0.49 0.4 37.8Pd1-xBix (x=0-0.1) 0.27-0.70 0.2-.7 37-38Pd.947Ce.053 0.37 0.3 --Pd.942Ce.058 0.38 0.4 --Pd1-xCex (x=0.075-0.101) 0.13-.25 0.1-.2 --Pd.95Co.05 0.58 0.6 38.2Pd.95Co.05 0.52 -- 31.8Pd.91Co.09 0.41 -- 27.2Pd.9Co.1 0.47 0.5 29.8Pd.9Cu.1 0.55 0.5 --Pd.95Cr.05 0.57 0.6 29.6Pd1-xCrx (x=0.025-0.075) 0.48-.63 0.5-.6 26-35Pd1-xCux (x=0.05-0.20) 0.4-.62 0.4-.6 --Pd.972Ir.028 0.56 0.5 30.7Pd.942Ir.058 0.40 0.4 25.9Pd.927Ir.073 0.12 0.1 17.0Pd1-xMox (x=0.02&0.05) 0.32-.52 0.3-.5 --Pd.975Mo.025 0.50 0.5 30.8Pd1-xNbx (x=0.02&0.05) 0.3-.47 0.3-.4 --Pd.85Ni.15 0.5 0.5 --Pd.95Ni.05 0.6 -- 31.6Pd.91Ni.09 0.52 -- 29.4Pd.95Ni.025Rh.025 0.69 0.7 32.6Pd.9Ni.05Rh.05 0.64 0.6 28.4Pd.825Ni.1Rh.075 0.69 0.7 21.4Pd.975-yNi.025Rhy (y=0-0.075) 0.68-.72 0.6-.7 29-35Pd.875-yNi.125Rhy (y=0.025&0.05) 0.64 0.6 21-22Pd.946Pb.054 0.45 0.4 --Pd1-xPbx (x=0.026-0.083) 0.42-.48 0.4 --Pd.95Pt.05 0.66 0.6 33Pd1-xPtx (x=0.05-0.15) 0.29-.58 0.2-.5 24-33Pd.95Pt.05 0.63 0.6 29Pd.9Pt.1 0.40 0.4 27.4Pd1-x-yPtxRhy (x&y=0.015-0.075) 0.4-.7 0.4-.6 25-28Pd.7Rh.3 0.93 0.9 --Pd1-xRhx (x=0.05-0.4) 0.91-1.01 0.9-1.0 --Pd.95Rh.05 0.72 0.7 28

Pd.9Rh.1 0.72 0.7 24Pd.8Rh.2 0.82 0.8 --Pd1-xRux (x=0.04&0.1) 0.55-.61 0.5-.6 --Pd.95Sb.05 0.48 0.5 34.6Pd1-xSbx (x=0-0.1) 0.19-0.70 0.2-.7 35-37Pd.95Sc.05 0.48 0.5 37.4Pd1-xScx (x=0.025-0.075) 0.4-.58 0.4-.55 37-40Pd.952Ti.048 0.41 0.4 27.2Pd1-xTix (x=0-0.1) 0.13-.68 0.1-0.6 --Pd.95U.05 0.37 0.3 --Pd.98V.02 0.53 0.5 30.8Pd1-xVx (x=0-0.04) 0.44-.67 0.4-.6 24-40Pd1-xVx (x=0.02&0.05) 0.44-.64 0.4-.6 --Pd1-xVx (x = 0.01-0.04) 0.45-0.65 0.4-0.6 24-30Pd.92Y.08 0.41 0.4 --Pd.92Y.08 0.50 0.5 --Pd1-xYx (x=0.02-0.125) 0.27-.48 0.3-.5 --Ti1-xCrx (x=0.11 and 0.19) 1.61-1.67 3.2-3.3 --Ti.95Cr.05 1.73 3.5 --Ti.93Mn.07 1.89 3.8 --Ti1-xMox (x=0.18-0.33) 1.60-2.16 2.5-3.7 --Ti1-xNbx (x=0.11 and 0.26) 1.98-2.02 3.7-3.8 --Ti1-xVx (x=0.14-0.69) 1.94-1.96 3.2-3.8 --Ti1-xVx (x=0.02-0.35) 1.84-1.9 3.7-3.8 --Ti.5V.5 1.98 3.88 --Ti1-xVxFe.02 (x=0.2-0.8) 1.97-2.11 3.92-4.14 --Ti.435V.49Fe.075 1.95 3.8 --Ti1-xVxNi.02 (x=0.2-0.6) -- 3.4-3.7 --Ti1-xVxNi.05 (x=0.3-0.8) -- 3.3-3.8 --Ti.49Zr.51 2.22 2.8 --Ti1-xZrx (x=0-1) 1.85-1.94 2.1-3.9 --Ti.65Zr.35N.19 0.89 1.9 --Ti.81Zr.19N.25 0.96 2.0 --V.99B.01 1.94 3.72 --V1-xCx (x=0.005-0.008) 1.98-2.03 3.8-3.9 --V.99Co.01 1.94 3.69 --V1-xCrx (x=0.01-0.049) 1.99-2.15 3.8-4.1 --V1-xCrx (x=0-0.1) 1.9-2 3.6-3.8 33-39V.855Cr.145 1.2 2.3 29.7V1-xFex (x=0.001-0.009) 1.99-2.01 3.8-3.9 --V1-xGex (x=0.003-0.011) 1.61-1.98 3.1-3.8 --V.99Mo.01 2.02 3.81 --V.99Nb.01 1.95 3.69 --V.8Nb.2 1.9 3.1 --V.991Ni.009 1.90 3.62 --V1-xSix (x=0.001-0.017) 1.85-2.03 3.5-3.9 --V.96Si.04 1.59 3.1 --V1-xSnx (x=0.004-0.006) 1.97-2.01 3.7-3.7 --V.983Ta.013 1.77 3.28 --V.992Ti.008 2.03 3.86 --V.8Ti.2 1.55 3.0 48.1V.67Ti.33 2.00 3.88 --V1-xTix (x=0.34, 0.5) 1.96-2.0 3.8-3.9 --

(V.9Ti.1).9Al.05Fe.05 -- -- 42.8(V.9Ti.1).91Al.05Fe.04 1.47 2.6 --(V.8Ti.2).9Al.05Fe.05 -- -- 46.8(V.85Ti.15)1-xCrx (x=0.1-0.2) -- -- 39-49(V.9Ti.1).95Fe.05 1.95 3.7 43.2(V.9Ti.1)1-xFex (x=0-0.075) 1.8-1.95 3.4-3.7 40-51.8V.8Ti.18Fe.02 1.97 3.79 --V.6Ti.38Fe.02 2.14 4.14 --(V.8Ti.2)1-xFex (x=0.02-0.1) -- -- 50-55(V.9Ti.1).95Ge.05 -- -- 47.3(V.85Ti.15).92Mn.08 -- -- 50.6(V.8Ti.2).86Mn.14 -- -- 48.6(V.59Ti.41).74Mn.26 -- -- 52.7(V.8Ti.2).88Mn.08Fe.04 -- -- 48.5(V.63Ti.37).8Mn.1Fe.1 -- -- 44.7(VxTi1-x)1-y-zMnyFez (x=0.59-0.85; y=0.08-0.26; z=-- 1.6-2.5 45-52V1-xWx (x=0.008-0.01) 1.96-2.0 3.7 --V.99Zr.01 2.02 3.8 --Zr.97Cr.03 1.88 2.1 --Zr1-xHfx (x=0.23-0.82) 1.4-1.64 0.9-1.5 126-159Zr.96Mo.04 1.88 2.0 --ZrN.28 0.94 1.2 --Zr1-xNbx (x=0.12 and 0.25) 1.88-1.93 2.0-2.1 --Zr.975Nb.025 2.03 2.2 219Zr1-xNbx (x=0.049-0.197) 1.72-1.95 1.9-2.1 --Zr.7Nb.3N.33 0.80 1.1 --Zr.5Nb.5N.34 0..75 1.0 --Zr.935Nb.024Ni.041 1.90 2.6 --Zr.924Nb.024Ti.052 1.97 2.2 --Zr.927Nb.024V.049 1.92 2.7 --Zr.977Ni.023 2.17 2.4 --Zr.96Sn.04 1.78 1.9 --Zr.94V.06 1.85 2.1 --Nb.8V.2 1.9 2.2 calc?Pd.9Y.1 0.14 -- --Pd.88Pt.06Rh.06 0.60 0.5 24.8Pd.85Pt.075Rh.075 0.43 0.4 --Pd1-xCrx (x = 0.02-0.09) 0.32-.58 0.3-.55 --Pd1-xMox (x = 0.01-0.03) 0.37-.58 0.35-.55 --(V.89Ti.11).95Fe.05 1.72 3.3 42.9Pd1-2xAgxNix X=0.015-0.075 0.52-.65 0.5-.6 31.2-35.8Pd1-xCox x=0.018-0.085 0.42-.61 0.4-.6 31.2-38.7Mg.72Li.28 1.12 5.5 --V1-xTix x=0.05-0.15 1.95 3.7 --V.37Ti.33Mn.3 1.35 2.6 --Nb1-xVx x=0.1-0.3 1.80-1.85 2.1-2.2 --Nb.865Fe.065Cr.07 0.87 1.0 --Nb.736Fe.184Cr.08 0.82 1.0 --Pd.9Ni.1 0.55 0.5 --Pd.85Ni.15 0.53 0.5 --Pd.9Rh.1 0.73 0.7 32.4Pd.85Rh.15 0.77 0.7 31.0Pd.8Rh.2 0.82 0.8 28.4

Pd.75Rh.25 0.88 0.8 25.4Pd.975Rh.025 0.70 0.7 36.0Pd.95Rh.05 0.72 0.7 34.2Pd.925Rh.075 0.70 0.7 32.4Pd.9Rh.1 0.68 0.6 29.2Pd1-xNix x=0-0.25 0.61-.77 0.6-.8 --Pd.91Ni.09 0.54 0.5 --Pd.91Ni.09 0.50 -- --Nb1-xVx x=0.1-0.9 1.95-2.07 2.2-3.5 --Ta1-xVx x=0.1-0.9 0.92-2.04 0.5-3.1 --Ti1-x-yVxAly x=0.40-0.75, y=0.04-0.25 0.34-1.82 1.0-3.4 --Ti1-x-yVxCoy x=0.05-o.9, y=0.05-0.1 -- 1.8-3.8 --V.8Ti.2 1.78 3.4 60V.690Ti.173Ni.112Co.009Nb.008Ta.0 Mm dexoidized 1.6 3.0 --V.9Ti.1 1.72 3.3 --V.87Ti.13 1.87 3.6 --V.85Ti.15 2.03 3.9 --Ti.21Cr.29V.50 1.60 3.1 --Ti.32Cr.29V.39 1.51 2.9 --Ti.16Zr.05Cr.22V.57 1.87 3.5 --Ti.19-.35Zr.03-.05Cr.26-.45V.20-.50 1.44.1.73 2.7-3.2 --Pd1-xFex x=0.037-0.10 0.50-0.28 0.5-0.3 30.0-26.6V.49Ti.43Fe.075 2.00 3.9 --V.995C.005 1.06 2.1 --V.975Zr.02C.005 0.99 1.9 --Pd.8Rh.2 0.84 0.8 --Pd.85Rh.15 0.48 0.4 --Ti.98-xVxFe.02 x=0.2-0.8 2.00-2.10 3.8-4.1 --Ti.50V.45Fe.05 2.00 3.9 --Ti.98-xVxCo.02 x=0.2-0.8 1.84-1.91 3.6-3.8 --Ti.50V.45Co.05 1.81 3.5 --Ti.78V.20Ni.02 1.77 3.5 --Ti.58V.40Ni.02 1.90 3.7 --Ti.95-xVxNi.05 x=0.2-0.8 1.74-1.96 3.3-3.8 --Ta.5Ti.5 1.7 1.5 107Ta.4Ti.6 (M) 1.4 1.4 82-104V.667Zr.111Ti.111Fe.111 0.93 1.65 --V.667Zr.111Ti.111Mn.111 0.96 1.70 --V.667Zr.111Ti.111Ni.111 1.01 1.79 --Vx(Zr.33Ti.33Ni.33)1-x x=0.75-0.8 1.78-2.00 --V.7778Zrx(Ti.5Ni.5).2222-x x=0.05-0.074 1.75-2.00 --v.7ZrxTi.103-xCr.17 x=0-0.03 2.03-2.42 --Pd.96Pt.04 0.58 0.5 37.4Pd.92Pt.08 0.48 0.4 30.7Pd.90Pt.10 0.34 0.3 30.7Ti.23Mn.36V.41 1.45 2.8 34Pd.90Rh.1-xNix x=0-0.1 0.72-0.52 0.7-0.5 --Pd.90Rh.05Ni.05 0.66 0.6 --Ti.33V.37Mn.30 (M) 1.55 3.0 --Ti.33V.37Mn.30 (M) 1.20 2.3 --V 1.91 3.6 --V.99Ti.01 1.90 3.4 --V.99Cr.01 1.84 3.5 --

V.99Fe.01 1.84 3.5 --V.99Co.01 1.80 3.4 --V.99Ni.01 1.91 3.6 --V.99Cu.01 1.81 3.5 --V.99Zr.01 1.91 3.6 --V.99Nb.01 1.82 3.5 --V.99Mo.01 1.78 3.4 --V.99Ru.01 1.80 3.4 --V.99Rh.01 1.76 3.4 --V.99Pd.01 1.86 3.5 --V.99Ag.01 1.93 3.7 --V.99Hf.01 1.88 3.6 --V.99Ta.01 1.83 3.5 --V.99W.01 1.82 3.5 --V.99Re.01 1.77 3.4 --V.99Os.01 1.77 3.4 --V.99Ir.01 1.79 3.4 --V.99Pt.01 1.07 2.1 --V.99Au.01 1.92 3.6 --V.99Al.01 1.85 3.5 --V.99Si.01 1.72 3.3 --V.99Ga.01 1.78 3.4 --V.99In.01 1.90 3.6 --V.99Sn.01 1.80 3.4 --Ti.3Cr.5V.2 1.39 2.7 --Ti.278Cr.422V.25Fe.05 1.29 2.5 --V.62Ti.2Ni.18 .61 1.2 --V.49Ti.30Ni.21 0.92 1.8 --V.55Ti.30Ni.15 1.30 2.5 --V.61Ti.30Ni.09 1.10 2.1 --V.67Ti.30Ni.03 1.35 2.6 --Ti.65-xV.35Crx x=0.36-0.43 2.45-1.72 --TiyVxCrz x=0-0.35, Z/Y=40/25 0.94-2.48 --Ti.25V.35Cr.40 2.6 --Ti.346V.10Cr.554 2.50 --TiyVxCrz x=0.2-1, y/z=2/3 3.7-3.55 --Ti.375VxCr.625-x x=0.025-0.075 2.6-2.8 --Ti.375V.075Cr.55 2.8 --Ti.28V.35Cr.37-xMnx x=0-0.15 2.7-2.4 --TixV.35Cr.55-xMn.10 x=0.24-0.28 2.7 --TiwVxCryMnz x=0.35-0.55, w:y:z=24:31:10 2.7 --Pd.95Ag.05 0.70 0.66 --Pd.901Ag.099 0.64 0.6 --Pd.95Rh.05 0.80 0.75 --Pd.90Rh.10 0.83 0.8 --Nb1-xCrx x=0.03-0.10 0.82-0.85 0.9 45.4-47.2Nb.95Cr.05 0.85 0.9 47.2Nb.97Cr.03 0.82 0.9 47.2Pd.95Ag.05 0.73 0.7 --Pd.90Ag.10 0.66 0.6 --Pd.95Rh.05 0.76 0.7 --Pd.9Rh.10 0.75 0.7 --

P, atm @ T, ˚C Author, Year Ref. No. Hydride DB No. Comment 22.2-2.4 40 Reilly, 1972 314 --3.4 40 Reilly, 1972 314 --2.8-4.0 40 Reilly, 1972 314 --3500 - 4100 25 Baranowski, 1980 476 --3800 25 Baranowski, 1985 546 --4000 25 Filipek, 1981 478 --5500 25 Filipek, 1981 478 ---- -- Hughes, 1978 461 ---- -- Burch, 1969 477 --0.01 50 Brodowsky, 1965 527 --0.4 140 Buck, 1972 465 --0.004 50 Brodowsky, 1965 527 --0.002 50 Brodowsky, 1965 527 46No plateau -- Brodowsky, 1965 527 --0.01 25 Burch, 1970 466 --0.16 100 Sakamoto, 1996 637 --0.005-.02 30 Sakamoto, 1996 637 --0.008 25 McFall, 1973 470 ---- -- Hughes, 1978 461 --No plateau -- McFall, 1973 470 --0.6 81 Feenstra, 1987 609 --1.8 50 Holder, 1996 624 --4 20 Holder, 1996 624 --4 80 Feenstra, 1987 609 --0.06 30 Burch, 1974 467 --0.26 30 Ura, 1995 484 --0.08-.8 30 Ura, 1995 484 --0.03-.3 30 Burch, 1974 467 --0.1 25 LaPrade, 1974 469 --0.35 25 LaPrade, 1974 469 --0.6 25 LaPrade, 1974 469 --1-6 100 Wicke, 1989 613 --0.16 30 Ura, 1995 484 --0.8-3 100 Wicke, 1989 613 --7.2 50 Flanagan, 1995 616 --1.4 50 Holder, 1996 624 --6.8 50 Holder, 1996 624 --0.32 50 Sakamoto, 1995 603 --0.7 30 Sakamoto, 1995 603 --6.3 30 Sakamoto, 1995 603 --0.01-.3 0 Sakamoto, 1995 603 --3-6.3 30 Sakamoto, 1995 603 --0.005 25 Allard, 1974 468 --0.003 25 Allard, 1974 468 --0.17 30 Noh, 1995 481 --0.02-1 0 Noh, 1995 481 --0.30 25 Thiebaut, 1995 482 --2 25 Thiebaut, 1995 482 --0.24-1.91 25 Thiebaut, 1995 482 --35 25 Baranowski, 1973 464 ---- -- Baranowski, 1973 464 --0.21 25 Thiebaut, 1995 482 --

1.03 25 Thiebaut, 1995 482 --4.6 30 Flanagan, 1995 616 --2-5 100 Wicke, 1989 613 --0.07 100 Sakamoto, 199 6 637 --0.02-.05 30 Sakamoto, 1996 637 --0.04 50 Sakamoto, 1993 604 --0.03-.06 50 Sakamoto, 1993 604 --2.3 100 Evans, 1980 462 ---- -- Evans, 1980 462 --1.6 108 Feenstra, 1987 609 --0.1 25 Artman, 1976 485 --0.02-.4 25 Artman, 1976 485 --1-8 100 Wicke, 1989 613 --0.05-.5 25 Artman, 1976 460 ---- -- Hughes, 1978 461 --5.8 300 Doyle, 1987 608 --<0.1-2.5 190 Doyle, 1989 614 ---- -- Trzeciak, 1956 483 --0.6 600 Ishiyama, 1995 626 ---- -- Trzeciak, 1956 483 ---- -- Trzeciak, 1956 483 ---- -- Trzeciak, 1956 483 ---- -- Trzeciak, 1956 483 ---- -- Nagel, 1975 454 ---- -- Verbetskii, 1983 455 ---- -- Verbetskii, 1983 455 --0.07 40 Nomura, 1995 480 ---- -- Verbetskii, 1985 456 ---- -- Verbetskii, 1985 456 ---- -- Trzeciak, 1956 483 ---- -- Grushina, 1963 475 ---- -- Dolukhanian, 1996 629 ---- -- Dolukhanian, 1996 629 --4.8 40 Reilly, 1972 314 --5.3-5.8 40 Reilly, 1972 314 --6.9 40 Reilly, 1972 314 --6.4-11 40 Reilly, 1972 314 --5-25 50 Lynch, 1978 84 --50 50 Lynch, 1978 84 --5.3-7.4 40 Reilly, 1972 314 --7.4-9.0 40 Reilly, 1972 314 --8.0 40 Reilly, 1972 314 --5.3 40 Reilly, 1972 314 --2 45 Wiswall, 1972 318 --6.9 40 Reilly, 1972 314 --5.3-18 40 Reilly, 1972 314 --13 0 Reilly, 1972 314 --5.8 40 Reilly, 1972 314 --5.8 40 Reilly, 1972 314 --4.2 40 Reilly, 1972 314 --2 80 Ono, 1980 452 ---- -- Verbetskii, 1983 455 ---- -- Verbetskii, 1985 456 --

-- -- Libowitz, 1988 353 --5 25 Libowitz, 1985 471 ---- -- Libowitz, 1988 353 --0.1-1.5 25 Libowitz, 1988 353 --9.3 80 Lynch, 1985 351 331.5-20 80 Lynch, 1985 351 ---- -- Verbetskii, 1983 455 ---- -- Verbetskii, 1983 455 --0.15-3.4 80 Libowitz, 1988 353 ---- -- Libowitz, 1988 353 --0.06 25 Libowitz, 1988 353 --0.04 25 Libowitz, 1988 353 --0.03 25 Libowitz, 1988 353 --0.08 25 Libowitz, 1988 353 --0.03 25 Libowitz, 1988 353 --0.03-.08 25 Libowitz, 1985 471 --8.0-8-5 40 Reilly, 1972 314 --3.7 40 Reilly, 1972 314 ---- -- Trzeciak, 1956 483 --0.004-0.01 657 Katz, 1965 463 ---- -- Trzeciak, 1956 483 ---- -- Dolukhanian, 1996 629 ---- -- Trzeciak, 1956 483 --0.2 800 Sinha, 1970 472 --0.21 800 Sinha, 1972 474 ---- -- Dolukhanian, 1996 629 ---- -- Dolukhanian, 1996 629 --0.19 800 Sinha, 1976 473 --0.23 800 Sinha, 1976 473 --0.20 800 Sinha, 1976 473 ---- -- Trzeciak, 1956 483 ---- -- Trzeciak, 1956 483 ---- -- Trzeciak, 1956 483 --0.7 40 Lynch, 1984 453 --0.2 60 Poyser, 1997 660 --0.3 0 Sakamoto, 1997 661 --0.8 0 Sakamoto, 1997 661 --0.03-2.0 30 Flanagan, 1997 662 --0.03-.19 30 Flanagan, 1997 662 --4.5 40 Libowitz, 1987 697 --0.036-.12 30 Ohira, 1996 841 --0.025-.5 30 Wang, 1997 842 --1.5 350 Huot, 1998 843 --0.1-1.0 40 Jung, 1998 844 --2 25? Akiba, 1997 845 --0.4-.9 45 Esayed, 1997 846 --0.13 45 Esayed, 1997 846 --0.07 45 Esayed, 1997 846 --1 50 Flanagan, 1998 862 --6.8 50 Flanagan, 1998 862 --0.6 50 Noh, 1993 867 472.7 50 Noh, 1993 867 --4.8 30 Noh, 1993 867 --

5.0 0 Noh, 1993 867 --0.056 30 Sakamoto, 1994 868 --0.13 30 Sakamoto, 1994 868 --0.3 30 Sakamoto, 1994 868 --0.58 30 Sakamoto, 1994 868 470.002-25 0 Flanagan, 1995 870 --0.9 50 Flanagan, 1995 870 --3.4 50 Flanagan, 1995 870 ---- -- Muller, 1986 948 ---- -- Muller, 1986 948 ---- -- Verbetsky, 1984 1149 ---- -- Verbetsky, 1986 1153 --1.8 110 Sirotina, 1995 1158 -- (cal)0.3-0.6 20 Tsukahara, 2000 1396 --0.3 30 Kim, 2001 1397 --0.08 30 Kim, 2001 1397 --0.03 30 Kim, 2001 1397 --1 30 Cho, 1999 1398 --0.03 30 Cho, 1999 1398 --1 30 Cho, 1999 1399 -- Annealed0.7-1 30 Cho, 1999 1399 -- Annealed0.14-3.4 50 Zhang, 1999 1400 --0.1 150 Park, 1999 1401 --2.6 25 Cantrell, 1999 1402 -- Reversible capacity only1.0 25 Cantrell, 1999 1402 -- Reversible capacity only4.6 30 Flanagan, 1999 1403 --7.3 50 Flanagan, 1999 1403 ---- -- Verbetsky, 1999 1404 ---- -- Verbetsky, 1999 1404 ---- -- Verbetsky, 1999 1404 ---- -- Verbetsky, 1999 1404 ---- -- Verbetsky, 1999 1404 ---- -- Verbetsky, 1999 1404 ---- -- Verbetsky, 1999 1404 ---- -- Verbetsky, 1999 1404 ---- -- Verbetsky, 1999 1404 --0.3 40 Kuriiwa, 1999 1405 -- Reversible capacity only?0.2 40 Kuriiwa, 1999 1405 -- Reversible capacity only?0.6 40 Kuriiwa, 1999 1405 -- Reversible capacity only?1-1.4 40 Kuriiwa, 1999 1405 -- Reversible capacity only?1.2-2 40 Kuriiwa, 1999 1405 -- Reversible capacity only?1-2 40 Kuriiwa, 1999 1405 -- Reversible capacity only?0.4 80 Yasumatsu, 1999 1406 --1.8 80 Yasumatsu, 1999 1406 --3 80 Yasumatsu, 1999 1406 --4 40 Cho, 2000 1407 --0.7-1.2 50 Flangan, 2000 1408 --0.75 50 Flangan, 2000 1408 --2.5 100 Nakamura, 2000 1409 --1.3 80 Nakamura, 2000 1410 -- Deuterium4.8 40 Yukawa, 2002 1411 --2.8 40 Yukawa, 2002 1411 --5.0 40 Yukawa, 2002 1411 --

7.0 40 Yukawa, 2002 1411 --6.0 40 Yukawa, 2002 1411 --5.5 40 Yukawa, 2002 1411 --4.1 40 Yukawa, 2002 1411 --3.0 40 Yukawa, 2002 1411 --4.3 40 Yukawa, 2002 1411 --5.8 40 Yukawa, 2002 1411 --7.4 40 Yukawa, 2002 1411 --6.0 40 Yukawa, 2002 1411 --5.8 40 Yukawa, 2002 1411 --4.3 40 Yukawa, 2002 1411 --2.7 40 Yukawa, 2002 1411 --3.1 40 Yukawa, 2002 1411 --7.8 40 Yukawa, 2002 1411 --10 40 Yukawa, 2002 1411 --11 40 Yukawa, 2002 1411 --9.2 40 Yukawa, 2002 1411 --9 40 Yukawa, 2002 1411 --5.1 40 Yukawa, 2002 1411 --7.2 40 Yukawa, 2002 1411 --9.0 40 Yukawa, 2002 1411 --6.2 40 Yukawa, 2002 1411 --4.0 40 Yukawa, 2002 1411 --4.2 40 Yukawa, 2002 1411 --0.8 20 Itoh, 2002 1412 --2 20 Itoh, 2002 1412 --

Nambu, 2002 1413 --4 60 Nambu, 2002 1413 --0.5 60 Nambu, 2002 1413 --0.1 60 Nambu, 2002 1413 --0.05 60 Nambu, 2002 1413 --0.7-10 40 Okada, 2002 1414 -- Reversible capacity only>100-2 40 Okada, 2002 1414 -- Reversible capacity only1.6 40 Okada, 2002 1414 -- Reversible capacity only1.2 40 Okada, 2002 1414 -- Reversible capacity only3-10 40 Okada, 2002 1414 -- Maximum capacity0.5-1 40 Okada, 2002 1414 -- Reversible capacity only0.5 40 Okada, 2002 1414 -- Reversible capacity only0.5-0.3 40 Tamura, 2002 1415 -- Reversible capacity only1.2-0.4 40 Tamura, 2002 1415 -- Reversible capacity only1.3-1.0 40 Tamura, 2002 1415 -- Reversible capacity only0.02 25 Fazle Kibria, 1999 1416 -- Deuterium0.01 25 Fazle Kibria, 1999 1416 -- Deuterium0.13 50 Fazle Kibria, 1999 1417 --0.7 50 Fazle Kibria, 1999 1417 --0.08-0.15 47 Esayed, 2000 1418 --0.26 77 Esayed, 2000 1419 --0.45 77 Esayed, 2000 1419 --0.004 25 Fazle Kibria, 2000 1420 --0.002 25 Fazle Kibria, 2000 1420 --0.7 50 Fazle Kibria, 2000 1421 -- Deuterium3 50 Fazle Kibria, 2000 1421 -- Deuterium

Comment 3

Sloping plateau

Sloping plateau

Heat treatedHeat treated, Sloping plateauHeat treatedHeat treatedHeat treatedHeat treated

Sloping plateau

Heat treatedHeat treatedNo plateauSloping plateau

Sloping plateau?Sloping plateau?As-cast, sloping plateauxAs-cast, sloping plateauxHeat treated 1573K /1 minHeat treated, sloping plateau

Heat treated 1673K / 1 hrHeat treated 1673K / 1 hrHeat treatedHeat treatedHeat treated

Composition Comment 1 H/M Wt.% H ∆H, kJ/mol H2 P, atm @Mg-1Ag 1.47 5.7 -- --Mg-5Ag 1.41 5.3 -- --Mg-1Ag-1Al 1.57 6.0 -- --Mg-1Ag-1Y 1.65 6.3 -- --Mg17Al12 (Gamma phase) 0.86 3.3 -- --Mg5Al4 1.45 5.4 -- 7MgAl (Beta + Gamma phases) 0.8 3.0 -- 23Mg4Al5 (Epsilon phase) 0.58 2.2 -- 12Mg2Al3 (Beta phase) 0.88 3.3 -- --Mg2Al3 (Beta phase) 0.59 2.3 (Dp) -- 10Mg2Al3 (M) 0.68 2.6 (Dp) 63.2 11Mg2Al3 0.49 1.9 -- 14Mg-1Al 1.57 6.1 -- --Mg-10Al 1.69 6.5 -- --Mg-14Al 1.75 6.7 -- 6Mg-21Al (M) 1.75 6.6 -- 6Mg.62Al.38 0.59 2.3 -- 1.4Mg.6Al.4 0.25 1.0 -- 0.7Mg4Al6Cu 0.09 0.3 -- --Mg6Al7Cu 0.23 0.8 -- --Mg.8Al.1Cu.1 0.43 1.5 -- 1.6Mg.8Al.1La.1 1.57 4.2 -- 2.1Mg.59Al.36La.05 0.95 3.0 -- 1.9Mg.56Al.34La.1 0.78 2.1 -- 1.7Mg.364Al.591La.046 0.73 2.3 -- 12Mg.345Al.609La.044 0.66 2.1 -- 13.5Mg.335Al.622La.044 0.53 1.7 -- 14.5Mg.56Al.34La.05Y.05 1.08 3.1 -- 2.0Mg2AlLi.28 0.91 3.8 -- 15Mg.59Al.36Li.05 0.44 1.8 -- 0.7Mg.56Al.34Mm.1 0.82 2.2 -- 1.8MgAl.89Mn.19 1.55 5.0 -- 9Mg.59Al.36Ni.05 0.94 3.4 -- 1.8Mg.56Al.34Ni.05Y.05 0.80 2.6 -- 1.5Mg.59Al.36Si.05 0.15 0.6 -- 0.4Mg.59Al.36Sn.05 0.15 0.5 -- 0.5Mg17Al11Ti (M) 1.28 4.7 -- 2.2Mg17Al10Ti2 (M) 1.14 4.1 -- 2.0Mg17Al9Ti3 (M) 1.31 4.6 -- 4.2Mg14Al12Ti3 (M) 1.09 3.8 73 4.2Mg-5Al-5Y 1.23 5.0 -- --Mg.8Al.1Y.1 1.32 4.1 -- 1.6Mg.59Al.36Y.05 0.58 2.0 -- 2.2Mg.56Al.34Y.1 1.07 3.3 -- 2.3Mg.56Al.34YM.1 (YM=Yttrium Mischmetal) 0.94 2.9 -- 1.9Mg.56Al.34YM.05Mm.05 0.34 1.1 -- 1.5Mg10.5Ba 1.82 5.1 -- --Mg10.8Ba (M) 1.75 4.9 -- 12Mg17Ba2 (M) 1.48 3.9 -- 7.0Mg-5Bi 0.51 2.0 -- --Mg-50C (Mechanical alloy) 0.49 3.0 -- --Mg-5Ca 1.27 4.9 -- --

Mg2Ca 0.42 1.4 -- --Mg41Ce5 2.11 (Dp)5.3 -- --Mg9Ce 1.5 4.0 -- 5.0Mg12Ce 1.3 (Dp) 3.8 65 9Mg12Ce 2.1 6.0 -- 3Mg12Ce 1.59 4.6 -- --Mg11CeCo 1.60 4.3 -- --Mg11CeCr 1.58 4.3 -- --Mg11CeFe 1.47 4.0 -- --Mg11CeMn 1.51 4.1 -- --Mg11CeNi 1.68 4.5 -- --Mg11CeV 1.42 3.9 -- --Mg11CeZn 1.58 4.2 -- --Mg2Ce 2.33 3.6 -- --Mg-1Cd 1.28 5.0 -- --Mg2Co (Mg2Co phase not stable without H1.67 4.5 -- --Mg2Co (M) (Mg2Co phase not stable without H1.57 4.2 108 5.7Mg-5Co 0.51 2.0 -- --Mg-5Co (Mechanical alloy) 1.39 5.3 -- --Mg2Cu 1.0 2.6 (Dp) 72.9 6Mg2Cu 0.99 2.6 -- --Mg-5Cu 1.03 4.0 -- --Mg-26Cu (M) 1.62 5.3 78.3 3.2Mg2CuAl.125 (M) 1.06 2.8 (Dp) 63 11Mg2CuAl.25 (M) 1.12 3.0 (Dp) 72 3Mg2CuAl.375 (M) 1.18 3.2 76 3Mg.85Cu.1Ni.05 0.96 3.1 -- 1.6Mg.85Cu.1Ni.05Sn.02 0.74 2.3 -- 1.6Mg2Fe (Mg2Fe phase not stable without H2.0 5.5 -- --Mg-5Fe (Mechanical alloy) 1.36 5.2 -- --Mg-1In 1.17 4.6 -- --MgLa 1.5 (Dp) 1.8 -- --Mg17La2 0.63 1.7 -- 4?Mg17La2 2.11 (Dp)5.5 -- --Mg17La2 1.7 (Dp) 4.5 -- --Mg17La2 2.33 6.05 -- 2-18Mg17La2 0.6-1.2 1.7-3.1 -- <1Mg2La 2.33 3.6 -- --Mg12La 1.16 3.4 -- 0.8Mg16La2Ni 1.54 (Dp)3.9 -- --Mg17La1.8Ca.2 1.2 (Dp) 3.3 -- --Mg17La1.6Ca.4 1.4 (Dp) 3.9 -- --Mg16La1.8Ca.2Ni 1.22 (Dp)3.2 -- --Mg16La1.6Ca.4Ni 1.26 (Dp)3.4 -- --Mg4Li.75 0.09 0.4 -- --Mg4Li.3Al.08 0.09 0.4 -- --Mg.85Li.05Cu.1 0.14 0.5 -- 0.4Mg.8Li.1Cu.1 0.22 0.9 -- 0.6Mg.7Li.2Cu.1 0.17 0.7 -- 0.5Mg.85Li.05Ni.1 0.38 1.4 -- 1.0Mg.8Li.1Ni.1 0.53 2.0 -- 1.2Mg.8Li.05Ni.1Cu.05 0.32 1.1 -- 0.9Mg.75Li.1Ni.1Cu.05 0.54 1.9 -- 1.6

Mg.7Li.1Ni.1Cu.1 0.48 1.6 -- 1.0Mg.8Li.05Ni.1Sn.05 0.88 2.5 -- 2.0Mg.75Li.1Ni.1Sn.05 0.59 1.9 -- 1.8Mg.7Li.1Ni.1Sn.1 0.83 2.3 -- 2.4Mg.725Li.1Ni.1Sn.05Cu.025 0.48 1.5 -- 2.0Mg.75Li.1Ni.05Sn.05Cu.05 0.40 1.3 -- 1.5Mg.67Li.11Ni.11Sn.06Cu.06 0.59 1.7 -- 2.0Mg.7Li.1Ni.1Sn.05Zn.05 0.49 1.5 -- 2.0Mg.725Li.1Ni.1Sn.025Zn.025Cu.025 0.43 1.4 -- 1.8Mg.8Li.05Ni.1Zn.05 0.47 1.6 -- 1.8Mg.75Li.1Ni.1Zn.05 0.28 1.0 -- --Mg.7Li.1Ni.1Zn.1 0.27 0.9 -- --Mg.8Li.1Si.1 0.30 1.3 -- 0.8Mg.675Li.2Si.125 0.38 1.6 -- 0.4Mg.85Li.05Sn.1 0.26 0.8 -- 0.5Mg.8Li.1Sn.1 0.55 1.7 -- 0.8Mg.7Li.2Sn.1 0.18 0.6 -- 0.5Mg.85Li.05Zn.1 0.16 0.6 -- 0.3Mg.8Li.1Zn.1 0.43 1.6 -- 0.6Mg.7Li.2Zn.1 0.28 1.1 -- 0.6Mg12Ln (Ln = Ce, La, Mm) 2.08 (Dp)5.9 -- 3MgMn.35Ni.35 (M) 1.27 3.3 -- 6.5Mg12Mm 1.60 4.6 82 7Mg9Mm 1.8 4.8 -- 2.2Mg2Mm 1.34 2.1 -- --Mg-5Mn 1.58 6.0 -- --Mg-5Nb (Mechanical alloy) 1.40 5.3 -- --Mg2Ni 1.33 3.6 64.5 3.2Mg2Ni (Dynamic PCT) 1.33 3.6 64.6 2.5Mg2Ni (Mechanical alloy) 1.33 3.6 -- --Mg2.42Ni (M) 1.37 3.9 63.1 3.2Mg2.23Ni (M) 1.4 3.9 67.3 4.9Mg-2Ni 1.9 7.2 75.6 2.7Mg-5Ni 1.98 7.4 76.4 2.9Mg-5Ni (Mechanical alloy) 1.39 5.3 -- --Mg-10Ni (M) -- -- 78.2 2Mg-10Ni 0.96 3.6 78 9Mg-10Ni (M) 1.98 7.2 77.4 1.3Mg-23Ni (M) -- -- 78.2 2Mg-25Ni (M) 1.72 5.7 77.5 3.0Mg-25Ni 1.70 5.7 -- --Mg-33Mg2Ni (M) -- 5.8 79 2Mg-78Mg2Ni (M) -- 4.8 63-79 4Mg1.7NiAl.3 (M) 1.0 2.7 76.2 4.5Mg2Ni.85Al.15 (M) 1.2 3.4 84 3.0Mg2Ni.75Al.25 (M) 1.2 3.5 90 2.0Mg1.92NiAl.08 1.3 3.5 70.5 4Mg2Ni1-yBey (y = 0.15-0.25) 1.33 3.9-4.1 71-80 3-6Mg2Ni.75Co.25 1.15 3.1 64.5 1Mg2Ni.75Cr.25 1.1 3.0 59.9 1Mg2Ni.75Co.25 (Cal) 1.14 3.1 68 1Mg2Ni1-yCuy (y = 0-1) 1-1.3 2.6-3.5 53-73 3.5-8Mg2Ni.75Cu.25 -- -- 53.2 1

Mg2Ni1-yCuy (y=0-1) 0.95-1.2 2.5-3.4 62-66 1Mg.833Ni.066Cu.095M1.0(M1=La-rich Mm) 1.58 4.9 68 25Mg.855Ni.044Cu.017Si.004Y.008 1.45 5.1 -- --Mg.846Ni.05Cu.09Si.006 (M1=La-rich Mm) 1.66 5.2 -- --Mg.845Ni.05Cu.1Y.005 0.91 2.9 -- 1.5Mg.8275Ni.05Cu.0775Zn.045 1.20 3.8 -- 1.6Mg2Ni.75Fe.25 1.03 2.8 63.2 1Mg2Ni.75Fe.25 1.05 2.9 66 1Mg2Ni.75Fe.25 (M) 1.33 3.6 86 2Mg2Ni.63Fe.37 (M) 1.33 3.7 82 1.7MgNi.5Mn.5 1.46 3.5 -- --Mg2Ni.75V.25 1.06 2.9 62.4 1Mg-5Ni-5Y 1.42 5.2 -- --Mg2Ni.75Zn.25 1.22 3.3 61.5 1Mg2Ni.75Zn.25 1.15 3.1 66 1Mg-1Pb 1.58 6.1 -- --Mg2Pb 0.94 1.1 -- --Mg6Pd 0.29 0.8 -- --Mg6Pd 0.34 0.9 80.3 0.014Mg-5Sb 0.62 2.4 -- --Mg.9Sc.1 1.73 6.2 79.5 8Mg-5Si 0.88 3.5 -- --Mg2Si 0.03 0.1 -- --Mg2Si 0.52 2.0 -- --Mg-1Si 1.01 4.0 -- --Mg2Sm >0 >0 -- --Mg2Sm 1.0 1.5 -- --Mg3Sm 0.5? (Dp)0.9? -- --Mg-5Sn 1.32 5.0 -- --Mg-5Ti (Mechanical alloy) 1.14 4.4 -- --MgTi.29Cu.39 1.07 2.8 -- --MgTi.39Cu.29 (M) 1.42 3.8 -- 7.0MgCu.3Zr.21 1.14 2.7 -- --MgTi.39Mn.23 0.59 1.7 -- --MgTi.38Ni.12 0.70 2.1 -- --Mg-1Y 1.14 4.5 -- --Mg-5Y 1.88 7.0 -- --Mg-1Zn 0.75 3.0 -- --Mg7Zn3 0.33 0.9 -- --Mg7Zn3 1.14 2.5 -- 2.5Mg51Zn20 1.34 3.6 80.9 8Mg.75Zn.1Ni.05 0.96 3.0 -- 1.4MgZn.29Ti.11 0.74 2.1 -- --Mg2Ni.75Fe.25 (M) 1.19 3.3 65.2 1.9Mg1.9B.1Ni 1.02 -- 0.9Mg1.9Si.1Ni 1.08 -- 1.0Mg1.9Al.1Ni 1.28 -- 1.0Mg2Ni 1.28 -- 1.1Mg1.9Al.1Ni.8Mn.2 -- -- -- 0.95Mg1.9Al.1Ni.8Cu.2 -- -- -- 1.7Mg1.9Al.1Ni.8Co.2 -- -- -- 0.42Mg1.9Ca.1Ni.8Cu.2 -- -- -- 1.4Mg.72Li.28 1.12 5.5 -- 1.5

CeMg2 2.02 3.1 101 0.1Mg2Fe (Mg2Fe phase not stable without H2.0 5.5 79.2 28Mg2Ni Nanocrystalline 1.13 3.1 -- 1Mg2Ni Vapor synthesized 1.27 3.5 64.4 0.07Mg2Ni Vapor synthesized 1.27 3.5 64.4 0.09Mg2Ni Melted 1.27 3.5 68.6 0.05Mg2Ni Melted 1.33 3.6 68.8 0.06Mg2Ni 1.23 3.3 63.2 3.1Mg1.9Ti.1Ni Nanocrystalline 1.1 2.9 62.5 2.5Mg2Ni Nanocrystalline 1.2 3.3 67 2.2Mg2Ni Solid-state synthesized 1.2 3.3 65.9 3.2Mg1.75Ti.25Ni.75Cu.25 0.67 2.0 -- 2.3Mg2Ni.75Co25 1.25 3.4 -- 1Mg2Ni 1.94 5.2 -- --Mg2Ni Hydriding combustion synthesis 1.33 3.6 71.3 2.6Mg2Ni3 0.68 1.5 -- --Mg-1.5Zr -- 6.3 -- --Mg0.5Al0.5 -- 3.4 -- 3Mg2Ni 1.33 3.7 62.2 57Mg2Fe Mg2Fe not stable without H 2.0 5.5 77.2 25Mg2Co Mg2Co not stable without H 1.67 4.5 76 16Mg6Co2 Mg6Co2 not stable without H 1.37 4.0 89 --MgNi Amorphous 0.73 1.75 -- 3Mg2Ni1-xZrx x=0 to 0.3 -- 3.2-3.5 59.8-64.0 1Mg2Ni0.7Zr0.3 1.4 3.5 59.8 10MgNi Amorphous 0.85 2.0 40 0.004MgNi0.8Co0.2 Amorphous 0.85 2.0 -- --MgNi0.5Co0.5 Amorphous 0.8 1.8 26 --MgNi0.8Cu0.2 Amorphous 0.75 1.8 -- --MgNi0.5Cu0.5 Amorphous 0.5 1.2 8 --MgNi0.86Cr0.03 Amorphous 0.35 0.9 50 --MgNi0.86Fe0.03 Amorphous 0.52 1.3 -- --MgNi0.86Mn0.03 Amorphous 0.81 2.1 -- 1MgNi0.86Co0.03 Amorphous 0.82 2.1 -- 0.8Mg-10Ni Ball Milled -- 4.7 --Mg-30LaNi5 (M) Sintered -- 5.1 -- 2Mg-50LaNi5 (M) Sintered -- 4.0 -- 3MgNi Amorphous 0.67 1.6 -- 0.7Mg0.75Ni0.2MM0.05 Amorphous 1.5 4.0 -- --Mg0.63Ni0.3Y0.07 Amorphous 1.1 2.8 -- --Mg0.63Ni0.12Y0.01 Amorphous 0.6 1.9 -- --Mg1-xNix x=0-0.45 -- 2.3-6.4 -- --Ca19Mg8 2.0 5.4 -- --Mg-5V -- 5.8 62 1.5Mg0.87Ni0.13 (M) 1.6 5.7 -- 3Mg-30MmNi4.6Al0.4 -- 5.0 2Mg-30CFMmNi5 -- 5.3 2Mg-5Tm Tm=Ti, V, Mn, Fe, Ni -- 4.8-5.2 “Same as Mg1.3Mg0.80Ni0.15Nd0.05 1.8 4.9 76 1.6Mg0.70Ni0.25Nd0.05 1.35 3.4 69 3Mg-50ZrFe1.4Cr0.6 -- 3.4 “Almost unch 1.7Mg-30 LaNi5 (M) -- 5.3 “Same as Mg1.7Mg0.75Al0.25 1.2 3.5 -- 6

Mg0.58Al0.42 1.0 2.5 -- 10Mg-5V -- 5.6 -- 1.3Mg-10YNi4Al -- 5.6 -- --Mg-10YNi2Al3 -- 5.7 -- --Mg-10LaNi5 -- 4.5 -- --Mg-40ZrFe1.4Cr0.6 -- 3.4 -- --Mg-20TiO2 -- 4.4 -- --Mg-5 at% CuO -- 6.0 -- --Mg-5 at% Mn2O3 -- 4.9 -- --Mg-xCr2O3 x=0.2-5 at.% -- 6.8-4.7 -- --Mg-5 at% Fe3O4 -- 4.3 -- --Mg-5 at% V2O5 -- 4.1 -- --Mg-1 at% V2O5 -- 6.2 -- --Mg-1 at% TiO2 -- 6.0 -- --Mg-1 at% Al2O3 -- 5.8 -- --Mg-1 at% SiO2 -- 5.5 -- --Mg-1 at% Sc2O3 -- 6.0 -- --Mg2Ni-0.2 at% Mn2O3 -- 3.1 -- --Mg-5 at% VC -- 5.0 -- --Mg-5 at% VN -- 5.4 -- --Mg-1 at% V -- 6.1 -- --Mg1.9Ti0.1Ni0.9Mn0.1 1.17 3.1 -- 0.8Mg-5Ti-10V-10Fe -- 6.2 -- --Mg2Ni3 0.68 1.5 -- --Mg2Ni 1.63 4.4 -- --Mg2Ni 1.15 3.1 31.3 3.7Mg1.75Ni 1.06 2.8 26.6 4.5Mg1.5Ni 1.02 2.6 29.1 3.7Mg2Ni 1.18 3.2 61 1.1Mg2Ni0.75Ti0.25 1.17 3.2 56 1.2Mg2Ni0.75Cr0.25 1.18 3.2 61 0.9Mg2Ni0.75Mn0.25 1.18 3.2 58 1.0Mg2Ni0.75Fe0.25 1.17 3.2 60 1.0Mg2Ni0.75Co0.25 1.18 3.2 61 0.5Mg2Ni0.75Cu0.25 1.18 3.2 59 1.2Mg2Ni0.75Ti0.25 1.18 3.2 59 1.3Mg-1Ni -- 4.6 102 1.1Mg-5Ni -- 5.9 102 1.4Mg-10Ni -- 6.2 90 2.0Mg-10 Cr2O3 -- 5.8 -- --Mg-10 Al2O3 -- 5.6 -- --Mg-10 CeO2 -- 3.4 -- --CeMg12 2.08 (Dp)5.9 -- --Mg-xPr x=21-33 wt.% (Dp) 5.2-5.5 -- --Mg-xNd x=21-33 wt.% (Dp) 5.4-5.9 -- --LnMg2 Ln=Ce, La, Er, Yb) 2.0 (Dp) 3.1 101 (Ln=Ce) --Mg-Ca-Al (Dp) 4.5-5.1 -- --Mg-Ca-Zn (Dp) 2.3-5.2 -- --Mg-Ca-Ce (Dp) 3.3-5.1 -- --Mg-Ca-Cu (Dp) 3.3-5.1 -- --Mg-Ca-Ni (Dp) 3.5-5.5 -- --MgLa 2.1 (Dp) 2.6 -- 0.8Mg3La 2.1 (Dp) 3.9 -- 1.4

Mg4La 2.1 (Dp) 4.3 -- 2.5Mg17La2 1.8 (Dp) 4.9 -- 0.8Mg17Al12 1.17 (Dp)4.4 70 --Mg2Ca 1.5 (Dp) 4.9 -- --73Mg-18Ca-9Al (Dp) 4.8 -- --96.2Mg-0.8Ca-3.0Al (Dp) 3.4 -- --95.4Mg-1.6Ca-3.0Al (Dp) 5.1 -- --91.2Mg-0.8Ca-8.0Al (Dp) 6.8 -- --90.4Mg-1.6Ca-8.0Al (Dp) 6.4 -- --Mg0.0671Ca0.270Cu0.059 (Dp) 5.0 -- --Mg0.673Ca0.176Cu0.051 (Dp) 4.4 -- --Mg0.673Ca0.071Cu0.256 (Dp) 3.3 -- --6Mg0.666Ca0.060Cu0.274 (Dp) 2.9 -- --Mg0.975Ca0.004Cu0.021 (Dp) 5.1 -- --Mg0.931Ca0.012Cu0.057 (Dp) 5.2 -- --Mg0.878Ca0.020Cu0.102 (Dp) 5.0 -- --Mg0.875Ca0.060Cu0.065 (Dp) 5.4 -- --Mg0.90Ca0.14Cu0.06 (Dp) 4.5 -- --Mg2Cu (Dp) 2.6 -- --Mg2Ca (Dp) 5.9 -- --Mg0.747Ca0.270Ce0.013 (Dp) 5.7 -- --Mg0.797Ca0.166Ce0.037 (Dp) 4.6 -- --Mg0.880Ca0.056Ce0.064 (Dp) 4.4 -- --Mg0.968Ca0.013Ce0.019 (Dp) 4.9 -- --Mg0.950Ca0.031Ce0.019 (Dp) 5.5 -- --Mg0.949Ca0.017Ce0.034 (Dp) 5.4 -- --Mg0.917Ca0.063Ce0.020 (Dp) 5.7 -- --Mg0.917Ca0.063Ce0.020 (Dp) 5.7 -- --Mg2Ca (Dp) 5.9 -- --Mg17Ce2 (Dp) 5.1 -- --LaMg2 2.0 (Dp) 3.1 -- --55.3Mg-10.3Mm-34.4Ni (Dp) 4.4 -- --49.8Mg-19.3Mm-30.9Ni (Dp) 4.2 -- --47.4Mg-30.3Mm-22.3Ni (Dp) 4.2 -- --54.3Mg-23.5Mm-22.2Ni (M) (Dp) 4.0 -- 766.0Mg-7.5Mm-26.5Ni (Dp) 5.4 -- --57.6Mg-25.2Mm-17.2Ni (Dp) 4.8 -- --58.1Mg-24.2Mm-17.7Ni (Dp) 4.9 -- --62.1Mg-28.8Mm-9.1Ni (Dp) 5.3 -- --65.2Mg-31.5Mm-3.3Ni (Dp) 5.5 -- --75Mg-8.1Ce-16.9Ni (Dp) 6.0 -- --50Mg-16.2Ce-33.8Ni (Dp) 4.2 -- --75Mg-5.8Y-19.2Ni (Dp) 6.0 -- --50Mg-11.6Y-38.4Ni (Dp) 4.1 -- --75Mg-3.3Sc-21.7Ni (Dp) 6.0 -- --50Mg-6.6Sc-43.4Ni (Dp) 4.4 -- --75Mg-3.0Ca-22.0Ni (Dp) 6.1 -- --75Mg-6.0Ca-44.0Ni (Dp) 4.2 -- --79Mg-21Pr (Dp) 5.5 -- --73Mg-27Pr (Dp) 5.2 -- --Mg12Pr (Dp) 5.3 -- --79Mg-21Nd (Dp) 5.9 -- --73Mg-27Nd (Dp) 5.7 -- --

Mg12Nd (Dp) 5.4 -- --Mg0.90La0.075Al0.025 1.75 (Dp)5.1 68 5Mg0.85La0.10Al0.05 2.0 (Dp) 6.2 77 4.5Mg0.80La0.10Al0.10 1.8 (Dp) 4.8 76 5.5Mg0.708La0.125Al0.167 1.7 (Dp) 4.2 67 4.5

T, ˚C Author, Year Ref. No. Properties DB No. Comment 2-- Douglass, 1978 89 ---- Douglass, 1978 89 ---- Douglass, 1978 89 ---- Douglass, 1978 89 ---- Reilly, 1974 491 --326 Reilly, 1976 490 --352 Reilly, 1974 491 --301 Reilly, 1974 491 ---- Reilly, 1974 491 --326 Reilly, 1976 490 --335 Mintz, 1980 698 --350 Nachman, 1982 700 ---- Douglass, 1978 89 ---- Douglass, 1974 192 --352 Reilly, 1976 490 --352 Reilly, 1976 490 --310 Nachman, 1982 700 --310 Nachman, 1982 700 ---- Reilly, 1974 491 ---- Reilly, 1974 491 --310 Nachman, 1982 700 --310 Nachman, 1982 700 --310 Nachman, 1982 700 --310 Nachman, 1982 700 --350 Nachman, 1982 700 --350 Nachman, 1982 700 --350 Nachman, 1982 700 --310 Nachman, 1982 700 --352 Reilly, 1976 490 --310 Nachman, 1982 700 --310 Nachman, 1982 700 --350 Reilly, 1976 490 --310 Nachman, 1982 700 --310 Nachman, 1982 700 --310 Nachman, 1982 700 --310 Nachman, 1982 700 --304 Lupu, 1982 757 --304 Lupu, 1982 757 --337 Lupu, 1982 757 --337 Lupu, 1982 757 ---- Douglass, 1978 89 --310 Nachman, 1982 700 --310 Nachman, 1982 700 --310 Nachman, 1982 700 --310 Nachman, 1982 700 --310 Nachman, 1982 700 ---- Reilly, 1974 491 --375 Reilly, 1976 490 --352 Reilly, 1974 491 ---- Douglass, 1978 89 ---- Ivanov, 1987 708 ---- Douglass, 1978 89 --

-- Reilly, 1974 491 ---- Darriet, 1980 433 --349 Reilly, 1974 491 --341 Boulet, 1983 704 --325 Darriet, 1984 540 ---- Pezat, 1980 703 ---- Pezat, 1980 703 ---- Pezat, 1980 703 ---- Pezat, 1980 703 ---- Pezat, 1980 703 ---- Pezat, 1980 703 ---- Pezat, 1980 703 ---- Pezat, 1980 703 ---- Gingl, 1997 650 ---- Douglass, 1978 89 ---- Selvam, 1991 426 --418 Yoshida, 1993 594 ---- Douglass, 1978 89 ---- Ivanov, 1987 708 --295 Reilly, 1967 87 ---- Guinet, 1978 701 ---- Guinet, 1978 701 --330 Reilly, 1967 87 --330 Biris, 1982 716 --330 Biris, 1982 716 --330 Biris, 1982 716 --299 Rohy, 1978 90 --299 Rohy, 1978 90 ---- Selvam, 1991 426 ---- Ivanov, 1987 708 ---- Douglass, 1978 89 ---- Beck, 1962 45 --100 Yajima, 1977 188 ---- Darriet, 1980 433 ---- Khrussanova, 1985 436 --25? Dutta, 1990 442 --265+ Slattery, 1995 433 ---- Gingl, 1997 650 --400 Pal, 1997 710 ---- Khrussanova, 1982 702 ---- Khrussanova, 1985 436 ---- Khrussanova, 1985 436 ---- Khrussanova, 1987 707 ---- Khrussanova, 1987 707 ---- Reilly, 1974 491 ---- Reilly, 1974 491 --310 Nachman, 1982 700 --310 Nachman, 1982 700 --310 Nachman, 1982 700 --310 Nachman, 1982 700 --310 Nachman, 1982 700 --310 Nachman, 1982 700 --310 Nachman, 1982 700 --

310 Nachman, 1982 700 --310 Nachman, 1982 700 --310 Nachman, 1982 700 --310 Nachman, 1982 700 --310 Nachman, 1982 700 --310 Nachman, 1982 700 --310 Nachman, 1982 700 --310 Nachman, 1982 700 --310 Nachman, 1982 700 --310 Nachman, 1982 700 ---- Nachman, 1982 700 ---- Nachman, 1982 700 --310 Nachman, 1982 700 --310 Nachman, 1982 700 --310 Nachman, 1982 700 --310 Nachman, 1982 700 --310 Nachman, 1982 700 --310 Nachman, 1982 700 --310 Nachman, 1982 700 --310 Nachman, 1982 700 --325 Darriet, 1980 433 --349 Reilly, 1976 490 --350 Shaltiel, 1984 706 --310 Reilly, 1976 490 ---- Reilly, 1974 491 ---- Douglass, 1978 89 ---- Ivanov, 1987 708 --299 Reilly, 1968 88 17300 Lutz, 1977 420 ---- Ivanov, 1987 708 --301 Post, 1984 718 --323 Friedlmeier, 1997 714 --316 Friedlmeier, 1997 714 --323 Friedlmeier, 1997 714 ---- Ivanov, 1987 708 --303 Akiba, 1982 91 --335 Boulet, 1983 704 --292 Friedmmeier, 1988 713 --300 Akiba, 1982 91 --323 Reilly, 1968 88 ---- Douglass, 1974 192 --302 Buchner, 1978 699 --302 Buchner, 1978 699 --312 Biris, 1982 758 --327 Biris, 1982 758 --327 Biris, 1982 758 --295 Hirata, 1983 427 --337 Lupu, 1982 419 --279 Darnaudery, 1983 418 --248 Darnaudery, 1983 418 --297 Selvam, 1988 712 --300 Darnaudery, 1983 417 --227 Darnaudery, 1983 418 --

252-29 Selvam, 1988 712 --357 Au, 1995 711 ---- Au, 1995 711 ---- Au, 1995 711 --299 Rohy, 1978 90 --299 Rohy, 1978 90 --253 Darnaudery, 1983 418 --285 Selvam, 1988 712 --312 Lupu, 1983 717 --320 Lupu, 1983 717 ---- Reilly, 1974 491 --250 Darnaudery, 1983 418 ---- Douglass, 1978 (89)246 Darnaudery, 1983 418 --283 Selvam, 1988 712 ---- Douglass, 1978 89 ---- Reilly, 1974 491 ---- Reilly, 1974 491 --160 Kume, 1987 576 ---- Douglass, 1978 89 --375 Ogawa, 1982 705 ---- Douglass, 1978 89 ---- Reilly, 1974 491 ---- Guinet, 1978 701 ---- Guinet, 1978 701 ---- Beck, 1962 45 ---- Shaltiel, 1978 66 ---- Yamanaka, 1975 73 ---- Douglass, 1978 89 ---- Ivanov, 1987 708 ---- Reilly, 1974 491 --350 Reilly, 1976 490 ---- Reilly, 1974 491 ---- Reilly, 1974 491 ---- Reilly, 1974 491 ---- Douglass, 1978 89 ---- Douglass, 1978 89 ---- Douglass, 1978 89 ---- Reilly, 1974 491 --315 Akiba, 1991 709 --330 Bruzzone, 1983 431 --299 Rohy, 1978 90 ---- Reilly, 1974 491 --300 Yuan, 1997 828 --250 Tsushio, 1998 830 --250 Tsushio, 1998 830 --250 Tsushio, 1998 830 --250 Tsushio, 1998 830 --250 Tsushio, 1998 830 --250 Tsushio, 1998 830 --250 Tsushio, 1998 830 --250 Tsushio, 1998 830 --350 Huot, 1998 843 --

216 Verbetsky, 1989 1155 --450 Reiser, 1998 1159 --300 Dehouche, 1998 854 --180 Guthrie, 1998 863 --180 Guthrie, 1998 863 --180 Guthrie, 1998 863 --180 Guthrie, 1998 863 --300 Song, 1998 1224 --300 Liang, 1999 1226 --300 Liang, 1999 1226 --300 Sun, 1999 1228 --300 Yuan, 1999 1229 --300 Yang, 2000 1233 ---- Chen, 2000 1234 --300 Li, 2000 1236 ---- Takamura, 2002 1344 -- P=50,000 atm-- Zaluska, 2001 1434 -- Nanocrystalline280 Zaluska, 2001 1434 -- Nanocrystalline450 Reiser, 2000 1463 --450 Reiser, 2000 1463 --450 Reiser, 2000 1463 ---- Reiser, 2000 1463 --140 Jiang, 2000 1464 --248-25 Zhang, 1998 1465 --340 Zhang, 1998 1465 --25? Ikeda, 1998 1466 ---- Ikeda, 1998 1466 ---- Ikeda, 1998 1466 ---- Ikeda, 1998 1466 ---- Ikeda, 1998 1466 ---- Tsushio, 1998 1467 ---- Tsushio, 1998 1467 --300 Tsushio, 1998 1467 --300 Tsushio, 1998 1467 ---- Song, 1999 1468 --300 Sun, 1999 1469 --300 Sun, 1999 1469 --140 Han, 1999 1470 ---- Spassov, 1999 1471 ---- Spassov, 1999 1471 ---- Spassov, 1999 1471 ---- Yang, 1999 1472 -- Ball milled-- Bertheville, 1999 1473 --310 Liang, 1999 1474 -- Ball milled composite325 Friedlmeier, 1999 1475 -- Melt spun350 Davidson, 1999 1476 -- Ball milled composites350 Sai Raman, 1999 1477 -- Ball milled composites300 Liang, 1999 1478 -- Ball milled composites300 Tanaka, 1999 1479 -- Melt spun300 Tanaka, 1999 1479 -- Melt spun300 Wang, 2000 1480 -- H2-ball milled composite310 Liang, 2000 1481 -- Ball milled composite350 Bouaricha, 2000 1482 -- Ball milled

350 Bouaricha, 2000 1482 -- Ball milled300 Dehouche, 2000 1483 -- Ball milled composite-- Khrussanova, 2000 1484 -- Ball milled composite-- Khrussanova, 2000 1484 -- Ball milled composite-- Khrussanova, 2000 1484 -- Ball milled composite-- Wang, 2000 1485 -- H2-ball milled composite-- Wang, 2000 1486 -- H2-ball milled composite-- Oelerich, 2001 1487 -- Ball milled-- Oelerich, 2001 1487 -- Ball milled-- Oelerich, 2001 1487 -- Ball milled-- Oelerich, 2001 1487 -- Ball milled-- Oelerich, 2001 1487 -- Ball milled-- Oelerich, 2001 1487 -- Ball milled-- Oelerich, 2001 1487 -- Ball milled-- Oelerich, 2001 1487 -- Ball milled-- Oelerich, 2001 1487 -- Ball milled-- Oelerich, 2001 1487 -- Ball milled-- Oelerich, 2001 1487 -- Ball milled-- Oelerich, 2001 1488 -- Ball milled-- Oelerich, 2001 1488 -- Ball milled-- Oelerich, 2001 1488 -- Ball milled250 Yuan, 2001 1489 ---- Khrussanova, 2001 1490 -- Ball milled-- Takamura, 2002 1344 -- P=50,000 atm-- Chen, 2002 1491 -- P=60,000 atm (LiAlH4 H2 source)300 Kuji, 2002 1492 -- Ball milled300 Kuji, 2002 1492 -- Ball milled300 Kuji, 2002 1492 -- Ball milled250 Yang, 2002 1493 -- Ball milling + diffusion synthesis250 Yang, 2002 1493 -- Ball milling + diffusion synthesis250 Yang, 2002 1493 -- Ball milling + diffusion synthesis250 Yang, 2002 1493 -- Ball milling + diffusion synthesis250 Yang, 2002 1493 -- Ball milling + diffusion synthesis250 Yang, 2002 1493 -- Ball milling + diffusion synthesis250 Yang, 2002 1493 -- Ball milling + diffusion synthesis250 Yang, 2002 1493 -- Ball milling + diffusion synthesis300 Hong, 2002 1494 -- Rotation-cylinder synthesis method300 Hong, 2002 1494 -- Rotation-cylinder synthesis method300 Hong, 2002 1494 -- Rotation-cylinder synthesis method-- Song, 2002 1495 -- H2 ball milling-- Song, 2002 1495 -- H2 ball milling-- Song, 2002 1495 -- H2 ball milling-- Ivanov, 1983 1496 ---- Verbetsky, 1988 1497 ---- Verbetsky, 1988 1497 ---- Verbetsky, 1988 1497 ---- Verbetsky, 1988 1497 ---- Verbetsky, 1988 1497 ---- Verbetsky, 1988 1497 ---- Verbetsky, 1988 1497 ---- Verbetsky, 1988 1497 --290 Semenenko, 1981 1498 --290 Semenenko, 1981 1498 --

315 Semenenko, 1981 1498 --290 Semenenko, 1981 1498 ---- Semenenko, 1983 1499 ---- Semenenko, 1983 1499 ---- Semenenko, 1983 1500 ---- Semenenko, 1983 1500 ---- Semenenko, 1983 1500 ---- Semenenko, 1983 1500 ---- Semenenko, 1983 1500 ---- Verbetsky, 1984 1501 ---- Verbetsky, 1984 1501 ---- Verbetsky, 1984 1501 ---- Verbetsky, 1984 1501 ---- Verbetsky, 1984 1501 ---- Verbetsky, 1984 1501 ---- Verbetsky, 1984 1501 ---- Verbetsky, 1984 1501 ---- Verbetsky, 1984 1501 ---- Verbetsky, 1984 1501 ---- Verbetsky, 1984 1501 ---- Semenenko, 1984 1502 ---- Semenenko, 1984 1502 ---- Semenenko, 1984 1502 ---- Semenenko, 1984 1502 ---- Semenenko, 1984 1502 ---- Semenenko, 1984 1502 ---- Semenenko, 1984 1502 ---- Semenenko, 1984 1502 ---- Semenenko, 1984 1502 ---- Semenenko, 1984 1502 ---- Verbetsky, 1987 1503 ---- Kuliev, 1988 1504 ---- Kuliev, 1988 1504 ---- Kuliev, 1988 1504 --350 Kuliev, 1988 1504 ---- Kuliev, 1988 1504 ---- Kuliev, 1988 1504 ---- Kuliev, 1988 1504 ---- Kuliev, 1988 1504 ---- Kuliev, 1988 1504 ---- Semenenko, 1984 1505 ---- Semenenko, 1984 1505 ---- Semenenko, 1984 1505 ---- Semenenko, 1984 1505 ---- Semenenko, 1984 1505 ---- Semenenko, 1984 1505 ---- Semenenko, 1984 1505 ---- Semenenko, 1984 1505 ---- Semenenko, 1985 1506 ---- Semenenko, 1985 1506 ---- Semenenko, 1985 1506 ---- Semenenko, 1985 1506 ---- Semenenko, 1985 1506 --

-- Semenenko, 1985 1506 --308 Semenenko, 1986 1507 --300 Semenenko, 1986 1507 --302 Semenenko, 1986 1507 --300 Semenenko, 1986 1507 --

Comment 3

Sloping plateau

No plateau

No plateauNo plateauNo plateau

Sloping plateau

P=60,000 atm (LiAlH4 H2 source)

Sloping plateau

Rotation-cylinder synthesis methodRotation-cylinder synthesis methodRotation-cylinder synthesis method

Sloping plateauSloping plateau

Sloping plateauSloping plateauSloping plateauSloping plateau

Composition Complex H/M Wt.% H∆H, kJ/mol H2 P, atm @ T, ˚CAgBH4 [BH4]- 2.0 3.3 -- 1? -30AgAlH4 [AlH4]- 2.0 2.9 -- 1? -50CaAg2H 0.33 0.4 -- -- --Be(AlH4)2 [AlH4]- 2.67 11.3 -- -- --Ca(AlH4)2 [AlH4]- 2.67 7.9 -- -- --Ca(AlH4)2 [AlH4]- 2.67 7.9 -- 1? >230Ce(AlH4)3 [AlH4]- 3.0 5.2 -- 1? 25CsAlH4 [AlH4]- 2.0 2.5 77 -- --CuAlH4 [AlH4]- 2.0 4.3 -- 1? -70Fe(AlH4)2 [AlH4]- 2.67 6.8 -- 1? 25?Ga(AlH4)3 [AlH4]- 3.0 7.4 -- 1? 35In(AlH4)3 [AlH4]- 3.0 5.8 -- 1? -40KAlH4 [AlH4] 2.0 5.7 72.6 -- --LiAlH4 [AlH4]- 2.0 10.6 61 1? 200LiAlH4 [AlH4]- 2.0 10.6 -- -- --LiAlH4 [AlH4] 2.0 10.6 18.9 -- --LiAlH4 [AlH4]- 2.0 10.6 -- 1? 190Mg(AlH4)2 [AlH4]- 2.67 9.3 -- -- --Mg(AlH4)2 [AlH4]- 2.67 9.3 -- <1 140Mg(AlH4)2 [AlH4]- 2.67 9.3 -- 1? 140Mn(AlH4)2 [AlH4]- 2.67 6.9 -- 1? <25NaAlH4 [AlH4]- 2.0 7.5 -- 1? 230NaAlH4 [AlH4]- 2.0 7.5 37.6 -- --NaAlH4 [AlH4]- 2.0 7.5 12.8? 153 210NaAlH4 [AlH4]- 2.0 7.5 -- 135 180Na3AlH6 [AlH6]3- 1.5 5.9 64 21.4 210Na3AlH6 [AlH6]3- 1.5 5.9 -- 33 211Na2LiAlH6 1.5 7.0 -- 13 211Sn(AlH4)4 [AlH4]- 3.2 6.6 -- 1? -40Ti(AlH4)4 [AlH4]- 3.2 9.4 -- 1? -85Tl(AlH4)3 [AlH4]- 3.0 4.1 -- 1? 25Zr(AlH4)4 [AlH4]- 3.2 7.5 -- 1? 25Al(BH4)3 [BH4]- 3.0 16.9 -- -- --Al(BH4)3 [BH4]- 3.0 16.9 -- -- --Ba(BH4)2 [BH4]- 2.67 4.8 -- 1? >350Be(BH4)2 [BH4]- 2.67 20.8 -- -- --Be(BH4)2 [BH4]- 2.67 20.8 -- 1? 123Ca(BH4)2 [BH4]- 2.67 11.6 -- -- --Ca(BH4)2 [BH4]- 2.67 11.6 -- 1? 260Cd(BH4)2 [BH4]- 2.67 5.7 -- 1? 80Co(BH4)2 [BH4]- 2.67 9.1 -- -- --CsBH4 [BH4]- 2.0 2.7 -- -- --CuBH4 [BH4]- 2.0 5.1 -- 1? -12Fe(BH4)2 [BH4]- 2.67 9.4 -- 1? -10Hf(BH4)4 [BH4]- 3.2 6.8 -- -- --KBH4 [BH4]- 2.0 7.5 -- 1 >190KBH4 [BH4]- 2.0 7.5 -- -- --KBH4 [BH4]- 2.0 7.5 69 -- --KBH4 [BH4]- 2.0 7.5 -- -- --LiBH4 [BH4]- 2.0 18.5 -- -- --LiBH4 [BH4]- 2.0 18.5 69 -- --LiBH4 [BH4]- 2.0 18.5 -- -- --

Mg(BH4)2 [BH4]- 2.67 14.9 -- >1 140Mg(BH4)2 [BH4]- 2.67 14.9 -- 1? 320NaBH4 [BH4]- 2.0 10.7 -- 1 >400NaBH4 [BH4]- 2.0 10.7 -- -- --NaBH4 [BH4]- 2.0 10.7 90 -- --NaBH4 2.0 10.7 -- -- --R(BH4)3 [BH4]- 3.0 5.5-9.1 -- 1 200RbBH4 [BH4]- 2.0 4.0 -- -- --Sn(BH4)2 [BH4]- 2.67 5.4 -- 1? >-65Sr(BH4)2 [BH4]- 2.67 6.9 -- 1? >350TlBH4 [BH4]- 2.0 1.8 -- -- --Th(BH4)4 [BH4]- 3.2 5.5 -- 1? 204Ti(BH4)3 [BH4]- 3.0 13.1 -- -- --U(BH4)4 [BH4]- 3.2 5.4 -- 1? >150U(BH4)4 [BH4]- 3.2 5.4 -- 1? 100Zn(BH4)2 [BH4]- 2.67 8.5 -- 1? 120Zn(BH4)2 [BH4]- 2.67 8.5 -- 1? >50Zr(BH4)4 [BH4]- 3.2 10.7 -- -- --Zr(BH4)4 3.2 10.7 -- -- --Ba3Ir2H12 [IrH6]3- 2.4 1.5 -- -- --BaMgH4 2.0 2.4 -- -- --Ba2MgH6 [MgH6] 2.0 2.0 -- -- --Ba2OsH6 [OsH6]4- 2.0 1.3 -- -- --Ba2PtH6 2.0 1.3 -- -- --BaReH9 [ReH9]2- 4.5 2.7 -- 1 <100Ba2RuH6 [RuH6]4- 2.0 1.6 -- -- --Ca2-xEuxIrH5 (x=0-2) 1.67 1.0-1.8 -- -- --Ca2-xEuxRuH6 (x=0-2) 2.0 1.5-3.2 -- -- --Ca2FeH6 [FeH6]4- 2.0 4.3 -- -- --Ca2IrH5 1.67 1.8 -- -- --Ca4Mg4Fe3H22 [FeH6]4- 2.0 5.0 -- 1 395Ca4Mg4Fe3H22 [FeH6]4- 2.0 5.0 122 4 441CaMgNiH4 [NiH4]4- 1.33 3.2 -- 1 405CaPdH2 [PdH2]2- 1.0 1.4 -- -- --Ca2OsH6 [OsH6]4- 2.0 3.2 -- -- --Ca2OsH6 [OsH6]4- 2.0 2.2 -- -- --Ca2RhH5 1.67 2.7 -- 1 360Ca2RuH6 3.0 3.2 -- -- --Mg6Co2H11 [CoH4]5- 1.37 4.0 -- 1 >480Mg2CoH5 [CoH5]4- 1.67 4.5 -- 1 280Cs3MnH5 1.25 1.1 -- -- --Cs2PdH4 [PdH4]2- 1.33 1.1 -- -- --Cs3PdH5 [PdH4]2- 1.25 1.0 -- -- --Cs2PtH4 [PtH4]2- 1.33 0.9 -- -- --Cs3PtH5 [PtH4]2- 1.25 0.8 -- -- --Cs2PtH6 [PtH6]2- 2.0 1.3 -- -- --Cs2ZnH4 1.33 1.2 -- 1 360Cs3ZnH5 [ZnH4]2- 1.25 1.1 -- 1 355Eu2IrH5 1.67 1.0 -- -- --Eu2RuH6 2.0 1.5 -- 1 900Sr2-xEuxRuH6 (x=0-2) 2.0 1.5-2.1 -- -- --Sr2-xEuxIrH5 (x=0-2) 1.67 1.0-1.4 -- -- --Sr2-xEuxRuH5 (x=0-2) 1.67 1.2-1.8 -- -- --

Yb4Mg4Fe3H22 [FeH6]4- 2.0 2.3 137 4 458Mg2FeH6 [FeH6]4- 2.0 5.5 -- 19 450Mg2FeH6 [FeH6]4- 2.0 5.5 -- -- --Sr2FeH6 [FeH6]4- 2.0 2.6 -- -- --Eu2FeH6 [FeH6]4- 2.0 1.7 -- -- --Sr2IrH4 1.33 1.1 -- -- --Sr2IrH5 1.67 1.4 -- 1 335K3MnH5 1.25 2.8 -- -- --Li3IrH6 [IrH6]3- 1.5 2.8 -- -- --Li3RhH4 [RhH4]3- 1.0 3.2 -- -- --Li3RhH6 [RhH6]3- 1.5 4.7 -- -- --Mg4IrH5 1.0 1.7 -- 1 >400Na3IrH6 [IrH6]3- 1.5 2.3 -- -- --KNaReH9 [ReH9]2- 3.0 3.5 -- 1 <100K3PdH3 [PdH2]2- 0.75 1.3 -- -- --K2PdH4 [PdH2]2- 1.33 2.1 -- -- --K3PdH5 [PdH2]2- 1.25 2.1 -- -- --K2PtH4 [PtH4]2- 1.33 1.5 -- -- --K3PtH5 [PtH4]2- 1.25 1.6 -- -- --K2PtH6 [PtH6]4- 2.0 2.2 -- -- --K2ZnH4 [ZnH4]2- 1.33 2.7 -- 1 310K3ZnH5 [ZnH4]2- 1.25 2.7 -- 1 360LiMg2RuH7 [RuH6]4- 1.75 4.3 -- 1 >400Na2PtH6 [PtH6]2- 2.0 2.4 -- -- --Na3RhH6 [RhH6]3- 1.5 3.4 -- -- --Li4OsH6 [OsH6]4- 1.25 2.7 -- -- --Li2PdH2 [PdH2]2- 0.67 0.9 -- -- --Li4RuH6 [RuH6]4- 1.25 4.5 -- -- --LiSr2PdH5 [PdH3]3- 1.25 1.7 -- 1 >400BaMg2OsH8 [OsH6]4- 2.0 2.1 -- -- --BaMg2RuH8 [RuH6]4- 2.0 2.7 -- -- --SrMg2FeH8 [FeH6]4- 2.0 4.0 -- 1 440Mg2NiH4 [NiH4]4- 1.33 3.6 -- 1 280Mg2NiH6 [NiH4]4- 1.33 3.6 -- -- --Mg2OsH6 [OsH6]4- 2.0 2.5 -- -- --Mg2OsH6 [OsH6]4- 2.0 2.5 -- -- --Mg3ReH7 [ReH6]5- 1.75 2.7 -- 1 >300Mg3RuH3 [Ru2H6]12- 0.75 1.7 -- 1 >400Mg3RuH6 [RuH5]5- 1.5 3.4 -- -- --Mg2RuH4 1.33 2.6 -- 1 >400Mg2RuH6 [RuH6]4- 2.0 3.9 -- -- --Mg2RuH6 2.0 3.9 -- -- --Sr2Mg3H10 2.0 3.9 -- -- --Rb3MnH5 1.25 1.6 -- -- --Na2PdH2 [PdH2]2- 0.67 1.3 -- -- --Na2PdH2 [PdH2]2- 0.67 1.3 -- -- --Na2PdH4 [PdH4]2- 1.33 2.6 -- -- --NaPd3H2 [PdH2] 0.5 0.6 -- -- --Na2PtH4 [PtH4]2- 1.33 1.6 -- -- --Na4RuH6 [RuH6]4- 1.25 3.0 -- -- --SrPdH2.7 1.35 1.4 -- -- --Sr2RhH5 1.67 1.8 -- 1 325Sr2RhH5 1.67 1.8 -- -- --

Sr8Rh5H23 [RhH6] 1.8 1.9 -- -- --Sr2RuH6 2.0 2.1 -- 1 450Rb3PdH5 [PdH4]2- 1.25 1.4 -- -- --Rb2PdH4 [PdH4]2- 1.33 2.1 -- -- --Rb3PtH5 [PtH4]2- 1.25 1.1 -- -- --Rb2PtH6 [PtH6]2- 2.0 1.6 -- -- --Rb2ZnH4 1.33 1.7 -- 1 360Rb3ZnH5 [ZnH4]2- 1.25 1.5 -- 1 360Yb2RuH6 2.0 1.3 -- -- --Rb2PtH4 [PtH4]2- 1.33 1.1 -- -- --Sr2PtH6 [PtH4]2- 2.0 1.6 -- -- --Sr2OsH6 [OsH6]4- 2.0 1.6 -- -- --Mg2FeH6 [FeH6]4- 2.0 5.5 79.2 28 450NaAlH4 [AlH4]- 2.0 7.5 35-38 62 150Na3AlH6 [AlH6]3- 1.5 5.9 50.8 3.5 150NaAlH4 [AlH4]- -- 4.2-5.5 -- 135 180Na3AlH6 [AlH6]3- -- 2.7 -- 15 180Na2LiAlH6 -- 2.7 -- 13 211Na3AlH6 [AlH6]3- -- 3.1 -- 30 220Na1.8Li0.6B0.6AlH6 -- 3.2 -- 10 220Li1.8Na1.2AlH6 -- 3.3 -- 3 220NaAlH4 [AlH4]- -- 4.8-5.2 -- -- --NaAlH4 [AlH4]- -- 3-5 -- -- --Na3AlH6 [AlH6]3- -- 2.8 -- 30 220Na1.7Li1.3AlH6 -- 3.1 -- 8 220Na1.5Li1.5AlH6 -- 3.2 -- -- --NaAlH4 [AlH4]- -- 4.9 -- -- --LiAlH4 [AlH4]- -- 7.0 -- -- --Li3AlH6 [AlH6]3- -- 2.1 -- -- --NaAlH4 [AlH4]- -- 4.5 -- 55 150Na3AlH6 [AlH6]3- -- 2.2 -- 3 150NaAlH4 [AlH4]- -- 4.7 37 61 150Na3AlH6 [AlH6]3- -- 1.9 -- 9 170NaAlH4 [AlH4]- -- 4.0 -- -- --NaAlH4 [AlH4]- -- 3.2 -- -- --Li3Be2H7 -- 8.1 -- 1 250NaAlH4 [AlH4]- -- 3.1-4.6 -- -- --NaAlH4 [AlH4]- -- 2.2-5.1 -- -- --Na3AlH6 [AlH6]3- -- 0.8-1.7 22.7? -- --NaAlH4 [AlH4]- -- 5 -- -- --NaAlH4 [AlH4]- -- 2.2-5.1 -- -- --NaAlH4 [AlH4]- -- 2.1-5.1 -- 1 33Na3AlH6 [AlH6]3- -- -- -- 1 118Mg2FeH6 [FeH6]4- 2.0 5.5 4.5 350CsCaH3 1.5 1.7 -- -- --RbMgH3 1.5 2.7 -- -- --Sr2MgH6 2.0 2.9 -- -- --NaMgH3 1.5 6.0 -- -- --Na3AlH6 [AlH6]3- 1.5 5.9 -- -- --SrAl2H2 0.67 1.4 -- -- --LiBeH3 -- 5.1 -- 2 300Li2BeH4 -- 6.0 -- 2 300Li3Be2H5 -- 8.1 40 2 300

Eu2MgH6 2.0 1.8 -- -- --Eu6Mg7H26 2.0 2.4 -- -- --Eu2Mg3H10 2.0 2.6 -- -- --K2MgH4 1.33 3.8 -- -- --Rb2CaH4 1.33 1.9 -- -- --CsMgH3 1.33 1.9 -- -- --Cs4Mg3H10 1.33 1.6 -- -- --Cs2MgH4 1.33 1.4 -- -- --Ca2RuH6 [RuH6]4- 2.0 3.2Sr2RuH6 [RuH6]4- 2.0 2.1Eu2RuH6 [RuH6]4- 2.0 1.5Na3OsH7 1.75 2.6 -- -- --Na3RUH7 1.75 4.0 -- -- --Cs3OsH9 2.25 1.5 -- -- --Rb3OsH9 2.25 2.0 -- -- --Sr1-xBaxAl2 x=0-0.5 -- 0.9-2.0 -- -- --Mg2FeH6 [FeH6]4- 2.0 5.5 -- --Mg6Ir2H11 [IrH4]5-, [IrH5 1.37 2.0 -- -- --Mg2FeH6 [FeH6]4- 1.9 5.2 -- --Mg2Ni 1.33 3.7 62.2 57 450Mg2Fe 2.0 5.5 77.2 25 450Mg2Co 1.67 4.5 76 16 450Mg6Co2 1.37 4.0 89 -- --

Author, Year Ref. No. Comment 2 Comment 3Mackay, 1966 754Mackay, 1966 754Mendelsohn, 1975 778Monnier, 1957 791Mackay, 1966 754Sullivan, 1980 721Mackay, 1966 754Smith, 1963 784Mackay, 1966 754Schaeffer, 1956 792Mackay, 1966 754Mackay, 1966 754Smith, 1963 784Block, 1965 783Wiberg, 1951 785 Catalyzed by Ti, Si, Fe, Cu, Al, BSmith, 1963 784Sullivan, 1980 721Wiberg, 1950 786Mackay, 1966 754Sullivan, 1980 721Monnier, 1957 791Finholt, 1955 788 Stoichiometric H-contentSmith, 1963 784 Stoichiometric H-contentDymova, 1975 720 Stoichiometric H-contentBogdanovic', 1997 719 Stoichiometric H-content Ti-catalyzedDymova, 1975 720 Stoichiometric H-contentBogdanovic', 1997 719 Stoichiometric H-content Ti-catalyzedBogdanovic', 1997 719 Stoichiometric H-content Ti-catalyzedMackay, 1966 754Mackay, 1966 754Mackay, 1966 754Reid, 1957 793Rulon, 1951 799Schlesinger, 1953 802Mackay, 1966 754Schlesinger, 1953 802Sullivan, 1980 721Kollonitsch, 1954 796Sullivan, 1980 721Mackay, 1966 754Monnier, 1957 791Abrahams, 1954 804Klingen, 1964 801Schaeffer, 1956 792Hoekstra, 1949 800Schleshinger, 1953 805Abrahams, 1954 804Smith, 1963 784Sullivan, 1980 721Schleshinger, 1953 805Smith, 1963 784Sullivan, 1980 721

Wiberg, 1952 787Sullivan, 1980 721Schleshinger, 1953 805Abrahams, 1954 804Smith, 1963 784Sullivan, 1980 721Zange, 1960 798 R = Y, Sm, Eu,Gd,Tb, Dy, Ho, Er, Tm, Yb, Eu)Abrahams, 1954 804Amberger, 1963 795Mackay, 1966 754Waddington, 1958 797Hoekstra, 1949 800Hoekstra, 1949 800Schleshinger, 1953 807Sullivan, 1980 721Mackay, 1966 754Sullivan, 1980 721Mackay, 1966 754Sullivan, 1980 721Kadir, 1994 749Gingl, 1997 833Kadir, 1993 748Kritikos, 1991 745Kadir, 1993 747Stetson, 1994 722Kritikos, 1991 745Moyer, 1996 782Moyer, 1989 780Huang, 1991 740Moyer, 1971 776Huang, 1992 726Huang, 1993 738Huang, 1992 734Bronger, 1990 766Kritikos, 1991 745Huang, 1991 740Moyer, 1971 776Moyer, 1971 776Cerny, 1992 732Zolliker, 1985 731Bronger, 1997 834Bronger, 1992 768Bronger, 1992 767Bronger, 1988 760Bronger, 1988 761Bronger, 1995 762Bortz, 1997 831Bortz, 1997 741Moyer, 1980 457Thompson, 1975 777Lindsay, 1993 781Moyer, 1996 782Moyer, 1996 782

Huang, 1993 738Didisheim, 1984 725Lindberg, 1986 742Huang, 1991 740Huang, 1991 740Moyer, 1969 775Moyer, 1971 776Bronger, 1997 834Bronger, 1991 774Bronger, 1991 770Bronger, 1995 751Bonhomme, 1993 739Bronger, 1991 774Stetson, 1995 723Bronger, 1990 765Bronger, 1995 751Bronger, 1992 767Bronger, 1986 759Bronger, 1988 761Bronger, 1995 751Bortz, 1994 736Bortz, 1994 737Huang, 1994 728Bronger, 1995 764Bronger, 1991 774Kritikos, 1991 744Bronger, 1995 751Kritikos, 1991 744Yoshida, 1993 735Huang, 1997 832Huang, 1997 832Huang, 1992 727Zolliker, 1986 733Lindberg, 1986 742Kritikos, 1990 743Huang, 1991 740Huang, 1993 724Bonhomme, 1992 730Bronger, 1993 773Bonhomme, 1992 729Kritikos, 1991 745Huang, 1991 740Gingl, 1994 750Bronger, 1997 834Noreus, 1989 331Bronger, 1995 751Bronger, 1995 769Kadir, 1993 746Bronger, 1988 760Kritikos, 1991 744Bronger, 1994 771Moyer, 1971 776Bronger, 1994 772

Bronger, 1994 772Moyer, 1971 776Bronger, 1992 767Bronger, 1992 768Bronger, 1988 761Bronger, 1995 762Bortz, 1997 831Bortz, 1997 741Lindsay, 1976 779Bronger, 1988 760Kadir, 1993 747Kritikos, 1991 745Reiser, 1998 1159Tolle, 1998 1160 Stoichiometric H-content Ti-catalyzedTolle, 1998 1160 Stoichiometric H-content Ti-catalyzedBogdanovic’, 1997 1422 Measured H-contents Various dopantsBogdanovic’, 1997 1422 Measured H-content Ti-catalyzedBogdanovic’, 1997 1422 Measured H-content Ti-catalyzedZaluska, 1999 1423 Measured H-contentZaluska, 1999 1423 Measured H-contentZaluska, 1999 1423 Measured H-contentJensen, 1999 1425 Measured H-contents 1-4% Ti-dopingZidan, 1999 1426 Measured H-contents Ti- and Zr-dopedZaluski, 1999 1427 Measured H-contentZaluski, 1999 1427 Measured H-contentZaluski, 1999 1427 Measured H-contentZaluski, 1999 1427 Measured H-content, heated to 220CZaluski, 1999 1427 Measured H-content, heated to 200CBalema, 2000 1428 Measured H-content Ti-catalyzedZaluska, 2000 1430 Measured H-content Ball milled with CZaluska, 2000 1430 Measured H-content Ball milled with CBogdanovic’, 2000 1431 Measured H-content Ti-dopedBogdanovic’, 2000 1431 Measured H-content Ti-dopedBogdanovic’, 2001 1433 Measured H-content Direct synthesis from NaH and Al, Ti-dopedZaluska, 2001 1434 Measured H-content CatalyzedZaluska, 2001 1434 Measured H-contentSandrock, 2002 1435 Measured H-contents 2% Ti CatalyzedSandrock, 2002 1439 Measured H-contents 0-9% Ti CatalyzedMeisner, 2002 1440 Measured H-contents Ti-doped or diamond ball milledJensen, 2001 1441 Measured H-contents 2% Ti dopedGross, 2001 1442 Measured H-contents 0-9% Ti CatalyzedGross, 2002 1444 Measured H-contents 0-9% Ti CatalyzedGross, 2002 1444 0-9% Ti CatalyzedHuot, 1998 1445 Theoretical H-content, sample contained MgH2Gingl, 1999 1446Gingl, 1999 1446Bertheville, 1999 1447Ronnebro, 2000 1448Ronnebro, 2000 1448 Stoichiometric H-contentGingl, 2000 1449Zaluska, 2000 1450 Measured H-contentZaluska, 2000 1450 Measured H-contentZaluska, 2000 1450 Measured H-content

Kohlmann, 2001 1451Kohlmann, 2001 1451Kohlmann, 2001 1451Bertheville, 2001 1452Bertheville, 2001 1452Bertheville, 2002 1453Bertheville, 2002 1453Bertheville, 2002 1453Hagemann, 2002 1454Hagemann, 2002 1454Hagemann, 2002 1454Bronger, 2002 1455Bronger, 2002 1455Bronger, 2002 1455Bronger, 2002 1455Zhang, 2002 1459 Multiple hydride phasesGennari, 2002 1460 Theoretical H-content, sample contained MgH2Cerny, 2002 1461Bogdanovic’, 2002 1462 Measured H-contentReiser, 2000 1463Reiser, 2000 1463 Mg2Fe not stable without HReiser, 2000 1463 Mg2Co not stable without HReiser, 2000 1463 Mg6Co2 not stable without H

Direct synthesis from NaH and Al, Ti-doped

Record No. Name Formula P @ 25˚C, atm T for 1 atm P, ˚C1 magnesium Mg 0.000001 279

2 palladium Pd 0.0082 147

3 zirconium Zr 6.4E-28 881

4 titanium Ti 4E-20 643

5 uranium U 1.4E-13 432

6 vanadium V 2.1 12

7 TiFe 4.1 -8

8 LaNi5 1.8 12

9 La Ni4.7Al.3 0.42 45

10 MmNi5 23 -56

11 MmNi4.15Fe.85 11.2 -32

titanium-iron, HY-STOR 101, HYDRALLOY

lanthanum pentanickel, HY-STOR 205, HYDMAC 5

lanthanum-nickel-aluminum, HY-STOR 207, HYDMAC 10

mischmetal nickel, HY-STOR 204

michmetal-nickel-iron, HY-STOR 209, HYDMAC 4

12 MmNi4.5Al.5 3.8 -6

13 CaNi5 0.5 43

14 Ca.7Mm.3Ni5 3.8 -7

15 TiFe.8Ni.2 0.1 73

16 TiFe.9Mn.1 2.6 3

17 Mg2Ni 0.00001 255

18 titanium-chromium TiCr1.8 182 -91

19 zirconium-nickel, HY-STOR 104 ZrNi 0.0000004 292

mischmetal-nickel-aluminum, HY-STOR 208, HYDMAC 3, HYDRALLOY

calcium pentanickel, HY-STOR 201, HYDMAC 9

calcium-mischmetal-nickel, HY-STOR 202

titanium-iron-nickel, HY-STOR 103

titanium-iron-manganese, HY-STOR 102, HYDRALLOY

magnesium-nickel, HY-STOR 310, HYDMAC 7

20 lanthanum-nickel-manganese LaNi4.6Mn.4 0.15 64

21 mischmetal-nickel-copper MmNi3.5Cu1.5 8 -32

22 zirconium-manganese ZrMn2 0.001 167

23 mischmetal-nickel-manganese MmNi4.5Mn.5 2.5 -9

24 mischmetal-nickel-cobalt MmNi3Co2 3.5 -1

25 lanthanum-nickel-cobalt LaNi3Co2 0.23

26 TiMn1.5 8.4 -21titanium-manganese, HYDMAC 8

27 zirconium-iron-chromium ZrFe1.5Cr.5 4 -10

28 Ti.98Zr.02V.43Fe.09Cr.05Mn1.511 -28

29 MmNi3.5Co.7Al.8 0.11 73

30 MmNi4.2Co.2Mn.3Al.3 0.19 63

31 lanthanum-nickel-aluminum LaNi4.25Al.75 0.024 104

32 lanthanum-nickel-tin LaNi4.8Sn.2 0.47 39

titanium-zirconium-vanadium-iron-chromium-manganese, HWT Code 5800, HYDRALLOY C5

mischmetal-nickel-cobalt-aluminum

mischmetal-nickel-cobalt-manganese-aluminum

33 vanadium-titanium-iron (V.9Ti.1).95Fe.05 0.5 36

34 samarium-cobalt SmCo5 4.1 -2

35 cerium-nickel CeNi5 81 -73

36 praseodymium-nickel PrNi5 11.7 -29

37 neodymium-nickel NdNi5 15.4 -33

38 zirconium-chromium ZrCr2 0.0029 166

39 titanium-vanadium-manganese TiV0.62Mn1.5 3.8 -6

40 Zr(V0.2Mn0.2Ni0.6)2.4 3.8 49

41 Zr0.8Ti0.2MnFe 1.2 20

42 titanium-cobalt TiCo 0.004 135

zirconium-nickel-vanadium-manganese

zirconium-titanium-manganese-iron

43 gadolinium-iron GdFe3 0.0005 207

44 praeseodymium-nickel Pr2Ni7 8.3 -23

45 magnesium-zinc Mg51Zn20 0.0000003 262

46 palladium-silver Pd0.7Ag0.3 0.00033 222

47 palladium-rhodium Pd0.9Rh0.1 0.22 62

H-Capacity, H/MH-Capacity, Wt.% Initial Structure Hydride structure ∆H, kJ/mol H2 ∆S, kJ/K-mol H22.0 7.66 A3 C4 -74.5 -0.135

0.77 0.72 A1 fcc -41.0 -0.0976

2.0 2.16 A3 C1 -217 -0.188

1.97 3.98 A3 C1 -164 -0.179

3.0 1.25 A20 A15 -127 -0.180

2.0 3.81 A2 -40.1 -0.1407

0.975 1.86 B2 (P2221) -28.1 -0.106

1.08 1.49 D2d See Yvon, 1988 -30.8 -0.108

1.02 1.44 D2d -34.0 -0.1068

1.06 1.46 D2d -21.1 -0.097

0.82 1.14 D2d -25.3 -0.105

0.85 1.2 D2d -28.0 -0.105

1.05 1.87 D2d -31.9 -0.101

1.03 1.68 D2d -26.6 -0.100

0.7 1.3 B2 -41.2 -0.119

1.0 1.9 B2 -29.5 -0.107

1.33 3.6 C16 C1 -64.5 -0.122

1.25 2.43 C15 Orthorhombic -20.2 -0.111

1.4 1.85 Bf -76.85 -0.136

1.08 1.49 D2d -39.4 -0.117

0.83 1.13 D2d -23.4 -0.097

1.2 1.77 C14 -53.2 -0.121

0.95 1.3 D2d -17.6 -0.067

1.05 1.4 D2d -32.7 -0.120

1.08 1.5 D2d

0.99 1.86 C14 -28.7 -0.114

1.03 1.5 C14 -25.61 -0.0975

0.99 1.9 C14 -27.4 -0.112

0.85 1.24 D2d -39.8 -0.115

0.98 1.38 D2d -36.5 -0.1087

0.77 1.13 D2d -44.1 -0.117

1.06 1.4 D2d -32.8 -0.105

1.95 3.7 A2 C1? -43.20 -0.1396

0.48 0.64 D2d -34.95 -0.129

1.08 1.49 D2d -22.2 -0.111

1.07 1.46 D2d -27.6 -0.113

0.93 1.27 D2d -27.8 -0.116

1.20 1.82 C14 -45.2 -0.103

1.14 2.15 C14+C15 -28.6 -0.107

C15+C14+Zr9Ni11 -39.9 -0.1257

0.93 1.4 C14 -29.6 -0.101

0.78 1.45 B2 -54 -.135

0.80 0.98 hR12 (Pearson) -50.4 -0.105

1.11 1.43 hR54 (Pearson) -27.8 -0.111

1.34 3.62 D7b -84.0 -0.157

0.34 0.32 A1 -50.0 -0.101

0.73 0.69 A1 -34.2 -0.102

Plateau Slope, dlnP/d(H/M)Hysteresis, ln(Pa/Pd) P1, atm @ T1, ˚C P2, atm @ T2, ˚C0 11.2 375 6.4 350

0 0.1-0.6 19 288 3.7 200

0.08 0.54 850 0.047 749

0 0.94 0.893 636 0.197 578

0 0-1.0 22 550 1.7 450

0.15 0.2-0.7 47 100 21.5 78

0 0.64 17 70 11 55

0.13 0.13 7.8 65 5.7 55

0.48 0.05 42 175 6.2 100

0.54 1.65 23 25 9.5 0

0.36 0.17 21 45 11.2 25

0.36 0.11 36 99 12 60

0.19 0.16 3.5 80 1.9 60

3.27 0.10 11.5 60 6.35 40

0.36 0.05 2.45 98 0.85 70

0.92 0.62 9.2 60 4.7 40

0 9.7 349 5.95 325

0.12 0.11 40 -20 18.5 -40

0.06 1.47 0.263 250 0.047 200

0.76 0.1 1.5 75 0.89 62

0.24 0.46 26 60 8 25

0.74 0.99 0.03 80 0.007 50

1.2 0.75 4.0 50 2.6 30

0.28 48 100 9.3 50

0.77 0.16 0.23 25

0.57 0.93 19 50 7 20

1.26 0.34 7.0 40 3.1 20

1.1 21 43 9.5 24

1.2 0.58 60 0.23 40

1.3 0.18 1.95 80 0.9 60

2.7 0.23 0.054 40

0.22 0.19 66 200 7.6 100

0.45 0.80 9.0 80

0 0.15 38 80 17 60

0.34 2.0 36 0 74 23

0.37 0.27 23.3 50 20.8 40

0.11 0.36 36 50 26 40

3.3 0 0.71 150.4 0.22 117.8

1.4 80 23.1 50 9.1

4.5 0.42 29.7 0.68 40

0.8 5.0 3.0 50 2.1 40

0 0.1 5.0 177 1.9 152

0.31 0.07 0.78 200 0.37 175

0.10 1.28 16.8 45 12.6 35

0 0 31.0 380 8.05 330

9.0 0 0.23 148 0.019 100

0.29 0.71 0.60 50

P3, atm @ T3, ˚C P4, atm @ T4, ˚C P5, atm @ T5, ˚C3.5 325 1.83 300 0.41 250

0.45 120 0.072 70 0.0062 20

0.015 700 0.0032 646 0.00023 570

0.0425 527 0.0089 477 0.0013 427

0.79 425 0.35 400 0.057 350

15 67 7.7 54 3.7 40

7.5 40 5.2 30 1.4 0

4 45 2.7 35 1.8 25

2.5 70 0.8 40 0.42 25

3.8 -28

4.2 0 2.8 -10

3.8 25 1.4 0

0.86 40 0.51 25

3.8 25 1.4 0

0.33 50

2.6 25 0.9 0

5.59 322 3.24 299 1.77 274

7.3 -60 2.2 -78 1.1 -90

0.00022 100

0.5 47 0.31 37 0.15 25

4.1 0

2.1 20 1.6 10

4.2 30 2.9 20

2.96 0

2.5 8 1.3 -5

9 20 4 0

0.4 40

1.4 50 0.47 25 0.13 0

8.3 40 3.2 20

270 80

14.5 30 10.1 20

18 30 5.6 0

0.092 70.4 0.0032 27.2 0.00057 0

20 3.3 0 1.3

1 49.6

1.6 30 0.95 20

0.6 127 0.27 102 0.08 77

0.18 150

8.3 25

3.6 300

0.0062 75 0.0015 50 0.0005 30

PlateausSingle plateau leading to very stoichiometric hydride MgH2.

A single plateau exists from about 0.01 to 0.6 H/M at room temperature. There are sloping upper legs of the beta phase reaching about 0.77 H/M at 10 atm. The Pd-H system exhibits a critical point at about 290 C above which there is no alpha-beta phase change. The above PCT properties are mainly due to (Wicke, From 550 C-700 C, the Zr-H system exhibits two plateaus: alpha + beta and beta + delta. Above 700 C, there is a single beta + delta plateau and below the eutectoid temperature 550 C, there is a single alpha + delta plateau (see Beck, 68). Both the beta and delta phases show considerable solubility for H. Above 1.67 H/M the epsilon hydride phase can form. The above PCT data are derived from the beta + delta plateau ranging from about 0.6-1.3 H/M at 520 C and 1.0-1.45 at 850 C (Beck,68)

Above the eutectoid temperature ( 280 C) and below the alpha-beta transis ( 700 C) Ti exhibits two hydride plateaus: alpha-beta from 0.09-0.47 H/M at 450 C and beta + gamma from 0.92-1.44 H/M at 450 C. Both the beta and gamma phases have substantial solution ranges. The above PCT data are for the beta + gamma absorption plateau (Mueller, 68)Single plateau from about 0 to 3.0 H/M.Plateau pressures slightly higher with deuterium and tritium (normal isotope effect). See (Libowitz, 68)One plateau between approximately 1.0 and 2.0 H/M. Extensive low pressure H solid solution offset. Above PCT data are for VH+VH2 plateau in desorption (Reilly, 1970)TiFe exhibits two plateaus: A lower plateau (alpha-beta) from 0.1-0.5 H/M and an upper plateau (beta - gamma) from about 0.55-0.85 H/M. The PCT data (Reilly, 1974) and hydride structure (Yvon, 1988) given above relate to the beta hydride.LaNi5 exhibits a single, nearly flat, plateau from 0.07 - 1.0 H/M at 25 C. PCT properties are derived from (Lundin, 1975).

Various strain-associated crystal structures of LaNi5H6 have been proposed (Yvon, 1988). All are closely related to an expanded cell of the original D2d structure.LaNi4.7 Al.3 has a single plateau extending from about 0.03 - 0.8 H/M at 25 C. The PCT data are from (Huston, 1980).

MmNi5 exhibits a single plateau from about 0.1-1.0 H/M. PCT data were derived from (Reilly, 1977).

MmNi4.15Fe.85 has a single, reasonably flat plateau from about 0.1 - 0.75 H/M at 25 C. Capacity increases with decreasing temperature. The PCT data are from (Huston, 1980).

MmNi4.5Al.5 has a single plateau ranging from about 0.12-0.7 H/M at 25 C. The plateau can be quite sloping in the as-cast condition but can be flattened by homogenization annealing. The above PCT data are from (Sandrock, 1978) and (Huston, 1980) on a vacuum induction melted sample that was annealed 4 hours at 1125 C. The Mm used was of Bastnasite origin (see MmNi5).

There are at least three distinct plateaus in the CaNi5-H system:Lower: alpha + beta from about 0.02-0.12 H/M (about 0.03 atm at 25 C),Middle: beta + gamma from about 0.2-0.75 H/M (about 0.5 atm at 25 C),Upper: gamma + delta from about 0.92-1.03 H/M (about 25 atm at 25 C),with each hydride showing some degree of H-solubility (Sandrock, 1982). The PCT data shown here are for the main beta + gamma plateau at 0.5 H/M (Sandrock, 1977a).Ca.7Mm.3Ni5 exhibits two plateaus:A highly sloping lower plateau from about 0.06-0.75 H/M, andAn upper plateau from about 0.85-1.0 H/M.The PCT data presented here are for the lower plateau at 0.5 H/M with the alloy in the as-cast condition (Sandrock, 1978).

TiFe.8Ni.2 show a single plateau from about 0.1-0.5 H/M at 70 C. The plateau is rather flat and nearly hysteresis-free. The upper plateau seen in TiFe is largely eliminated by the partial substitution of Ni for Fe. The PCT data are from an as-cast sample from (Huston, 1980).

TiFe.9Mn.1 exhibits two rather sloping plateaus over H/M ranges similar to TiFe. The PCT data are calculated from (Huston, 1980), which actually may represent the similar composition TiFe.85Mn.15 of (Johnson, 1978).

Mg2Ni exhibits a single, very flat plateau from about 0.1-1.33 H/M. The hydride phase Mg2NiH4 is very stoichiometric and can be described as a low-valence transition metal-hydrogen complex (Noreus, 1989). The PCT data are from (Reilly, 1968).

TiCr1.8 can have either the hexagonal C14 structure (high temperature) or the cubic C15 structure (low temperature). The PCT data tabulated here are for the lower plateau of the C15 (LT) form as reported by (Johnson, 1978). C15 TiCr1.8 exhibits two very high pressure plateaus: Lower plateau at about 2 atm at -78 C, ranging from about 0.4-0.85 H/M. Upper plateau at about 22 atm at -78 C ranging from about 1.0-1.2 H/M. Below 0.4 H/M, H is in solid solution in the C15 TiCr1.8 phase. PCT data for the C14(HT) phase are given by (Johnson, 1980).

ZrNi exhibits its main, relatively flat plateau from about 0.45-1.2 H/M at 100 C. Below 0.45 H/M, there is a sloping isotherm with a vague, highly sloping plateau. The PCT data cited herein represent the main plateau in the desorption mode, as presented by (Libowitz, 1958). Note that A/D hysteresis is high for the main ZrNi plateau.

LaNi4.6Mn.4 has a single sloping plateau ranging from about 0.13-0.87 at 25 C. In order to minimize the plateau slope, La(Ni,Mn)5 alloys must be homogenization annealed. The PTC data represents a sample annealed for 6 hours at 1175 C (Lundin. 1978).

MmNi3.5Mn1.5 has a single, reasonably flat plateau from 0.2-0.75 H/M at 0 C. PTC data are from (Sandrock, 1978).

ZrMn2 exhibits a single plateau from about 0.05-0.65 at 150 C (Uchida, 1991). The PCT data here and H-capacity are from (Shaltiel, 1977); plateau slope and hysteresis are from (Uchida, 1991) and represent a sample slightly rich in Zr, ZrMn1.9.

MmNi4.5Mn.5 exhibits a single plateau ranging from about 0.07-0.88 H/M (Lundin, 1978). PCT and plateau slope data are from (Osumi, 1979). H-capacity and hysteresis taken from (Lundin, 1978). Both sets of data represent the as-cast condition. As with all Mm containing AB5 compounds, the plateau pressure are a function of the exact Mm composition (Liu, 1983).

MmNi3Co2 exhibits a single, slightly sloping plateau from about 0.13-0.7 H/M at 20 C. Capacity rises with pressure above the plateau, reaching about 1.05 H/M at 60 atm and 30 C. The PCT data are from (Osumi, 1979), apparently for an as-cast sample. The Mm used contained 28%La, 40%Ce, 14%Pr, 4%Nd, 7% other rare earths, and 5% Fe, i.e., close to but not quite the normal Bastnasite ratios.LaNi3Co2 exhibits a single, slightly sloping plateau from about 0.08-0.6 H/M at 25 C. Capacity rises with pressure above the plateau on a sloping upper leg, reaching about 1.08 H/M at 60 atm and 25 C. The PCT data are from (Goodell, 1980) for a vacuum induction melted sample annealed 24 hours at 1175 C.

TiMn1.5 exhibits a single plateau from about 0.25-0.85 H/M. The plateau has a moderate slope, even after annealing, and shows considerable absorption/desorption hysteresis. The PCT data are from (Gamo, 1980) for a sample annealed for 20 hours at 1100 C.

ZrFe1.5Cr.5 exhibits a single, sloping plateau from about 0.08-0.7 H/M at 20 C. The plateau is followed by a sloping upper leg to about 1.03 H/M at 50 atm. PCT data are from (Ivey, 1984) and hysteresis from (Ivey, 86) for as cast alloy.

Ti.98Zr.02V.43Fe.09Cr.05Mn1.5 exhibits a single, somewhat sloping plateau from about 0.2-0.9 H/M at 24 C. PTC data are from (Bernauer, 1989).

MmNi3.5Co.7Al.8 exhibits a moderately sloping plateau from about 0.22-0.58 H/M at 40 C. There is a substantial low-pressure offset and an upper leg that leads to about 0.85 H/M at 20 C and 40 atm H2. The PCT data are based on limited data by (Sakai, 1992a) on an arc melted sample annealed at 1000 C.

MmNi4.2Co.2Mn.3Al.3 exhibits a single, moderately sloping plateau from about 0.2-0.8 H/M at 40 C. The upper leg of the 40 C isotherm reaches 0.98 H/M at 35 atm H2 pressure. The PCT data are from (Takeya, 1993) representing a sample made by the reduction-diffusion (R-D) process.

LaNi4.25Al.75 exhibits a single sloping plateau over about 0.07-0.6 H/M at 40 C and an upper leg that reaches 0.77 H/M at 20 atm and 40 C. PCT data are from (Diaz, 1979) for an arc melted sample annealed at 1100 C. Thermodynamic data on similar LaNi(5-y)Aly alloys are given in (Mendelsohn, 1977).

LaNi4.8Sn.2 exhibits a single plateau from about 0.03-0.95 H/M at 0 C with the upper leg rising to about 1.06 H/M at 2 atm. Plateau width decreases with increasing temperature, suggesting a possible critical point at slightly above 240 C and 130 atm. When properly prepared, LaNi4.8Sn.2 has flat plateaus and small A/D hysteresis. The PTC data are from (Luo, 1996?) on an arc melted sample that had been annealed for 120 hours at 950 C.

(V.9Ti.1).95Fe.05 exhibits a single plateau from about 1.0-1.95 H/M at 80 C. There is an extensive low pressure solid solution range below 1.0 H/M. PCT data are from (Lynch, 1985), representing an arc melted sample annealed 64 hours at 1000 C.

SmCo5 exhibits a very flat, low hysteresis plateau from about 0.03-0.42 H/M. PCT data are from (Kuijpers, 1971).

CeNi5 exhibits a single plateau from about 0.2-1.0 H/M. PCT data were derived from (Klyamkin, 1995, R407) who used a very high pressure apparatus and a sample cycled several times. Earlier data by (Lundin, 1977, R149) suggested lower values of enthalpy and entropy.

The PrNi5-H system shows two plateaux, a lower plateau from about 0.07-0.6 H/M and an upper plateau from about 0.7-1.0 H/M. The PTC data above are from (Matsumoto, 1987, R568), with the enthalpy and entropy values calculated from desorption data. (Note the values given in the paper, -29.0 kJ/mol and 0.119 kJ/mol-K, apparently represent absorption). Earlier, less abundant, data on PrNi5 can be found in (Uchida, 1982, R131) and (Anderson, 1973, R99).The NdNi5-H system shows two plateaux, a lower plateau from about 0.08-0.67 H/M and an upper plateau from about 0.78-0.92 H/M. The PTC data above are from (Gruen, 1997, R168) for desorption data. Earlier, less abundant, data on NdNi5 can be found in (Uchida, 1982, R131) and (Anderson, 1973, R99).ZrCr2-H exhibits a single sloping plateau from about 0.3-0.9 H/M at room temperature. The PCT data are from (Pebler, 1967, R13) at 0.6 H/M. Hysteresis is reported to be zero. Although the enthalpy value given in the above reference is correct, there appears to be an error with the entropy. The corrected value of 0.103 kJ/mol-K is used instead of the reported value of 0.121. Limited additional PCT data are given by (Perevesenzew, 1988, R557).The TiV0.62Mn1.5-H system exhibits a single sloping plateau from about 0.4 t0 1.0 H/M at room temperature. Mid-plateau PCT data are from (Bernauer, 1984), with the enthalpy and entropy values calculated from that data.The Zr(V0.2Mn0.2Ni0.6)2.4-H system shows a single sloping plateau from about 0.2 to 0.9 H/M near room temperature. The PCT data are from (Gao, 1995). (Note the entropy value of -0.1257 kJ/mol-K is misprinted as -125.7 kJ/mol).The Zr0.8Ti0.2MnFe-H system exhibits a single sloping plateau from about 0.1 to 0.4 H/M, followed by a long increasingly sloping leg above that. The PCT data are from (Park, 1991) and are comparable to (Uchida, 1986). There is another set of data in a paper by (Sinha, 1982) that reports enthalpies that are incredibly low (11 kJ/mol). It is possible that the Sinha work may involve experimental errors and should perhaps not be considered reliable without experimentally checking.The TiCo-H system exhibits three plateaux, at least below about 100 C: a flat lower plateau from about 0.05-0.42 H/M, and sloping plateaux from about 0.48-0.58 and 0.62-0.72 H/M. The PCT data above are taken from (Burch, 1979) for the lower plateau. There are other available PCT data with significantly differing thermodynamic values: (Yamanaka, 1975), (Reilly, 1976), (Someno, 1980) and Osumi (1980).

The GdFe3-H2 system exhibits a single, rather short plateau, from about 0.15 to 0.32 H/M at 150C, followed by a long upper leg. The PCT data are from (Goudy, 1976).

The Pr2Ni7-H system exhibits two flat plateaux. At 25C the lower plateau ranges from about 0.1 t0 0.6 H/M and the upper one is from about 0.75 to 1.0 H/M. The PCT data are from (Goudy, 1976) for the lower plateau. Enthalpy and entropy are calculated from that data.

The Mg51Zn20-H system exhibits a single, flat, hysteresis-free plateau from about 0.1 to 1.27 (330C). The pct data are from (Bruzzone, 83), although the enthalpy and entropy data were recalculated from the above three data points. Slightly different PCT data and H-capacity were reported by (Akiba, 1991) for Mg7Zn3, essentially the same phase.

The critical temperature for Pd0.7Ag0.3 is about -90C, so isotherms at room temperature and higher do not show distinct plateaux, i.e., there is no two-phase metal-hydride equilibrium. The absorption PCT data shown are from (Brodowsky, 1965). Enthalpy, entropy and plateau slope were calculated at 0.125 H/M and 30C. Hysteresis is assumed to be nearly zero above the critical temperature.

The Pd0.9Rh0.1-H system exhibits a single plateau from about 0.1 to 0.6 H/H at 50C. The H2 desorption PCT and thermodynamic data are from (Noh, 1993), representing a sample air cooled from above the miscibility temperature (see metallurgy and synthesis below). Both (Noh, 1993) and (Sakamoto, 1994) give H2 absorption PCT and thermodynamic data. Both absorption and desorption D2 PCT and thermodynamic data are given by (Thiebaut, 1995).

Metallurgy and Synthesis

Hydride easily formed by reaction on H2 with solid or powdered U.

Fine powder will react slowly with H2. Mg has a high vapor pressure and will evaporate significantly above 300 C. Powder will also tend to sinter above 300 C.Hydriding properties depend strongly on substitutional impurities. Dislocations and other defects are produced by cycling.

Impurities in Zr can affect the hydride properties in Zr-H phase diagram. For example, oxygen tends to stabilize the alpha phase relative to the beta phase. Substitutional alloying elements can also have significant effects. The delta to epsilon transformation is martensitic and results in twinning. ZrH1.8 can be prepared in monolithic (crack free) form. it has significant ductility at high temperature (Huffine,68).

Easy to form by direct reaction with H2 gas. the Ti-H phase diagram shows a eutectoid just below 300 C. Hydrogen stabilizes the cubic beta-Ti phase.

Plateau pressure, hysteresis and slope are a function of purity (Reilly, 1972). V will oxidize slowly in air at room temperature.

TiFe can be prepared by consumable or nonconsumable electrode arc melting, vacuum induction melting or air induction melting (using mischmetal deoxidation). H-capacity is rather sensitive to contaminants introduced during melting especially oxygen. (Sandrock, 1978)LaNi5 can be prepared by nonconsumable arc melting or vacuum induction melting of the elements. Although a line compound at low temperature, there is some homogeneity range at high temperature (Buschow, 1972). Nickel-rich alloys have higher pressures and more sloping plateaus. Capacity depends on the Ni:La ratio with a maximum at the single phase level of about 5:1.LaNi4.7 Al.3 can be prepared by arc melting or vacuum induction melting. Traces of second phases (e.g., NiAl or Ni3Al) tend to form, lowering capacity slightly from LaNi5. Al enters the AB5 lattice with some segregation which in turn gives sloping plateaus. Homogenization annealing flattens the plateau. The sample used for the PTC data was annealed for 24 hours to achieve a reasonably flat plateau (Huston, 1980). Plateau pressure can be varied widely by adjusting Al-level in LaNi (5-y)Aly (Mendelsohn, 1977 and Achard, 1977).

MmNi5 can be made by nonconsumable electrode arc melting or vacuum induction melting. Mm (mischmetal) is a commercial mixture of rare-earth elements, predominantly Ce, La, Nd and Pr. The plateau pressure and hysteresis of MmNi5 is a strong function of the Mm composition (Liu, 1983). The PCT data above represents Mm of Bastnasite origin (specifically about 50Ce, 27La, 16Nd, 5 Pr and 2 wt. % other R.E. elements). The very high pressures and hysteresis are a result of the high Ce content.

MmNi4.15Fe0.85 can be made by nonconsumable electrode arc melting or vacuum induction melting. The Fe atoms enter the AB5 lattice in a relatively uniform manner so that reasonably flat plateaus are achieved without annealing. Fe does promote B and A2B7 secondary phases, so capacity is somewhat lower that MmNi5. Plateau pressure can be varied by adjusting the Fe-content (Sandrock, 1978). The PCT data are for MmNi4.15 Fe.85 made with Bastnasite Mm (see MmNi5).

MmNi4.5Al.5 can be made by nonconsumable electrode arc melting or vacuum induction melting. Because of metallurgical coring during solidification, the Al atoms enter the AB5 lattice with some degree of microsegregation, resulting in sloping plateaus in the as-cast condition. Reasonably flat plateaus can be achieved by homogenization annealing at about 1100-1125 C. Al also promotes NiAl or Ni3Al secondary phases which do not hydride, so capacity is somewhat lower that MmNi5. Plateau pressure can be widely varied by adjusting the Al-content (Sandrock, 1978).CaNi5 can be made by air or inert gas induction melting (Sandrock, 1977b). It cannot be practically made by arc or vacuum induction melting because of the high vapor pressure of Ca. CaNi5 solidifies from the melt by a slightly peritectic reaction, so there is usually a trace of Ca2Ni7 in the final product. The Ca2Ni7 phase reacts slowly with the air so that the alloy in ingot form will often slowly decrepitate. For best stability, CaNi5 should be stored in a dry, inert atmosphere.Ca.7Mm.3Ni5 can be made by induction melting under an inert gas such as argon. It cannot be easily vacuum melted or arc melted because of the high Ca vapor pressure. Although the Ca atoms enter the single-phase AB5 lattice, they do so with a high degree of microsegregation, resulting in highly sloping plateaus. Plateau slope can be reduced (but not necessarily eliminated) by homogenization annealing at about 1000 C. (Sandrock, 1977).TiFe.8Ni.2 can be prepared by consumable or nonconsumable electrode arc melting, vacuum induction melting or air induction melting (using mischmetal deoxidation) (Sandrock, 1977). The partial substitution of Ni For Fe in TiFe markedly reduces the lower plateau pressure and hysteresis, but drives the upper plateau to unusably high pressures (Sandrock, 1976; Huston, 1980). Ni enters the B2 structure uniformly, resulting in a reasonably flat plateau without the need to anneal.TiFe.9Mn.1 can be prepared by consumable or nonconsumable electrode arc melting, vacuum induction melting or air induction melting (using mischmetal deoxidation) (Sandrock, 1977). Partial substitution of Mn for Fe lowers the plateau pressures slightly and results in more plateau slope than TiFe. Mn can also promote formation of the non hydriding TiFe2 phase. Because Mg2Ni forms by a peritectic reaction, it is difficult to avoid forming some of the non-hydriding phase MgNi2 if the nominal 55Ni:45Mg wt.% composition is melted. For that reason the alloy is usually melted to a specification of about 50Ni:50Mg wt.% which avoids the formation of MgNi2 during solidification. However, the end result is that some eutectic Mg is always present, which gives a small lower plateau. The alloy can be made by induction melting in inert atmosphere or air, taking into account some loss of Mg by evaporation and oxidation. Mg2Ni cannot be melted in an arc furnace or under vacuum because of the very high vapor pressure of the Mg. Mg2NiH4 has the cubic C1 (CaF2) structure above 250 C, but transforms to a highly microtwinned, monoclinic distortion of the C1 structure below about 250 C (Gavra, 1979 and Noreus, 1986).C15 TiCr1.8 can be made by nonconsumable electrode arc melting in an argon atmosphere followed by extensive heat treatment. The melting point of the alloy is quite high (about 1600 C) and the Ti and Cr are not easily mixed. Melting should be repeated several until broken ingots do not show undissolved pieces of Cr or Ti. Because of the high liquidus-solidus gap, as-cast ingots have microsegregation and cannot be used directly. The ingot should be homogenized for 5 hours at 1350 C followed by 1-2 weeks at a temperature just below the C14:C15 transition (about 1000 C). See (Johnson, 1978).

ZrNi can be made by consumable or nonconsumable electrode arc melting. ZrNi has also been successfully melted by air induction in heat sizes as large as 580 kg (Sandrock, 1987). In the latter case a small addition of mischmetal was made in order to deoxidize the melt and improve the activation properties. ZrNi is not as brittle as most intermetallic compounds, but it can be mechanically crushed with some effort. It reacts readily and rapidly with gaseous H2 to form ZrNiH2.8.

LaNi4.6Mn.4 can be arc melted or vacuum induction melted. Mn has a rather high vapor pressure above the alloy liquidus temperature, so some empirical correction should be made to the charge Mn content. Although Mn substitutes well for Ni in LaNi(5-y)Mny without significant formation of second phases or loss of capacity, a considerable degree of coring (metallurgical segregation) occurs during solidification from the melt, indicating a large liquidus-solidus gap (Lundin, 1978). This results in very high plateau slope in the as-cast condition. Plateau slope can be reduced to reasonable levels by homogenization annealing in the vicinity of 1150-1175 C.

LaNi3.5Cu1.5 can be made by nonconsumable-electrode arc melting or vacuum induction melting. Cu substitutes well for Ni in LaNi(5-y)Cuy, without forming significant amounts of second phases or microsegregation. However, plateau width is reduced from MmNi5. As-cast plateaus are reasonably flat and the alloy does not require homogenization annealing. Partial Cu-substitution reduces the plateau pressure and hysteresis of MmNi5.ZrMn2 can be induction melted in an inert gas such as Ar or He. It can be made by nonconsumable electrode arc melting or vacuum induction melting, but only with difficulty because of the high vapor pressure of Mn above the alloy melting temperature (1450 C). The "ZrMn2" intermetallic compound is unusual because it exists as a single phase over the wide stoichiometry range of x=1.5-3.5 in ZrMnx (Lasocka, 1990). The plateau pressure varies strongly with Mn-content x; the higher the value of x, the higher the plateau pressure (van Essen, 1980). The plateaus is usually slightly sloping, although the slope can be minimized by annealing a few days at 1050 C.

MmNi4.5Mn.5 can be arc melted or vacuum induction melted. Mn has a rather high vapor pressure above the alloy liquidus temperature, so some empirical correction should be made to the charge Mn content. Although Mn substitutes well for Ni in MmNi(5-y)Mny without significant formation of second phases or loss of capacity, a considerable degree of coring (metallurgical segregation) occurs during solidification from the melt, indicating a large liquidus-solidus gap (Lundin, 1978 and Sandrock, 1978). This results in very high plateau slope in the as-cast condition. Plateau slope can be reduced to reasonable levels by homogenization annealing in the vicinity of 1125 C.

MmNi3Co2 can be prepared by non-consumable electrode arc or vacuum induction melting. Co substitutes well for Ni, maintaining the single phase D2d structure, but reducing the plateau width, as in the La(Ni,Co)5 system (van Mal, 1973). The substitution is relatively uniform, resulting in reasonably flat plateaus. Increasing Co content y in MmNi(5-y)Coy results in decreasing plateau pressure.LaNi3Co2 can be prepared by non-consumable electrode arc or vacuum induction melting (Goodell, 1980). Co substitutes well for Ni, maintaining the single phase D2d structure, but reducing the plateau width (van Mal, 1973). Increasing Co content y in LaNi(5-y)Coy results in decreasing plateau pressure. Partial Co-substitution for Ni decreases the volume change of the hydriding reaction, which was shown to be important in reducing the cyclic corrosion of AB5 electrodes in Ni-MH batteries (Willems, 1984).

TiMn1.5 can be made by arc melting or induction melting under an inert gas such as Ar. Because of the high vapor pressure of Mn an empirical correction should be made for Mn loss during melting. This is especially important because the single phase homogeneity range for the C14 TiMn2 Laves phase is wide and the plateau pressure depends strongly on the Ti:Mn ratio, i.e., the C14 lattice parameters a and c (Gamo, 1981). Off-stoichiometric alloys such as TiMn1.5 solidify with some microsegregation (coring) due to a gap between the liquidus and solidus lines on the phase diagram. As is the case for many hydriding alloys, this effect leads to sloping plateaus. Homogenization annealing in the vicinity of 1100 C has been shown to greatly reduce the plateau slope of TiMn1.5 (Gamo, 1981).

ZrFe1.5Cr.5 can be made by arc melting under argon. Although nearly single phase, a small amount of a second phase can be seen. It is believed that the second phase is a result of oxygen contamination and does not hydride (Ivey, 1984). The plateau slope apparently cannot be reduced by annealing at 900 C; in fact the capacity is significantly reduced by annealing.Alloy can be made by a two-step non-consumable electrode "skull" melting process, with possible mischmetal deoxidation and with careful control of the solidification process to achieve the C14 phase (Friedrich, 1992). Careful quality assurance testing is required. The alloy, when properly prepared, is nearly single phase C14 (AB2). It is desirable to keep oxygen content of the final product less than 100 ppm (Bernauer, 1989b).MmNi3.5Co.7Al.8 can be made by non-consumable electrode arc melting or vacuum induction melting. Care must be taken to control the composition, solidification conditions and annealing conditions for best use in Ni-MH battery electrodes (Sakai, 1992b). Induction melts with rapidly solidified columnar grains give the best corrosion resistance (cyclic life) in KOH electrolytes, as does nearly exact 1:5 stoichiometry. Although necessary for battery applications (for pressure and anti-corrosion reasons), partial substitution of Co and Al for Ni results in lower capacity than MmNi5. Alloy solidifies as nearly single phase D2d (sometimes with traces of AlNi3) with some microsegregation in the D2d phase that leads to highly sloping gas plateaus. Homogenization annealing is beneficial for flat gas plateaus and battery electrode use. See (Sakai, 1992a&b) for a more detailed review of the metallurgy and properties of MmNi3.5Co.7Al.8 relative to battery electrode properties.MmNi4.2Co.2Mn.3Al.3 can be made by conventional metallurgical processes (see MmNi3.5Co.7Al.8). However, the sample cited herein was made by reduction- diffusion (R-D), a solid-state process that does not involve melting (Takeya, 1993). For the R-D process, the mixed rare earth oxide (Mm-oxide) is mixed with Ni, Co, Mn and Al powders and Ca reductant. Heating in an inert gas furnace to 900-1100 C (below the alloy melting point) results in the metallothermic reduction of the rare earth oxides by the Ca, followed by diffusion of all the components together to form the D2d compound. The result is the direct formation of about 30 micrometer alloy powder of essentially uniform composition having isotherms and electrochemical properties comparable to powder made by conventional melting, annealing and grinding (Takeya, 1992). La(Ni,Al)5 compounds can be made by non-consumable electrode arc melting and vacuum induction melting. Al enters the D2d lattice with some microsegregation and Al-containing second phases (e.g., NiAl and Ni3Al) often form, especially at 0.75 Al substitution levels. The microsegregation results in highly sloping plateaus, so that homogenization annealing in the range of 1050-1100 C is usually used to reduce the plateau slope.LaNi4.8Sn.2 can be made by non-consumable electrode arc melting or vacuum induction melting. Apparently, there is a large gap between the liquidus and solidus temperatures, because as-cast La(Ni,Sn)5 alloys result in a high degree of Sn microsegregation (coring), even if they are single phase AB5 (Goodell, 1980). La(Ni,Sn)5 alloys must be annealed extensively to achieve flat plateaus (Luo, 1996?). The solubility limit of Sn in LaNi(5-y)Sny may be limited to about y=0.45, above which the LaNi2.9Sn1.6 phase was found to form, at least in an as-cast alloy (Goodell, 1980). The metallurgy of the Mm(Ni,Sn)5 system seems to be similar to the La(Ni,Sn)5 system. The metallurgy La(Ni,Sn)5 system probably bears a similarity to the La(Ni,Al)5 system. In both the Ni-Al and Ni-Sn binary systems, there are similar strongly ordered phases present. It is probably the strong subordering of Sn or Al in the Ni sublattice that leads to the high disproportionation resistance of these materials.

Alloy can be made by atc melting, induction melting or sintering techniques.

(V.9Ti.1).95Fe.05 must be made by non-consumable or consumable electrode arc melting in an inert atmosphere. The high reactivity of the alloy with ceramic crucibles makes induction melting largely impractical. The elements do not alloy readily, so several arc meltings are suggested in order to achieve full homogeneity. (V.9Ti.1).95Fe.05 is an example of a stabilized beta solid solution alloy having a disordered body-centered-cubic (A2) structure. The alloy is ductile and must be reduced to powder by H/D grinding. Although the sample used for the PCT data was annealed, annealing is not really necessary and affects the PTC properties only slightly (Lynch, 1985).

SmCo5 can be made by non-consumable electrode arc melting or inert gas induction melting. Sm has a rather high vapor pressure, compared to the other rare earth elements, so an empirical correction for Sm lost in melting should be applied. According to the phase diagram, SmCo5 decomposes by a eutectoid reaction about 800 C to form Sm2Co7 and Sm2Co17. Although this reaction is very sluggish, lengthy aging at 700 C can result in partial decomposition and some lost H-capacity (Goodell, 1980).

CeNi5 can be made by nonconsumable electrode arc melting or vacuum induction melting. The PCT data shown above was taken from an arc melted sample.

PrNi5 can be made by nonconsumable electrode arc melting or vacuum induction melting. The PCT data shown above was taken from an arc melted sample.

PrNi5 can be made by nonconsumable electrode arc melting or vacuum induction melting.

ZrCr2 is reactive and has a high melting point (ca. 1680C), so must be arc melted on a cold Cu crucible or levitation melted. Even with annealing at 900C, plateaux are rather sloping.

Zr(V0.2Mn0.2Ni0.6)2.4 can be arc melted; however it may be ameinable to vacuum induction melting, if performed catefully. The alloy is multiphase, with the predominant phase being cubic C14 and the minor phases C15 and Zr9Ni11. The alloy can be prepared by arc or induction melting, taking care to add an excess of Mn to compensate for evaporation. Homogenization annealing is usually performed.

In most cases TiCo was prepared by arc melting under inert gas. It may be amenable to vacuum or inert gas induction melting like TiFe and related alloys. The variations of PCT properties in the literature may suggest there might be sensitivities to exact stoichiometry.

(Goudy, 1976) used induction melting on a cold Cu hearth to synthesize alloys. Arc melting should be applicable and induction melting in ceramic crucibles should be possible if done carefully. The alloy solidifies from the melt by a peritectic reaction at 1155C (Massalski, 1990), so that extensive annealing below that temperature is required to get a single phase. (Goudy, 1976) used 4 weeks at 1000C.(Goudy, 1976) used induction melting on a cold Cu hearth to synthesize alloys. Arc melting should be applicable and induction melting in ceramic crucibles should be possible if done carefully. The alloy solidifies from the melt by a peritectic reaction at 1160C (Pan, 1990), so that annealing below that temperature is required to get a single phase. (Goudy, 1976) used 4 hours at 1100C. Mg5iZn20 can be melted under inert gas in Al2O3 crucibles (Bruzzone, 83). The intermetallic compound is perhaps more conventionally described as Mg7Zn3. The D7b structure is very limited in stability, reported to exist only over the narrow temperature range of 325-340C (Clark, 1990). Below 325C, Mg7Zn3-->Mg + MgZn eutectoidal decomposition is reported. However, (Bruzzone, 83) report that near single phase Mg51Zn21 alloy could be achieved by annealing 3 days at 320C.

The Pd-Ag phase diagram is quite simple (Karakaya, 1990) with alloys forming a continuous series of disordered fcc solid solutions (Strukturbericht A1). Alloy synthesis by melting is routine (Wise, 1968). For subsequent ductility, it is desirable to minimize oxygen content by melting in an inert atmosphere. Melt deoxidation can be done via small additions of CaB6 or Li to the melt. There is a significant spread between the liquidus and solidus temperatures (about 1430 and 1375C, respectively), so homogenization annealing might be desirable. Properly prepared alloys are very ductile and can be hot- and cold-worked to wire, sheet and foil.At temperatures above 845C, the Pd-Rh phase diagram shows a continuous series of fcc solutions (Massasski, 1990). Melting procedures are straightforward and similar to Pd-Ag. However, at low temperatures (below 845C, depending on composition) there is a miscibility gap with alloys tending to separate into Pd-rich and Rh-rich fcc solid solutions. Therefore the exact shape of the H-M hysteresis loop is dependent on the cooling rate from above the miscibility temperature (about 560C for Pd0.9Rh0.1)(Noh, 1993). Rates at least as fast as air cooling are recommended. the alloy is ductile and easily fabricated into wire or foil.

Activation Kinetics

Good reaction rates at high temperature.

Good kinetics when surfaces are clean.

Heat to 250 c in 1 atm H2.

Heat to 325 C under vacuum, apply at least 10 atm pressure of H2.

Generally very slow with difficulty in reaching 2.0 H/M. Surface doping with Ni strongly recommended (Bogdanovic, 1993).

Activates at room temperature without special treatment.

Rapid at high temperature, but diffusion controlled at near room temperature. Use fine powder for rapid equilibration at low temperature.

High purity hydrogen desired. Activation temperature depends on the H2 purity and requires the dissolution of surface oxides. Hydride slowly if crack-free structures are desired.

Must be heated to 400-600 C to dissolve natural oxide layer on surfaces. High purity H2 results in lower activation temperatures.

Good kinetics, especially after activation. For activation kinetics of massive U see (Libowitz, 68)

Heat to 450 C under vacuum apply 7 atm H2, cool to 350 C heat to 450 C, evacuate, repeat, cool to R.T., apply 65 atm H2 (Reilly, 1970)

Good if surfaces are kept clean (i.e. high purity H2 used)

TiFe does not readily activate at room temperature. Heating to 400-450 C under vacuum and 7 atm H2 is recommended (Reilly, 1974). Several subsequent R.T. cycles may be

Hydriding kinetics are quite fast if very high purity H2 is used. Isothermal kinetics are difficult to quantify because of heat transfer limitations. (Goodell, 1980)

LaNi5 activates easily without heating at 20 atm H2. Fine powder tends to be slower to activate after storage in air.

After activation, hydriding and dehydriding kinetics of LaNi5 are very high (Goodell, 1983). There are several quantitative expressions of kinetics, but they are questionable because of heat transfer effects. (Wang, 1990)

Does not require heating. Thoroughly evacuate and apply 10-20 atm H2 at room temperature.

Very high intrinsic kinetics, perhaps a little slower than LaNi5 (Goodell, 1980).

Does not require heating. Because of very high hysteresis high pressures and/or low temperatures required (e.g. 65-100 atm at 0 C)

Rapid, but not quantified.

Activates at room temperature using 30-60 atm H2 pressure.

Good, comparable to other AB5 compounds.

Good, typical of AB5 alloys.

Not quantified, but obviously high.

Activates at room temperature and pressures of 10-30 atm.

Good kinetics after activation, typical of AB5 hydrides.

CaNi5 activates readily without heating. Freshly crushed granules will slowly activate at only 1 atm H2 pressure. Powder long exposed to the air may require 30+ atm for fast activation.

Not quantified, but rapid compared to heat transfer.

Can be easily activated at room temperature and 10-30 atm H2 pressure.

Unlike TiFe, TiNi.8Ni.2 can be activated at room temperature. Ni apparently alters the oxide structure to make it more active and permeable to H2. Activation at room temperature and 34 atm H2 recommended.

Reasonably rapid if high purity H2 used. Quantitative isothermal kinetics are reported by (Bershadsky, 1995).

Unlike TiFe, TiNi.9Mn.1 can be activated at room temperature, albeit slowly. Ni apparently alters the natural oxide surface to make it more active and permeable to H2. Activation overnight at room temperature and at least 34 atm H2 recommended. To speed up activation,

Not quantified, but believed comparable to TiFe if clean H2 is used.

Heat to 350 C and apply pressure of 20-30 atm H2 (Reilly, 1968)

Much higher than pure Mg. See review by (Gerard, 1992).

Heat to 450 C under vacuum, cool to room temperature, apply 70 atm H2, cool to -78 C and hold until the reaction is complete. Cycle a few times to assure complete activation.

ZrNi will activate without heating at H2 pressures below atmospheric. Activation, though easy, is accelerated by the introduction of a small amount (about 2%) of Mm or by preoxidizing the sample in air at about 300 C (Sandrock, 1987).

Not quantified but obviously very high.

Activates readily at room temperature and a few atmospheres H2 pressure. Freshly crushed granules will sometimes activate at room temperature and atmospheric pressure.

Not quantified, but appears to be very fast and probably comparable to LaNi5.

Activation can be accomplished at room temperature (without heating) and 68 atm H2 pressure. The alloy will probably activate at pressures significantly lower than 68 atm.

Not quantified, but probably similar to other AB5 compounds.

Activation of near-stoichiometric alloys can be easily achieved at room temperature and modest pressure. Freshly crushed ZrMn2 will activate in atmospheric pressure H2.

Alloy will easily activate at room temperature and pressures above 10-20 atm.

Very fast, like most AB5 compounds. Some rough kinetic data presented in (Osumi, 1979).

Activates at room temperature and 60 atm H2 pressure (Osumi, 1979).

Rapid, but increasing Co content reported to decrease kinetics somewhat (Osumi, 1979).

Can be activated at room temperature and a few atmospheres H2 pressure.

Although high and typical of other AB5 compounds, LaNi3Co2 is reported to have significantly lower intrinsic kinetics than LaNi5, suggesting that the substituted Co atoms are not as effective as Ni atoms for H2---2H dissociative chemisorption (Goodell, 1980).

Activates within minutes at room temperature and 45 atm H2 pressure.

Will activate at room temperature.

Rapid, like most AB5 compounds.

Activates readily at room temperature, within a few minutes at 10 atm H2 pressure.

Rapid. Charge and discharge rates dictated by heat transfer in all practical applications (Bernauer, 1989).

Activates easily at room temperature and a few atm H2 gas pressure. Also activates electrochemically without heating or special treatment in KOH solutions.

Activates easily at room temperature and a few atm H2 gas pressure. Also activates electrochemically without heating or special treatment in KOH solutions.

Will activate at room temperature and 1 atm H2 pressure, although there may be a considerable incubation time if the alloy has been stored for some time in air.

Rapid relative to heat transfer. See (Heung, 1989).

Although (Luo, 1995) used a 350 C vacuum pretreatment to help activate LaNi4.8Sn.3, (Goodell, 1980) were able to activate LaNi4.7Sn.3 at room temperature without heating. It is likely that these alloys will activate with only a few atm applied H2 pressure, perhaps even subamospheric.

Not quantified, but probably as fast as V.

Not quantified.

Room temperature Not quantified, but probably rapid.

Not quantified, but probably rapid.

Not reported, but expected to be rapid.

Activates readily at room temperature. Extremely rapid (Sinha, 1992).

Activates very rapidly at room temperature, a phenomenon associated with Fe atom size effects relative to V-Ti (Maeland, 1984).

Activates readily at room temperature and 50-60 atm H2. Given time it will probably activate at lower pressures.

CeNi5 can be activated at room temperature bur requires very high pressure because of its large hysteresis. (Klyamkin, 1995, R407) used nearly 1000 atm. PCT properties vary during the first few cycles.

(Gruen, 1997, R168) used 0C and 55-80 atm, but it is likely taht NdNi can be activated at room temperature.

heated under vacuum at 800C for two hours before admitting H2. (Perevesenzew, 1988, R557) activated in a similar manner, but used temperatures below 500C.

Kinetics are a function of applied pressure, but are on the order of 0.02 H-atoms/s-mol at 2.5 atm and room temperature (Perevesenzew, 1988, R557).

Alloy will activate at room temperature and 50 atm H2.

Difficult to activate because of natural ZrO2 layer on surface. Electrochemical activation greatly enhanced by HF acid surface treatment.

Electrochemical kinetics enhanced by HF acid surface treatment.

(Burch, 1979) activated by first evacuating and then heating to about 300 C under 20 atm H2. A few cycles may be desirable to reach full capacity.

(Bruzzone, 83) used 250C and 100 atm H2.

(Goudy, 1976) used outgassing under vacuum at 250C, followed by application of 100 atm H2. Milder conditions may also work.

(Goudy, 1976) used outgassing under vacuum at 250C, followed by application of 100 atm H2. Milder conditions may also work.

Kinetics seem to be rather slow, requiring 3-4 hours for PCT data points in the 300-380C range (Bruzzone, 83). At 260C, kinetics are very slow, requiring more than 2 days per data point.

Activates at room temperature without special treatment. Modest heating might accelerate activation by reducing surface oxides.

Diffusion controlled. May be slow near room temperature.

Activates at room temperature without special treatment. Modest heating might accelerate activation by reducing surface oxides.

Diffusion controlled. May be slow near room temperature.

Cyclic Stability Morphology

Forms coarse flaky powder on hydriding.

Good. Decrepitates into fine pyrophoric powder.

MmNi4.5Al.5 should often greater stability.

Unknown, believed to be comparable to LaNi5.

Powder. The finer the powder, the better will be the hydriding kinetics.

PCT properties (especially hysteresis) dependent on prior history and strain effects. (Flanagan, 1991)

Any form can be hydrided: powder, wire, bar, sheet, fine powder (Pd black)

Zr does not significantly decrepitate during hydriding.

Theoretically stable against disproportionation, but cyclic degradation seen with impure V (Marmaro, 1991)

Powder produced by hydride/dehydride decrepitation.

The lower plateau is very stable with cycling but the upper plateau increases in pressure (Goodell, 1980)

TiFe cracks and decrepitates during cycling. Typical surface areas reach on the order of 0.5 m2/g.

Slowly disproportionates with cycling, leading to loss of capacity and stepped or sloping plateaus (Goodell, 1984)

Quickly decrepitates into fine powder having surface area on the order of 0.2 m2/g.

Al imparts very high degree of disproportionation resistance compared to LaNi5 (Goodell, 1984).

Fine powder, about 5-10 micrometers, formed on the first few cycles.

Decrepitates into powder.

Decrepitates to fine powder.

Forms fine powder on hydride/dehydride cycling.

Not known, but should be similar to TiFe.

Not quantified. Hydriding results in decrepitation.

Not quantified, but believed to be good because of the stabilizing effect of Al.

MmNi4.5Al.5 decrepitates to fine powder on the first cycle. The powder can be pyrophoric if suddenly exposed to air.

CaNi5 has a significant tendency to disproportionate, either in a static charged condition or during cycling (Sandrock, 1982 and Goodell, 1984).

Decrepitates to fine powder with the first cycle. Mildly pyrophoric on sudden exposure to air.

Not quantified, but believed to be subject to disproportionation like LaNi5 and CaNi5.

Good. A 16% loss of capacity (and slight loss of kinetics) after 65,000 cycles (Bershadsky, 1991).

Alloy particles crack on cycling but do not form extremely fine powder.

Samples pulverize on hydriding, but not into extremely fine powder. Resultant powder appears to be somewhat finer than for TiFe.

Believed to be thermdynamically stable against disproportionation.

Results in cracked structures, but excessively fine powder not formed.

Not quantified, but likely to disproportionate at high temperature.

Decrepitates on H/D cycling, but not into very fine powder.

Probably subject to slow disproportionation like LaNi5.

Forms powder on H/D cycling.

Stable for at least 30 H/D cycles (Osumi, 1979). Decrepitates to powder.

Decrepitates into powder during H/D cycling.

Forms finer powder than LaNi5 on H/D cycling. La(Ni,Mn)5 powders are pyrophoric unless slowly passivated after H/D cycling.

Decrepitates into very fine powder on the first H/D cycle. Caution: ZrMn2 powder is highly pyrophoric and will spontaneously ignite when exposed to air! Open reactors with caution!

Not quantified, but probably similar to LaNi5, i.e., subject to slow cyclic disproportionation.

Forms finer powder than MmNi5 on H/D cycling. Mm(Ni,Mn)5 powders are more pyrophoric than MmNi5.

Reasonably good cyclic stability demonstrated during electrochemical H/D testing (Willems, 1984).

Shows some isotherm distortion and capacity loss with cycling, but that was attributed to impurity effects (see gas impurity effects). Believed to be resistant to intrinsic disproportionation (Gamo, 1983).

Decrepitates into fine (10 micrometer) powder on the first H/D cycle. Caution: Decrepitated TiMn1.5 powder is instantly pyrophoric when exposed to the air! Powder reportedly can be stabilized against spontaneous ignition by deactivation in water, followed by drying (Gamo, 1983).

No changes were noted in XRD patterns after 20 cycles. Decrepitates into powder.

Decrepitates to fine pyrophoric powder.

Excellent stability as battery electrode (Sakai, 1992b).

Decrepitates into powder with the first A/D cycle.

Decrepitates into powder with first H/D cycle.

Essentially stable for at least 2000 cycles in high-purity H2 (Bernauer, 1989b).

Decrepitated on H/D cycling to powder. Usually mechanically ground to powder for electrode manufacture.

Powder (about 30 micrometer) results directly from the R-D process.

Al-substitution imparts a high degree of disproportionation resistance. However, the use of the alloy for tritium storage results in disproportionation-like phenomena, such as isotherm distortions and capacity reduction, associated with lattice strains resulting from T-decay to He (Nobile, 1991)LaNi4.8Sn.2 has a very high degree of disproportionation resistance (Lambert, 1992 and Bowman, 1995). La(Ni,Sn)5 seems to have even greater cyclic stability than La(Ni,Al)5.

Unknown, but probably similar to LaNi5. Decrepitates into powder.

Unknown, but probably similar to LaNi5. Decrepitates to powder.

Unknown, but probably similar to LaNi5. Decrepitates to powder.

Not established. Brittle and easily forms powder.

Not reported.

Not quantified. Decrepitates to fine, pyrophoric powder.

Rapidly decrepitates into powder on the first hydriding.

Decrepitates on hydriding to 1-10 micrometer powder.

Decrepitates to powder. Powder should be considered pyrophoric.

Powder surface area increased from 0.1-0.28 m2/g by HF treatment, which causes new cracks.

Does not decrepitatee into powder.

The metastable nature of this alloy suggests that it probably easily disproportionates with each cycle. (Bruzzone, 83) report MgH2 present in hydrided samples, a likely confirmation of that possibility. Although (Bruzzone, 83) reported a Mg51Zn20H90 hydride phase formed, (Akiba, 1991) found severe disproportionation of Mg7Zn3 into MgH2 and several Mg-Zn phases.

Maintains original form without decrepitation. Solid alloy should not crack unless contaminated with impurities.

The phase separation described for H-free alloys above is greatly enhanced and accelerated by H in the lattice (Noh, 1996). Depending on temperature, H-content and cyclic history, isotherm shapes and hysteresis can vary markedly.

Gas Impurity EffectsSensitive to O2 and H2O.

Very sensitive to impurities such as 02 and H20 vapor.

Relatively immune to small amounts of O2 and H2O. Poisoned by CO (Sakai, 1982).

Sensitive to all but noble gas impurities at high temperature.

Easily deactivated by impurities such as 02 and H20-vapor at low temperature.

Reacts with most active gases. Highly pyrophoric in air and often with water or steam.

TiFe is highly sensitive to impurities such as CO, O2, and H2O. (Sandrock, 1980)

Reacts slowly with O2 and H2O forming an active "self-restoring" surface of La(OH)3 and free Ni (Schlapbach, 1992). Ultimately O2 and H2O result in irreversible loss of capacity by corrosion of the H-storing AB5 phase. Severely poisoned by CO and S-gases. (Sandrock, 1984). Similar to LaNi5. Corroded by O2 and H2O. Poisoned by CO and S-containing gases.

Not quantified, but believed to be similar to LaNi5. Avoid O2, H2O, CO and S-containing gases.

Not quantified, but believed to be comparable to LaNi5 and other AB5 compounds. Avoid O2, H20, CO and S-compounds.

Deactivated by air and CO.

Typical of AB5 alloys. Slowly corroded by O2 and H2O. Poisoned by CO and S-containing gases.

Slowly corroded by O2 and H2O. Poisoned by CO and S-gases.

Not quantified, but believed to be similar to other AB5 compounds: corroded slowly by O2 and H2O; poisoned by CO and S-gases.

Not quantified, but probably somewhat better than TiFe because of Ni content.

Loss of capacity seen when O2, H2O or CO present in H2 (Sandrock, 1984). Less sensitive to CO than TiFe (Goodell, 1980)

Reacts with H2O and O2 at high temperature. Relatively good tolerance to CO at high temperature (Eisenberg, 1983).

Seems to have some resistance to air but likely poisoned by CO. Shows resistance to NH3 at room temperature.

Unknown, but probably similar to LaNi5.

No data, but probably comparable to LaNi5, i.e., corroded by O2 and H2O; subject to poisoning by CO and S-gases.

Not quantified, but similar alloys, such as LaNi4Cu show some partial resistance to CO and CO2, especially at temperatures above 100 C (Reilly, 1974).

Appears to form non passive oxides so probably not poisoned by small amounts of O2 and H2O. Will absorb H2 from NH3-H2 mixtures. Poisoned by SO2.

No quantitative data, but probably comparable to LaNi5, i.e., corroded by O2 and H2O and subject to poisoning by CO and S-gases.

A 30% loss in capacity reported during 10,000 H/D cycles using industrial grade (99.99%) H2, most of which occurred during the first 2000 cycles. This loss was not recoverable (Gamo, 1983).

Damaged by O2 contamination.

Feed H2 should have impurity levels less than 10 ppm each for H2O, CO, CO2, O2 and CxHy. The alloy will tolerate N2 up to 500 ppm (Bernauer, 1989). Quntitative impurity effects are given in (Bernauer, 1989b).

Not well quantified, but one can assume effects similar to LaNi5: O2 and H2O are expected reactants causing general corrosion and CO or S-gases are expected poisons.

Not quantified, but probably similar to V.

Probably rather sensitive to gaseous impurities like TiFe.

Not quantified, but probably similar to LaNi5, i.e., avoid O2, H2O, CO and S-containing gases. Higher Ce content in Mm based battery alloys gives higher electrochemical cyclic life (Adzic, 1995, R264), so it is possible CeNi5 is more resistant to H2) vapor and O2 than LaNi5.Not quantified, but probably similar to LaNi5, i.e., avoid O2, H2O, CO and S-containing gases.

Not quantified, but probably similar to LaNi5, i.e., avoid O2, H2O, CO and S-containing gases.

Rather sensitive to air. The partial substitution of V helps (Perevesenzew, 1988, R557),

Not quantified but probably similar to TiMn1.5. Assume sensitive to most non-noble gases.

Similar to Pd. Relatively immune to small amounts of O2 and H2O. Poisoned by CO.

Similar to Pd. Relatively immune to small amounts of O2 and H2O. Poisoned by CO.

Comments Supplier 1Mg powder highly flammable.

Hydride structure listed is for the delta phase.

Does not readily decrepitate. Solid Pd may or may not crack on hydriding. Strong normal isotope effect. (Flanagan, 1991; Lewis, 1967)

Hydride structure listed is for the gamma hydride phase. At high H/M (greater than 1.72) and low temperature (less than 50 C) a tetragonally distorted phase (epsilon) can form.

UH3 in ferromagnetic below 173K. Hysteresis is very dependent on sample history and test temperature (Libowitz, 68)V shows a pronounced inverse isotope effect useful for D2- separation (Wiswall, 1972)

TiFe is the classic AB hydride and one of the first room temperature rechargeable intermetallic hydrides. Use now decreased because of high sensitivity to gas impurities.

Ergenics, Aldrich Chemical

The classic AB5 hydride, studied in great detail over the years. One of the first room temperature intermetallic hydrides. See LaNi4.7Al0.3 for improved disproportionation resistance.

Ergenics, Aldrich Chemical

A good alloy to use where sub-atmospheric pressures are needed at room temperature and long cyclic life is needed. Can adjust plateau pressure by adjusting Al content.

Ergenics, Aldrich Chemical

MmNi5 is a very high pressure, high hysteresis alloy that is difficult to use. MmNi4.5Al.5 offers lower pressure, lower hysteresis and higher practicability.

Ergenics, Aldrich Chemical

Fe greatly lowers the hysteresis of MmNi5 while maintaining a reasonably high plateau.

Ergenics, Aldrich Chemical

Easier to activate and use than TiFe. Relatively low cost.

Mg2Ni is the classic A2B lightweight hydriding compound.

Ergenics

A versatile alloy with low hysteresis. Plateau pressure can be widely controlled by adjusting Al-content y in MmNi(5-y)Aly (Sandrock, 1978). MmNi4.5Al.5 is a low-cost alternative to LaNi5.

Ergenics, Aldrich Chemical

CaNi5 shows interesting and potentially useful hydrogen / deuterium isotope effects: at 25 C the lower plateau shows a normal isotope effect, the middle plateau no effect and the upper plateau an inverse effect (Sandrock, 1982). Applications limited because of tendency to disproportionate.

Ergenics, Aldrich Chemical

Useful when sloping plateaus needed to give an indication of the state of charge. Plateau pressure can be varied from MmNi5 to CaNi5 by varying the Ca-content x in CaxMm(1-x)Ni5.

Ergenics, Aldrich Chemical

A low-pressure, low-hysteresis version of TiFe. Useful at subatmospheric pressures.

Ergenics, Aldrich Chemical

Ergenics, Aldrich Chemical

Ergenics, Aldrich Chemical

An academically interesting off- stoichiometric AB2 intermetallic hydride. Unusually high pressure plateaus. When carefully prepared, plateaus are almost flat and low in hysteresis. An alternative to the orthorhombic hydride structure is a two-phase mixture that includes a disordered fluorite structure (Johnson, 1982).

ZrNi has great significance in the history of intermetallic hydrides. It was the first intermetallic studied enough to obtain PCT properties, thus showing it formed a true ternary hydride with stability between the highly stable ZrH2 and the highly unstable NiH (Libowitz, 1958).

Ergenics

Mn-substitution in LaNi(5-y)Mny strongly lowers the plateau pressure. Hysteresis largely unchanged over LaNi5.

Cu is not effective in lowering the pressure of MmNi5 to values as low as LaNi5 without significant loss of capacity.

As-cast ingots are very brittle and spark strongly on impact in air. Should be crushed and ground under noble gas atmospheres.

Mn-substitution markedly lowers the high plateau pressure of MmNi5 and to a lesser extent lowers the hysteresis. Mm(Ni,Al)5 alloys are more practical from a cyclic stability point of view, but Mm(Ni,Mn)5 offers higher initial capacity.

Co addition to MmNi5 probably lowers the volume expansion of hydriding, as with La(Ni,Co)5 (van Mal, 1973).

TiMn1.5 represents a relatively low-cost version of the AB2 family of hydriding compounds.

Japan Metals & Chemicals

Ergenics

Ames Laboratory

ZrFe1.5Cr.5 represents a high-Fe AB2 with convenient PCT properties. The high Fe-content is useful for low alloy cost.

Alloy widely used for demonstration vehicle and stationary storage programs.

Gesellschaft fur Elektrometallurgie

A classic multicomponent AB5 studied extensively for electrochemical battery application.

Japan Metals & Chemicals

Illustrates how a multicomponent AB5 compound can be made by a process other than melting.

The LaNi(5-y)Aly pseudobinary system is very versatile in allowing the tailoring of PCT properties to suit application requirements (Diaz, 1979 and Mendelsohn, 1977). LaNi4.25Al.75 is a key alloy used for industrial scale T2 storage and pumping in the new Savannah River tritium replacement facility (Ortman, 1990).Sn is a potent substitutional additive to LaNi5 for lowering plateau pressure (without loss of capacity) and raising disproportionation resistance. It was first added to LaNi5 by (Mendelsohn, 1978).

Pr is a minor component of mischmetal (Mm).

Nd is a minor component of mischmetal (Mm).

Rather large hydteresis.

Structural AB analog of TiFe.

A wide variety of beta (bcc) alloys similar to (V.9Ti.1).95Fe.05 are possible . Although the alloys have rather high hysteresis, they also have unusually high entropies and enthalpies of hydriding for near-ambient alloys, so they offer special potential in cyclic thermodynamic devices such as compressors and heat pumps (Libowitz, 1988).

SmCo5 is an important permanent magnet material. Because of its expense and low H-capacity, it is of little practical interest for hydriding applications. SmCo5 is of historic interest as the first AB5-hydride, accidentally discovered at Philips Research Labs during magnet development (Zijlstra, 1969 and Willems, 1987).

CeNi5 is a very high pressure, high hysteresis alloy that is difficult to use. Ce is the principal compon ent of mischmetal (Mm). Partially substituted MmNi5 alloys offer lower pressure, lower hysteresis, lower cost and higher practicability.

Along with ZrV2, ZrCr2 is one of the earliest AB2 conpounds where detailed PCT data were obtained (Pebler, 1967, R13).

This is one of a series of AB2 alloys developed in the early 1980s at Daimler Benz and sold commercially today by GFE. See AB2 listing for other alloy in this general area.

Gesellschaft fur Elektrometallurgie

Zr(V0.2Mn0.2Ni0.6)2.4 is an example of a high-Ni AB2 of interest for electrocatalytic properties. Other examples can be found in the AB2 listing.

Example of an AB3 intermetallic hydride. Not reported as used for an application to date.

Example of an A2B7 intermetallic hydride with room temperature PCT properties. Not reported as used for an application to date.

Pd0.7Ag0.3 is not used for H2 storage in the conventional hydride sense. Increasing Ag content decreases Tc for the Pd-Ag system (Brodowsky, 1965). The absence of a two-phase plateau is desirable to prevent cracking of H-charged solid samples, in particular membranes used for H2 purification.

Johnson Matthey and other precious metals suppliers

Partial substitution of Rh greatly increases the plateau pressure of Pd.

Supplier 2 Supplier 3 Application 1Solar heat engine (Groll, 1994)

Storage of hydrogen isotopes.

H-storage

Heat pumps and heat engines,

Commercial tritium separation (Ortman, 1990)

Used as solid ZrH2 for neutron moderators (Huffine, 1968). Not used much for reversible applications.

Laboratory scale storage and purification of tritium and other H-iostopes (Rapkin, 95)Pumping of hydrogen isotopes (Reilly, 71)

Gesellschaft fur Electrometallurgie

Stationary H-storage medium (Sandrock, 1992).

Japan Metals & Chemicals

Gesellschaft fur Elektrometallurgie

Japan Metals & Chemicals

Gesellschaft fur Elektrometallurgie

Japan Metals & Chemicals

Stationary H-storage where high output pressure desired.

Japan Metals & Chemicals

Storage at high pressure and low ambient temperature.

H-storage

Solar energy storage (Bawa, 1982)

Heat pumps

Stationary H-storage

Stationary H-storage

Japan Metals and Chemicals

Gesellschaft fur Elektrometallurgie

Japan Metals & Chemicals

Gesellschaft fur Elektrometallurgie

Japan Metals & Chemicals

H2 gettering from mixed gases, e.g., H2 removal from H2-contaminated NH3 heat pipes (Franco, 1986) or inert gas insulated steam injection tubing (Sandrock, 1987).

H2 separation (Reilly, 1974)

Stationary H2 storage (Gamo, 1981)

H2 getter for removing H2 from NH3 heat pipes (Franco, 1986)

Stationary H2 storage (Bernauer, 1989)

Gesellschaft fur Elektrometallurgie

Treibacher Chemische Werke

Negative electrode in nickel metal hydride batteries (Sakai, 1992 a&b).

Ni-MH battery electrodes (Sakai, 1992)

Tritium storage (Ortman, 1990 and Nobile, 1991)

H2 compressor for use in cryocoolers system (Freeman, 1994)

H2 compressors

Proposed use as getters.

Not used to date. Of possible use for high pressure generation or hydride-H2 compressors.

Proposed for NiMH batteries in the HF treated condition.

Diffusion membranes for purification of H-isotopes (Hunter, 1963)

Storage and purification of hydrogen isotopes (Thiebaut, 1995).

Application 2 Application 3Heat storage (Groll, 1994) H2 storage.

Hydrogen purification. Aircraft fire detectors (Warren, 84)

Heat pumps

H2 compressors H-isotope storage

H2 compressors

Pumping of H-isotopes (Ortman, 1990)

Compressors (Marmaro, 1991 and Bowman, 1994)

Vehicular H-storage medium (Sandrock, 1992).

Heat pumps and other thermodynamic devices

Air conditioner heat pump (Ron, 1984)

H2 separation H2 compression

Heat pumps (Sheft, 1980)

Vehicle H-storage

Vehicular H-storage

Hydrogen isotope gettering and pumping (Nakamura, 1985).

H2 purification (Gamo, 1983)

Vehicular H2 storage (Feucht, 1988) H2 purification (Bernauer, 1989)

Heat pumps H-isotope separation

Citation 1 Authors 1J. Amer. Chem. Soc., 82 [1960] 3504 (299) Stampfer, J.F.; Holley, C.E.; Suttle, J.F.

Wicke, E.; Brodowski, H.

Beck, R.L., Mueller, W.M.

Mueller, W. M.

Libowitz, G. G.

Inorg. Chem. 9 [1970] 1678 (313) Reilly, J. J. ; Wiswall, R.H.

Inorg. Chem. 13 [1974] 218 (319) Reilly, J. J.; Wiswall, R. H.

J. Less-Common Met. 74 (1980) 435 (77) Huston, E.L.; Sandrock, G. D.

Reilly, J. J.

J. Less-Common Met. 74 [1980] 435 (77) Huston, E. L.; Sandrock, G. D.

Hydrogen in Metals II, Topics in Appl. Phys., 29 [1978] 73 (302)

"Zirconium Hydrides and Hafnium Hydrides" Chapter 7 in Metal Hydrides, Academic Press [1968] 241 (306)

"Titanium Hydrides", Chapt 8 in Metal Hydrides, Academic Press [1968], p.336 (308)

"The Actinide Hydrides", Chapt 11 in Metal Hydrides, Academic Press [1968], p. 490 (310)

"Solid State Hydrogen Storage Materials for Application to Energy Needs", Rept. AFSOR, F44620-74-C0020, Denver Res. Inst., Jan. 1975 (260)

Lundin, C. E.; Lynch, F. E.

Chapt. 2 in Hydrogen: Its Technology and Implications, CRC Press [1977] p. 13 (281)

Sandrock, G.D.

Mat. Res. Bull., 17 [1982] 887 (326)

Sandrock, G.D.

J. Less-Common Met. 74 (1980) 435 (77) Huston, E.L.; Sandrock, G.D.

J. Less-Common Met. 74 [1980]435 (77) Huston, E.L.; Sandrock, G.D.

Z. Phys. Chem. NF, 163, [1989] 575 (331) Noreus, D.

Inorg. Chem., 17 [1978] 3101 (335) Johnson, J.R.; Reilly, J.J.

J. Phys. Chem., 62 [1958] 76 (68) Libowitz, G.G.; Hayes, H.F.; Gibb, T.R.P.

In Hydrogen Energy Systems, Proc.2nd World Hydrogen Energy Conferencevol. 3, Pergamon Press, 1978, p. 1625 (113)

Sandrock, G.D.; Murray, J.J.; Post, M.L.; Taylor, J.B.

In Hydrogen Energy Systems, Proc.2nd World Hydrogen Energy Conferencevol. 3, Pergamon Press, 1978, p. 1625 (113)

Lundin, C.E.; Lynch, F.E.

Sandrock, G.D.

J. Less-Common Met., 53 [1977]117 (14) Shaltiel, D.; Jacob, I.; Davidov. D.

Lundin, C.E.; Lynch, F.E.

Goodell, P.D.; Sandrock, G.D.; Huston,E.L.

In Proc. Miami Int. Conf. on Alternative Energy Sources, U. of Miami, 1978, p.3803 (272)

In Hydrogen Energy Systems, Proc.2nd World Hydrogen Energy Conferencevol. 3, Pergamon Press, 1978, p. 1625 (113)

In Proc. Miami Int. Conf. on Alternative Energy Sources, U. of Miami, 1978, p.3803 (272)

J. Chem. Soc. Japan, Chem. and Ind. Chem. [1979, No.6] 722 (121)

Osumi, Y.; Suzuki, M.; Kato, A.; Nakane, M.; Miyake, Y.

Rept. SAND79-7095, Sandia N.L., Jan. 1980 (256)

In Proc. 3rd World Hydrogen Energy Conf., Pergamon Press, 1980, p.2127 (31)

Gamo, T.; Moriwaki, Y.; Yanagihara, N.; Yamashita, T; Iwaki, T.

Ivey, D.G.; Northwood, D.O.

Z. Phys. Chem. NF, 164 [1989] 1381 (341) Bernauer, O.

(a) J. Alloys and Comp., 180 [1992] 37 (278)

J. Alloys and Compounds, 192 [1993] 167 (279)

Int. J. Hydrogen Energy, 4 [1979] 445 [270]

J. Alloys and Comp., 231 [1995]473 (275)

In Proc. 5th World Hydrogen Energy Conf., Pergamon Press, 1984, p.1395 (29)

Sakai, T.; Yoshinaga, H.; Miyamura, H.; Kuriyama, N.; Ishikawa, H.

Takeya, K; Tsugita, Y.; Okajima, Y.; Sakai, T.; Miyamura, H.; Kuriyama, N.; Ishikawa, H.; Uehara, I.

Diaz, H; Percheron-Guegan, A.; Achard, J.C.; Chatillon, C.; Mathieu, J.C.

Luo, S.; Luo, W.; Clewley, J.D.; Flanagan, T.B.; Bowman, R.C.

Z. Phys. Chem. NF, 145 [1985] 51 (351) Lynch, J.F.; Maeland, A.J.; Libowitz, G.G.

J. Less-Common Met., 23 [1971] 395 (94) Kuijpers, F.A.; van Mal, H.H.

Klyamkin, S. N.; Verbetsky, V. N.; Karih, A. A.

J. Less-Common Met., 132 [1987] 115 (568) Matsumoto, T.; Matsushita, A.

Gruen, D. M.; Mendelsohn, M. H.; Sheft, I.

Trans. TMS AIME, 239 [1967] 1593 (13) Pebler, A; Gulbransen, E. A.

U.S. Patent 4,507,891, July 3, 1994 (521) Bernauer, O.; Ziegler, K.

J. of Less-Common Met., 167 [1991] 245 (562) Park, J-M.; Lee, J-Y.

Burch, R.; Mason, N. B.

J. of Alloys and Compounds, 231 [1995] 479 (407)

Proc. Symp. on Electrode Materials and Processes for Energy Conversion and Storage, Proc. Vol. 77-6, ECS, 1977, 482 (168)

J. of Alloys and Compounds, 229 [1995] 268 (404)

Gao, X.; Song. D.; Zhang, Y., Zhou, Z.; Zhang, W.; Wang, M.; Shen, P.

J. Chem. Soc., Faraday Trans. I, 75 [1979] 521 (500)

Goudy, A.

Goudy, A.

Int. J. Hydrogen Energy, 8 (1983) 459 (431)

Z. Phys. Chem. NF, 44 [1965] 143 (527) Brodowsky, H.; Poeschel, E.

J. Alloys and Compounds, 196 [1993] 7 (867) Noh, H.; Luo, W.; Flanagan, T. B

Hydrogen Solubility in Rare Earth Intermetallic Compounds, Ph.D. Thesis, University of Pittsburgh, 1976 (186)

Hydrogen Solubility in Rare Earth Intermetallic Compounds, Ph.D. Thesis, University of Pittsburgh, 1976 (186)

Bruzzone, G.; Costa, G.; Ferretti, M.; Olcese, G. L.

Citation 2 Authors 2Int. J. Hydrogen Energy, 18 [1993] 575 (485) Bogdanovic, B.; Hartwig, J.H.; Spliethoff,B.

Lewis, F.A.

"Fabrication of Hydrides", ibid, p. 675 (307) Huffine, C. L.

USAEC Rept. LAR-10, Nov. 1960 (309) Beck, R. C.

American Laboratory, Oct. 1995, 31 (312) Rapkin, E.; Steele, G.; Schavey, R.

Reilly, J. J. ; Wiswall, R.H.

Yvon, K.; Fischer, P.

Yvon, K.; Fischer, P. and Schlapbach, L.

Goodell, P.D.; Sandrock, G.D.; Huston,E.L.

J. Less-Common Met., 90 [1983]11 (132) Liu, J.; Huston, E. L.

Sandrock, G. D.

The Palladium Hydrogen System, Academic Press [1967] (303)

BNL-16546, Brookhaven National Lab, [1972] (314)

Chapt. 4 in Hydrogen in Intermetallic Compounds I, Topics in Appl. Phys. 63 [1988] 87 (320)

Chapt 4 in Hydrogen in IntermetallicCompounds I, Topics in Appl. Phys. 63 [1988] 87 (320) and Chapt 2 in Hydrogen in Intermetallic Compounds II, Topics in Appl. Phys. 67 [1992] 15 (323)Rept. SAND79-7095, Sandia N.L., Jan. 1980 (256)

In Hydrogen Energy Systems, Proc.2nd World Hydrogen Energy Conferencevol. 3, Pergamon Press, 1978, p. 1625 (113)

J. Less-Common Met. 74 [1980] 435 (77) Huston, E.L.; Sandrock, G.D.

Sandrock, G.D.

Sandrock, G.D.

Sandrock, G.D.

Johnson, J.R.; Reilly, J.J.

Inorg. Chem., 7 [1968] 2254 (88) Reilly, J.J.; Wiswall, R.H.

J. Less-Common Met., 73 [1980] 345 (42) Johnson, J.R.

Sandrock, G.D.

(a) Proc. 12th IECEC, Am. Nuc. Soc., 1977, Vol. I, p.951 (106)

In Hydrides for Energy Storage, Pergamon Press [1978], p. 353 (321)

In Hydrides for Energy Storage, Pergamon Press (1978), p. 353

In Proc. DOE Contractor Rev. Mtg. on Chem. Ener. Storage and Hydrogen Ener. Sys., JPL, 1978, p.171 (330)

"Low Temperature Reusable Hydrogen Getter, US Pat. 4,668,424, May 26, 1987 (336)

Reilly, J.J.; Wiswall, R.H.

Uchida, M.; Suda, S.

J. Less-Common Met., 32 [1973] 289 (97) van Mal, H.H.; Buschow, K.H.J.; Kuijpers, F.A.

J. Less-Common Met., 32 [1973] 289 (97) van Mal, H.H.; Buschow, K.H.J.; Kuijpers, F.A.

J. Less-Common Met., 89 [1983] 495 (32)

"Alloys for Isolation of Hydrogen", US Pat. 3,825,418, July 23, 1974 (153)

Res. Repts. Kogakuin Univ., 71 [Oct., 1991] 41 (338)

J. Chem. Soc. Japan, Chem. and Ind. Chem. [1979, No.1] 45 (120)

Osumi, Y.; Suzuki, M.; Kato, A.; Nakane, M.; Miyake, Y.

Gamo, T.; Moriwaki, Y.; Yanagihara, N.; Iwaki, T.

Int. J. Hydrogen Energy, 11 (1986) 583 (377) Ivey, D.G.; Northwood, D.O.

Friedrich. B.

Nature, 269, No.5623 [Sept.1,1977] 45 (108) Mendelsohn, M.H.; Gruen, D.M.; Dwight, A.E.

Goodell, P.D.; Sandrock, G.D.; Huston, E.L.

Large Scale Production and Quality Assurance of Hydrogen (Battery)- Storaging Alloys", Unpublished paper presented at the Int. Symp. on Metal Hydrogen Systems, Uppsala, Sweden, 1992, Available from GfE, Hoefener Str. 45, D-8500 Nurnberg 80 (342)(b) In Proc. Symp. on Hydrogen Storage Materials, Batteries, and Electrochemistry, The Electrochem. Soc., PV 92-5, 1992, p.59 (345)

Sakai, T.; Muta, K.; Miyamura, H; Kuriyama, N.; Ishikawa, H.

In Proc. Symp. on Hydrogen Storage Materials, Batteries, and Electrochemistry, The Electrochem. Soc., PV 92-5, 1992, p.59 (345)

Sakai, T.; Muta, K.; Miyamura, H; Kuriyama, N.; Ishikawa, H.

"Rept. SAND 79-7095, Sandia N.L., Jan. 1980 (256)

J. Less-Com. Met., 104 [1984] 133 (352)

Goodell, P.D.; Sandrock, G.D.; Huston, E.L.

Lundin, C. E.; Lynch, F. E.

J. Less-Common Met., 88 [1982] 81 (131) Uchida, H.; Tada, M.; Huang, Y. C.

J. Less-Common Met., 88 [1982] 81 (131) Uchida, H.; Tada, M.; Huang, Y. C.

J. of Less-Common Met., 143 (1988) 39 (557)

J. of Less-Common Met., 119 [1986] 63 (370)

J. Chem. Soc. Japan, [1975] 1267 (73) Yamanaka, K.; Saito, H.; Someno, M.

Maeland, A.J.; Libowitz, G.G.; Lynch, J.F.; Rak, G.

"Rept. SAND 79-7095, Sandia N.L., Jan. 1980 (256)

Hysteresis Effects in Rare Earth Pentanickel Hydrides, Report, Denver Research Inst., U. of Denver, 1977 (R149)

Perevesenzew, A.; Lanzel, E.; Elder, O. J.; Tuscher, E.; Weinzierl, P.

Uchida, M.; Bjurstrom, H.; Suda, S.; Matsubara, Y.

Massalski, T. B.

Pan, Y. Y.; Nash, P.

Clark, J. B.; Zabdyr, L.; Moser, Z.

Karakaya, I.; Thompson, W. T.

Sakamoto, Y.; Haraguchi, Y.; Ura, M.; Chen F. L.

In Binary Alloy Phase Diagrams, ASM Int., 1990, Vol.2, p.1704

In Binary Alloy Phase Diagrams, ASM Int., 1990, Vol.3, p.2841

In Binary Alloy Phase Diagrams, ASM Int., 1990, Vol.3, p.2571

In Binary Alloy Phase Diagrams, ASM Int., 1990, Vol.1, p.72

Ber. Bunsenges. Phys. Chem., 98 [1994] 964 (868)

Citation 3 Authors 3Int. J. Hydrogen Energy, 19 [1994] 507 (301) Groll, M.; Isselhorst, A.; Wierse, M.

Ann, Rev. Mater. Sci., 21 (1991) 269 (304) Flanagan, T.B.; Oates, W.A.

J. Less-Common Met. 104 (1984) 375 (310)

Rev. Sci. Inst., 42 [1971] 1485 (315) Reilly, J. J. ; Holtz, A.; Wiswall, R.H.

Sandrock, G. D.

Nature, 260 [1977] 45 (108) Mendelsohn, M.H.; Gruen D.M.; Dwight, A.E.

J. Less-Common Met., 104 [1984] 259 (325) Ron, M.

Warren, D. E.; Faughnan, K. A.; Fellows, R.A.; Godden, J. W.; Seck, B. M.

In Hydrides for Energy Storage, Pergamon Press (1978), p. 353 (321)

J. Less-Common Met. 29 [1972] 203 (95) and J. Less-Common Met. 89 [1983] 117 (9)

Buschow, K.H.J.; Van Mal, H. H. andGoodell, P. D.; Rudman, P. S.

Sandrock, G.D.

In 11th IECEC, AIChE, Vol.I, 1976, p.965 Sandrock, G.D.; Reilly, J.J.; Johnson, J.R.

Sandrock, G.D.

J. Less-Common Met., 88 [1982] 107 (41) Johnson, J.R.; Reilly, J.J.

Franco, R.J.; Berkowitz, B.J.; Kaul, B.K.

(b) In Hydrides for Energy Storage, Pergamon Press [1978], p. 353 (321)

In Hydrides for Energy Storage, Pergamon Press [1978], p. 353 (321)

Inorg. Chem., 18 [1979] 3595 (332) and J. Less-Common Met., 123 [1986] 233 (333)

Gavra, Z.; Mintz, M.H.; Kimmel, G.; Hadari, Z. and Noreus, D.; Kihlborg, J.

"Low Temperature Heat Pipe Employing a Hydrogen Getter", US Pat. 4,585,561, May 6, 1986 (337)

Mat. Res. Bull., 15 [1980] 1149 (17) van Essen, R.M.; Buschow, K.H.J.

Sandrock, G.

Philips J. Res., 39 (Suppl. No 1)[1984] 1 (340) Willems, J.J.G.

In Hydrogen Energy Systems, Proc.2nd World Hydrogen Energy Conferencevol. 3, Pergamon Press, 1978, p. 1625 (113)

Int. J. Hydrogen Energy, 13 [1988] 243 (343)

J. Vac. Sci. Technol., A8 [1990] 2881 (305)

Feucht, K; Hurich, N.; Komoschinski, N.; Povel, R.

Ortman, M.S.; Heung, L.K.; Nobile, A.; Rabun, R.L.

J. Alloys and Comp., 187 (1992) 113 and 217 (1995) 185

Lambert, S.W.; Chandra, D.; Cathey, W.N.;Lynch, F.E.; Bowman, R.C. and Bowman, R.C., Luo, C.H.; Ahn, C.C.; Witham, C.K.; Fultz, B.

Matl. Sci. Forum, 31 [1988] 177 (353) Libowitz, G.G., Maeland, A.J.

Sol. St. Comm., 7 [1969] 857 (148) Zijlstra, H.; Westendorp, F.F.

J. Electrochem. Soc., 142 [1995] 3429 (264)

See also (14), (28), (45), (65), (438), (523)

J. of Less-Common Met., 87 [1982] 283 (25) Sinha, V. K.; Pourarian, F.; Wallace, W. E.

Reilly, J. J.; Wiswall, R. H.

Adzic, G. D.; Johnson, J. R.; Reilly, J. J.; McBreen, J.; S. Mukerjee, S.; Sridhar Kumar, M. P.; Zhang, W.; Shrinivasan, S.

Hydrogen Absorption by AB5 Compounds, Report LA-5320-MS, Los Alamos, 1973 (99)

Anderson, J. L.; Wallace, T. C.; Bowman, A. L.; Radosevich, C. L.; Courtney, M. L.

Hydrogen Absorption by AB5 Compounds, Report LA-5320-MS, Los Alamos, 1973 (99)

Anderson, J. L.; Wallace, T. C.; Bowman, A. L.; Radosevich, C. L.; Courtney, M. L.

Hydrogen Storage and Purification Systems III, Rept. BNL 21322, [1976] (490)

Akiba, E.; Hayakawa, H.; Ishido, Y.; Nomura, K.

Hunter, J. B.

J. Alloys and Compounds, 231 [1995] 440 (482)

J. of Less-Common Met., 172-174 (1991) 1071 (709)

Proc. Symp. on Production of Hydrogen, ACS New York City Mtg., 1963, p. B-49 (866)

Thiebaut, S,; Bigot, A.; Achard, J. C.; Limacher, B. Leroy, D.; Percheron-Guegan, A.

Citation 4 Authors 4

J. Vac. Sci. Tech., A8 [1990] 2881 (305)

Int. J. Hydrogen Energy, 15 [1990] 569 (324) Wang, X.-L.; Suda, S.

Ortman, M.S.; Heung, L.K.; Nobile, A; Rabun, R.L.

NAS9-18175, Rept. to NASA by Hydrogen Consultants, Inc., 1991 (316) and Z. Phys. Chem. NF, 183 [1994] 245 (317)

Marmaro, R. W.; Lynch, F. E. and Bowman, R.C.; Freeman, B.D.; Ryba, E.L.; Spjut, R.E.; Liu, E.A.; Penso, J.M.; Lynch, F.E.

J. Less-Common Met. 73 [1980] 135 (6), Ibid., 73 [1980] 161 (203)

Goodell, P.D.; Sandrock, G. D.; Huston, E.L. and Sandrock, G. D.; Goodell, P.D.

Proc. 2nd Int. Cong. on Hydrogen in Metals, Paris [1977]. (271)

Achard, J.G.; Percheron-Guegan, A.; Diaz, H.; Briancourt, F.; Demany, F.

Int. J. Hydrogen Energy, 7 [1982] 775 (155) Bawa, M.S.; Ziem, E.A.

J. Less-Com. Met., 172-174 (1991) 1036 Bershadsky, E.; Josephy, Y.; Ron, M.

J. Less-Common Met. 104 [1984] 159 (4) Sandrock, G.D.; Goodell, P.D.

Gerard, N; Ono, S.

J. Vac. Sci. Technol. A, 3 [1985] 34 (338) Nakamura, K.; Hoshi, T.

Chapt 4 in Hydrogen in IntermetallicCompounds II, Topic in Phys. 67 [1992] 165 (334)

Franco, R.J.; Berkowitz, B.J.; Kaul, B.K.

J. Less-Common Met., 90 [1983]11 (132) Liu, J.; Huston, E.L.

"Low Temperature Heat Pipe Employing a Hydrogen Getter", US Pat. 4,585,561, May 6, 1986 (337)

(b) Int. J. Hydrogen Energy, 14 [1989] 187 (344) Bernauer, O.; et al

Z. Phys. Chem. NF, 164 [1989] 1415 (346) Heung, L.K.

Mat. Res. Bull., 13 [1978] 1221 (116) Mendelsohn, M.H.; Gruen, D.M.

J. Less-Common Met., 129 [1987] 13 (354) Willems, J.J.G.; Buschow, K.H.J.

Someno, M; Arita, M.; Kinaka, R.; Ichinose, Y.Trans Japan Inst. Met., 21 (supplement) [1980] 325 (381)

Massalski, T. B.In Binary Alloy Phase Diagrams, ASM Int., 1990, Vol.3, p.3037

Citation 5 Authors 5

React. Kineti. Catal. Lett., 19 [1982] 297 (865)

Inorg. Chem., 11 [1972] 1691 (318) Wiswall, R. H. ; Reilly, J. J.

Sandrock, G.; Suda, S; Schlapbach, L.

L. Less-Common Met., 99 [1984] 1 (5) Goodell, P. D.

Sakai, H.; Nakajima, T.; Yoshida, N.; Kishimoto, S.

Chapt. 5 in Hydrogen in Intermetallic Components II, Topics in Appl. Phys, 67 [1992], 197 (322)

J. Less-Common Met. 99 [1984]1 (5) andJ. Less-Common Met. 104 [1984] 159 (4)

Goodell, P.D. and Sandrock, G. D.; Goodell, P. D.

Int. J. Hydrogen Energy, 20 (1995) 29 Bershadsky, E.; Klyuch, A.; Ron, M.

J. Less-Common Met. 73 [1980]161 (203) Sandrock, G.D.; Goodell, P.D.

J. Less-Common. Met., 89 [1983] 55 (208) Eisenberg, F.; Goodell, P.D.

J. Less-Com. Met., 74 [1980] 401 (327), Ibid., 99 [1984] 1 (5)

Sheft, I.; Gruen, D.M., Lamich, G.J. and Goodell, P.D.

Lasocka, M.In Binary Alloy Phase Diagrams, ASM Int., 1990, Vol.3, p.2629

Nobile, A.; Walters, R.T.; Mosley, W.C.

Freeman, B.; Ryba, E.; Bowman, R.; Phillips, J

J. Less-Common Met., 172-174 [1991] 1352 (347)

In Hydrogen Energy Progress X, Int. Assoc. Hydrogen Energy, 1994, p.2031 (350)

J. Less-Common Met., 72 [1980] 79 (80) Osumi, Y.; Suzuki, H.; Kato, A.; Nakane, M; Miyake, Y.

J. Alloys and Compounds, 240 [1996] 235 (869) Noh, H.; Clewly, J. D.; Flanagan, T. B; Craft A. P.

Major Element 1 Major Element 1 Wt.% Minor Element 1 Minor Element 1 Wt.%

Mg 100

Pd 100

Zr 100

Ti 100

U 100

V 100

Fe 53.8

Ni 67.9

Ni 65.2 Al 1.9

Ni 67.7

Ni 56.5 Fe 11

Ni 63.2 Al 3.2

Ni 88

Ni 80.7 Ca 7.7

Ti 45.9 Ni 11.3

Fe 48.5 Mn 5.3

Ni 54.7

Cr 66.1

Zr 60.8

Ni 62.7 Mn 5.1

Ni 46.6 Cu 21.6

Mn 54.6

Ni 61.1 Mn 6.4

Ni 40.6 Co 27.1

Ni 40.7 Co 27.2

Mn 63.2

Zr 45.4 Cr 12.9

Mn 51.3 V 13.6

Ni 50.3 Co 10.1

Ni 58.2 Mn 3.9

Ni 61 Al 5

Ni 63.4 Sn 5.3

V 85.6 Ti 8.9

Co 66.2

Ni 67.7

Ni 67.6

Ni 67

Cr 53.3

Mn 49.2

Zr 40.3 Mn 11.6

Zr 37.7 Ti 5

Co 55.2

Fe 51.6

Ni 59.3

Mg 48.7

Pd 69.7

Pd 90.3

Major Element 2 Major Element 2 Wt.% Minor Element 2 Minor Element 2 Wt.%

Ti 46.2

La 32.1

La 32.9

Mm 32.3

Mm 32.5

Mm 33.6

Ca 12

Mm 11.6

Fe 42.8

Ti 46.2

Mg 45.3

Ti 33.9

Ni 39.2

La 32.8

Mm 31.8

Zr 45.4

Mn 32.5

Mm 32.3

La 32.1

Ti 36.8

Fe 41.7

Ti 29.2 Fe 3.1

Mm 34.3 Al 5.3

Mm 33.2 Co 2.8

La 34

La 31.3

Fe 5.5

Sm 33.8

Ce 32.3

Pr 32.4

Pr 33

Zr 46.7

Ti 30.6

Ni 37.3 V 10.8

Mn 28.4

Ti 44.8

Gd 48.4

Pr 40.7

Zn 51.3

Ag 30.3

Rh 9.7

Major Element 3 Major Element 3 Wt.% Minor Element 3 Minor Element 3 Wt.%

Cr 1.6

Al 1.9

V 20.2

Fe 28.9

Minor Element 4 Minor element 4 Wt.%

Zr 1.1

Record No. Application Family Storage Type

1

hydrogen storage stationary

2

hydrogen storage stationary, mobile

3

stationary, mobile

4

hydrogen storage stationary

5

mobile, stationary

6

mobile, stationary

7

stationary, mobile

8

stationary, mobile

9

stationary, mobile

10

stationary, mobile

11stationary, mobile

othermaterials processingelectrochemicalthermal applicationshydrogen processinghydrogen storage

hydrogen storagehydrogen processingthermal applicationsotherthermal applicationshydrogen storageelectrochemicalotherhydrogen storagehydrogen processingthermal applications

hydrogen storagehydrogen processingthermal applicationselectrochemicalotherhydrogen storagehydrogen processingthermal applicationselectrochemicalotherhydrogen storagehydrogen processingthermal applicationselectrochemicalotherhydrogen storagehydrogen processing

12

hydrogen storage stationary, mobile

13

mobile, stationary

14

mobile, stationary

15

hydrogen storage stationary

16

hydrogen storage stationary

17

hydrogen storage stationary

18

hydrogen storage stationary

19

hydrogen storage mobile

20

hydrogen storage mobile

21

hydrogen processing

hydrogen storagehydrogen processingthermal applicationselectrochemicalotherhydrogen storagethermal applications

22

hydrogen storage stationary

23

hydrogen storage stationary

24

hydrogen storage stationary

25hydrogen storage stationary

26

hydrogen storage stationary

27

hydrogen storage stationary

28

hydrogen storage stationary

29

hydrogen storage stationary

30

hydrogen storage stationary

31

hydrogen processing

32

hydrogen storage mobile

33

hydrogen storage mobile

34

hydrogen storage stationary, mobile

35hydrogen storage stationary

36

hydrogen storage mobile

37

hydrogen storage stationary

38

hydrogen storage stationary

39

hydrogen storage stationary

40hydrogen storage mobile, stationary

41

stationary

42

hydrogen storage stationary, mobile

43

hydrogen storage mobile

44

hydrogen storage mobile

hydrogen storagehydrogen processing

45

hydrogen storage mobile

46hydrogen storage mobile

47

hydrogen storage mobile

48hydrogen storage mobile

49hydrogen storage mobile

50

hydrogen storage stationary

51hydrogen storage mobile

52hydrogen storage mobile

53

hydrogen storage mobile

54

hydrogen storage stationary, mobile

55

hydrogen storage mobile

56

hydrogen storage mobile

57

hydrogen storage mobile

58 thermal applications stationary, mobile

59hydrogen storage mobile

60thermal applications stationary

61hydrogen storage stationary

62

hydrogen storage stationary, mobile

63

hydrogen storage mobile

64

hydrogen storage stationary

65hydrogen storage mobile

66

hydrogen storage mobile

67

hydrogen storage mobile

68hydrogen storage mobile

69

hydrogen storage mobile

70

hydrogen storage mobile

71

hydrogen storage mobile

72

stationary

73

hydrogen storage stationary

74

hydrogen storage stationary

75

hydrogen processing

76

hydrogen processing

77

thermal applications

78

hydrogen storage stationary, mobile

79

stationary

hydrogen storagehydrogen processing

thermal applicationshydrogen storage

80

stationary

81

stationary, mobile

82

mobile

83

84

stationary, mobile

85

thermal applications

86

thermal applications

87

stationary

88

stationary

89

hydrogen storage mobile

90

hydrogen storage stationary

91

mobile

92

stationary, mobile

93

hydrogen storage mobile

hydrogen storagehydrogen processingthermal applicationselectrochemicalotherhydrogen storagehydrogen processingthermal applicationselectrochemicalotherelectrochemicalthermal applicationshydrogen storagehydrogen processinghydrogen storagethermal applicationshydrogen storagehydrogen processing

hydrogen storagehydrogen processing

hydrogen storagehydrogen processing

hydrogen storagehydrogen processingthermal applicationselectrochemicalmaterials processinghydrogen storagehydrogen processingthermal applicationselectrochemicalmaterials processing

94

hydrogen storage mobile

95hydrogen storage mobile

96

stationary

97

hydrogen processing

98hydrogen processing

99

hydrogen processing

100

hydrogen processing

101hydrogen processing

102

hydrogen processing

103

hydrogen processing

104

hydrogen processing

105

hydrogen processing

106

hydrogen processing

107

hydrogen storage stationary

108hydrogen processing

109

hydrogen processing

hydrogen storagehydrogen processing

110hydrogen storage stationary

111

hydrogen processing

112

hydrogen processing

113

hydrogen processing

114

hydrogen storage stationary

115

hydrogen storage stationary

116

hydrogen processing

117

hydrogen processing

118hydrogen processing

119

hydrogen processing

120hydrogen processing

121hydrogen processing

122hydrogen processing

123

stationary

124stationary

hydrogen storagehydrogen processing

hydrogen storagehydrogen processing

125

thermal applications

126

thermal applications

127

hydrogen processing

128

hydrogen processing

129

130

hydrogen processing

131

132

133

hydrogen processing

134

hydrogen processing

135 hydrogen processing

136

hydrogen processing

137hydrogen processing

138hydrogen processing

hydrogen processingthermal applicationsother

hydrogen processingthermal applicationsotherhydrogen processingthermal applicationsother

139

hydrogen processing

140hydrogen processing

141

hydrogen processing

142

hydrogen processing

143

hydrogen processing

144thermal applications

145

thermal applications

146thermal applications

147thermal applications

148thermal applications

149thermal applications

150

hydrogen storage stationary, mobile

151thermal applications

152

thermal applications

153

thermal applications

154

thermal applications

155

thermal applications

156

thermal applications

157

thermal applications

158thermal applications

159

160

thermal applications

161

thermal applications

162

thermal applications

163

thermal applications

164thermal applications

165

thermal applications

166

thermal applications

167

thermal applications

hydrogen processingthermal applications

168

thermal applications

169

thermal applications

170

thermal applications

171

thermal applications

172

thermal applications

173

thermal applications

174

thermal applications

175thermal applications

176

thermal applications

177

thermal applications

178

thermal applications

179

thermal applications

180

thermal applications

181

182

thermal applications

183hydrogen storage mobile

184thermal applications

185hydrogen storage stationary

186

thermal applications

187

188

thermal applications

189

thermal applications

190

hydrogen storage stationary, mobile

191

thermal applications

192

193

thermal applications

194thermal applications

thermal applicationshydrogen processing

hydrogen processingthermal applications

thermal applicationshydrogen processing

195

196

thermal applications

197

thermal applications

198

thermal applications

199

thermal applications

200

thermal applications

201

thermal applications

202

thermal applications

203

thermal applications

204

thermal applications

205thermal applications

206

thermal applicationsother

hydrogen processinghydrogen storage

207

hydrogen processing

208

hydrogen processing

209

hydrogen processing

210hydrogen processing

211

hydrogen processing

212hydrogen processing

213

hydrogen processing

214hydrogen storage

215

other

216

materials processing

217

materials processing

218

materials processing

219

materials processing

220

materials processing

221electrochemical

222

materials processing

223

materials processing

224

materials processing

225electrochemical

226electrochemical

227materials processing

228

stationary

229

230

electrochemical

231

electrochemical

232

stationary

233

hydrogen processing

234

stationary

235

thermal applications

236

thermal applicationshydrogen processinghydrogen storageelectrochemicalhydrogen processing

hydrogen storageelectrochemical

hydrogen storagethermal applications

otherthermal applicationshydrogen processing

237

other

238

hydrogen processing

239

hydrogen storage portable

240

hydrogen storage stationary, portable

241

hydrogen storage stationary, portable

242

hydrogen storage portable

243

stationary

244

other

245

other

246

electrochemical

247

electrochemical

hydrogen storagehydrogen processing

248

thermal applications

249

thermal applications

250

thermal applications

251

thermal applications

252

thermal applications

253

thermal applications

254

hydrogen processing

255

hydrogen processing

256

hydrogen processing

257

hydrogen processing

258

hydrogen processing

259

hydrogen storage tritium

260

hydrogen processing

261

hydrogen processing

262

263

264

265other

266

thermal applications

267

other

268thermal applications

269

other

270

hydrogen processing

271

hydrogen storage stationary

272

hydrogen storage stationary, mobile

273

thermal applications

274

materials processing

thermal applicationsother

hydrogen processingthermal applicationsotherotherthermal applicationshydrogen processing

275

thermal applications

276

materials processing

277

278

thermal applications

279

electrochemical

280

thermal applications

281

hydrogen processing

282

hydrogen processing

283

hydrogen processing

284

hydrogen processing

285thermal applications

286

hydrogen processing

287hydrogen storage stationary, mobile

288

thermal applications

289

thermal applications

otherhydrogen processing

290

hydrogen processing

291

hydrogen storage stationary

292thermal applications

293

294materials processing

295

stationary, vehicular

296

thermal applications

297

electrochemical

298

hydrogen storage stationary

299

other

300

hydrogen storage stationary

301

materials processing

302 hydrogen processing

303hydrogen storage stationary

304

hydrogen processing

305

thermal applications

306

other

307

hydrogen processing

thermal applicationshydrogen processing

thermal applicationshydrogen storagehydrogen processing

308

hydrogen processing

309

hydrogen storage mobile

310

electrochemical

311

hydrogen storage mobile

312

hydrogen processing

313

thermal applications

314

mobile

315thermal applications

316 thermal applications

317

hydrogen storage stationary

318stationary

319

hydrogen storage stationary, mobile

320

thermal applications

321hydrogen storage stationary, mobile

322

hydrogen processing

323

hydrogen storage mobile, stationary

324

hydrogen storage mobile

thermal applicationshydrogen storage

hydrogen storagehydrogen processing

325hydrogen storage mobile

326

hydrogen storage mobile

327

hydrogen storage stationary, mobile

328electrochemical

329

electrochemical

330

thermal applications

331

hydrogen storage mobile

332hydrogen storage stationary

333electrochemical

334

hydrogen processing

335

other

336

hydrogen storage mobile, stationary

337electrochemical

338

hydrogen processing

339

hydrogen storage stationary, mobile

340

hydrogen storage stationary

341hydrogen storage mobile

342hydrogen storage stationary

343

mobile

344hydrogen storage stationary, mobile

hydrogen storagehydrogen processingthermal applicationselectrochemical

345thermal applications

346hydrogen processing

347hydrogen storage mobile, stationary

348

stationary

349

hydrogen storage mobile

350

hydrogen storage mobile

351thermal applications

352

hydrogen storage stationary

353hydrogen storage stationary

354hydrogen storage mobile

355

stationary

356hydrogen storage stationary

357

thermal applications

358hydrogen storage mobile

359hydrogen processing

360

hydrogen storage stationary

361hydrogen storage stationary

362

hydrogen storage mobile

363

hydrogen processing

364

hydrogen storage stationary

hydrogen storagethermal applications

hydrogen storagehydrogen processing

365

hydrogen storage mobile

366thermal applications

367

hydrogen storage stationary

368

hydrogen storage mobile

369

hydrogen storage mobile

370

hydrogen storage stationary

371

hydrogen storage mobile

372

hydrogen storage mobile

373

mobile, stationaryhydrogen processinghydrogen storage

Thermal Electrolytic

battery, catalysis

isotope separation heat storage

battery

battery

battery

isotope separation heat storage battery

H2 Processing Application

separation, purification, gettering, isotope separation

compression, heat storage, heat pumping, refrigeration, actuator/heat engine

actuator/heat engine, heat storage

purification, isotope separation

heat storage, heat pumping, actuator/heat engine

compression, gettering, separation, purification, isotope separation

heat pumping, refrigeration, actuator/heat engine

compression, gettering, separation, purification, isotope separation

heat storage, heat pumping, refrigeration, actuator/heat engine

compression, separation, purification, isotope

battery

compression

separation, purification, isotope separation, compression

heat pumping, refrigeration, actuator/heat engine

heat pumping, refrigeration, actuator/heat engine

compression

compression

heat pumping

heat storage, heat pumping, refrigeration

purification

purification

purification

actuator/heat engine

heat storage

gettering, compression battery

gettering, compression battery

actuator/heat engine battery

compression

heat pumping

purification

purification battery, catalysis

separation, purification battery

heat storage, heat pumping, refrigeration

heat storage, heat pumping, refrigeration

compression, purification, isotope separation

heat storage, actuator/heat engine

heat storage, actuator/heat engine

isotope separation, compression, purification

heat storage, heat pumping, refrigeration

heat storage, heat pumping, refrigeration

isotope separation

separation, compression

separation

separation

separation

separation

separation

separation

separation

purification

isotope separation

isotope separation

isotope separation

isotope separation

isotope separation

isotope separation

isotope separation

isotope separation

isotope separation

isotope separation

isotope separation

isotope separation

gettering

isotope separation

isotope separation

heat storage

actuator/heat engine

compression

compression

compression refrigeration

compression

compression refrigeration

compression refrigeration

compression

compression

compressioncompression

separation

separation

separation

separation

purification

separation

purification

heat storage

heat storage

heat storage

heat pumping

heat pumping

heat pumping, refrigeration

heat pumping

heat pumping

heat storage, heat pumping, refrigeration, actuator/heat engineheat storage, heat pumping, refrigeration, actuator/heat engine

heat storage, heat pumping, refrigeration, actuator/heat engine

heat pumping

compression, purification heat pumping

heat pumping

heat pumping, refrigeration

refrigeration

heat pumping

heat pumping

refrigeration

heat pumping

heat pumping

heat storage, heat pumping, refrigeration, actuator/heat engine

heat storage, heat pumping, refrigeration, actuator/heat engine

refrigeration

refrigeration

refrigeration

heat pumping, refrigeration

heat storage

heat storage

heat storage

refrigeration

heat pumping

heat pumping

refrigeration

heat storage, refrigeration, heat pump

actuator/heat engine, heat engine

compression actuator/heat engine

heat pumping

heat pumping

heat pumping

compression

heat pumping, refrigeration

heat pumping

actuator/heat engine

compression actuator/heat engine

actuator/heat engine

actuator/heat engine

heat pumping, refrigeration, heat storage

actuator/heat engine

actuator/heat engine

actuator/heat engine

actuator/heat engine

actuator/heat engine

actuator/heat engine

actuator/heat engine

actuator/heat engine

actuator/heat engine

actuator/heat engine

actuator/heat engine

separation, purification

separation

separation

purification

isotope separation

isotope separation

isotope separation

isotope separation

catalysis

catalysis, fuel cell

catalysis, fuel cell

heat pumping, refrigeration

compression solar power generator

solar electric storage

water electrolysis

solar electric storage

compression

heat storage

refrigeration

compression refrigeration, cryocooling

separation, purification, compression

separation, purification

purification, gettering

catalysis

catalysis

heat transport

refrigeration

heat pumping

refrigeration

heat pumping, refrigeration

refrigeration, heat pumping

separation

separation

isotope separation

separation, isotope separation

separation, isotope separation

isotope separation

isotope separation

gas-gap heat switch

compression gas-gap heat switch

compression gas-gap heat switch

heat storage

heat pumping, refrigeration

isotope separation

heat pumping, refrigeration

heat pumping, refrigeration

gettering

refrigeration

Fuel Cell

heat storage

isotope separation

isotope separation

separation, compression

separation

refrigeration

separation

heat pumping, refrigeration

actuator/heat engine

separation

heat pumping

compression heat pumping

compression heat pumping

heat pumping

battery

compression

separation

heat pumping

isotope separation

compression

battery

separation

Gas gap heat switch

refrigeration

Gas gap thermal switch

heat pumping

purification

actuator/heat engine

gettering

catalysis

catalysis

heat pumping

catalysis

compression

catalysis

compression

compression heat switches battery

heat pumping

compression

heat pumping

actuator/heat engine

separation

refrigeration

compression

compression

actuator/heat engine

compression

Material Processing Other Applications Type of StudyReview

Review

magnets LH2 Review

Review

electric peak shaving Review

electric peak shaving Review

Review

liquid H2 Review

liquid H2 Review

electric peak shaving Review

Review

Review

Review

solar energy storage Review

Prototype

Prototype

Prototype

Prototype

Prototype

Conceptual

Prototype, Experimental

Commercial

Commercial

Commercial

Commercial

Prototype

Theory/Modeling

Commercial

Commercial

Commercial

Commercial

Prototype

Prototype

Conceptual

Conceptual

Conceptual

Prototype

Conceptual

Review

Experimental

Review

Prototype

Theory/Modeling, Experimental

Prototype, Theory/Modeling

Conceptual

Prototype

Conceptual

Theory/Modeling

Review

Review

Review

Prototype

Review

Commercial

Theory/Modeling

ReviewReview

Review

Review

Review

Prototype

Theory/Modeling, Review

Conceptual, Experimental

Prototype

Prototype

Prototype

Prototype

Theory/Modeling

Prototype

Prototype

Prototype

Commercial

Experimental

Experimental

Conceptual

Conceptual, experimental

Experimental, Prototype

Theory/Modeling, Experimental, Conceptual

Conceptual, Experimental

cold accumulator

cold accumulator

Review

Review

Review

Experimental

Experimental

Commercial

Commercial

Prototype

Prototype

HDDR Review

hydrogenation catalyst Review

Prototype

Review, Conceptual, Theory/Modeling

Review, Conceptual, Theory/Modeling

Experimental

Experimental

Experimental

Experimental

Experimental

Prototype

Experimental

Conceptual

Experimental

Commercial

Conceptual

Experimental

Conceptual, Experimental

Conceptual, Experimental, Theory/Modeling

Conceptual, Experimental

Theory/Modeling, Experimental

Prototype

Experimental

Commercial

Prototype

Experimental

Conceptual

Experimental

Experimental

Experimental

Experimental

Conceptual, Experimental

Conceptual, Experimental

Experimental, Theory/Modeling

Experimental, Theory/Modeling

Conceptual, Experimental

Prototype

Prototype

LH2 Prototype

LH2 Prototype

LH2 Prototype

Experimental

Prototype

Theory/ModelingCommercial

Experimental

Experimental

Prototype, Theory Modeling

Prototype, Theory/Modeling

Experimental, Prototype

Experimental

Conceptual

Experimental

Conceptual

Conceptual

Conceptual

Conceptual

Conceptual

Review

Conceptual

Conceptual

Conceptual

Experimental, Conceptual

Prototype, Experimental

Theory/Modeling, Conceptual

Prototype, Experimental

Prototype, Experimental

Conceptual

Conceptual

Conceptual

Conceptual

Conceptual

Experimental

Theory/Modeling

Prototype

Conceptual

Theory/Modeling, Review

Theory/Modeling, Review

Theory/Modeling, Conceptual

Experimental

Experimental

Prototype

Experimental

Experimental

Experimental

Experimental

Theory/Modeling

Experimental

Prototype

Prototype

Prototype

Prototype, Experimental

Prototype

Experimental

Prototype

Experimental

Theory/Modeling

Review

Conceptual

Conceptual

Conceptual

Conceptual

Conceptual

Conceptual

Conceptual

Theory/Modeling, Experimental

liquid H2

Prototype

Prototype

Prototype

Prototype

Conceptual

Prototype

Prototype

Commercial

Prototype

Conceptual, experimental

Prototype, Experimental

Experimental, Theory/Modeling

Experimental

Experimental

Experimental

Review

Experimental

Experimental

Liquid H2 Prototype

catalysis Experimental

catalysis

catalysis Experimental

catalysis Conceptual

catalysis

catalysis Experimental

catalysis Experimental

Prototype, Experimental

Theory/Modeling, Experimental

Review, Experimental

Conceptual, Experimental

Conceptual, Experimental

catalysis Experimental

catalysis Experimental

Review

Conceptual

Experimental

Prototype

Prototype

Conceptual

Prototype

liquid H2, solid H2 Prototype

Conceptual, ExperimentalConceptual, Experimental

Conceptual, Experimental

switchable mirror Experimental

Review

Commercial

Commercial

Experimental

Review

Commercial

H-ion source Experimental

H2 sensor Experimental

Experimental

Experimental

Prototype

Conceptual

Theory/Modeling

Theory/Modeling

Review

Experimental

Experimental

Experimental

Experimental

Experimental

Experimental

Theory/Modeling, Review

Theory/Modeling

H2 dispenser

H2 dispenser

H2 dispenser

H2 sensor Experimental

Experimental

electric peak shaving Conceptual

H2 sensor

Experimental

Review

Experimental

Catalytic Hydrogenation Experimental

Theory/Modeling, Review

Theory/Modeling, Conceptual, Experimental

Theory/Modeling, Experimental

Theory/Modeling, Experimental

Theory/Modeling, ExperimentalConceptual, Experimental

Theory/Modeling, Experimental

Catalytic Hydrogenation Experimental

Gas-gap heat switch Experimental

Experimental

Experimental

Experimental

Experimental

Theory/Modeling

Theory/Modeling

Prototype

Theory/Modeling

Prototype

Prototype

Theory/Modeling, Experimental

Experimental, Prototype

Theory/Modeling, Experimental

Prototype

Theory/Modeling

Catalysis Experimental

Review

Prototype

Conceptual

Conceptual

H2 Dispenser, Fluorescent Conceptual

Conceptual

Catalytic Decomposition

ConceptualConceptual

Conceptual

Conceptual

Spark Plug Conceptual

Experimental

Theory/Modeling, Experimental

Prototype, Experimental

Conceptual, Experimental

Prototype

Prototype

Review

Conceptual

Conceptual

Conceptual

Conceptual

ConceptualConceptual

Conceptual

Conceptual

Conceptual

Conceptual

Conceptual

Conceptual

Experimental, Prototype

Conceptual, Prototype

Conceptual

Conceptual

Conceptual

Experimental

Experimental

Experimental

Experimental

Experimental

Thermochromic devices

Experimental

Experimental

Prototype

Review

Theory/Modeling

Review

Review

Experimental, Theory/Modeling

Experimental, Theory/Modeling

Experimental, conceptual

Experimental, Theory/Modeling

Prototype, experimental

Theory/Modeling

Theory/Modeling

Prototype

Theory/Modeling

Prototype

Theory/Modeling

Theory/Modeling

Theory/Modeling

Theory/Modeling

Theory/Modeling

Theory/Modeling

Theory/Modeling

Experimental

Theory/Modeling

Theory/Modeling

Conceptual, Theory/Modeling

Theory/Modeling, Experimental

Experimental, Theory/ModelingExperimental, Theory/Modeling

Experimental, Prototype

Conceptual

Theory/Modeling

Theory/Modeling

Prototype

Prototype

Commercial

Prototype

Prototype

Theory/Modeling, Experimental

Alloys Used Organization:DesignTiFe DFVLR

TiFe, Mg2Ni AGA

Inco

BNL

BNL

U. Paris Sud

SunaTech

Daimler-Benz

Inco

mostly AB, AB2 and AB5 intermetallic compounds

SunaTech: Catalogs many published designs reported in literature.

AB, AB5, AB2, A2B intermetallic compounds

AB, AB5, AB2, A2B intermetallic compounds

AB, AB5, AB2, A2B intermetallic compounds, complex hydrides, solid solution alloys

Elements, AB, AB5, Ti0.52Fe0.44Mn0.02

KFA Juelich: Storage container/purifier consists of stainless steel cylinder with internal Cu tubing and fins for heat exchange. Dimensions of container are 80 cm long, 7 cm o.d. and 0.3 cm wall with empty volume and weight of 1.7 L and 3.5 kg. Alloy filling is 7.5 kg of Ti0.52Fe0.44Mn0.02, giving storage capacity of 1.7 m3 H2 (STP).mostly AB5 and AB2 intermetallic

compounds

AB, AB5, AB2 and A2B intermetallic compounds

AB, AB5, AB2 and A2B intermetallic compounds

AB, AB5, AB2 and A2B intermetallic compounds

SunaTech

Ergenics, DRI

Ergenics, Inco

Ti0.51Fe0.44Mn0.05

TiFe, Ti(Fe,Mn)

TiFe, Mg2Cu

Mg-10wt.%Ni

LaNi5

Elements, AB, AB5, AB2, A2B, AB3, A2B7, Solid Solution, Mg-Alloys, Multiphase Alloys, Amorphous, Nanocrystalline, Quasicrystalline, Complex Hydrides, Carbon

AB, AB5 and A2B intermetallic compounds

Billings: Hydrogen Homestead vessel, mild steel vertical cylinder 97 cm diameter, 123 cm high and 2.4 cm wall thickness (internal volume 597 L), containing 1791 kg hydriding alloy with capacity of 30.8 kg H2 (1.7 wt.% on alloy basis). Working pressure=34 atm. External water heat exchange.BNL: Stainless steel cylinder 30.5 cm diameter, 198 cm long and 0.635 cm wall thickness with internal water heat exchange tubes. Available internal volume of 132 L was filled (50.8%) with about 399 kg of TiFe (some of which contained 1-2% Mn). H2 capacity was about 6.35 kg with a gross reservoir weight of 563 kg (1.13 wt.%H). Also see Ref. 887.CEN Grenoble: (1) Carbon steel (A421C1) vessel with 310 L volume (empty weight=209 kg) and Cu heat exchanger tubes. Maximum pressure/temperature: 30 bars/100C. Loaded with 900 kg TiFe. H2 capacity (STP): 160 m3 (14.4 kg) or 1.3 wt.% of gross container.

(2) Cr steel (3%) cylinder 40 cm diameter, 50 cm long. Heat exchange via a 20 kW heat pipe. Maximum pressure/temperature: 30 bars/300-380C. Loaded with 80 kg Mg2Cu.

LRNi4.8Al0.2, LR=lanthanum-rich mischmetal

NCLI-Kawasaki-Santoku: Horizontal cylinder with internal finned-tube, liquid heat exchange. Design pressure and temperature: 29 atmg and 75 C. Hydride layer 5 cm thick on heat exchanger surfaces. Vessel loaded with 993 kg hydriding alloy with initial H-capacity of about 173 m3 (15.6 kg or 1.6% of alloy weight).

Ti0.98Zr0.02V0.43Fe0.09Cr0.05Mn1.5

Mannesmann: Modular unit consisting of shelled 19-tube bundle through which heat exchange fluid flows. Tubes are "high-grade" steel (type 4571) containing Al heat exchange lamella and hydriding alloy mixed with 5% Al for further heat exchange. Each module contains 81 kg of hydriding alloy, has a gross weight of 142 kg and has a maximum reversible H-capacity of 1.5 kg (1.05%, based on gross container weight). (See also Ref. 886 for color diagrams and photos of this design).

NCLI: Thin-wall (not pressure-proof) 316 stainless steel cylinder 16 cm diameter, 50 cm high and 0.2 cm wall (5.5 kg) in which is placed 3.5 kg hydriding alloy in five mesh sample holders (5.3 kg). Filled vessel (14.3 kg) holds 0.26 kg (2.9 m3) H2 at an effective 1.8 wt.% based on gross container weight.NCLI: Proposed design includes 8.92 kg hydriding alloy with an H-capacity of 62 mols. It would compress H2 from 1 to 10 atm using 30 C hot water and 10 C cold water with a cycle time of 15 min.

AB5?

AB5?

AB5?

AB5?

Lm(Ni,Al)5, Lm=La-rich mischmetal

TiFe

LaNi5

MmNi4.5Al0.5

MmNi4.15Fe0.85

LaNi5

TiFe0.9Mn0.1

Suzuki Shokan Co.: HY-PACK Model R1. Capacity=100 L (STP), nominal pressure=5 atmg, flow rate=300 cc/min, weight=9 kg.Hydrogen Components, Inc.: BT Series hydride storage containers. Al tube containers, finned for ambient air heat exchange, mounted vertically on base. One to three containers per base (BT-1 to BT-3). Specifications for BT-1: H-Capacity=40 L, pressure (max.)=34 atmg, charging time 30-120 min, discharge flow rate=225 cc/min, weight=2.0 kg.Hydrogen Components, Inc.: 3169 Series hydride storage containers. Al tube containers, finned for ambient air heat exchange, mounted vertically on base. One to three containers per base (3169-1 to -3). Same as HCI BT-series (see Ref. 882). Specifications for 3169-1: H-Capacity=40 L, pressure (max.)=34 atmg, charging time 30-120 min, discharge flow rate=225 cc/min, weight=2.0 kg.Baseline Industries: Model 3165 commercial hydride storage unit, cylindrical, 3.2 cm dia., 20 cm long. Kawasaki Heavy Industries: Large cylindrical vessel containing 1000 kg of storage alloy.

SNL: Hypothetical design of large cylindrical vessel of Schedule 160 carbon steel, containing 16.9 ton alloy with H-storage capacity of 252 kg H2.Milton Roy: Laboratory H-storage unit with integrated hydride container, pressure gage and desorption heater.

Ergenics: ST-1 hydride storage container. Stainless steel cylinder 3 cm diameter, 20 cm long, total weight 540 g.

Ergenics: ST-90 hydride storage container. Stainless steel cylinders bundled in a rectangular array 61 by 30.5 by 7.6 cm, total weight 36 kg. Ambient air (still or forced) heat exchange. MH alloy contained in capsules to prevent expansion of container (see Ref. 951).

Stage 1: LaNi4.9Al0.1; Stage 2: LaNi5; Stage 3: MmNi4.5Al0.5; Stage 4: MmNi4.15Fe0.85

Ergenics: 4-stage commercial hydride compressor. Uses the above four hydriding alloys in a staged manner operating over a temperature range of 10-90 C (supplied by cold and hot water). Uses 5 kg alloy and has total weight of 60-70 kg. Dimensions are 100 by 60 by 30 cm.Hydrogen Consultants, Inc.: Hydride container designed and constructed by Denver Research Institute (now HCI) on behalf of Ergenics for H2 fuel supply for Allis-Chalmers forklift truck. Cu tube bundle of 176 subunits, each 3.2 cm diameter by 91 cm long. Each tube held six hydride containment capsules 2.5 cm diameter by 15 cm long (see Ref. 951). Overall dimensions 91 by 51 by 30.5 cm. Contained 270 kg LaNi5 with total container weight at 450 kg. Tank was heated by vehicle engine coolant.

Hydrogen Consultants, Inc.: Hydride container designed and constructed by Denver Research Institute (now HCI) on behalf of Ergenics for H2 fuel supply for Dodge D-50 pickup truck. Al alloy (Type 6061T6) tube bundle of 187 subunits, each 2.8 diameter by 0.12 wall by 135 cm long. Contained 318 kg of encapsulated alloy (see Ref. 951). Total container weight was 433 kg. Tank was heated by vehicle engine coolant.

Mg-Ni, Mg-Al

TiFe

TiFe, LaNi5

LaNi5

Mg

AB, AB5, AB2 Ergenics

LaNi4.6Al0.4

SNL

U.K. Atomic Energy: Moving bed conceptual design of a hydride storage system whereby a relatively high temperature hydride is mechanically transported from an ambient temperature reservoir through a "hot zone" or furnace for H2 desorption.BNL: Conceptual heatable container for the storage of H2 as a TiFe-hydride.Gell: A conceptual metal hydride fuel system incorporating a plurality of storage elements that may be individually replaced to provide a hydrogen fuel system for combustion engines having a capability of partial GIRIO: A hydride container design involving alternating layers of cooling plate-hydride-porous plate-hydride-heating plate. Prototype model (22.8 cm diameter) built with 10.3 kg LaNi5 and H-capacity of 143 g.

ABn, where n=3-8.5, A=Ca or rare-earth elements (with or without Th, Zr, Hf) and B=Ni and/or Co (with or without Fe, Cu)

Philips: Basic conceptual hydride storage container using AB5 and related hydrides for H-storage.

Loughborough University of Technology: Al-lined Cu tube, 2.8 cm outer diameter, containing Mg powder (for heat transfer measurements only).

U. Vienna: Sintered bronze porous tube, 2 cm internal diameter by about 60 cm long, into which were pressed porous metal hydride compacts (PMHCs). This was surrounded by a double wall stainless steel water jacket (see Ref. for detailed dimensions and construction). Two PMHCs were used with the following formulations: 696 or 732 g MH alloy (predecrepitated and CO-stabilized), 129 or 111 g Al shavings, 86 or 90 g Cu powder.

Ti0.246Zr0.083Mn0.481V0.138Fe0.034Ni0.018 (GfE C15), MmNi4.5Al0.5 (Ergenics HY-STOR 208)

SNL: Modular storage system designed by Sandia National Lab and assembled by Hydrogen Consultants, Inc. Each module consists of a square array of 9 stainless steel tubes in a water shroud. Each tube is 1.75 cm diameter by 0.05 wall by 38 long with an enclosed fritted H2 collection tube and provisions for expansion control. Each completed C15 module weighs about 4 kg, of which 45-50% is hydriding alloy weight, and has a reversible H-capacity of about 30 g (about 0.75% of gross weight).

MmNi4.5Al0.5 (HY-STOR 208), MmNi4.15Fe0.85 (HY-STOR 209)

Hydrogen Consultants, Inc.: Modular tube-in-shell hydride storage system designed and built by HCI. Each module contains 7 type 304 stainless steel tubes of the dimensions 2.86 cm O.D. by 0.089 wall by 274 long. Each individual contains the hydriding alloy in 25 capsules (3003 Al+304 SS end filters) for expansion control (see Ref. 951). Completed module weighs 56.7 kg, of which 33.9 kg is hydriding alloy. Module (shell) O.D. is 8.9 cm. Modules reversibly store 0.40-0.44 kg H2 (depending on alloy) or about 0.7 wt.% of module.

TiFe, Mg-base

Battelle

TiFe, Mg2Ni

TiFe, Mg2Ni Ukrainian Academy of Sciences

BNL

Martin Marietta Aerospace

Mg2Ni, Mg2Cu Lawrence Livermore N.L.

Ni-coated Mg

TiFe BNL

Deutsche Aerospace

Daimler-Benz

TiFe

Various intermetallics Bell LabsBattelle-Geneva

Navy Civil Engineering Lab

U. of Windsor

TiFe

BNL: Early (1969) Brookhaven concept of a two-bed hydride storage system for vehicles: TiFe bed for startup and Mg-alloy bed for main fuel storage. Includes a mechanical compressor to recharge the startup bed during main-bed operation from engine exhaust heat.

Various elements and intermetallics, TiFe, MmNi5, Mg2Ni

Daimler-Benz: Three bed design for early (1978) bus: TiFe using engine cooling water, Mg2Ni using hot exhaust gas, TiFe using cooler exhaust gas (after passing through the Mg2Ni bed).

Various elemental and intermetallic hydrides.

Teitel: A tandem two-bed storage system: hydride and glass microcavities.

Various elemental and intermetallic hydrides

Various elemental, complex and intermetallic hydrides

Battelle-Frankfurt: High temperature vehicular hydride tank design, whereby some of the released H2 is reacted in a catalytic burner to provide the desorption enthalpy to release the rest. Includes a low temperature hydride for

Lawrence Livermore N.L.: Liquid H2 combined with hydride tank for boiloff capture.

Elemental and intermetallic hydrides, TiFeWide variety of elemental and intermetallic hydridesVarious elemental and intermetallic hydridesVarious elemental and intermetallic hydrides

BNL: Conceptual designs of vehicular hydride systems: high-temperature hydride using engine exhaust heat and low temperature hydride using engine cooling water.Billings Energy Corp.: Bus tank, 22 tube bundle, each 304 SS tube 7.6 cm O.D. by 0.22 wall by 175 long. 22-tube tanks weighed 200 kg empty and were filled with 508 kg TiFe. H-capacity=6.3 kg/tank (0.88 net wt.%).

Ti0.51Fe0.44Mn0.05

TiFe

MmNi4.5Al0.5 (HY-STOR 208)

TiFe?

Billings Energy Corp.

TiFe

TiFe

Ti0.51Fe0.44Mn0.05

Various AB2 alloys

MmNi4.5Mn0.5

TiFe BNL

M1Ni5 (M1=La-rich mischmetal)

LaNi5, M1Ni5, TiFe0.86Mn0.1

TiFe0.86Ni0.14, Ti1.2Cr1.9Mn0.1

Ca0.7Mm0.3Ni5

Billings Energy Corp.: Mild steel vertical cylinder 97 cm diameter by 2.4 wall by 132 high. Loaded with 1791 kg hydriding alloy. H-capacity=30.8 kg H2.

Billings Energy Research Corp.: Liquid H2 and metal hydride tanks installed on a H2-fueled 1973 Chevrolet Academic Research/Electrolyzer Corp.: Tank consisting of an 11 tube bundle, each 304 SS tube 6.3 cm O.D. by 84 long. Hydriding alloy=80 kg with capacity of 1 kg H2 (0.65% of entire tank weight).Billings Energy Research: Tank consisting of 9 stainless tubes in shell (dimensions not specified). Installed weight=333 kg of which mass of hydriding alloy was 198 kg. H-capacity=2.4 kg (0.7 wt.% of filled tank).

Billings Energy Corp.: Luxfer Al cylinder 20 cm O.D. (with water jacket) by 84 long. Filled weight=65.3 kg, of which 47.6 kg is hydriding alloy. H-capacity=0.77 kg (1.2 wt.% of filled tank).Billings Energy Corp.: 10 water-jacketed Al tubes, each tube 20.3 cm O.D. by 0.92 wall by 122 long. Each tube had an empty weight of 22.6 kg and was loaded with 90.7 kg TiFe (total wt. of 10 tube system=1133 kg).Billings Energy Corp.: 6 water-jacketed Luxfer Al tubes, each tube 18.4 cm O.D. by various lengths. Total alloy loading=307 kg. H-content cited as 6.1 kg? (2.0% of alloy weight?). Diameter of water jackets=20.3 cm.HWT: Qualitative designs of stationary storage units ranging from laboratory units of 1 m3 H2-capacity to an industrial scale EEC prototype with H2-capacity of 2000 m3.GIRI Osaka: Cylinder 25 cm diameter by 75 long. Alternating layers of porous plates, hydriding alloy and heat exchangers. Hydriding alloy=106 kg. H-capacity=16,000L.

Zhejiang University: Tube-in-shell, flow-thru hydride containers of 2, 6 and 12 m3 capacity. Made of 1Cr18Ni9Ti SS but details not given.Gas Purification Research Institute, China: Three step, flow-through system designed and tested with three hydriding alloys Pd-alumina deoxidation catalyst, molecular sieve dryer, hydride bed.Inst. of Isotopic and Molecular Tech.: Solar energy powered water pump. Lab experimental unit and conceptual commercial-scale unit for irrigation.Inco: Hydride capsules designed to accommodate expansion of hydride and prevent bulging of hydride containers. Capsules contain porous end plugs.Ergenics: Stainless steel cylinder 5 cm O.D., containing 1.97 kg alloy. This is surrounded by an insulated tank that includes reaction heat storage media to allow nearly adiabatic cyclic hydride/dehydride operation. Heat storage by both sensible and latent heat means.

Philips

Lawrence Livermore N.L.

TiFe, LaNi5, Mg2Ni BNL, Inco

Inco, Ergenics

BNL

AB5, La(Ni,Al)5, (Ca,Mm)Ni5, Pd

Pure depleted U

HWT: See Ref. 879.

Mm0.82Y0.18Ni4.95Mn0.05

Various ONRI

Various Zhejiang University

Mg2Cu

Elemental and intermetallic hydrides

Elemental and intermetallic hydrides

Various AB, AB5 and A2B intermetallic hydridesVarious elemental and intermetallic hydrides

LmNi4.85Sn0.15, LmNi4.49Co0.1Mn0.0205Al0.0205, (La,Lm)Ni4.4Co0.2Mn0.2Al0.2

IKE Univ. Stuttgart: Two stage experimental heat transformer (pump) using three alloys.

Mg, Ti0.98Zr0.02V0.43Fe0.09Cr0.05Mn1.5

Joint IKE U. Stuttgart-MPI Muelheim-Bomin Solar: Design to store high grade solar heat (480 C) from a concentrating collector. 24 kg of MgH2 is desorbed into AB2 beds, thus storing about 14 kWh thermal energy.Savannah River: T-storage = LaNi4.25Al0.75; T-compressor (to 20 atma) = two stages from storage tanks using LaNi4.7Al0.3 and Ca0.2Mm0.8Ni5 (cooled and heated with N2 jackets, T-separation and purification from inert contaminants via Pd/Kieselguhr columns.IN/US Systems: Commercial Tri-Sorber tritium dispensing system with three heatable beds, one for tritium inventory and dispensing, one for tritium recovery, one for deuterium. Each bed contains 3 g U with a capacity for at

Ti0.98Zr0.02V0.43Fe0.09Cr0.05Mn1.5

Sanyo Electric: Stacked array of 5 cylindrical modules, 18.6 cm long by 4.9 wide by 27.5 high, weight=4.5 kg, H-capacity>300 L, pressure=9 atm.

CEN Grenoble: Cr steel cylinder 14 cm O.D. by 86 long, alloy=10 kg, H-capacity=3000 L, working P=30 bars, maximum temperature=400 C.

MmMg12

(La,Ce)Ni5, (Ti,Zr)Mn2

Monsanto Mound, Princeton Physics Lab

LaNi5, TiFe, Ti(Fe,Ni)

Ti(Fe,Ni) with various Ni levels.

LaNi4.7Al0.3 BNL

LaNi4.7Al0.3

LaNi5

LaNi5

LaNi5

Mm(Ni,Y)5 (Y not specified)

MmNi4.5Al0.5 (proposed)

BNL

U

TiNi, Ti2Fe Daimler-Benz

V, TiNi Siemens

Hebrew University: Circular array of five 2 cm diameter stainless steel tubes, total alloy=1 kg, heated with 6 resistance heaters, gas cooled, H-capacity=660 L (STP), rock wool insulated, thermocouple instrumented, pressure=30 atm, temperature range=250-400 C.Matsushita Electric: Series of small Al and SS storage vessels, weight=390-400 g, H-capacity=24-74 L.

TiCr0.4V1.2Fe0.4 (solid solution alloy)

Institute of Gas Technology: Vertical, flow-thru steel tube reactor with 160.5 g TiFe.

Institute of Gas Technology: Vertical, flow-thru stainless steel tube reactor with Ti(Fe,Ni) alloys.

Ergenics: Stainless steel, flow-thru reactor in which the hydriding alloy is contained in pelletized form within an annular screen container. The hydride annulus is surrounded by a heat transfer fluid annulus. The pellets consist of 95 wt.% alloy bonded by 5 wt.% silicone rubber.Shell Oil: A tube in shell system, the tubes containing hydriding alloy pelletized with various polymeric binders.Air Products, Inco and Ergenics: Three parallel and sequenced flow-thru reactors designed for continuous separation of H2 from mixed gas streams by an adiabatic pressure swing process. Used thermally ballasted pellets 25 wt.% LaNi5 + 75 Wt.% Ni (see Ref. 10).Inco: Thermally ballasted hydride pellets for adiabatic pressure swing H2 absorption/desorption reactions, especially H2 separation from mixed gas streams. See also Ref. 11.Zhejiang University: Stainless steel, flow-thru reactor for breakthrough H2-separation studies as a function of alloy plateau pressure. Uses 700 g alloy, one or two alloys.TU Aachen, IPA-Gastechnik: A flexible geometric cross-sectioned reactor, called a raybloc, designed to accommodate hydride expansion by keeping the hydride annulus in compression.

V, Nb, V0.8Nb0.2, Mg2Ni, LaNi5, MmNi5, V0.9Cr0.1, ZrNi

Monsanto Mound and Princeton Physics Lab: Tritium storage units made of thick-wall 316 SS reservoirs. Three reservoirs are used in a glovebox, with each containing 145 g U. T2 desorption into the TFTR is accomplished by heating a storage unit to 400 C.

TiMn1.5

La(Ni,Co)5, Ca(Ni,Cu)5

U-238

U

V

V

Alkali metals Fluor Corp.

U

Pd, LaNi5 Mendeleev Moscow Chemical Tech. Inst.

Pd (on Al2O3)

La5.25Ni (eutectic La+La3Ni)

ZrNi, Mg2Ni, LaNi5 Monsanto Mound Lab

LaNi4.25Al0.75 Savannah River Lab

Matsushita Electric: Al container with about 2 L empty volume, MH alloy=6.3 kg, H-capacity=117 g, total

TiFe, TiFe0.6Mo0.2, TiCo, TiNi, TiMn, TiMo, TiCr, TiV, TiCr3, TiCr2, TiCrMn, TiMo2, Ti2Mo

BNL: Closed loop isotope separation system with SS flow-thru reactor containing about 8-10 g hydriding alloy and circulating pump.LLNL: Experimental flow-thru reactor for separating D2-H2 mixtures. Example includes brass tube 0.635 cm diameter by 229 long containing a mixture of 79 g LaNiCo4 and 402 g inert Ni powder.

A wide variety of La(Ni,Y)5 and Ca(Ni,Y)5 alloys. (Y=Al, Fe, Cu, Zn, Si, Ti, Cr, V, Mn, Co, Mg, Mo)

LLNL: Dead end PCT apparatus and flow-thru separation column.

LANL: A double wall design of a tritium storage system. U contained in 27 compartments in a 45 kg Cu block (primary container) that is heated with six 250 W cartridge heaters. The primary container is nested in a 135 kg secondary container made of 304 SS. Total U-238 inventory=5.94 kg, T2-capacity=0.226 kg, max. T2-loading=0.091 kg (40%), operational temperature range=27-450 C, max. allowable pressure=5.2 atm.

KFA Juelich: Double-walled tritium storage unit. T contained in a SS tube which was surrounded by an Ar-filled annulus and Mo heater. Water cooling jacket. Ar annulus captures T2 permeation through primary containment wall and has a separate valve for sampling and evacuation. Maximum T2 inventory=100 Ci.BNL: Flow-thru chromatographic column containing 45.7 cm of V-powder.

BNL: Two-bed flow-thru system, each 0.77 cm I.D. by 45.7 long column containing 60 g of 20-25 mesh V powder.

Osaka University: Simple flow-thru glass tubes in a cascade design with controlled and sequenced temperatures. Each of five tubes contained 3-30 g U.

US DOE: Two flow-thru columns, each 0.94 cm I.D. by 87.6 cm long containing 95 g of 25 wt.5 Pd on 40-80 LANL: A circulating T2-gettering experimental system. The getter was molten La5.25Ni in a W or SS crucible.

TiFe

LaNi5

V

MmNi5 BNL

LaNi5

LaNi4.5Al0.5

LaNi5

LaNi5

CaNi5

V

LaNi5 Inco

LaNi5, LaNi4Cu

La(Ni,Cu)5 BNL: See Ref. 241

NCLI: Hydriding alloy contained in 9 Cu tubes, 1.91 cm diameter, which was surrounded by a stainless steel water jacket 9 cm diameter by 36 long. Total TiFe alloy=1.5 kg. Hydride reservoir connected to a 47 L gas NCLI: Two stainless steel containers, each with five 2 cm O.D. stainless steel tubes and a central porous brass core. Each container (5 tubes) contained 705 g LaNi5. One container (initially dehydrided) was kept at 20 C and one (initially hydrided) at 70-90 C. High pressure H2 operated a piston engine and then exhausted to cold bed.BNL: Stainless steel tube, 1.27 cm diameter, containing 100g V. Tube surrounded by a water jacketing for heating and cooling. H2 line goes to a U-tube of Hg to serve as a piston to pump gases other than H2.

Philips: Three stainless tubes, each 2.6 cm diameter by 45 long, containing LaNi5 and a electric heater. H2 charged at 17 C and about 4 atm and discharged at 140 C and 45 atm. Cycle time for each tube is about 270 s.HCI, Ergenics: Bank of 50 type 316 SS tubes, each 1.59 cm O.D. by 0.09 wall by 61 long. Total hydriding alloy=14.4 kg (in capsules). Tubes were fabricated into heat exchangers by brazing on Cu end headers. Tubes were self-resistance heated (2000 amps) and air cooled. H2 input at 0.5 atma and 15 C; H2 output at 44 atma at 300 C; compression rate 20 L/m. Two heat exchangers were used out of phase for continuous compression.

JPL: Three tubes of LaNi5 in Cu foam, electrically heated. Cycle between 4 atm and 40 atm.

JPL: Three tubes of LaNi5 in Cu foam, with surrounding bonded electrical heater and water jacket. Cycle between 4 atm and 40 atm.

U. Vienna: Two pressed compacts of 64g CaNi5 each with Al and Cu added for mechanical stability (contained in slit Al rings).LANL: 22 g V metal in a thick wall stainless steel tube, surrounded by a Cu shell and external electrical heater.

LaNi4.9Al0.1, LaNi5, MmNi4.5Al0.5, MmNi4.15Fe0.85

Ergenics: Cu tubes, 0.95 cm diameter by 0.08 wall, two sets of four containing the four hydriding alloys. Two sets are used for continuous sequencing. Each set enclosed in a water jacket. Gas flow controlled by check valves and water flow controlled by timed solenoid valves. BNL: Flow-thru stainless steel reactor, 1 cm dia.X57 long, containing 441 g AB5 alloy.

Pd

TiNi, TiNi3

LaNi5

TiFe, CaNi5, (Ca,Mm)Ni5

TiFe, Mg2Ni

Ti-Nb, MmNi4.5Al0.5

LaNi5

MmNi5, TiFe, V-Nb

AB5

Ti0.51Fe0.44Mn0.05

LaNi4Cu, TiFe

CaNi5, (Ca,Mm)Ni5

CaNi5, LaNi5, MmNi5

CaNi5, LaNi5

CaNi5, LaNi5

Inco Ltd.: Flow-thru stainless steel reactor, 1.27 cm dia.X6.35 cm long, containing 48 g Pd pressed to various powder densities. Additional 250 g scaleup reactor consisting of Cu rod with 14 longitudinal passages 0.46 cm diameter.Deutsche Automobilgesellschaft: Membrane of pressed and sintered TiNi powders, subsequently plated with Pd

LaNi5, SmCo5, LaNi4.2Fe0.2, LaNi4.3Cr0.9, La0.75Y0.25Ni5, LaNi4.4Cu0.6, LaNi2.1Cr0.63

Shin-Etsu: Quartz tube or SS, flow-thru reactors containing 110-350 g AB5 powder.

Shell Oil: Tube-in- shell flow-thru separation reactor. AB5 alloy particles polymer bound.

Billings Energy: Flow-thru reactor containing O2-conversion catalyst followed by dryer.

Daimler-Benz: A conceptual 2-bed concept for the rapid heating of the passenger compartment of a passenger Ergenics: Numerous looped 0.35 cm dia., stainless steel tubes attached to a central manifold in a "daisy-wheel" pattern to form a rapid reaction heat exchanger 8.9 cm dia. by 25.4 cm long. Contained Ti-Nb = 1.0 kg. Reaction heat = 460 kJ. Coupled to AB5 bed.

LaNi5, SmCo5, V, TiFe, YCo5, Mg2Ni

Allied Chemical: Coupled gas-hydride and hydride-hydride containers.U.S. Navy: Coupled hydride beds (same type) with mechanical pump in between.BNL: Coupled high and low temperature hydride bed for pumping solar heat.Philips: Coupled hydride beds for heat pumping and refrigeration. Includes electric heating, if necessary.Billings: AHT5 portable hydride tank. Aluminum cylinder 11 cm diameter and 64 cm long, containing 14.8 kg hydriding alloy. H2 capacity > 227 g (1.5 wt.% on alloy basis).Terry: Early conceptual design of two-hydride, temperature-upgrading type of heat pump.Terry: Early conceptual design of multistage, temperature-upgrading type of heat pump. Contains at least three different hydrides.Argonne N.L.: Conceptual design of a two-hydride solar-driven energy conversion system, capable of heat storage, heat pumping, refrigeration and generation of mechanical energy.Argonne N.L.: Original HYCSOS system, Four beds, two each of a given alloy. Hydride beds were made of 10.2 cm O.D. type 316L SS pipe (SCH 10) with internal H2O heat exchange tubing. Each bed contained about 4.5 kg hydriding alloy.

Argonne N.L.: Improved HYCSOS reactors, Al-foam-enhanced hydride beds in prismatic form with external heat exchange.

CaNi5, LaNi5

CaNi5, LaNi5

Mg2Ni, TiFe and/or LaNi5

LaNi5, LaNi4AL, Mg2Ni

Nb, TiFe

Various CNRS/U. Paris Sud

LaNi5, MmNi4.15Fe0.85

LaNi5, LaNi4.5Al0.5

LaNi5, LaNi4.575Al0.425

Argonne N.L.: See Refs. 150, 1001, 1002, 1003, 1004, 1005, 1006, 1007 for HYCSOS designs.

Argonne N.L.: See Refs. 150, 1001, 1002, 1003, 1004, 1005, 1006, 1007 for HYCSOS designs.

T.U. Munich: Conceptual design of a two-bed heat pump as a topping process to improve the efficiency of power Standard Oil: Conceptual design of a one-hydride, moving bed system proposed for heat pumping, compression and purification.Standard Oil: Conceptual design of a multiple-hydride (two or more) system proposed for heat-upgrading type of heat pumping.

TiFe, NdCo5, MmCo5, LaNi5, CaNi5

Sekisui: Sealed tubular reactors, each containing two hydrides in compartments. Compartment walls are permeable to H2 gas.Retallick: Conceptual design of a three heat exchanger, two hydride bed refrigerator for air conditioning an automobile. Makes use of engine waste heat from cooling water or exhaust gas.

CaNi5, LaNi5, La(Ni,Al)5, TiFe0.8Ni0.2

Studsvik: Various hydride reactor designs:

LBR77: A water jacketed tubular reactor with a central gas channel and helical external water flow.

LBL79: A laminated, flat bed reactor made from commercially available (ALPHA-LAVAL) rectangular heat exchanger plates and sandwiched mesh filters containing the hydride.

VSR80: Flat plate reactor consisting (from bottom up) of pressure vessel wall, coolant coil, hydride layer, foam heat transfer matrix, filter frame and pressure vessel wall.

Solar Turbines: Bundle 37 sealed tubes containing both alloys separated by a porous frit. Hydride alloys incorporated in Al foam to enhance heat transfer. Bundle in a water shell with minimum volume to minimize Solar Turbines: Two reactor designs: (1) Internally finned hydride tube with heat exchange medium passed on outside; (2) Finned arrangement with hydride between the fins and the heat transfer medium flowing internally.Argonne N.L.: Sealed tubes, each containing a low temperature hydride (e.g., LaNi5) on one end and a high temperature hydride (e.g., La(Ni,Al)5) on the other end, the hydrides separated by a porous filter wall. Multiple tubes (up to 240) are arranged in a cylindrical array which is physically rotated about its long axis to facilitate continuous heat pumping.

MmNi4Fe, LaNi4.7Al0.3

MmNi4.15Fe0.85, LaNi4.7Al0.3

LaNi5, CaNi5

TiFe0.9Mn0.1

Mg2Ni

LaNi5, LaNi4.7Al0.3 Sekisui: Two-alloy conceptual refrigeration heat pump.

LaNi5, LaNi4.7Al0.3

Joint Kogakuin U. and Japan Metals and Chemicals: Four bed laboratory system, each bed consisting of 10 kg alloy packed in 18 reaction cells 2.5 cm O.D. by 36 cm long. Al foam used to improve the effective thermal conductivity of each reaction cell and external Al fins used for air heat exchange (heating and cooling).Technion: Two bed laboratory system, each bed consisting of alloy packed into 1.4-1.75 cm stainless steel tubes. Al (18 wt.%) used in the form of PMH compacts to improve the effective thermal conductivity.

Ergenics: Dimensions: 63 cm wide by 39 cm high by 46 cm wide. Total wt.=30 kg. Hydride wt.=12.3 kg. Few other details given.

LaNi4.88Al0.23, MmNi4.57Al0.46Fe0.05, MmNi3.98Fe1.04

Kogakuin U. and Sekisui Chemical: Two-stage (3 alloy) system for temperature upgrading and refrigeration heat pumps.Sanyo: Two-bed experimental heat storage system. Reactors are 4 cm dia. by 66 cm long, containing heat pipes for thermal transfer. Hydride mass=3.5 kg/bed.Tokai U.: Rectangular "filter box" hydride container 4.6X7.0X105 cm, containing 5.46 kg hydriding alloy, with internal tubes for heat exchange. Filter box surrounded by 11.4 cm dia. tube with insulation.NCLI-Tskuba: Nineteen tube heat exchange bundle (304 SS), each tube 2 cm dia. by 61 cm, containing 6.25 kg hydriding alloy, with total heat storage capacity of 2000 kcal. Reactor tube bundle surrounded by 20 cm dia. shell for heat exchange fluid.

Mg (Ni-doped), Ti0.98Zr0.02V0.45Fe0.09Cr0.05Mn1.5

MPI fur Kohlenforschung: Electrically heated stainless steel cylinder containing 1054 g Ni-doped Mg (charge with 72 g H2). Coupled to Ti0.98Zr0.02V0.45Fe0.2Cr0.05Mn1.4 bed immersed in H2O-glycol bath.

Mg (Ni-doped), AB2, Ti0.98Zr0.02V0.45Fe0.09Cr0.05Mn1.5

IKE der U. Stuttgart: Total of 14 alloy 800 cylindrical vessels (6.6 cm dia. by 100 cm long). Total of about 20 kg Ni-doped Mg powder contained in compartmentalized "cassettes" (96/tube) for safety and expansion purposes. Optionally coupled to a Ti0.98Zr0.02V0.45Fe0.2Cr0.05Mn1.4 bed.

LmNi4.85Sn0.15, LmNi4.5Co0.1Mn0.2Al0.2, LaLmNi4.4Mn0.2Al0.2Co0.2

IKE der U. Stuttgart: Two-stage (3-alloy) temperature-upgrading heat pump. Tubular reactors using internal corrugated Cu strip or Al foam for enhanced heat transfer.Ergenics: 140 Cu tubes, 1.6 cm I.D. containing 63 kg of hydriding alloy. Al capsules were used to avoid expansion problems (see Ref. 961). Tubes were coaxially surrounded by 2.5 cm Cu tubes for heat transfer fluid flow.

LaNi4.5Al0.5, (CFM)Ni5 (CFM)=cerium-free mischmetal

Ergenics: Two alloy cooling system. Total of about 8.1 kg alloys contained in helical Cu tubes about 1 cm O.D. with unspecified internal gas distribution means. Bundles of 7 tubes were surrounded by helical 3.5 cm Cu tubes for water heat transfer.

LaNi5

MmNi4.5Al0.5, LaNi5, LaNi4.7Al0.3

Studsvik

MmNi5 type Zhejiang U.: Cylindrical reactors with strain gages.

LaNi4.7Al0.3, MmNi4.5Al0.5 U. of Rome

AB2, AB5, A2B, Mg Kogakuin U.

LaNi4.7Al0.3, MmNi4.15Fe0.85 Technion: Conceptual.

LaNi5 Philips

TiFe, Mg-Cu BNL: Concept

TiFe

Terry and Schoeppel: Basic hydride heat engine concept.

NCLI Tskuba: Assembled from 19 Cu tubes about 2 cm dia. by 120 cm long, with internal Al heat exchange fins. Total LaNi5 inventory=8.17 kg.U. Vienna: Cu tubes 2.5 cm I.D. by 60 cm long were filled with PMH compacts of alloys (which included some Cu powder and Al shavings for heat transfer enhancement). PMH compacts were made with the alloys in the hydrided state (CO poisoned). Tubes were covered by a thin annular heat transfer fluid layer. See Ref. 901 for more reactor detail,Ti0.98Zr0.02V0.43Fe0.09Cr0.05Mn

1.5Daimler-Benz: Vehicular storage tanks as described in Ref. 907.

LaNi4.8Al0.2, MmNi4.5Al0.5, MmNi4.2Al0.1Fe0.7

Ti0.8Zr0.2CrMn+LaNi5, Ti0.9Zr0.1CrMn+LaNi5, MmNi4.5Al0.5+LaNi4.7Al0.3, MmNi4.15Fe0.85+ MmNi4.5Al0.5

Daimler-Benz: Reported conceptual couples for four refrigerators and heat pumps.

BNL: Hydride compressor concept to increase the efficiency of a power plant.

Terry and Schoeppel: Improvements on basic hydride heat engine concept.

LaNi5, TiFe Baikov Institute

LaNi5

CaNi5

CaNi5

Pd, Pd-Ag

LaNi5

LaNi5, TiFe

Ti, Pd, Ti-13V-11Cr-3Al

AB5

LaNi5, TiFe0.85Mn0.15

NCLI: Two sets of five reactors, each reactor being 2 cm I.D. by 20 cm long (with 0.6 cm porous brass central collection tubes). Each set contained about 700 g of LaNi5. Expansion engine was of the piston type.

LaNi5, LaNi4.6Al0.4, LaNi2Co3, LaNi3Co2, CaNi5

Sandia: Type 304 stainless steel cylinder 3.8 cm O.D. by 0.09 cm wall by 120 cm long (with internal 0.635 cm Cu heat exchange coil). Hydride bed typically connected to a down-hole, rubber-bladder-type pump.Ergenics: Helical tubes in shell design of the thermal compressor. Magnetically-coupled, hermetically sealed, piston-type expansion engine is used to produce reciprocating linear motion. In addition to pumping, a generator is turned to charge a battery which serves to operate heat exchange pumps and other electrical components.Bureau of Mines: Spring biased metal bellows containing 2g CaNi5-hydride and a 56 ohm resistance heater.

Bureau of Mines: Tubular hydride temperature sensing element in H2 communion with a spring biased metal bellows. Temperature sensing element contained 8 g CaNi5-hydride.

MPD Technology: Resistance heated hydride in the sealed volume of a O-ring sealed piston actuator. The resistance heated wire can be H-filled Pd or Pd-Ag.Ergenics: Cu tube 0.32 cm O.D. by 0.036 cm wall by 30.5 cm long, containing about 4 g LaNi5 hydride, and coiled into a helix to serve as a heat sensor. The hydride sensing tube has an axial flexible conduit to channel the H2 gas produced during heating. Hydride sensor tube is in communion with a spring biased, bellows actuated water valve.KFA Juelich: Bellows valve temperature-actuated by a remote hydride container in gas communication with bellows.

Systron Donner: Long, small diameter stainless steel tubes containing Ti (or Ti-alloy) wires in the hydrided condition. Hydride wires are helically wrapped with Mo ribbon to contain any decrepitation product. Tubes are sealed (often under a positive He pressure) and are in gas communion with a pressure switch.

Sekisui Chemical: Bellows or piston actuators powered by temperature sensing hydride bulbs.Ergenics: Thin disk reactor with 1.5 mm sample thickness for high thermal conductivity.

LaNi5, TiFe

TiMn1.5

La0.4Ce0.6Ni5 NRC Negev: PCT isotherms

Pd The Queen's U. of Belfast

LaNi5 Institute of Sable Isotopes - Rumania: PCT isotherms

Pd, TiMn1.5 U. Munster: Flow-thru reactor and loop with MS.

Lu, Nb, V

LaNi4.6Al0.4

LaNi5

MmNi5, Mm-Ni

Ti-Fe, TiFe Ozyagcilar: Flow-thru synthesis reactor.

CaNi5, Mg2Ni, Mg2Cu Lewis: Laboratory-sized, fluidized bed, flow-thru reactor.

TiNi

TiFe, LaNi5 ETH Zurich

FeTi1.14O0.03 National Research Institute for Metals

Rheinisch Westfalische TU Aachen: Standard dead-ended reactor?

Ti1.2Mn1.8, Ti0.98Zr0.02V0.45Fe0.09Cr0.05Mn1.5

Rheinisch Westfalische TU Aachen: Standard dead-ended reactor?

Matsushita Electric: Automated purification system using two TiMn1.5 reactors (0.9 kg alloy each).

KFA Juelich: Strain gaged solid specimens partially charged with tritium.Ergenics: Four tubes 0.95 cm O.D. by 762 cm long nested in a 2.86 cm O.D. water jacket and formed into a flat coil 68 cm dia.Tokyo Inst. of Tech.: Flow-thru quartz tube reactor containing 0.4 g LaNi5Hx.

Various rare earth and actinide intermetallics

U. Pittsburgh: Flow-thru gas synthesis reactor and sampling system.

U.S. Bureau of Mines: Flow-thru reactor, 1.5 cm stainless steel tube with 4.5 g alloy sample on glass wool. Surrounded by Al heat sink and heaters.

Battelle Geneva: Electrolysis cell having a hydride electrode.

LaNi5, LaNi4Mn

Ti, Zr, Hf Allmanna Svenska Elektriska: Fuel cell electrode.

MmNi5, PrNi5 Allis-Chalmers: Fuel cell electrode.

Ca, Li

AB5 Ergenics, Air Products and Chemicals

LaNi5 Temple U.

LaNi5, LaNi4.7Al0.3, LaNi3Co2 MPD Technology

LaNi4.7Al0.3 Inco

CaNi5 Texas Instruments

Ce0.7La0.3Ni4.98Al0.02

Mg (Ni-Coated)

LaNi4.8Sn0.2, ZrNi

CNRS: Flow-thru reactor using pulses of CO injected in a flowing H2 atmosphere.

Imperial College of Science and Technology: Static reactor, containing 0.25 g Li, to which N2+H2 could be

GIAP: Stainless steel tube 2 cm I.D. containing 320 g Ce0.7La0.3Ni4.98Al0.02, external heater and cooling jacket.

A. D. Little: Conceptual tube in shell design, with MgH2 in multiple tubes surrounded by phase change material for reaction heat storage.

La0.6Y0.4Ni4.8Mn0.2, LaNi4.6Al0.3Mn0.1

Sanyo: Four-bed, two-alloy hydride refrigerator using high temperature alloy La0.6Y0.4Ni4.8Mn0.2 and low temperature alloy LaNi4.6Al0.3Mn0.1. Total alloy inventory about 90 kg. Driving heat (simulating solar) carried by pressurized H2O, ambient heat by H2O and cooling transfer by methanol.JPL: Three hydride beds: High pressure bed = 1.49 kg LaNi4.8Sn0.2 in Al foam matrices; Low pressure bed = 0.225 kg ZrNi in 1.8 mm annulus; Fast absorption bed = 0.923 kg LaNi4.8Sn0.2 in Cu-finned annular tubes. See original reference for more detail.

Y, La

LaNi5, Ti(Fe,Mn), TiMn1.5 SunaTech

CaH2, LiH, LiAlH4, LiBH4

LiAlH4, Li3AlH6

DERA

UAS, Institute for Problems in Machinery

CaH2, LiH, NaH, ZrH2

Pd-Ni

Zr2H

Amorphous, Ni-Ti, Ni-Zr

Vrije U.: Y or La film on glass substrate, with Pd overlayer for protection from oxidation.

Ball Aerospace: Rechargeable hydride, chemical hydride, GH2.

AF Sammer: Corrugated, perforated Mg foil rolled into cylindrical, finned shape with macroporous wicking material (for the distribution of H2O) and a chemical hydride such as CaH2. Assembly is surrounded by a stainless steel pressure vessel and a means to introduce H2O in a controlled manner via a hydrophilic wick that passes H2O but not H2.HCI, USAFA: 0.4 cm dia. by 10 cm long stainless steel reactor, into which was placed 150-180 g LiAlH4 mixed in vermiculite. Anhydrous NH3 was used to feed the corrosion reaction and outlet impurities were removed with H2SO4 and charcoal.

LaNi5, CaNi5, Mm(Ni,X)5, AB, TiFe, LiH,LiAlH4, NaBH4

Ti, Zr, Mg, La2Mg17, LaNi5, MmNi5, Mm(Ni,Al)5, La(Ni,Al)5, TiFe, Ti(Fe,V), ZrNi, TiMn2, (Ti,Zr)(Cr,Mn)2, Zr(V,Fe)2, Ti2Ni, Mg2Ni, Zr3V3(B,O), Zr5Al3, Zr3Al2

Ehime U.: About 10 mg of hydride powder on a Mo ribbon heater (to about 900K) and an applied extraction potential of 90 V. GM: Ultrahigh vacuum, two-EB (Pd&Ni) evaporation on an Al2O3 substrate.

Bhabha: Samples of alloy powder processed by HF treatment, NaOH wash and H2 treatment. Quart tube flow-thru reactor or dead-end batch reactor, heated and monitored for catalytic activity.

Hokkaido Research Institute for Catalysis: Electrodes from melt rolled ribbons 0.6-1.4 mm wide, 20 micrometers thick and 1-2 cm long. Pretreated in aqueous HF.

Two Mm(Ni,Y)5 alloys

LaNi5, ZrCrFe1.4

MmNi4.15Fe0.85

LaNi5

Amorphous Ca-Ni, LaNi5

LaNi5

Zr

ZrNi

LaNi4.25Al0.75 Savannah River Lab

Sanyo: Two-alloy, four-bed system using unspecified substituted MmNi5 type alloys. Alloy beds were 8.4 cm dia. by 90 cm long with Al fins and heat exchange. Two pairs of reactors (one for heat transport and one for regeneration) are connected by 2 km of gas conduit.

CFMm0.7-0.9Mm0.1-0.3Ni5, CFMm1-1.4La0-0.3Ni4.75Al0.05-0.2Mn0.05-0.2Fe0.05-0.85 (CFM+Cerium-Free Mischmetal)

Advanced Materials Corp.: Two-alloy hydride refrigerator (automobile oriented) with special container design. Al tube 3.2 cm dia. by 30.5 cm long containing lamellar structure of 0.025 cm thick Al disks and 0.1 cm thick layers of hydriding alloy.Indian Inst. of Tech.: Coupled tubular reactors with H2 entering and leaving central axis and heat transfer fluid flowing outside hydride annulus. Dimensions variable.U. of New Mexico: Model design with cylindrical reactors 1.66 cm O.D. by 1.59 cm I.D. containing 0.122 kg alloy in which there is a H2 artery 0.31 cm dia.

LaNi5, LaNi4.95Al0.05, LaNi4.85Al0.15, LaNi4.75Al0.25, LaNi4.3Al0.4Mn0.3, LaNi4.4Al0.34Mn0.26, LaNi4.5Al0.29Mn0.21, LaNi4.7Sn0.3, La0.555Pr0.12Nd0.295Ni5Co0.03, AB2, Ti0.98Zr0.02V0.43Fe0.09Cr0.05Mn

IKE: Capillary tube bundle reactor design, capable of 5-10 min cycle times.

CNRS (France), CNR-TAE (Italy), IKE (Germany), UPC (Spain), TU Munich (Germany)

Osaka U.: LaNi5 evaporated film on porous stainless steel disks which had been preplated with Cu, Al and/or Ni.

Osaka U.: Sputtered Ca-Ni or LaNi5 film on Ni-coated polyimide

Osaka U.: LaNi5 or Ni films sputtered on Teflon or polyimide.

Kyushu U.: Vertical flow-thru reactor 2 cm I.D. by 75 cm long, containing about 15 g 100-120 mesh Zr powder (pretreated by HF-HNO3).

Kyushu U.: Vertical flow-thru reactor 2 cm I.D. by 75 cm long, containing about 29 g 80-120 mesh ZrNi powder.

Pd, V, Nb, Ta, TiMn1.5, TiFe, U. Muenster

Pd

70Zr-24.6V-5.4Fe

ZrNi

ZrNi, U, LaNi4.8Sn0.2

LaNi5

Mg, Mg2Fe

TiFe

MmNi4.0Fe1.0, LaNi4.65Al0.3

Pd

LaNi3Al2

U, ZrCo

Not specified

CaNi5 Yamaguchi U.: 255 cc recirculating reactor

Sandia design modeled by others: Flow-thru bed 10 cm dia. by 203 cm long containing 115 micrometer dia. Pd powder.

NREL: Variable-conductance vacuum insulation (gas-gap heat switch) controlled by hydride H2 dispenser.

U. Twente: ZrNi gas-gap heat switch designed to alternately insulate/conduct the shell of a sorption compressor used in a miniature cooler.Politechnico Milano - JPL: Gas-gap heat switch designed to alternately insulate/conduct the shell of a sorption compressor used in a cryocooler.Lomonosov Moscow State University: Composites of PTFE and LaNi5Max-Planck-Institut fur Kohlenforschung: Review of heat storage options in comparisons with MgH2 and Mg2FeH6.

BNL: Electric peak shaving storage system with combined electrolyzers, hydride storage tanks and fuel cells.

Kogakuin U.: Coupled hydride pair to for a refrigerator or cooling heat pump.U. of Toronto: PVDF substrate coated with 5-26 nm Pd films. H2 is absorbed by the Pd film, changing its optical (transmission and reflection) properties. Signal output is a function of ambient H2 concentration.Kyushu University: Flow-thru reactor 0.675 cm I.D. X 47.8 cm long, containing 50.8 g alloy.

Ontario Hydro: Small 25 g bed of ZrCo and similar 26 g bed containing U.

GfE hydride containers used to supply fuel cells. No design details.

Various substitutional modifications of LaNi5 (containing Mn, Al and Sn)

IKE der U. Stuttgart: A coupled series of 9 reaction beds each 30mm dia. X 880 mm long (with 0.5 mm heat transfer fluid anulus). Al foam used to improve heat transfer.

LaNi5, CaNi5, LaNi4Al Yamaguchi U.: 210 cc recirculating reactor

LaNi4.6Al0.4, MmNi4.15Fe0.85

Ti

Peking U.: Design not specified

Mg2Ni

Ce0.5La0.5Ni5 (in model) State Institute of Nitrogen Industry: Design not specified.

Mendeleev U.: Flow-thru bed 10 mm dia. X 25 mm long

Korea Inst. of Science and Tech.

Mm(Ni,Al)5

LaNi4.8Sn0.2 Nigde U.: Two-dimensional model.

Zr0.9Ti0.1Cr0.55Fe1.45

LaNi4.6Al0.4

Zr0.9Ti0.1Cr0.9Fe1.1, Zr0.9Ti0.1Cr0.6Fe1.4

KAIST: Two reactor bundles, each containing 4 kg of high or low-temperature alloy in the form of 14 Cu tubes, 20 mm dia. X 210 mm long, with internal heat conducting fins.

St-707, Zr-26.6V-5.4Fe (in wt.%); St-172 (sintered mixture of Zr and St-707)

JPL: About 0.3 g of alloy was contained in a small capsule, one side being a solid cap and the other side a porous SS filter. A 34 watt resiatance heater was attached to the cap side. The alloys were loaded to 14-18 mg H2/g alloy and reversibly cycled by heating and cooling (H2 release and reabsorption, respectively).Lutch Russia: High and low temperature hydriding alloys ( 1.5 kg total) separated by koalin insulation in single tubes (two tubes used). Corrigated Al used on the outside of the hydride portions to enhance heat conductivity. High temperature side heated with electric coil.Chiba Inst. Tech.: Sandwich of cathode (Ag), proton conducting oxide electrolyte, anode (Ni) and hydride (TiH2). Designed to operate at 600˚C.

Mg, Ti0.98Zr0.02V0.43Fe0.09Cr0.05Mn1.2

MPI Kohlenforschung: Coupled Mg - AB2 beds. HT MH bed is 219 mm dia. X 660 mm long and contains 14.5 kg Mg powder. Helical inner coil to generate steam from enthalpy of hydriding. LT MH is AB2 H2 storage bed of Daimler Benz/HWT design (see Ref. 942).

LaNi4.5Mn0.09, LaNi5.19Mn0.39, LaNi6.37Mn0.33

Vinca (Yugoslavia): Dead-end reactor, dimensions not stated.

Pd (with Al and PTFE), Zr0.7Ti0.3Mn2 (with Ni)

LaNi5, LaNi4.7Al0.3 (for model properties)

Zhejiang U.: Four flow-thru reactors 180 cm long X 60 cm wide X 60 cm high, each containing 400 kg AB5 alloy.

KAIST: 15 mm dia. tubes with external fins and internal SS foam for enhanced heat transfer. Hydride inventory = 4.2 kg. Oil-free machanical compressor.

SRI SIA Luch: Cu tubes filled with 170 g alloy heated by a solar collector. Diaphram-type water pump.

Pd on kieselguhr

LmNi4.96Al0.04

SIA Lutch

LaNi4.7Al0.3 (fluorinated) Kogakuin U.

Various Lomonosov Moscow State U.

N.A.

Ti-, Zr- and Hf-alloys

Mg, Mg2Ni Hydro Quebec, McGill U.

CaNi5, Mg2Ni, TiFe0.9Mn0.1

STM Corp.AB2 alloys as examples

LaNi4.25Al0.75

Pd

Bechtel Savannah River: Tube-and-shell heat exchanger with Pd/k column. Tube diameter was a variable (32-51 mm dia.), as was the tube material (Cu vs. SS).

WSRC: Cylindrical storage vessel 8.75 cm dia. X 150 cm long with U-tube fand Al-foam for internal heat transfer and porous filter for gas transfer. Hydride partitioned by transverse dividers. H2-capacity = 4.1 cubic meters.

LaNi4.5Al0.25, TiFe0.8Mn0.2 (model properties)Three alloys AB2-type (Hydralloy C0, C2 and TiCrMn0.55Fe0.30V0.15)

Helsinki Inst. of Tech.: Tubes 42 mm dia. X 446-526 mm long, each containing 1 kg alloy.

LmNi4.85Sn0.15, LmNi4.49Co0.1Mn0.205Al0.205, LmNi4.08Co0.2Mn0.62Al0.1

IKE: Reactors contain seven tubes 29 mm dia. X 1360 mm long with 2.5 kg alloy. Internal Cu bands for heat transfer. Six reactors total.

LaNi4.7Al0.3, La0.8Nd0.8Ni3.5Co1.3Al0.2

Ergenics: A battery where the H2 generated during charging is stored in a separate hydride chamber rather than an H-absorbing anode. A reversible dessicant restricts the H2O vapor from reaching the alloy surface.Energy Conversion Devices: Hydride container design that have spring loaded valves at each end.

Oshram Sylvania: A fluorescent lamp with a hydride containing paste, the hydride having a decomposition temperature greater than the normal operation temperature of the lamp.

Mainstream Engineering: Reactors that involve the contact of organic wastes with activated metal hydrides.

Matsushita Electric: Hydride storage tank(s) coupled by a Cu plate to a PEM fuel cell. Desorbed H2 is humidified.WSRC: A composite hydriding alloy dispersion in a porous glass matrix. The composite is made by a sol gel process.Thermal Corp.: A heat exchanger that contains low, medium and high temperature regions. Within the heat exchanger are channels in which hydride capsules are physically moved in a timed recrocating motion.

Alloys may include Ti, Ni, Cu-Mn, Cu-Ni, Ti-Zr, or Pd

Gorokhovsky: Spark plug that incorporates a metal hydride in one of the electrodes.

Kyushu U: Flo-thru deuterium separation reactor containing 48-80 mesh Pd sponge.

LaNi4.7Al0.3, MmNi4.0Co0.5Al0.5

(Ti,Zr)(V,Mn,Cr,Fe)2

LaNi3.76Al1.24

EMPA (Switzerland)

LaNi4.25Al0.75 (example)

Not specified

Not specified

Zr-V-Fe

LaNi5-CaNi5 Balk: A modular (cluster) hydride heat pump designNot specified

Not specified

Mg and Mg-alloys

Not specified

Not specified

Ti, Zr alloys

La(Ni,Al)5, by example

Ti-Zr AB2 compounds, Mg alloys

Ergenics: Multi-stage hydride compressors using rapid cycling (heat exchange) designs and in-situ protection from H2O contaminants in the H2 pumped.

U. Geneva: A hydride storage tank is used to supply H2 for a Honda ICE lawn mower used in the yard of Prof. Klaus Yvon (Switzerland).

NTT Telecommunications (Japan): A metal hydride air battery that can be photo recharged via a semiconductor layer (SrTiO3).

Various metallic and complex hydrides, with the potential for carbon briefly mentioned.

Westinghouse Savannah River Company: Metal hydride particles embedded in a silica network

Midwest Research Institute (NREL): Covers a cooking utensil that incorporates a gap than that be controlled from vacuum (insulating, heat retention) to H2 gas (conducting, cooking).Toyota (Japan): A vehicular fuel cell power system that uses a metal hydride storage bed that can also serve for air conditioning

Varitech Thermal: Metal and glass-like insulation that can be controlled by an electrically heated H2/hydride

Matsushita Electric (Japan): Minature fuel cell using metal hydride storage and thermal coupling

Hewlett-Packard (USA): A gas chromatograph that uses a metal hydride storage systemEnergy Conversion Devices: A high-temperature hydride bed in which some of the exit H2 is returned to the bed for internal catalytic combustion to generate the necessary high temperature desorption heatRosso: A metal hydride actuator using a thermoelectric element as controller

Honda: Heat-transfer-coupled supply and on-board storage hydride tanks.D.D.I. Ltd.: A metal hydride / getter purifier designed to operate at low temperatures (250-280C).

Westinghouse Savannah River: Tubular design using compartmentalized MH in Al foam and internal heat exchange tubing.Energy Conversion Devices: A supported internal structure where part of the gaseous H2 is circulated to provide heat exchange.

Not specified

Not specified

Not specified

AB5-type

Mg2Ni, Co-plated Mg2Ni

ZrV1.9Fe0.1

NaAlH4

LaNi5

Mg2Ni

NaAlH4

M1Ni3.65Co0.85Al0.3Mn0.3

NaAlH4 and others

LaNi4.78Sn0.22

Various

Woodbury: An ultra-narrow fuel cell vehicle where the hydride tank is used as gravitational stabilization against Ford: Use of a hydride buffer between an on-board reformer and fuel cell designed to temporarily store the H2 coming from the reformer and separation membrane.Denso (Japan): An MH bed that has an adsorbant filter to remove impurities fron the incoming H2.

Stockholm University: AB5-type hydrogen storage alloys used as nobal-metal-free catalysts in an alkaline fuel cellNagoya University (Japan): Externally heated flow-thru tubular reactor to measure the ability of hydriding alloys to catalyze the hydrogenation of unsaturated aldehydes.Kyushu University: 22.4 mm ID X 700 mm long flow-thru containing 475 g MH alloy and 277 g Cu powder. Instrumented with internal thermocouples.Sandia National Labs: A transient thermal probe (based on ASTM 5334) and a thermal properties analysis chamber (see original reference for details).

National Key Laboratory (China): Three 50 cc beds instrumented with strain gages to measure wall strains.

LmNi4.78Mn0.22 (Lm = La-rich mischmetal)

Zhejiang University of Technology (China), Kogakuin University (Japan): Borohydride fuel cell

LaNi4.8Sn0.2, LmNi4.9Sn0.1, MmNi4.7Al0.4

Hydrogen Research Institute (Quebec): Automated Sieverts' apparatus

Vrije University (The Netherlands): The variable optical properties of Mg2Ni bilayers as a function of H-content and/or temperature is proposed for windows and other thermochromic devices.TU of Denmark: Discusses results on high temperature (100-200C) polymer fuel cells for possible coupling with a hydride bed.Zhejiang U. et al: Study of an AB5 battery alloy for possible use as a possible electrocatalyst for alkaline fuel

Ml0.55Mm0.2Ca0.25Ni5, (Ti0.97Zr0.03)1.1Cr1.6Mn0.4

Zhejiang University: Pair of tubes 32 mm ID X 25 cm long, each containing 650 g of the above hydriding alloys, forms a 2-stage hydride compressor

Purdue University: Review of heat transfer considerations in the storage of hydrogen in gaseous, liquid and solid (reversible and chemical hydride) forms

Ti0.42Zr0.58Cr0.78Fe0.57Ni0.2Mn0.39Cu0.03

Shinto Pantec, Chibu Electric: A rectangular Al storage vessel 105 mm high X 210 mm long X326 mm wide containg 11.3 kg H-storage alloy. Internal H2O flow passages for heat exchange.U. of South Carolina: A simulation study of a metal hydride bed thermally coupled to a fuel cell.NASA JPL: A 280 sL hydride storage unit was tested with a 1.0 kW PEM fuel cell.NASA JPL: Broad review of the use of hydrogen in space, including hydride applications such as compression/cooling, gas gap heat switches, instrumentation, etc.

AB5, AB2, AB, A2B, AB, Solid solution alloys, Complex

SunaTech: Emphasis on use of fuel cell waste heat for hydride decomposition and H2 recovery

Zr0.9Ti0.15Cr0.6Fe1.45

Various

Not specified but assumed 2.5 wt%

Not specified

LaNi5

LaNi0.7Al0.3

TiFe, Mg

ZrV1.9Fe0.1

Not specified

TiFe, Mg

MmNi0.6Al0.4

LaNi5

MmNi0.6Al0.4, MmNi4.6Fe0.4

LaNi5

LaNi5 (as model example)

KAIST (Korea): Tube and fin heat exchanger with PCT properties of alloy used for model

Ti0.98Zr0.02V0.42Fe0.09Cr0.05Mn1.5 (as example)

Indian Institute of Technology: Cylindrical annular design with variable thermophysical property inputs

Ml0.85Ca0.15Ni5, Ti0.9Zr0.15Mn1.6Cr0.2V0.2

Zjejiang U. (China): Preotype cylindrical containers using pressed Cu-coated powder pellets of MH-filled Ni-foam.IKE (Germany): Cylindrical reaction bed modeled with various hydrides and graphite composites vs. Al foam for heat transfer enhancementNIAIST, NKK, Kansai U. (Japan): A hybrid tank using carbon-wrapped composite high-pressure vessel with low-temperature hydride.

Ti-Cr-Mn AB2 type alloy with 1.9 wt% H-capacity

Toyota: Four automobile-sized hybrid tanks of carbon-wrapped composite (35 MPa) gas vessels with 75 kg hydride in each tank and internal heat exchangers.Indian Inst. of Tech.: Hydride water pump heated by solar thermal panels. Model calculations. See also IIT Ref. Ecole Nationale d'Ingenieurs de Monastir (Tunisia): Porous medium with expansion volume. Heat and mass transfer mathematical model.Tohoku U. (Japan): Heat and mass transfer mathematical model of a hydride bed.Delft U. of Technology, Shell: Well-to-wheels energy analyses for various hydrogen - storage scenarios.Kyushu U. (Japan): Thermocouple instrumented 22.4 mm ID flo-thru reactor containing 475 g MH alloy and 277 g Cu powder heat ballast. H2 input in the form of various H2-Ar mixtures (plus pure H2).NAS of Ukraine, U. Popular Atonoma del Estado de Puebla (Mexico): H2 desorption kinetic model.

AB5, MmNi4.5Al0.5, LaNi5, AB, TiFe0.85Mn0.15, AB2, Zr0.9Ti0.1Cr0.55Fe1.45,

Indian Inst. of Tech.: Model of compressor-driven hydride cooling system with tube-in- shell heat exchange.

Indian Inst. of Tech: Energy analysis of compressed gas, cryogenic liquid and MH storage of H2.Indian Inst. of Tech.: Thermocouple instrumented cylindrical (annular) reactor containing 0.4 kg MH alloy.Nigde U. (Turkey), U. of Miami: Details of instrumented cylindrical(?) reactors and MH loadings not clear. Heat transfer model developed.Indian Inst. of Tech.: Thermocouple instrumented cylindrical (annular) reactor containing 0.5 kg MH alloys.EC Group (Greece and UK): Two-dimensional mass and heat transfer modeling study on an anular hydride bed.

LaNi4.8Sn0.2, LmNi4.9Sn0.1, MmNi4.7Al0.4

Hydrogen Research Institute (Quebec): 14 mm OD Al tubes containing 25 g HH alloy in Al foam. Experimental studies aimed at developing a 3-stage compressor prototype with thermal and pressure integration with an atmospheric pressure electrolyzer. U. of Victoria: 4 cm diameter X 24 cm long reactor element. Model to determine the effect of external heat transfer enhancements (e.g., fins) on discharge rates.

Mg (doped), LaNi5

LaNi4.3Al0.7

NaAlH4

TiFe

LaMm1-xCeXNi5 (1.45 wt% H)

Ti-Mn AB2 type (2 wt% H)

Not defined

U. Padova, Celco-Profil, Venezia Tecnologie (Italy): Two-stage integrated design, the main stage consisting of doped MgH2 (thermally assisted with a catalytic burner) and a LaNi5 startup stage.U. of Nevada, Reno: Simulation model of McKibben pneumatic actuators driven by metal hydride.

La0.83, Ce0.10Pr0.04Nd0.03Ni4.4Al0.6

IFE (Norway), Tokai U. (Japan): 0.16 g MH alloy mixed with 0.98 g Ni thermal ballast for intrinsic kinetic measurements.Argonne NL: Carbon-wound composite cylinder designed to hold 5.6 kg H in catalyzed alanate packed in 4% Al foam. Uses published kinetic and engineering data in model calculations. Source of heat is assumed to be Technological Institute for Toys (Spain): Hydride storage tank for a 150 W fuel-cell-powered toy vehicle. Steel, containing enough MH for the storage of 300 SL H2.RES & Hydrogen Technologies (Greece), CReeD (France), Technicatome (France): Small hydride storage system for an uninterruptable power supply involving electrolyzer, MH storage, PEMFC and batteries. Hydride tank design by Labtech (Bulgaria): Three MH tanks each weigh 100 kg and contain 0.6 kg H2 (0.6 wt%). Waste heat of FC used to decompose MH.

TyssenKrupp (Germany): Several large (multi-ton) hydride reservoirs for air-independent silent-fuel-cell-operation of submarines. Hydride tank details not available.

Ti-Zr-V-Mn-Fe AB2 (GfE Hydralloy C-15)

Sandia National Labs, Vehicle Projects LLC: Stores 3 kg H in 213 kg MH alloy (1.4 wt%).

Ovonic Hydrogen Systems LLC: Hydride storage tanks used on 2002 and 2004/2005 Prius hybrid velicles converted from gasoline to H2 fuel. 3-3.6 kg H-capacity. Refilling station contains 2-stage storage/compression system. Container designs and MH alloys used not disclosed.

Comments Reference872

873

322

949

917

918

919

921

922

923

924

Comparative study of the costs of large scale H2 storage in the form of compressed gas, metal hydrides, liquid and cryoadsorbers as a function of utilization and storage capacity to power ratio. For low utilization, CH2 and MH are economically favored. For high utilization, cryogenic techniques are favored. For seasonal storage, only LH2 is favorable.

Reviews current and potential new ways for the storage and transportation of merchant H2: CH2, LH2, glass microspheres, cryoadsorbents, zeolites, chemical carriers (e.g., NH3, methanol, etc.), metal hydrides. Metal hydrides are considered promising for weight and cost reasons.Detailed review of numerous hydride applications in relation to applications-related properties

Review of hydrides, hydride properties and stationary storage of H2 by hydrides in comparison with alternative storage techniques: compressed gas, underground, glass microspheres, LH2, chemical carriers, zeolites and cryoadsorbents.Review of hydrides, hydride properties and hydride applications.

Review of hydrides, hydride properties and hydride applications.

Review of hydrides, hydride properties and hydride applications. Details KFA Juelich laboratory storage/purification unit. See also Ref. 891.

Extensive review of hydride applications in relation to alloy properties and problems.

Review of hydride applications. See Ref. 1556 for a 2003 updated review of hydride applications.

Review of Daimler-Benz hydride R&D before 1980. Emphasis is in mobile storage, but other applications are included.

Introductory review of hydrides with descriptions of some applications.

950

Review of hydride applications with commercial potential. 925

926

1023

875

877

878

879

880

Prototype not constructed at the time of the paper. 880

Extensive review of hydriding alloys and properties in relation to hydrogen storage for fuel cells (mainly PEM type).

Review of hydride applications associated with solar energy.

Large stationary storage system designed to collect H2 from an electrolyzer for later home appliance and vehicle uses. See also Ref. 874 and 1023.

First large prototype hydride storage reservoir. Used in PSE&G electric peak shaving demonstration combining electrolyzer, hydride storage and fuel cell (see Ref. 944).

Descriptions of prototype, industrial-sized hydride reservoirs. Includes some smaller test units and experimental data on TiFe and Mg2Cu. See also Ref. 701.

Early joint Japanese demonstration project among National Chemical Lab for Industry, Kawasaki Heavy Industries and Santoku Metals.

Description of modular hydride tanks made by Mannesmann and used in the 10 Daimler-Benz vehicles of the Berlin Fleet. Five dual-fueled hydrogen/gasoline automobiles used two modules each (equivalent gasoline 11 L). Five hydrogen delivery vans used four modules each (equivalent gasoline 22 L).

A batch-type hydrogen transport system that involves a thin-wall container that is charged in a separate high-pressure vessel. An N2 balancing gas on the outside of the thin-walled vessel is used to negate pressure stress during charging.

881

Commercially available. 882

883

884

885

888

889

890

890

890

899

899

Manufactured and sold (at least in 1980s) as turn-key hydride storage system, with heater, pressure regulator, pressure gages and charge/purge lines.

Manufactured by Hydrogen Components, Inc. and sold by Baseline Industries.

Commercially available. H-capacity=30 L, output pressure=2-3 atmg, discharge flow rate=45 cc/min, Built in 1984 for demonstration purposes. Said to be the largest in the world at that time. H-capacity=175 Nm3 (14.5 kg or 1.4 wt.% based on alloy weight), storage pressure 7 atm.Cost study of alternative methods of stationary H2 storage. For above hydride tank, storage costs calculated as $3430/MBTU.Manufactured and sold around 1980 by Milton Roy Company. H-capacity=226 L, desorption rate+170 L/hr, impurity level<50 ppb.Commercially available. H-capacity=40 L (STP), room temperature output pressure=2 atmg, recharge pressure=6-7 atmg, recharge time=60 min (still air) or 20 min (stirred cold water).Commercially available. H-capacity=2500 L (STP), room temperature output 1,500 L/H for 90 minutes, recharge pressure=20 atmg, recharge time=2 hrs (room temperature).

Commercially available. Compression rate=2,500 L/h, input pressure=1-2 atmg (13-20 C), output pressure=39 atmg (75 C).

First demonstration hydride vehicle tank to use an AB5 alloy. H-capacity=3.4 kg (0.75 wt.%, based on gross tank weight), charging pressure=10 atmg, charging time=12 min (to 90%, using circulating liquid heat exchange).

Truck owned by Clean Fuels Institute, Riverside, CA. H-capacity=5 kg (1.15 wt.%, based on gross tank weight), charging pressure=34 atmg, charging time=90 min (to 90%, using circulating liquid heat exchange).

Patent 893

Earliest patent for a TiFe reservoir. 894

Patent 895

Patent 896

Patent 897

Mathematical model of hydride bed. 898

899

901

902

903

904

Review of various prototype hydride containers built before 1982.Dynamic behavior evaluated in both single and dual (compressor) modes for rate and efficiency determinations. At 13 C and 5 atm applied pressure, half-time for absorption was 90 s.

Broad state-of-the-art overview of H-storage by alternative methods: high pressure gas, liquid, hydride, adsorbents, glass microspheres, chemical reactions and liquid chemicals. Reviews developments and needs in each area. Volumetric/gravimetric maps relative to U.S. DOE goals.Eight modules are combined for a small fuel cell vehicle, with the C15 alloy used for main fuel supply and the higher pressure HS-208 used for cold start conditions. Performance tests were run and a mathematical model derived.

14 modules were used as the H2 fuel supply for a Caterpillar 3304 diesel engine of a mine vehicle with engine cooling water used for reaction heat exchange. 12 HS-208 modules were used as the main fuel reservoir and 2 HS-209 modules were used for cold starting. See also Refs. 892 and 1354.

905

906

907

Patent 908

909

910

911

912

913

914

915

916

920

927928

929

930

931

932

Perhaps the earliest published paper to suggest metal hydrides as media for vehicular H2 storage.

Early review of hydride fuel storage possibilities for taxis, trucks and buses, with an emphasis on weight, cost and Hydride reaction enthalpies also used to partially heat and cool the bus.

Heat balance model of an ICE engine relative to a two-bed hydride storage system (low- and high-temperature).Early (1970) Brookhaven study of using metal hydrides for fuel storage. Includes the use of hydride storage of reformer-derived H2 for use in a fuel cell power system.Early review of chemical storage of hydrogen on automobiles, including hydrides. Concludes only LH2 is Early assessment of hydrogen as a vehicular fuel, including on-board storage options. Hydride information Using a 6.5 wt.% high temperature hydride and burning 57 % of the evolved H2 for heat, the result is a net 2.8 wt.% storage device.

TiFe hydride storage for stationary and vehicular storage. See also Refs. 875 and 887 for more information on PSE&G stationary storage unit. Shows small Wankel engine fueled by TiFe hydride.1994 review of Deutsche Aerospace activities toward H2 vehicles, including joint work with Daimler-Benz on hydride fuel storage. Favorable comparisons with batteries.Overview of Daimler-Benz activities with H2-fueled vehicles. Pressure, volume and weight comparisons of hydride, liquid and gaseous H2 storage.Study of four alternative vehicular storage methods in terms of volume, vehicle range, dormancy, energy required and cost: 340 atm compress gas, cryogenic pressure vessel, LH2 and LH2+hydride. Results favor the Brief review of hydride phenomenology and some Introductory review of metal hydrides and their application to vehicle fuel storage, including cost estimates.1975 state-of-the-art review of metal hydride chemistry in relation to certain applications of interest to the U.S. Introductory review of chemistry and phenomenology of hydrides for hydrogen storage.Classic early Brookhaven review of hydride compositions and properties relative to H-storage.

Two tanks, heated by exhaust gas, were used in a Dodge bus operated in the Provo-Orem, UT, pubic transportation system around 1976. Recharging pressure=34 atm. See also Ref. 941.

938

934

935

936

937

938

939

940

942

943

944

945

946

947

Patent 951

952

Stationary storage tank for the Hydrogen Homestead (1977). Filled with H2 derived from a high pressure electrolyzer, with H2 used for home appliances and vehicles. Reference also briefly describes an TiFe hydride tank used on a Jacobsen garden tractor. See also Refs. 933 and 1023.First H2-fueled automobile to use a hydride tank (1974). Used mainly for capture of boiloff from LH2 tank.Used as H2 fuel supply for a Massey Ferguson Model 65 farm tractor. Hydride tank worked well but a filter was necessary to prevent tendency for significant particle migration from the hydride tank.Used as H2 fuel supply for a 1975 Pontiac Grand Ville, heated by exhaust gas. Available H2 at 80 km/h vehicle speed=1.8 kg.

Heat transfer model for hydride tanks, especially the prototype described in Ref. 936Used as H2 fuel supply for a Jacobsen garden tractor. See also Ref. 933.

Used for fuel supply for demonstration H2 bus for Riverside, CA, public transportation system (ca. 1978).

Used for fuel supply for demonstration H2 postal delivery vehicle (ca. 1978).

Emphasizes the purification properties of metal hydride storage. See also Refs. 341 and 1042.

Charging pressure/temperature=8 atm/15 C. Discharge temperature=75 C.

Use of metal hydride storage of H2 in PSE&G electric peak shaving experiment. See Refs. 875, 887 and 914 for BNL storage reservoir used.Experimental study of purification. Molecular sieves used for preremoval of H2O and "double-valve blow-off" used to maximize purification effect.Not much difference in the purification effects among the three alloys.

Thermodynamic model of heat engine. Reaction rate tests on alloys, including heat transfer enhancement with blended Cu powder.

Patent. Reduction to practice examples using H2O sensible heat storage and Na2SO4.10H2O latent heat storage.

103

46

44

184

281

301

301

305

312

343

414

Review of hydride R&D activities in Japan ca. 1996. 664

Review of hydride R&D activities in China ca. 1996. 665

701

van Mal's Doctor's Thesis. Extensive early review of metal hydride chemistry and phenomenology and proposed applications.

Extensive early review of metal hydride chemistry and phenomenology and proposed applications. Includes safety.

Introductory review of hydrogen storage in metal hydrides and some applications (vehicular storage and solar water pump). Comparison of vehicular hydride storage with batteries.Introductory review of metal hydride phenomenology and some applications.Review of metal hydride phenomenology and some applications.

Also studied heat transfer enhancement with Al foam and Cu strip. Results showed it was possible to upgrade temperature by 50 C (to 135 C) with heat input at 85 C and a 25 C heat sink.Unit also contains a sterling engine to produce electrical power. Heat is transported to the Sterling Engine with a Na heat pipe.

Use of hydride technology in the Savannah River tritium production facility. See also Ref. 977.

He decay product can be pumped away when U-beds are cool, thus serving for T-purification. Unit contains vacuum pump, heaters and controls, valves and an optional charcoal bed for organic removal from used T2.Qualitative results on performance of HWT tanks used Daimler-Benz fleet demonstration after 1.5 years' service. Tank were damaged by pulses of impurities associated with the connection to the H2 supply, but this was fully recoverable. One tube showed localized bulging, due to inadvertent overfilling.Used for a hydride supply pack for a portable PA fuel cell. Hydride tank can operate over a dehydriding temperature range of -25 to 250 C.

Tank heated electrically and cooled by Hg heat pipe. See also Ref. 877.

706

856

859

953

197

954

956

955

11

10

957

958

318

959

960

961

Cycling 60 times resulted in a partial loss of kinetics, but not H-capacity. Effect attributed to reduces heat transfer with cyclic decrepitation.

Units designed for supplying small portable PEM fuel cells.Experimental study designed to test the suitability of the alloy for tritium separation and storage. Simulated T2 by using D2. Found kinetic (not equilibrium) separation of D and H. Alloy has PCT properties similar to elemental U.Demonstrated laboratory-scale partial separation of H2 from a CH4-19.6%H2 mixture. Suggested need for a lower plateau pressure alloy (see Ref. 197 for continuation).Demonstrated virtually complete separation of H2 from a CH4-H2 mixtures. Noted potential problem if CO2 is Study to test the possible poisoning effects associated with removal of H2 from 20%H2-supplemented natural gas. Studied the following impurities: iso-C5H12, CO2, CH3SH and t-C4H9SH. Concluded the mercaptans are severe poisons and will require pretreatment removal before the hydride bed. CO2 may possibly be tolerated.

Patent. Model used for the successful separation of H2 from dissociated NH3 (75% H2-25%N2). See Ref. 11.

Patent. Demonstrated the separation of H2 from CH4-H2 mixtures.Used for a successful, in-plant, six-month demonstration of H2 separation of H2 from waste ammonia purge gas (60% H2, balance N2, CH4, Ar and NH3).

Experimental and modeling gas separation study using 75%Ni-ballasted LaNi5 pellets, made both by sintering and silicone rubber bonding.Separation studies using 88%H2-12%Ar and 61%H2-39%Ar. The latter was intended to simulate the H2 content of ammonia purge gas.Used for classic thermal swing purification (e.g., N2 removal) by absorption-purge-desorption.

Inverse deuterium isotope pressure effects determined for V, Nb and V0.8Nb0.2. T-H separation factors determined by exchange measurements.Describes the tritium handling system for the Princeton Tokamak Fusion Test Reactor (TFTR).

Patent: Reports the TiNi will absorb H2 but not D2. Results not confirmed in Ref. 961.Studies of potential of V and TiNi for deuterium separation. Isotherms for V as a function of H2-D2 mixture. D vs H isotherms for TiNi. Determination of D-H separation factors.

31

962

Patent. Separation factor measurements. 964

965

966

968

969

970

971

972

973

974

975

976

347

Determination of tritium-protium separation factors for various hydriding alloys. See also Ref. 963.

Extensive study of AB5 alloys for deuterium isotope effect on PCT isotherms and separation factors.

Tritium storage bed designed for the Los Alamos Tritium Systems Test Assembly.

PCT measurements and chromatographic separation measurements made with HT-containing H2. Interpreted for quantification of the hydrogen equilibrium distribution coefficient, tritium-protium separation factor, rate of gas-solid exchange reaction and the axial dispersion coefficient.A pressure swing absorption process which used V for the experimental separation of T from H2 containing a trace of HT. When cycling entirely within the V-monohydride phase, separation was controlled by rate effects. When cycling between the V-monohydride and dihydride phases, separation was controlled by the equilibrium isotope effect. See also Refs. 969 and 1076.

Patent. Discloses the separation of D2 from natural hydrogen using hydride/dehydride reactions with molten Deuterides have higher plateau pressures, resulting in feed H2-D2 mixtures becoming D2-enriched in the gas phase during the process. Separation factor about 1.3.H-T and H-T isotopic exchange measurements for Pd and LaNi5 hydrides as a function of temperature.Patent. A two bed, "heatless" sequence of steps designed to remove D from H-D mixtures.Study of the gettering of T2 from He mixtures using molten (600 C) La5.25Ni.Study of the T-decay effects associated with the long-term storage of tritides. ZrNiT3 holds its stoichiometry indefinitely (with new T2 available), but begins to release He-3 after several hundred days. Mg2NiT4 and LaNi5T6.9 T-stoichiometries decrease with time. Mg2NiT4 begins to release He-3 after several hundred days, but LaNi5T6.9 holds all its He-3 for at least 2400 days.Effects of long time aging of LaNi4.25Al0.75 tritide on PCT isotherms. See also Refs. 1136 and 1137.

978

Demonstration of hydride heat engine. 978

315

490

979

980

981

982

983

984

Thermodynamic model of hydride compression. 985986

241

153

Demonstration of solar energy storage using hot water solar collector and dehydride/hydride reactions (heat storage/recovery).

Probably first working prototype of a circulating pump (compressor) driven by H/D reactions. Used 50 C hot and 18 C cold water and capable of pumping gases in the pressure range 7-24 atm.A MmNi5 reservoir that is charged at 0 C and 68-136 atm and discharged at 100 C and 190 atm into a LN2 cryogenic pressure generator. Warming the generator to room temperature results in H2 at >680 atm. Used as a thermal compressor for a 28K Joule-Thompson refrigerator.

Early commercial scale hydride compressor demonstration. Run for 700 cycles, during which some degredation of performance and reduced hydride plateau pressure noted.

Compressor intended for demonstration aerospace Joule-Thompson cryogenic cooler.

Compressor for bench demonstration aerospace 29K Joule-Thompson cryogenic cooler. Refrigerator operated for 1000 hours and hydride compressor successfully operated for 5800 hours (35,000 cycles).Experimentation for a compressor. Using 80 C hot water and 13 C cold water, 5300 scc H2 were pumped in 10 minutes at 6 atm.Used to compress 50:50 D2:T2 mixture to 1360 atm for filling glass microsphere laser fusion targets. Noted problem with 3He decay product acting as an inert gas blanket during recharging.

A commercial 4-stage hydride compressor design. Compression rate=28 SL/m, input H2 pressure=3.4 atma, output pressure=34 atma (using 75 C hot water and 20 C cold water at 7.6 L/m).

Patent example. Demonstrates the separation of H2 from H2-CO2-CO-CH4-N2 mixture (simulating shifted reformer Patent example. Demonstrates the separation of H2 from 74H2-24CO2-2CO (vol.%) mixture. See also Ref. 195.

244

Patent. Membrane separation of H2. 242

243

240

249

987

990

992

993

995

996

874

Patent. See also Ref. 1000. 998

Patent. 999

1005

1001

150

Shows the feasibility of cyclic PSA separation of H2 from various gas mixtures, in particular H2 with 10% Co, CO2, CH4 or C2H4 (and also H2-25%N2). Temperature:200C, cyclic times about 20 s. 80% separation efficiency, resulting in 99.5% pure H2.

Patent. Examples demonstrate the purification of H2 containing a few percent Ar, N2, CO2, CO or CH4.

Patent covering polymer bound hydriding alloys. Experimentally demonstrates the separation of H2 from a H2-CH4-N2-C2H6 mixture.Patent. Reversible bed for removing O2 and H2O from wet H2 entering storage bed. Bed said to be self-regenerating when dry H2 is backflowed from hydride tank to utilization device.

Demonstration of rapid heating of cold startup vehicle exhaust gas, thus rapidly heating catalytic converter to effective operating temperature. Cycled 20 times on a vehicle, demonstrating California Ultra Low Emission Vehicle (ULEV) conformity. See also Refs. 988 and 989. Concept of storage of solar heat via metal hydrides. See also Ref. 991.First description of a mechanically driven hydride heat pump. See also Refs. 994 and 1292.Patent. Early description of a heat upgrading type hydride heat pump. See also Ref. 997.Patent. Thermodynamic analysis of single and multistage systems.Review of hydrogen storage, transmission and distribution of hydrogen, with details of certain hydride containers built before 1980. Includes description of Hydrogen Homestead storage container.

Patent. Designated in other Argonne reports as HYCSOS system. See also Refs. 150, 1001, 1002, 1003, 1004, 1006, 1007.HYCSOS was a two-hydride, solar-driven energy conversion system, capable of heat storage, heat pumping, refrigeration and generation of mechanical energy. Data on system design, thermodynamics and preliminary measurements of performance. See also Refs. 150, 1002, 1003, 1004, 1005, 1006, 1007.

HYCSOS was a two-hydride, solar-driven energy conversion system, capable of heat storage, heat pumping, refrigeration and generation of mechanical energy. Report gives updated data on system design, thermodynamics and performance. See also Refs. 1001, 1002, 1003, 1004, 1005, 1006, 1007 for earlier HYCSOS work.

1021

1022

1008

Patent 1009

Patent 1010

1011

Patent 1012

1020

1013

1019

1019

1025

HYCSOS was an ANL two-hydride, solar-driven energy conversion system, capable of heat storage, heat pumping, refrigeration and generation of mechanical energy. This report gives details on the computer design and performance of HYCSOS systems. HYCSOS was an ANL two-hydride, solar-driven energy conversion system, capable of heat storage, heat pumping, refrigeration and generation of mechanical energy. This report gives information on the economics and and performance of HYCSOS systems. See also Ref. 1024.Analysis of thermodynamics suggests a 30-50% improvement of efficiency.

Patent. Physical rotation of banks of reactors lead to heat pumping and or refrigeration.

Review of 10 years of Studsvik work on hydride heat pump work (HEPTA). Extensive studies of reactor design, PCT (static and dynamic), kinetics, coupled reactor behavior and practical thermodynamics. See also Refs. 1015, 1016, 1017 and 1018.

Detailed thermodynamic modeling and review of hydride heat pumps. Read in conjunction with Refs. 1014 and Refrigerator designed to use 93C source and 29C sink to produce 4-10C refrigeration. Unit produced at least 3500 W of cooling during 3-6 minute cycle times, but at a disappointing COP. Unit designed to upgrade 50-96C heat to 140-180C using a 20-36C sink.

Heat upgrading type heat pump. A detailed thermodynamic analysis of a 2-tube pair is given. A conceptual analysis of a 240 tube system designed for a 50,000 Btu/hr heat load is described for pumping 43C heat using a 104C source and -7C sink. The latter system would use 36 kg of LaNi5 and 45 kg of LaNi4.575Al0.425.

1026

325

1027

1036

1029

1030

1031

1032

1033

1034

301

1037

1038

Unit designed to produce 10C air conditioning from 150C heat source and 30C heat sink. Unit operated at 1.7 kW cooling and COP of 0.32.

Unit designed to simulate bus air conditioning using a 350-430C exhaust gas heat source and ambient air heat sink. Unit operated at a cooling power of 465-700 w/kg alloy, producing cool air in the -2 to +7C range. Improvements necessary for commercial viability are suggested. See also Refs. 1039 and 1044.Preliminary report of a bench demonstration of a heat pump designed to air condition a vehicle. Expected to operate at 8000 Btu/hr and COP of 2.65. Temperature upgrading heat pump designed to increase 80C waste heat to 150C steam. See also Refs. 1028, 1032,1046 and 1052.Quantified reactor performance during waste heat storage from 35-70C.

Article covers thermodynamics and performance of heat storage vessel.

Article covers thermodynamics and performance of heat storage vessel.

Thermodynamic model with projection of COP as a function of plateau flatness and hysteresis.Experimental study of high temperature heat storage concept, with additional demonstration of temperature upgrading. Cycled 1600 times without loss of performance. Later developed into demonstration system (see Refs. 301, 1034 and 1355). See Ref. 1356 for detailed cyclic data on Ni-doped Mg.Work in conjunction with Bomin Solar. Description of a system to store 300-480C heat from a concentrating solar collector. Using heat transfer via K heat pipes, stored heat is used to drive a Sterling Engine for the production of solar power. Use of optional AB2 bed allows refrigeration mode of operation. See also Refs. 301 and 1033.Two stage demonstration heat pump designed to upgrade 85C heat to 135C heat. See also Refs. 1035 and 1047.

An automated 12,000 Btu/hr (3.5 kW) heat pump designed to upgrade 65C industrial waste heat. Experimentally operated as a function of heat transfer fluid flow rate. Performance considered marginal due to inadequate heat transfer within hydride beds. Report includes review of industrial potential for waste heat recovery and projected economics required.Prototype hydride cooling system designed for military field shelters, to be driven by waste heat. With a target of 9000 Btu/hr, the unit was successfully operated at 7869 Btu/h at a COP of 0.33. Report gives extensive detail of construction and testing.

1040

1041

1043

1045

1048

1050

1051

1051

1054

1055

1056

1057

1060

1061

Using 30 l/m 90C water, compressor was able to deliver 360 l/m H2 at 18-12 atm for 3 minutes. Used to power a heat engine for reverse osmosis desalinization apparatus.Performance studies of coupled LaNi5-LaNi4.7Al0.3 and MmNi4.5Al0.5-LaNi4.7Al0.3 beds in temperature upgrading modes. Operation found to be sensitive to alloy plateau hysteresis and slope.

Review of positive experience with hydride storage tanks used in the Berlin prototype fleet. See also Ref. 343.Dynamic experiments with paired beds, comparing measured and expected performance. See also Ref. Study of various metallic and nonmetallic additives to hydride powder for the purpose of avoiding expansion.Theoretical model for 2-bed, temperature upgrading heat pump. For an updated, more detailed model with experimental validation comparisons, see Refs. 1370 and 1371.Broad and detailed 1983 review of activities in the heat pump and related application areas. Covers alloy couples and container designs.Refrigerator couple Ti0.8Zr0.2CrMn+LaNi5: Th=125C, Tm=55C, Tl=-2CRefrigerator couple Ti0.9Zr0.1CrMn+LaNi5: Th=150C, Tm=50C, Tl=-25CHeat pump couple MmNi4.5Al0.5+LaNi4.7Al0.3: Th=120C, Tm=55C, Tl=15CHeat pump couple MmNi4.15Fe0.85+ MmNi4.5Al0.5: Th=64C, Tm=36C, Tl=12C

Two-alloy heat upgrading type of heat pump proposed to improve the efficiency of an electric power plant. Using 200C waste heat, the 65-75C heat amplification factor of 1.5-1.75 is predicted.Patent. Early conceptual system whereby hydride tank and combustion chamber are in heat transfer communication to provide simultaneous cooling of combustion chamber and desorption heat for H2 A demand heat engine based on two hydriding alloys whereby H2 flow from the low temperature hydride to the high temperature bed results in heat generation, which is in turn used to generate steam from which demand power is extracted. Perhaps the earliest proposed example of a hydride-based heat engine, although an indirect one.Concept uses a low temperature (100C) heat source to drive a hydride compressor. The high pressure H2 thus produced is then heated by a high temperature (300C) heat source for expansion through a power producing turbine. Final low pressure H2 is returned to the original hydride bed (compressor) to complete the closed cycle. This allows as much as 90% of the high temperature heat to be converted to electricity. See also Refs. 1058 and 1059.Patent. Cyclic, closed cycles where hydride is heated to produce high pressure H2 which is expanded through an engine to produce power, followed by reabsorption of the low pressure H2 into the original (cooled) bed. See also Series of six patents expanding the basic hydride heat engine concept in Ref. 1060.

1062

1063

1067

1068

1068

1069

1070

1074

1071

310

1073

4

Discussion of the potential for using hydrides in heat engines and LN2 applications.Piston heat engine with one bed (hydride) heated to serve as a high pressure H2 source for the expansion engine and the second bed (cold and H2-depleted) used to receive the low pressure H2. Roles of the two beds are then reversed to complete a full cycle. For continuous operation, four beds would be used.Designed to pump water using solar heat input. LaNi4.6Al0.4 prototype built and operated. See also Refs. 44, 1064 and 1065.

Designed to pump water using solar heat input. Prototype built and field tested under fully automated conditions. See also Ref. 1075.

Patent. Designed to puncture a fire extinguisher canister. Electrical heating of the hydride inventory results in H2 pressure that forces the bellows to overcome the spring bias on a piston. Attached to the piston is a pin to puncture the fire extinguisher canister.Patent. Designed to puncture a fire extinguisher canister. Fire directly heats the hydride inventory which results in H2 desorption and pressure that forces a bellows to overcome the spring bias on a piston. Attached to the piston is a pin to puncture the fire extinguisher canister. This system is similar to Ref. 1068, except than no electrical input is required.Patent. Differs from Refs. 1068 and 1069 in the sense that this design is self-resetting and has very rapid response.Patent. Disclosure of an automatically resetting fire sprinkler. A room fire actuates the sprinkler; when the fire is extinguished H2 is reabsorbed in the sensor tube and the water valve automatically closes.

Heating of the hydride bulb results in H2 pressure which forces the bellows to overcome a spring. Performance tests on LaNi5 and TiFe hydrides compare favorably with liquid bulb systems because condensation is avoided. Linear fire or overheat detectors, mostly for aircraft applications. Discrete heating of any significant length of tube assembly will release H2 pressure setting off pressure switch. Device made commercially since 1962 and now in use on virtually all military and civilian jet aircraft. See also Ref. 1099.

Proposed for temperature actuating valves and greenhouse windows.Review of alloy impurity effects with classifications and empirical damage model. Oriented toward hydrogen separation and purification applications, as well as storage using impure H2. Includes data on CO, CO2, O2, H2O, NH3, CH4, C2H4, N2, H2S and CH3SH. Interactions are varied and can be classified as poisoning, retardation, reaction and innocuous. See also Refs. 8 and 203.

209

212

32

382

303

967

1077

1079

1080

238

1093

1084

1086

1087

1088

1090

1092

Demonstrated separation of H2 from mixtures containing N2, CH4, CO2, CO and H2S. Alloy damage noted with CO2 and severe damage with CO and H2S. See also Ref. 212.Separation of H2 from mixtures containing CH4 or CO. Severe damage noted with CO. Ti0.98Zr0.02V0.45Fe0.1Cr0.05Mn1.4 could not be fully reactivated after CO passivation. See also Ref. 209.Demonstrated the purification of commercial (99.99%) H2 to 99.9999% by discarding a few percent the initial discharge gas. A 30% alloy capacity loss was seen after 10,000 purification cycles.Noted anomalously large H2/D2 isotope effects with La0.4Ce0.6Ni5. Temperature dependent.See Chapter 8 for a 1967 review of isotope effects in Pd, including work on chromatographic and electrolytic separation of H2/HD/D2 mixtures.H2/D2 isotope effects and temperature dependencies for LaNi5.H/T isotopic exchange experiments and determinations of separation factors with considerations of bulk (interstitial) states and surface conditions. See also Ref. 1138.Measurements of expansion resulting from 3He bubble formation in tritiated samples. See also Ref. 1078.Prototype hydride system designed to capture boiloff LH2 for compression and reliquifaction. Demonstrated at the NASA Kennedy Space Center.Demonstrates the low temperature (-84 to - 60 C) catalytic hydrogenation of ethylene to ethane using atomic H from LaNi5Hx.Review of extensive 1970's U. Pittsburgh (and other) work on using intermetallic hydride catalysts for ammonia synthesis, methanation and other hydrogenation reactions. Often the IMC is observed to oxidize to produce fine transition metal clusters (e.g., Ni) on an oxide base (e.g., La2O3). See also Refs. 1081, 1082 and 1083.Demonstrated the potential for using Mm-Ni alloys as catalysts for CO+H2 methanation reaction. See also Ref. 1085.Patent. Describes a method of synthesizing ammonia by passing H2+N2 over a two phase catalyst consisting of TiH2 and TiFe-hydride. ZrH2 and other intermetallics are said to also be usable.Patent. Describes a method of synthesizing ammonia at low temperature (ca. 100 C) by passing H2+N2 over AB5 or A2B hydride catalysts. Disclosure of an electrolytic process for hydrogenating organics using an intermetallic hydride electrocatalyst.Early work showing that intermetallic compounds like TiFe and LaNi5 decompose on the surface to form fine Fe or Ni clusters that are catalytically very active. See also Refs. 198, 202, 215, 230, 231, 235, 323, 1089 and 1091.Demonstrated the catalytic ability of the O-stabilized IMC FeTi1.14O0.03 to form hydrocarbons when heated in H2 containing 410 ppm CO. HCs formed include CH4, C2H4 and n-C4H10.

1094

1096

1097

1098

1100

1101

1102

1103

1104

1106

1107

1108

1110

Demonstrate the catalytic ability of AB5 compounds to synthesize hydrocarbons. Supports the concept that the IMC breaks down on the surface to form oxide-supported metal clusters. See also Ref. 1095.Patent. Disclosure that TiH2 and other hydrides can serve as fuel cell electrocatalysts. Porous electrodes Patent. Disclosure that MmNi5 and other RNi5 hydrides can serve as fuel cell electrocatalysts. Early study of the role of hydride and nitride formation on the catalysis of NH3 synthesis.Review of hydride applications, with some emphasis on stationary storage units and separation

A solar power generator based on a solar heated hydride compressor in series with a protonic conductor membrane. The pressure gradient across the PEM (produced by heating the hydride) results in usable Patent. Discloses a means of storing photoelectric energy. System consists of an n-type photoelectrode (e.g., CdSe) and a hydrogen storage electrode in a suitable electrolyte. A window is provided for solar illumination of the photoelectrode which results in charging of the hydride electrode.Describes plastic-bonded or sintered AB5-containing cathodes with good catalytic activity (low overvoltage) for water electrolysis.Describes solar electric storage system designed for homes. Polycrystalline spheres of Si serve as miniature solar photoelectrolysis electrodes to dissociate HBr. The H2 is stored in CaNi5-hydride and later recombined with Br2 in a fuel cell to produce demand electric power. See also Refs. 155 and 1105Discusses alloys and design considerations for an ultra high pressure hydride compressor. Small prototype was constructed and tested: input pressure = 2 MPa, output pressure = 40 MPa, temperature = 160 C.Describes a stationary Mg hydrogen storage method whereby the heat of absorption is stored in a phase change salt for later use during desorption.System designed to produce 1800 W of cooling and was able to produce -20 C cooling with 140 C heat input.

A prototype of an aerospace sorption cryocooler designed to achieve 10K. The high pressure bed serves as a thermal compressor to fill a gas volume to a pressure of 102 atm. This gas is precooled to 60K and expanded through a Joule-Thompson valve to produce liquid H2 at 28-20K. The fast absorption bed supports the formation of LH2 for up to 80 s by keeping the pressure above the LH2 < 2.5 atm. The low pressure bed then reduces the pressure to < 2 Torr (0.0026 atm), converting LH2 to SH2 at 10K and holds it there for 600 s. The prototype was successfully tested in zero-g during a May, 1996, flight of the Space Shuttle Endeavor. See also Refs. 1109 and 1040. A similar system is being developed for the European Space Agency PLANCK mission in 2007 (see Refs. 1141 and 1142). A 2003 update on this work can be found in Ref. 1565.

1111

1114

1115

1116

1118

1119

1120

1121

1122

1123

1124

Demonstration of a switchable mirror controlled by applied H2 pressure. YH2 (or LaH2) is metallic with high reflectivity. Increasing the stoichiometry to YH3 (or LaH3) results in a phase transformation to semiconductor, resulting in optical transparency. The metallic <---> semiconductor (RH2<--->RH3) is rapid and repeatedly reversible. See also Refs. 1112 and 1113.

A personal review of the important considerations involved in experimental or commercial separation and purification of hydrogen with metal hydrides.Commercially available portable fuel cell system with three optional methods of H2 storage: (1) rechargeable hydride gives 1.3 kWh electrical at total weight of 12.7 kg; (2) high pressure (578 atm) gas tank gives 5 kWh electrical at weight of 12.3 kg; (3) chemical hydride gives 13 kWh electrical at weight of 13.6 kg;An H2 storage unit and controllable dispenser based on the hydrolysis of chemical hydrides. The unit offers not only precise demand control, but also the feature of periodically replacing the hydride via "pouches". One application is for portable fuel cells. The unit is available commercially in H2 production capacities of 10 to 10,000 L (see Ref. 1117).A chemical hydride H2 generation method that uses NH3 instead of the usual H2O. Possible applications for portable and vehicular fuel cells. It was estimated that a 1 kg storage unit would supply >500 L H2. Paper also includes H2O reaction studies of Li3AlH6.Broad gravimetric and volumetric review of various H2 storage methods for "man-portable" fuel cells: Rechargeable Hydrides, Chemical Hydrides, Complex Hydrides, Organic Hydrogenation/Dehydrogenation, Zeolites, Glass Microspheres, Carbon Cryoadsorbents, LH2, High Pressure GH2.Review of alloys and systems built in the Ukraine to for use in Physical-Energy installations, e.g., nuclear fusion, accelerators, masers, etc.

Negative hydrogen emission source of the self-surface negative ionization (SSNI) type. CaH2 is the best H-ion emitter. By monitoring electrical resistivity, Pd-Ni films serve as quantitative sensors of H2 in gases (including air). Sensor elements are not affected by 0.5 year exposure to air, but are desensitized by exposure to CO. Showed HF/NaOH/H2 surface treated Zr2Ni had good catalytic activity for the dehydrogenation of methanol. This activity is attributed to fine Ni clustered formed by the treatment, with fluoride and hydride phases helping support and disperse the Ni clusters.Shows good electrocatalytic activity for H2O electrolysis, attributed to fine porous Ni surfaces formed by acid treatment. Active surfaces are not produced by HF treatment of crystalline samples.

1125

1126

1128

1129

1130

1131

1132

1133

1134

1135

1175

1137

Prototype system to demonstrate the transportation of simulated solar heat. (90 C heat was transported 2 km without loss of temperature and at an efficiency of 58%. Regeneration was accomplished by 70 C waste heat and 20 C cooling.Patent. Basic heat pump and container design. General combinations of high and low stability CFMmN5-type alloy to be used are claimed in a related patent (Ref. 1127).

Model calculations of heat pump performance based on heat transfer and hydride reaction kinetics. Calculates COP from 0.27-0.30 and efficiency from 0.37-0.44.Combined thermodynamic - transient model of a one-alloy, two-bed hydride refrigerator driven by a mechanical compressor.A review of three types of hydride heat transformers (heat pumps and refrigerators): (1) Single stage [HS] using 2 alloys; (2) Double stage [HD] using 3 alloys; (3) Multi-hydride-thermal-wave system [HW] using in an example 9 distinct alloys. Performances of these systems are described in terms of COP, gravimetric & volumetric cooling power and cycle time.

International comparison of sorption systems (liquid absorption, adsorption, ammonia salts and metal hydrides) for applications such as deep-freezing, ice making, air conditioning and heat pumping: COP, cooling or heating power (gravimetric and volumetric) and thermodynamic efficiency. Best system varies with the application, with hydrides favored for small volumes or high temperatures.Demonstrate membrane separation of H2 from 80% H2 balance C3H8, CH4, N2 or Ar. Enrichment up to 99% H2 noted with the Al-containing composite, but at a low permeation rate.Concentration of a 50%H2-50%CO mixture to as much as 99% H2 by membrane separation using Ca-Ni or Ni alone, better than LaNi5.In permeation experiments, both Ni and LaNi5 films on polyimide were demonstrated to concentrate H2 from H2-D2 mixtures (separation factors 2.0 and 1.9, respectively).Breakthrough absorption studies at 400C in flowing mixtures of Ar with H2, D2 or H2+D2. Desorption studies with flowing Ar at 800 C. Shows good separation of H2 or D2 from Ar and some relative separation of the H and D isotopes. See also Ref. 1175 and 1174.Breakthrough absorption studies at 50 C in flowing mixtures of Ar with H2, D2 or H2+D2. Desorption studies with flowing Ar at 400, 600 and 800 C. Shows good separation of H2 or D2 from Ar but no relative separation Effect of aging LaNi4.25Al0.75T3.6 for up to 908 days. Alloy considered suitable for long term storage of tritium, but plateau is lowered with aging and becomes more sloping. This is associated with lattice strain from 3He in interstitial sites. Cycling partially restores the PCT propertied, believed to be a result of 3He diffusing to vacancies. See also Refs. 347 and 1136.

1138

1139

1143

1146

1147

1152

1159

1162

1171

Detection range is quoted as 0.2-100% H2. 1173

1174

1176

1357

1358

1359

Review of theoretical and experimental isotope effects, including solubility, mobility, diffusion and isotope exchange and how they might be involved in separation factors. See also Ref. 1077.Model of Pd-hydride isotope separation involving absorption-desorption equilibrium, hydrodynamic dispersion, pressure drop, mass transfer kinetics, enthalpy of reaction and wall heat losses. Agrees well Thermal conductivity of a "vacuum" layer is varied by the control of H2 pressure (e.g. from 1 microtorr to 1 torr). H2 pressure is controlled by a reversible hydride H2 dispenser that can be heated. See also Ref. 1144. This concept has been applied to a variably insulated automotive catalytic converter that stores heat with a phase change material (see Ref. 1145).Model with some experimental studies of gas-gap behavior.

Model, requirements, design and some experimental studies. Designed to be used in the ESA PLANCK mission in 2007.Material shows substantial changes in electrical conductivity with H/M. Application for H2 sensorThesis based mainly on the determination of hydriding/dehydriding properties of MgH2 and Mg2FeH6 in relation to heat storage. Detail on properties useful for other applications.Covers plant design and projected economics. Report also briefly considers energy storage by injecting H2 into existing natural gas lines.Thermodynamic and experimental aspects of coupled hydride beds working in a dynamic coupled mode.

H/D separation by LaNi3Al2 at >200C found comparable to Pd. See also other studies on H/D separation done by same group on Zr(Mn0.5Fe0.5)2 (ref. 1255), Mg2Ni (Ref. 1366) and V (Ref. 1367).ZrCo is compared to U for tritium storage (loading, unloading and delivery). U found to have faster loading kinetics, able to pump to lower T2 pressures and somewhat less prone to particulate migration,A brief review of the use of hydrides to supply pure H2 to mobile and stationary fuel cell applications. Includes submarines, fork lift and small portable applications (notebook computers, cellular phones and cordless tools).A 9-bed system to provide continuous heating (125˚C) and cooling (1˚C). Some experimental performance data presented.Demonstration of a transfer dehydrogenation/hydrogenation organic reactions using CaNi5 hydride at 393-473K. Net reaction is 2-butene + 2-propanol ---> butane + acetone. 2-propanol is effective dehydrogenated by the temporary formation of CaNi5Hx to form acetone. The CaNi5Hx then hydrogenates the 2-butene to form butane.

1360

1361

1362

1363

1364

1355

1365

1368

1369

1372

1374

1375

1376

1292

1377

Presented is a numerical simulation of a heat pump based on parametric expressions for the hydride PCT properties and heat transfer equations. The actaul performance of the heat pump was measured and compared to the numerical simulation. See also Ref. 1373 for more experimental results.Demonstration of the transfer hydrogenation of 2-butene with cyclohexane or 2-propanol to benzene with hydride intermediates at 423K. The surface properties of the hydride were found to be more important than the thermodynamic properties. See also Ref. 1359.The concept is a reversible H2 dispenser designed to provide alternating H2 and vacuum in a sealed gap, thus controlling the thermal conductivity of that gap (thus the term gas-gap heat switch).

Hydride refrigerator to produce 1.5˚C cold water using 20 minute half-cycles.

Experimental evaluation of a hydrogen air fuel cell where the H2 is derived from a contained hydride.

Heat storage prototype system. When H2 is transferred from AB2 storage bed to Mg heater bed steam is generated. Performance data presented and heating bed opened for analysis after 1.5 years' service. See also Ref. 1356 for details and cyclic behavior of Ni-doped (vs. undoped) Mg.Shows PCT and kinetic data for H2 and D2. Although little difference between H and D was found for PC isotherms, absorption kinetics were faster for H by a factor of 4.8 leading authors to suggest alloys should be Mg2Ni was charged with H2 containing 53.5 ppm D. D enrichment (or depletion) was studied during desorption as a function of pressure, temperature and retention time.A calculational procedure was used to study separation of H2 from NH3 synthesis gas and NH3 purge gas, followed by compression.Presents a mathematical model of frontal, nonisothermal absorption of H2 from gas mixtures. Includes some experimental data on hydride composites.Presents mathematical model of two-bed hydride refrigerator.Separation of H2 from pretreated NH3 purge gas done on a semicommercial basis. Resulted in 5N H2 product which was transported 25 km to float glass plant in the same reactors used for separation.A continuum mathematical model of H2 absorption based on heat and mass transfer.Demonstration of a mechanically driven hydride heat pump (see Ref. 993 for earliest origins of this approach). Performance data are shown as a function of several operational variables.Demonstration of a hydride heat engine in the form of a solar powered water pump (see Refs. 1067 and 1068 for earlier versions). Pumping performance was 20 L H2O per 13 minutes with 200 kcal/h solar heat input.

1378

1379

Computer model for 2-alloy heat pump operation. 1380

1381

1382

1219

1383

1384

1386

1387

1388

1389

13901391

1392

A moving hydride type of heat pump. 1394

1395

1535

A thermal cycling absorption/desorption process to chromatographically separate H2 from a mixed gas. A mathematical model for the heat transfer is presented along with actual performance data.Hydride storage container used to supply H2 for a 500 W stationary fuel cell. Performance data presented. See Ref. 1393 for more details and possible variants to basic design.

Demonstration of two and three stage compressor. Pressure increased from 12-18 bar to 85-110 bar with two stages and 20-60˚C input (200 bar with 3rd stage). A 2-alloy, solar based heat pump was also demonstrated.Process for converting CO2 to CH4 over a metal hydride catalyst.Review of hydride-based storage containers, heat pumps and compressors in CIS countries

Prototype of a 2-stage heat pump. Capable of producing 7 kW of 190-200˚C product heat from 130-135˚C input heat and 40˚C waste heat.This is essentially a Ni-H2 gas type battery with separate H2 storage as a hydride. Termed "segmented" hydride battery.

Allows the modular connecting and disconnecting of any number of vessels without H2 loss or air ingress. See also Ref. 1385.At the end of lamp life, temperature increases to decompose the hydride to release H2 into the lamp. This quenches the arc passively without resulting in excessive end heating or glass cracking.Covers the mechanical introduction of the endothermic energy required for hydride desorption. Included are microwave, ultrasonic and ball milling mechanical input.Discloses a method of decomposing organic wastes composed of hetero-atom organics by direct contact with activated metal hydrides. Destroyable organic compounds include those containing halogens, sulfur, phosphorus, oxygen and other higher order bonds.A thermally activated hydride pump used to control Allows transfer of the waste heat of the fuel cell to be used as endothermic desorption enthalpy of the hydride.By controlling the pore size of the porous glass matrix, molecules larger than H2 can be filtered out, thus providing a means for H2 separation from mixed gases.

The generation of atomic hydrogen in small amounts is said to improve the performance of a spark plug used in hydrocarbon internal combustion engines.Experimental data on deuterium separation factors were obtained and modeled. At T>300K, separation was dependent on diffusion within Pd particle pores and at T<300K, separation was dependent on diffusion in the

1536

1537

1539

1540

1541

1542

1543

1544

15451547

1548

1549

1550

1551

1553

1555

1556

Data are shown on the protection of hydrides from H2O using a patented "passive purification" concept (see Refs. 1384 & 1546). Rapid cycling (T<1 min) concepts are included. Performance and economic comparisons between thermall driven hydride and electrically driven mechanical compressors are shown.Details of the carburettor modification and charge/discharge characteristics of the AB2 hydride bed are described. The mower has now been successfully used for more than 14 years, with a retrospective analysis The problem of self-discharge was eliminated by the hydride used and semiconductor band bending was achieved, a necessity for photo rechargeability. The electrolyte is KOH.A comparative review of gaseous, liquid and solid H2 storage, with an emphasis on the advantages and challenges of metal hydrides.Used for separation of impurities that might poison hydride. Invention also achieves demensional stability during cycling. Material can be used in a sealed container which internally generates unwanted H2 gas, e.g., nuclear waste storage containers (see Ref. 1554).Conductivity of the gas gap is controlled by using a metal hydride H2 dispenser.

A compressor is used to pump H2 from or to a MH storage bed, thus providing endothermic cooling and heating, respectively. The system may also contain a heat (cold) storage medium and electric battery storage.

An air stream is used to transfer fuel cell waste heat to the hydride bed. Water storage can also be use to provide moisture to humidify the H2 entering the fuel cell. See Ref. 1552 for related plate heat transfer variation.Exit H2 carrier gas from the GC column is purified and stored in an MH bed for reuse.

Two hydride beds are alternately heated and cooled using a thermally coupled thermoelectric plate. The pressure differentials developed drive a pneumatic-mecanical mechanism (e.g., piston) to perform work.Heat generated by charging storage tank is used to discharge supply tank.Said to reduce levels of CO2, CO, N2, O2 and H2O to < 1 ppb without creating more than 10 ppb CH4. CH4 can then be removed with a cold trap using a molecular seive or activated carbon.Container can be coupled with another container for maximum utilization of heat. See Ref. 1561 for a version containing internal U-tubes for heat exchange.See Ref. 1557 for a stacked plate version of this concept and Ref. 1560 for a version employing MH encapsulation in porous metal tubes.

1558

See also Ref. 1562. 1559

1563

1564

1567

1568

1569

1570

Study on the use of an AB5 alloy for the FC anode. 1571

1572

1574

1575

1576

1577

1579

1580

1581

1582

1583

1584

The vehicle is designed narrow enough such that two cars can be accomodated side-by-side in a standard 12-

Concept includes a heater that regenerates the adsorbant bed and an impurity gas detector to quantify the completion of the adsorbant regeneration process.Good activity for hydrogen oxidation and long-term stability noted.Good hydrogenation activity for crotonaldehyde found at 393K.

Reaction kinetic and heat transfer results modeled. AB2 alloy judged as a suitable material for heat pumps.

Thermal properties were measured as a function of phase composition and H2 pressure. Thermal contact between the alanate and vessel wall was found to be poor. The techniques can be used for other storage materials as Work aimed at determining wall strains as functions of cycle number, loading, packing fraction and bed

Study of the thermophysical and cyclic properties of AB5 hydrides for possible use in a hydride compressor. See Ref. 1573 for similar studies on Ti-Zr-V-Mn AB2 compounds.Presents a thermodynamic model and experimental optical (reflection/transmission) data.

The high temperature waste heat, as opposed to conventional (80C) fuel cells, makes the application of Na-alanate reservoirs more viable."Reasonably good" results obtained when the alloy was ball milled, surface treated and coated with Pd.Demonstration produced 99.9999% pure H2 at 45 MPa from 98% pure H2 at 2 MPA. A similar compressor demonstration by the same group, using Ti1.1Fe+5 wt.% La, is shown in Ref. 1578.

Detailed testing done and a heat transfer model presented.

Good correlations between the H2 output of the hydride tank and electric output of the fuel cell.

Review of hydride properties relative to use as storage media for PEM fuel cells

1585

Parametric model used to calculate performance. 1586

1587

1588

1589

1590

1591

See also Ref. 1596. 1592

1593

Minimum energy was found with compressed H2 storage. 1595

1597

1599

1600

Compressed gas showed the lowest energy consumption. 1601

1602

Experimental results compared to model reasonably well. 1603

1604

1605

1606

1607

Mathematical theremodynamic model of coupled systems developed.

Gravimetric and volumetric H-capacities: AB5 bed gave 1.1 wt% and 36 kg/m3; AB2 bed gave 1.3 wt% and Graphite composites resulted in only slightly lower reaction rates than Al foam, suggesting an interesting economic alternative for natural graphite. See also later IKE Ref. 1598.Combines the advantage of high-pressure gas vessels and hydrides. Concept shows the possibility of achieving higher gravimetric capacity than a standard hydride tank and higher volumetric capacity than a high-pressure gaseous composite tank. Early proposal of this hybrid concept. See Ref. 1590 for information on industrial prototype.180 L four-tank system held 7.3 kg H2 at 35 MPa, giving 2.5 times the vehicle range of the equivalent composite system without hydride.See Refs. 947, 1067, 1377 for earlier prototype solar-hydride water pumps.

Thermal conductivity is analyzed by the "homogenization" method.

Model developed, gas composition and temperature profiles compared well to model.

Model includes possible surface contamination on hydride. Three stage desorption predicted.Higher hydride slope factors are desired for this particular system. There is an optimum reaction enthalpy for maximum COP.

Maximum effeciency found to be 7.3% with a pressure ratio of 8.8 at 95C.

Effects of H2 supply pressure and heat transfer fluid temperature studied.Study aimed toward finding optimum system design (e.g., heat transfer) and optimum strategy (e.g., cooling and H-charging profiles).Target is to raise H2 pressure from 1-20 atm in three 20-80C stages.

Found external heat exchange important and suggests some of inner core of the HM material can be removed (to reduce weight and cost) without detrimental effects on performance.

1608

1609

1610

1611

Prototype performance data shown. 1612

1613

1614

1615

1616

Kinetic and PCT data given on some of the doped Mg alloys.

Performance bounds determined in terms of time/thermal input, power/efficiency and force/displacement.Aimed at developing a semi-empirical correlation for use in heat and mass transfer modeling and design of hydride storage units.Analysis is detailed and concludes a 10-fold enhancement of alanate kinetics is needed. Rapid refuelling will require very high heat rejection (>1 MW).

Performance details given. Net electric-electric efficiency about 25%.

Several Class 212 submarines manufactured or in production for German Navy. Additional Exportcclass 214 units sold to foreign navies. On an equivalent weight basis, MH stores 5 times as much energy as conventional lead-acid submarine batteries.MH unit operates vehicle for 8 hours and can be recharged in about one hour at 7 bars H2 pressure. Weight of MH is not a penalty for a normally ballasted mine vehicle.Vehicle performance data shown. Driving ranges are 135 miles on 3 kg H2 for 2002 Prius and 200 miles on 3.6 kg H2 for 2004/2005 Prius. Stationary 2-stage compressor (& storage) increases H2 pressure from 300 psi (20 atm) to >2000 psi (136 atm) with 15 <-> 85C temperature swings.

Ref. No. First Author Last Name First Author Initials Coauthors1 Buschow K. H. J. and A. R. Miedema

2 Burch R. and N. B. Mason

3 Mintz M. H. Z. Hadari and M. P. Dariel

4 Sandrock G. D. and P. D. Goodell

5 Goodell P. D.

6 Goodell P. D. G. D. Sandrock, and E.L. Huston

7 Goodell P. D.

8 Goodell P. D.

9 Goodell P. D. and P. S. Rudman

10 Rudman P. S. G. D. Sandrock, and P. D. Goodell

11 Sheridan J. J. III

12 Pebler A. and E. A. Gulbransen

13 Pebler A. and E. A. Gulbransen

14 Shaltiel D. I. Jacob, and D. Davidov

15 Jacob I. and D. Shaltiel

16 Jacob I. and D. Shaltiel

17 van Essen R. M. and K. H. J. Buschow

18 Fujii H.

19 Pourarian F.

20 Sinha V. K. and W. E. Wallace

21 Mendelsohn M. H. and D. M. Gruen

22 Fujii F. F. Pourarian, and W. E. Wallace

F. G. Eisenberg, E. J. Greskovich, G. D. Sandrock, E. L. Huston

F. Pourarian, V. K. Sinha, and W. E. WallaceH. Fujii, W. E. Wallace, V. K. Sinha, and H. Kevin Smith

23 Sinha V. K. and W. E. Wallace

24 Sinha V. K. and W. E. Wallace

25 Sinha V. K. F. Pourarian, and W. E. Wallace

26 Suzuki A.

27 Suzuki A. N. Nishimiya, and S. Ono

28 Pedziwiatr A. T.

29 Ivey D. G. and D. O. Northwood

30 Suzuki A. N. Nishimiya, and S. Ono

31 Gamo T.

32 Gamo T.

33 Gamo T.

34 Gamo T.

35 Gamo T.

36 Gamo T.

37 Gamo T.

38 Yamashita T.

39 Komazaki Y.

40 Osumi Y.

41 Johnson J. R.

42 Johnson J. R.

43 Oesterreicher H.

44 Reilly J. J and G. D. Sandrock

N. Nishimiya, S. Ono, S. Higano, and K. Kamino

R. S. Craig, W. E. Wallace, and F. Pourarian

Y. Moriwaki, N. Yanagihara, T. Yamashita, and T. Iwaki

Y. Moriwaki, N. Yanagihara, and T. Iwaki

Y. Moriwaki, T. Yamashita, and M. FukudaY. Moriwaki, T. Yamashita, and M. FukudaY. Moriwaki, T. Yamashita, and M. Fukuda

Y. Moriwaki, T. Yamashita, and M. FukudaY. Moriwaki, T. Yamashita, and M. Fukuda

T. Gamo, Y. Moriwaki, and M. FukudaM. Uchida, S. Suda, A. Suzuki, S. Ono, and N. Nishimiya

H. Suzuki, A. Kato, K. Oguro, T. Sugioka, and T. FujitaJ. J. Reilly, F. Reidinger, L. M. Corless, and J. M. Hastings

K. Ensslen, A. Kerlin, and E. Buscher

45 Beck R. and W. M. Mueller

46 Newkirk H. W.

47 Jacob I. D. Shaltiel, and D. Davidov

48 Maeland A. J.

49 Adkins C. M. and E. J. Taylor

50 Gualtieri D. M. and W. E. Wallace

51 Shaltiel D. D. Davidov, and I. Jacob

52 Buschow K. H. J. R. L. Cohen, and K. W. West

53 Arita M.

54 Buschow K. H. J.

55 Peretz M. D. Zamir, D. Shalteil, and J. Shinar

56 Buschow K. H. J. P. H. Smit, and R. M. van Essen

57 Oesterreicher H.

58 Ivey D. G. and D. O. Northwood

59 Fujii H.

60 Kierstead H. A.

61 Kierstead H. A.62 Bowman R. C.

63 Pourarian F. W. E. Wallace, and S. K. Malik

64 Burnasheva V. V.

65 Jacob I.

N. Takashima, Y. Ichinose, and M. Someno

J. Fujimoto, S. Takeda, T. Hihara, and T. Oakamoto

B. D. Craft, A. Attalla, and J. R. Johnson

A. V. Ivanov, V. A. Yartys', and K. N. Semenenko

A. Stern, A. Moran, D. Shaltiel, and D. Davidov

66 Shaltiel D.

67 Shinar J.

68 Libowitz G. G. H. F. Hayes, and T. R. P. Gibb, Jr.69 Isaack S. L. H. I. Shaaban, and F. H. Hammad

70 Irvine S. J. C. and I. R. Harris

71 Buchner H.

72 Gutjahr M. A.

73 Yamanaka K. H. Saito, and M. Someno

74 Hata K. and H. Sato

75 Reilly J. J. and R. H. Wiswall

76 Sandrock G. D. J. J. Reilly, and J. R. Johnson

77 Huston E. L. and G. D. Sandrock

78 Oguro K.

79 Sasai T.

80 Osumi Y.

81 Suzuki H. Y. Osumi, A. Kato, and M. Nakane

82 Suzuki H.

83 Kato A.

84 Lynch J. F. J. J. Reilly, and F. Millot

85 Lynch J. F. A. J. Maeland, and G. G. Libowitz

86 Aoki K. A. Horata, and T. Masumoto

87 Reilly J. J. and R. H. Wiswall

88 Reilly J. J. and R. H. Wiswall, Jr.

D. Davidov, D. Shaltiel, and N. Kaplan

M. A. Gutjahr, K. Beccu, and H. SauffererH. Bucher, K. D. Beccu, and H. Saufferer

Y. Osumi, H. Suzuki, A. Kato, Y. Imamura, and H. TanakaK. Oku, H. Konno, K. Onouwe, and S. Kashu

H. Suzuki, A. Kato, M. Nakane, and Y. Miyake

Y. Osumi, A. Kato, K. Oguro, and M. NakaneH. Suzuki, Y. Osumi, and M. Nakane

89 Douglass D. L.

90 Rohy D. A.

91 Akiba E. K. Nomura, S. Ono, and Y. Mizuno

92 Arita M. K. Shimizu, and Y. Ichinose93 van Vucht J. H. N.

94 Kuijpers F. A. and H. H. van Mal

95 Buschow K. H. J. and H. H. van Mal

96 Kuijpers F. A.

97 van Mal H. H.

98 van Mal H. H.

99 Anderson J. L.

100 Takeshita T. W. E. Wallace, and R. S. Craig

101 Takeshita T. W. E. Wallace, and R. S. Craig

102 Clinton J. H. Bittner, and H. Oesterreicher

103 van Mal H. H.

104 Shinar J.

105 Guidotti R. A. G. B. Atkinson, and M. M. Wong

106 Sandrock G. D.

J. F. Nachman, A. N. Hammer, and T. E. Duffy

F. A. Kuijpers, and H. C. A. M. Bruning

K. H. J. Buschow, and F. A. KuijpersK. H. J. Buschow, and A. R. Miedema

T. C. Wallace, A. L. Bowman, C. L. Radosevich and M. L. Courtney

I. Jacob, D. Davidov, and D. Shaltiel

107 Sandrock G. D.

108 Mendelsohn M. H. D. M. Gruen, and A. E. Dwight

109 Mendelsohn M. H. D. M. Gruen, and A. E. Dwight

110 Kitada M.

111 Kitada M.

112 Takeshita T. S. K. Malik, and W. E. Wallace

113 Sandrock G. D.

114 Shinar J.

115 Mendelsohn M. H. and D. M. Gruen

116 Mendelsohn M. H. and D. M. Gruen

117 Osumi Y.

118 Misawa T.

119 Osumi Y.

120 Osumi Y.

121 Osumi Y.

122 Osumi Y.

123 Osumi Y.

124 Osumi Y.

125 Suzuki H. Y. Osumi, A. Kato, and M. Nakane

126 Osumi Y.

127 Osumi Y. H. Suzuki, A. Kato, and M. Nakane

128 Takeshita T.

D. Shaltiel, D. Davidov, and A. Grayevsky

H. Suzuki, A. Kato, M. Nakane, and Y. Miyake

A. P. Nomachi, S. Yajima, and H. Sugawara

A. Kato, H. Suzuki, M. Nakane, and Y. MiyakeH. Suzuki, A. Kato, M. Nakane, and Y. MiyakeH. Suzuki, A. Kato, M. Nakane, and Y. MiyakeH. Suzuki, A. Kato, K. Oguro, and M. Nakane

H. Suzuki, A. Kato, K. Oguro, and M. Nakane

H. Suzuki, A. Kato, K. Oguro, and M. Nakane

H. Suzuki, A. Kato, K. Oguro, and M. Nakane

K. A. Gschneider, Jr., and J. F. Lakner

129 Kaidi Y. and L. Xianwei

130 Pourarian F. and W. E. Wallace

131 Uchida H. M. Tada, and Y. C. Huang

132 Liu J. and E. Lee Huston

133 Osumi Y.

134 Shamir N.

135 Malik S. K. E. B. Boltich, and W. E. Wallace

136 Pasturel A.

137 Gschneider K. A.

138 Yoshikawa A. and T. Matsumoto

139 Malik S. K.

140 Kenik E. A.

141 Takeshita T.

142 Murray J. J. M. L. Post, and J. B. Taylor

143 Murray J. J. M. L. Post, and J. B. Taylor

144 Adachi G. K. Niki, and J. Shiokawa

145 Bowman R. C.

146 Lakner J. F. F. S. Uribe, and S. A. Steward

147 Ensslen K. H. Oesterreicher, and E. Bucher148 Zijlstra H. and F. F. Westendorp

149 Lundin C. E. and F. E. Lynch

150 Sheft I. D. M. Gruen, and G. Lamich

H. Suzuki, A. Kato, K. Oguro, S. Kawai, and M. Kaneko

U. Atzmony, Z. Gavra, and M. H. Mintz

C. Chatillon-Colinet, A. Percheron-Guegan, and J. C. AchardT. Takeshita, Y. Chung, and O. D. McMasters

F. J. Arlinghaus, and W. E. WallaceJ. Mullins, S. Spooner, and B. R. Livesay

K. A. Gschneidner, Jr., D. K. Thome, and O. D. McMasters

D. M. Gruen, and M. H. Mendelsohn

151 Lundin C. E. F. E. Lynch, and C. B. Magee

152 Martin D. L.

153 Reilly J. J. and R. H. Wiswall, Jr.

154 Westlake D. G.

155 Bawa M. S. and E. A. Ziem

156 Yamaguchi M. T. Ohta, and Y. Osumi

157 Buschow K. H. J.

158 Lundin C. E. F. E. Lynch, and C. B. Magee

159 van Vucht J. H. N. and K. H. J. Buschow160 Boser O.

161 Carstens H. W. and J. D. Farr

162 Gruen D. M. and M. Mendelsohn

163 Flanagan T. B. and S. Tanaka

164 Takeshita T. and W. E. Wallace165 Lakner J. F. F. S. Uribe, and S. A. Steward

166 Lakner J. F. S. A. Steward, and F. Uribe

167 Raynor G. V.

168 Gruen D. M. M. H. Mendelsohn, and I. Sheft

169 Lundin C. E.

170 Steward S. A. J. F. Lakner, and F. Uribe

171 Ohlendorf D. and H. E. Flotow

172 Flanagan T. B. C. A. Wulff, and B. S. Bowerman

173 Bowerman B. S. C. A. Wulff, and T. B. Flanagan

174 Murray J. J. M. L. Post, and J. B. Taylor

175 Tanaka S. J. D. Clewley, and T. B. Flanagan

176 Tanaka S. and T. B. Flanagan

177 Lynch J. F. and J. J. Reilly

178 Wallace W. E. H. E. Flotow, and D. Ohlendorf

179 Yamaguchi M. T. Katamune, and T. Ohta

180 Parker F. T. and H. Oesterreicher

181 Reilly J. J. E. H. Grohse, and J. R. Johnson

182 Weaver J. H.

183 Rudman P. S. and G. D. Sandrock

184 Sandrock G. D. and E. Snape

185 Rani R. S. Gupta, J. Kumar, and K. N. Rai

186 Goudy A. J.

187 Buschow K. H. J. H. H. Van Mal, and A. R. Miedema

188 Yajima S. H. Kayano, and H. Toma

189 Busch G.

190 Carstens D. H. W.

191 Rudman P. S. J. J. Reilly, and R. H. Wiswall

192 Douglass D. L.

A. Franciosi, D. J. Peterman, T. Takeshita, and K. A. Gschneider

L. Schlapbach, and Th. Von Waldkirch

193 Rudman P. S. J. J. Reilly, and R. H. Wiswall

194 Messer C. E. and D. Polizzotti

195 Reilly J. J. and R. H. Wiswall

196 Gualtieri D. M.

197 Cholera V. and D. Gidaspow

198 Siegmann H. C. L. Schlapbach, and C. R. Brundle

199 Schlapbach L. D. Shaltiel, and P. Olhafen

200 Ono S. Y. Ishido, and J. Kitazawa

201 Goncharuk A. B. and S. N. Endrzheevshaya

202 Schlapbach L.

203 Sandrock G. D. and P. D. Goodell

204 Weaver J. H.

205 Schlapbach L.

206 Schlapbach L.

207 Pourarian F.

208 Eisenberg F. G. and P. D. Goodell

209 Block F. R. and H. J. Bahs

210 Suzuki H.

K. S. V. L. Narashimhan, and T. Takeshita

A. Seiler, F. Stucki, and H. C. Siegmann

A. Franciosi, W. E. Wallace, and H. K. Smith

J. C. Archard, and A. Percheron-Guegan

V. K. Sinha, W. E. Wallace, and H. K. Smith

211 Ono S.

212 Block F. R. and H. J. Bahs

213 Song M. Y.

214 Fischer T. E. S. R. Kelemen, and R. S. Polizzotti

215 Schlapbach L. and T. Riesterer

216 Dittrich Th.

217 Reilly J. J. and F. Reidinger

218 Sakai H.

219 Smith H. K. W. E. Wallace, and R. S. Craig

220 Uchida H. and E. Fromm

221 Uchida H. and E. Fromm

222 Uchida H. and E. Fromm

223 Jacob I. M. Fisher, and Z. Hadari

224 Sicking G. A. Eisenhuth, and P. Albers

225 Farnsworth H. E. and H. H. Madden

226 Musket R. G.

227 Pannell R. B.

228 von Waldkirch Th. and P. Zurcher

229 Shupe D. S.

230 Schlapbach L.

231 Schlapbach L.

M. Pezat, B. Darriet, and P. Hagenmuller

H. W. Buschmann, and W. Vielstich

T. Nakajima, N. Yoshida, and S. Kishimoto

K. S. Chung, and C. H. Bartholomew

A.Seiler, H.C.Siegmann, T.V.Waldkirch, P.Zurcher, and C.BrundelA. Seiler, F. Stucki, P. Zurcher, P. Fischer, and J. Schefer

232 Fromm E. and H. Uchida

233 Ward J. W.

234 Goodman D. W. J. T. Yates, Jr., and T. E. Madey

235 Schlapbach L.

236 Schlapbach L.

237 Seiler A.

238 Soga K. H. Imamura, and S. Ikeda

239 Fujimaki T. and Y. Tanaka

240 Blytas G. C.

241 Reilly J. J. and R. H. Wiswall

242 Linkohr R. and H. G. Plust

243 Hagiwara Z. S. Matsui, and S. Sakaguchi

244 Betteridge W. and J. Hope

245 Kaspar S.

246 Dihu R. J. and J. G. Patel

247 Tomanek D.

248 Sircar S. and J. W. Zondlo

249 Simons H. M.

250 Argabright T. A.

251 Ivey D. G. and D. O. Northwood

252 Nahm K. S. W. B. Jung, and W. Y. Lee253 Lundin C. E. and F.E. Lynch

254 Pourarian F. and W.E. Wallace

L. Schlapbach, Th. von Waldkirch, D. Shaltiel, and F. Stucki

S. Mukherjee, V. Kuhmar, and K. H. Bennemann

D. A. Rohy, H. A. Madariaga, and H. Mak

255 Spada F. E. R. C. Bowman, and J. S. Cantrell

256 Goodell P. D. G. D. Sandrock, and E.L. Huston

257 Mungole M. N. K. N. Rai, and K. P. Singh

258 Mungole M. N.

259 Mungole M. N.

260 Lundin C. E. and F. E. Lynch

261 Murray J. J. M. L. Post, and J. B. Taylor

262 Zhang D. X. X. L. Wang, and G. S. Wang

263 Kumar M. P. S.

264 Adzic G. D.

265 Mendelsohn M. H. D. M. Gruen, and A. E. Dwight

266 Groll M. W. Supper, and R. Werner

267 Wang Q.-D. J. Wu, and C.-P. Chen

268 Lamloumi J.

269 Percheron-Guegan A.

270 Diaz H.

271 Achard J. C.

272 Lundin C. E. and F. E. Lynch

273 Lartigue C.

274 Bowman R. C. Jr.

R. Balasubramaniam, K. N. Rai, and K.P. SinghK.N. Rai, R. Balasubramaniam, and K. P. Singh

W. Zhang, K. Petrov, A. A. Rostami, S. Srinivasan, et al

J. R. Johnson, J. J. Reilly, J. McBreen, S. Mukerjee, et al

A. Percheron-Guegan, C. Lartigue, J. C. Achard, and G. JehannoM. Latroche, J.C. Achard, Y. Chabre, and J. Bouet

A. Percheron-Guegan, and J. C. AchardA. Percheron-Guegan, H. Diaz, F. Briancourt, and F. Demay

A. Percheron-Guegan, and J. C. AchardJ. S. Cantrell, T. W. Ellis, T. B. Flanagan, J. D. Clewley, and S. Luo

275 Luo S.

276 Ron M. and Y. Josephy

277 Na Y.-S. Y.-G. Kim, J.Y. Lee

278 Sakai T.

279 Takeya K.

280 Gavra Z.

281 Reilly J. J.

282 Libowitz G. G. and A. J. Maeland

283 Buschow K. H. J.

284 Buschow K. H. J. and H. H. Van Mal

285 Ivey D. G. and D. O. Northwood

286 Ivey D. G. and D. O. Northwood287 Libowitz G. G. and A. F. Maeland

288 Suda S. Y. Komazaki, and N. Kobayashi

289 Immamura H. M. Kawahigashi, and S. Tsuchia

290 Ishikawa H.

291 Ishikawa H.

292 Suzuki J.

293 Khrussanova M.

294 Notten P. H. L. and P. Hokkeling

295 Iwakura C.

W. Luo, J. D. Clewley, T. B. Flanagan, and R. C. Bowman, Jr.

H. Yoshinaga, H. Miyamura, N. Kuriyama, and H. IshikawaY. Tsugita, Y. Okajima, T. Sakai, H. Miyamura, et al

J. J. Murray, L. D. Calvert, and J. B. Taylor

P. C. P. Bouten, and A. R. Miedema

K. Oguro, A. Kato, H. Suzuki, and E. Ishii

K. Oguro, A. Kato, H. Suzuki, and E. Ishii

M. Abe, T. Yamaguchi, and S. TerazawaM. Terzieva, P. Peshev, I. Konstanchuk, and E. Ivanov

Y. Fukumoto, M. Matsuoka, T. Kohno, and K. Shinmou

296 Dutta K.

297 Orimo S.

298 Yoshinaga H.

299 Stampfer J. F. C.E. Holley, and J. F. Suttle300 Bogdanovic’ B. T. H. Hartwig, and B. Splietoff

301 Groll M. A. Isselhorst, and M. Wierse

302 Wicke E. H. Brodowsky, and H. Zuchner

303 Lewis F. A.

304 Flanagan T. B. and W. A. Oates

305 Ortman M. S.

306 Beck R. L. and W.A. Mueller

307 Huffine C. L.

308 Mueller W. M.

309 Beck R. L.

310 Warren D. E.

311 Libowitz G. G.

312 Rapkin E. G. Steele, and R. Schavey

313 Reilly J. J. and R. H. Wiswall314 Reilly J. J. and R. H. Wiswall

315 Reilly J. J. A. Holtz, and R. H. Wiswall

316 Marmaro R. W. and F. E. Lynch

P. Mandal, K. Ramakrishna, and O.N. Srivastava

M. Tabata, H. Fujii, K. Yamamoto, S. Tanioka, T. OgasawaraM. Wada, T. Sakai, H. Miyamura, N. Kuriyama, and I. Uehara

L. K. Heung, A. Nobile, and R. L. Rabun

K. A. Faughnan, R. A. Fellows, J. W. Godden, and B. M. Seck

317 Bowman R. C.

318 Wiswall R. H. and J. J. Reilly

319 Reilly J. J. and Wiswall

320 Yvon K. and P. Fischer

321 Sandrock G. D.

322 Sandrock G. S. Suda, and L. Schlapbach

323 Schlapbach L.

324 Wang X. L. and S. Suda

325 Ron M.

326 Sandrock G. D.

327 Sheft I. D. M. Gruen, and G. J. Lamich

328 Bershadsky E. Y. Joshepy, and M. Ron

329 Bershadsky E. A. Klyuch, and M. Ron

330 Johnson J. R. and J. J. Reilly

331 Noreus D.

332 Gavra Z.

333 Noreus D. and J. Kilborg

334 Gerard N. and S. Ono

335 Johnson J. R. and J. J. Reilly

336 Sandrock G. D.

337 Franco R. J. B. J. Berkowitz, and B. K. Kaul

B. D. Freeman, E. L. Ryba, R. E. Spjut, E. A. Liu, et al

J. J. Murray, M. L. Post, and J. B. Taylor

M. H. Mintz, G. Kimmel, and Z. Hadari

338 Nakamura K. and T. Hoshi

339 Uchida M. and S. Suda

340 Willems J. J. G.

341 Bernauer O.

342 Friedrich B.

343 Feucht K.

344 Bernauer O.

345 Sakai, T.

346 Heung K.

347 Nobile A. R. T. Walters, and W. C. Mosley

348 Lambert S. W.

349 Bowman R. C.

350 Freeman B.

351 Lynch J. F. A. J. Maeland, and G. G. Libowitz

352 Maeland A. J.

353 Libowitz G. G. and A. J. Maeland

354 Willems J. J. G. and K. H. J. Buschow

355 van Essen R. H. and K. H. J. Bushow

356 Kierstead H. A.

357 Pourarian F.

358 Flanagan T.B.

W. Hurich, N. Komoschinski, and R. PovelJ. Topler, D. Noreus, R. Hempelmann, and D. RichterK. Muta, H. Miyamura, N. Kuriyama, and H. Ishikawa

D. Chandra, W. N. Cathey, F. E. Lynch, and R. C. Bowman

C. H. Luo, C. C. Ahn, C. K. Witham, and B. Fultz

E. Ryba, R. Bowman, and J. Phillips

G. G. Libowitz, J. F. Lynch, and G. Rak

W. E. Wallace, A. Elattar, and J. F. LaknerJ. D. Clewley, N. B. Mason, and H. S. Chung

359 Viccaro P. J.

360 van Mal H. H.

361 Jacob I. and D. Shaltiel

362 Maeland A. J. and G. G. Libowitz

363 Ramesh R. and K. V. S. Rama Rao

364 Oesterricher H. and H. Bittner365 Hong C. D. Han, and Q. Lin

366 Moriwaki Y. T. Gamo, and T. Iwaki

367 Moriwaki Y. T. Gamo, H. Seri, and T. Iwaki

368 Fujitani S.

369 Fujii H. M. Saga, and T. Okamoto

370 Uchida M.

371 Machida Y. T. Yamadaya, and M. Asanuma

372 Miyamura H.

373 Hong C. Y. Zhang, and D. Han

374 Kierstead H. A.375 Boulghallat M.

376 Qian S. and D. O. Northwood

377 Ivey D. G. and D. O. Northwood

378 Lee J. Y. and J. M. Park

379 Manwaring C. A. F.

380 Mendelsohn M. H. D. M. Gruen, and G. D. Sandrock

381 Someno M.

382 Dayan D. and M. P. Dariel

383 Reilly J. J. and J. R. Johnson

G. K. Shenoy, D. Niarchos, and B. D. DunlapK. H. J. Buschow, and A. R. Miedema

I. Yonezu, T. Saito, N, Furukawa, E. Akiba, H. Hayakowa, and S. Ono

H. Bjurstrom, S. Suda, and Y. Matsubara

T. Sakai, N. Kuriyama, K. Oguro, I. Uehara, and H. Ishikawa

N. Gerard, O. Canet, A. Percheron-Guegan

D. G. R. Jones, L. Ruiz de Angelo, and I. R. Harris

M. Arita, R. Kinaka, and Y. Ichinose

384 Philipp S. P. C. Schmidt, and A. Weiss

385 Ensslen K. E. Bucher, and H. Oesterreicher

386 van Essen R. M. and K. H. J. Buschow

387 Maeland A. J. A. F. Andresen, and K. Videm

388 Nacken B. and W. Bronger389 Maeland A. J.

390 Mintz M. H.

391 Lee S.-M. and T.-P. Perng

392 Nagai H. M. Nakatsu, K. Shoji, H. Tamura

393 Johnson J. R. and J. J. Reilly

394 Sasaki Y. and M. Amano

395 Bershadsky E. and M. Ron

396 Mitrokhin S. V.

397 Jang T.H. J. I. Han, and J.-Y. Lee

398 Yamamoto T.

399 Devillers M. M. Sirch, and R.-D. Penzhorn

400 Irvine S. J. C. and I. R. Harris

401 Goodell P. D.

402 Yang H. W.

403 Gao X.

404 Gao X.

405 Kemali M.

S. Vaknin, S. Biderman, and Z. Hadari

V. N. Verbetsky, C. Hong, and Y. Zhang

H. Kayano, S. Sinaga, F. Ono, S. Tanaka, and M. Yamawaki

S. N. Jenq, Y. Y. Wang, and C. C. Wan

D. Song, Y. Zhang, G. Wang, and P. Shen

D. Song, Y. Zhang, Z. Zhou, W. Zhang, M. Wang, and P. Shen

C. E. Buckley, R. L. Havill, D. K. Ross, J. M. Titman, and M. Mercer

406 Luo S.

407 Klyamkin S. N. V. N. Verbetsky, and A. A. Karih

408 Mordkovich V. Z.

409 Cantrell J. S.

410 Morii K. and T. Shimizu

411 Sakamoto Y. R. Nakamura, and M. Ura

412 Notten P. H. L.

413 Uchida H. H.

414 Nakamura Y.

415 Liu F.-J. and S. Suda

416 Tanaka H.

417 Darnaudery J. P. M. Pezat, and B. Darriet

418 Darnaudery J. P. B. Darriet, and M. Pezat

419 Lupu D. A. Biris, and E. Indrea420 Lutz H. M. and O. De Pous

421 Bruzzone G.

422 Bruzzone G.

423 Pourarian F. and W. E. Wallace

424 Spada F. E. R. C. Bowman, and J. S. Cantrell

425 Aubertin F.

426 Selvam P. and K. Yvon

427 Hirata T.

428 Maeland A. J. and G. G. Libowitz

429 Kadel R. and A. Weiss

430 Jones T. C.

431 Bruzzone G.

W. Luo, J. D. Clewley, T. B. Flanagan, and L. A. Wade

Yu. K. Baichtok, N. V. Dudakova, E. I. Marzus, and V. P. Mordovin R. C. Bowman, L. A. Wade, S. Luo, J. D. Clewley, and T. B.

R. E. F. Einerhand, and J. L. C. Daams

Y. Watanabe, Y. Matsumura, and H. UchidaH. Nakamura, S. Fujitani, I. Yonezu, T. Saito, N. Nishizawa, and M Tsutsumi

H. Miyamura, N. Kuriyama, T. Sakai, and I. Uehara

G. Costa, M. Ferretti, and G. L. OlceseG. Costa, M. Ferretti, and G. L. Olcese

U. Gonser, G. Becker, and I. Detemple

T. Matsumoto, M. Amano, and Y. Sasaki

T. K. Halstead, and K. H. J. BuschowG. Costa, M. Ferretti, and G.L. Olcese

432 Chernikov A. S.

433 Darriet B.

434 Drulis H.

435 Li X. G. K. Ohsaki, Y. Morita, and M. Uda

436 Khrussanova M.

437 Schlapbach L. C. Pina-Perez, and T. Siegrist

438 Spada F. and H. Oesterreicher439 Wallace W. E. R. S. Craig, and V. U. S. Rao

440 Mendelsohn M. H.

441 Mintz M. H. Z. Hadari, and M. P. Dariel

442 Dutta K. and O. N. Srivastava

443 Slattery D. K.

444 Kierstead H. A.

445 Shenoy G. K.

446 Spit F. H. M.

447 Dunlap B. D. P. J. Viccaro and G. K. Shenoy

448 Gualtieri D. M. and W. E. Wallace

449 Kierstead H. A.450 Nakamura H.

451 Lee S-G.

452 Ono S. K. Nomura, and Y. Ikeda

453 Lynch J. F. G. G. Libowitz, and A. J. Maeland

454 Nagel H. and R. S. Perkins

L. A. Izhvanov, V. N. Fadeev, L. F. Fremina, V. I. Savin, and A. SoloveyM. Pezat, A. Hbika, and P. HagenmullerW. Petrynski, B. Stalinski, and A. Zygmunt

M. Terzieva, P. Peshev, K. Petrov, M. Pezat, J. P. Manaud, and B.

B. D. Dunlap, P. J. Viccaro, and D. Niarchos

Y. Nakamura, S. Fujitani, and I. YonezuK-Y. Lee, T-G. Kim, Z-H. Lee, and J-Y. Lee

455 Verbetskii V. N.

456 Verbetskii V. N. and V. S. Zontov

457 Moyer R. O. and R. Lindsey

458 Kierstead H. A.

459 Jacob I.

460 Artman D. J. F. Lynch, and T. B. Flanagan

461 Hughes D. T. and I. R. Harris

462 Evans J. I. R. Harris, and P. F. Martin

463 Katz O. M. and J. A. Berger

464 Baranowski B. S. Majchrzak, and T. B. Flanagan

465 Buck H. and G. Alefeld

466 Burch R. and F. A. Lewis

467 Burch R. and R. G. Buss

468 Allard K. D. J. F. Lynch, and T. B. Flanagan

469 LaPade M.

470 McFall W. D. T. C. Witherspoon, and F. A. Lewis

471 Libowitz G. G. A. J. Maeland, and J. F. Lynch

472 Sinha V. K. and K. D. Singh

473 Sinha V. K.

474 Sinha V. K. and K. P. Singh

475 Grushina V. V. and A. M. Rodin

476 Baranowski B. and M. Tkacz

477 Burch R.

478 Filipek S. B. Baranowski, and M. Klukowski

S. V. Mitrokhin, and K. N. Semenenko

P. J. Viccaro, G. K. Shenoy, and B. D. DunlapV. Shargorodski, D. Davidov, and D. Shaltiel

K. D. Allard, J. F. Lynch, and T. B. Flanagan

479 Kabutomori T.

480 Nomura K. and E. Akiba

481 Noh H.

482 Thiebaut S.

483 Trzeciak M. J. D. F. Dilthey, and M. W. Mallett

484 Ura M.

485 Artman D. J. F. Lynch, and T. B. Flanagan

486 Mendelsohn M. D. Gruen, and A. Dwight

487 Mendelsohn M. H. and D. M. Gruen

488 Mendelsohn M. H. D. M. Gruen, and A. E. Dwight

489 Reilly J. and R. Wiswall

490 Reilly J. J. and R. H. Wiswall

491 Reilly J. J. R. H. Wiswall, and C. H. Waide

492 van Vucht J. H. N.

493 Stioui C.

494 Song M. Y.

495 Arita M. R. Kinaka, and M. Someno

496 Akopyan A. G.

497 Deschanvres A. and G. Desgardin

498 Padurets L. N. E. I. Sokolova, and M. E. Kost

499 Liu J. and C. E. Lundin

H. Takeda, Y. Wakisaka, and K. Ohnishi

T. B. Flanagan, T. Sonoda, and Y. SakamotoA. Bigot, J.C. Achard, B. Limacher, D. Leroy, and A. Percheron-Guegan

Y. Haraguchi, F. l. Chen, and Y. Sakamoto

D. Fruchart, A. Rouault, R. Fruchart, E. Roudant, and J. M. Pezat, B. Darriet, and P. Hagenmuller

S. K. Dolukhanyan, and S. K. Karapetyan

500 Burch R. and N. B. Mason

501 Burch R. and N. B. Mason

502 Burch R. and N. B. Mason

503 Takeshita T.

504 Semenenko K. N.

505 Patrikeev Yu. B.

506 Mendelsohn M. H. D. M. Gruen, and A. E. Dwight

507 Kitada M.508 Andreev B. M.

509 Sinha V. K. F. Pourariam, and W. E. Wallace

510 Shilov A. L.

511 Witham C.

512 Pourarian F. V. K. Sinha, and W. E. Wallace

513 Paderets L. N.

514 Malik S. K. and W.E. Wallace

515 Kost M. E.

516 Gualtieri D. M.

517 Cohen R. L.

518 Buschow K. H. J. and A. M. van Diepen

519 Burnasheva V. V.

520 Burnasheva V. V.

521 Bernauer O. and K. Ziegler

O. D. McMasters, and K. A. Gscheidner

V. P. Malyshev, L. A. Petrova, V. V. Burnasheva, and V. K. SarynYu. V. Levinskii, V. V. Badovskii, and Yu. M. Filyand

E. P. Magomedbekov, and V. V. Shitikov

E. I. Yarapolova, M. V. Raevskaya, and M. E. KostB. V. Ratnakumar, R. C. Bowman, A. Hightower, and B. Fultz

A. A. Chertikov, and V. I. Mikheeva

M. V. Raevskaya, A. L. Shilov, E. I. Yaropolova and V. I. Mikhee

K. S. V. L. Narasimhan, and W. E. Wallace

K. W. West, F. Oliver, and K. H. J. Buschow

V. A. Yartys', A. V. Ivanov, and K. N. Semenenko

A. V. Ivanov, and K. N. Semenenko

522 Andreev B. M.

523 Kadel R. and A. Weiss

524 Oesterreicher H. J. Clinton, and H. Bittner

525 Przewoznik J.

526 Liu F.-J. S. Suda, and G. Sandrock

527 Brodowsky H. and E. Poeschel

528 Wallace W. E. F. Pourarian, and V. K. Sinha

529 Tauber A.

530 Shilov A. L. and M. E. Kost

531 Shilov A. L. L. N. Padurets, and M. E. Kost

532 Semenenko K. N.

533 Rama Rao K. V. S. M. Mrowietz, and A. Weiss

534 Narasimhan K. S. V. L

535 Mikheeva V. I. M. E. Kost, and A. L. Shilov

536 Malik S. K. E. B. Boltich, and W. E. Wallace

537 Malik E. K. W. E. Wallace, and T. Takeshita

538 Malik S. K. T. Takeshita, and W. E. Wallace539 Fokin V. N.

540 Darriet B. M. Pezat, and P. Hagenmuller

541 Dariel M. P. M. H. Mintz, and Z. Hadari

542 Burnasheva V. V.

543 Burnasheva V. V.

544 Boltich E. B.

O. V. Dobryanin, E. P. Magomedbekov, Yu. S. Pak and V. V. Shitikov

W. Paul-Boncour, M. Latroch, and A. Percheron-Guegan

R. D. Finnegan, A. Schwartz, F. Rothwarf, and W. E. Wallace

V. N. Verbetskii, V. S. Zontiv, M. I. Ioffe, and S. V. Tsutsuran

V.V. Burnasheva, E.E. Fokina, S.L. Troitskaya and K.N.

V. V. Klimeshin, V. A. Yartys', and K. N. Semenenko

V. V. Klimeshin, and K. N. SemenenkoF. Pourarian, W. E. Wallace, H. K. Smith, and S. K. Malik

545 Goudy A.

546 Tkacz M. and B. Barownowski

547 Lim S. H. and J.-Y. Lee

548 Lim S. H. and J.-Y. Lee

549 Bronca V.

550 Luo W.

551 Pourarian F. V. K. Sinha, and W. E. Wallace

552 Shitikov V.

553 Drulis H. W. Petrynski, and B. Stalinski

554 Sinha V. K. G. Y. Yu, and W. E. Wallace

555 Yu G. Y. F. Pourarian, and W. E. Wallace

556 Bartscher W. and J. Rebizant

557 Perevesenzew A.

558 Kanematsu K.

559 Qian S. and D. O. Northwood

560 Park J.-M. and J.-Y. Lee

561 Drasner A. and Blazina

562 Park J.-M. and J.-Y. Lee

563 Yonezu I.

564 Drasner A. and Z. Blazina

565 Ramesh R.

566 Percheron-Guegan A. C. Lartigue and J. C. Achard

567 Apostolov A. N. Stanev, and P. Tcholakov

W. E. Wallace, R.S. Craig, and T. Takeshita

P. Bergman, V. Ghaemmaghami, D. Khatamian, and F. D. A. Craft, T. Kuh, H. S. Chung, and T. B. Flanagan

G. Hilscher, H. Stampfl, and H. Kirchmayr

E. Lanzel, O. J. Elder, E. Tuscher, and P. Weinzierl

T. Sugiyama, M. Sekine, T. Okagaki, and K. I. Kobayashi

S. Fujitani, A. Furukawa, K. Nasako, T, Yonesaki, T. Sato, and N. J. Furukawa

S. Annapoorni, and K. V. S. Rama Roa

568 Matsumoto T. and A. Matsushita

569 Colinet C.

570 Sakai T.

571 Kierstead H. A.572 Malik S. K.

573 Yamaguchi M.

574 McColm I. J.

575 Pourarian F. M. Q. Huang, and W. E. Wallace

576 Kume Y. and A. Weiss

577 Clark N. J. and E. Wu

578 Zhang L. Y. and W. E. Wallace

579 Clark N. J. and E. Wu

580 Andreev V. A. and M. I. Bartashevich581 Park J.-M. and J.Y. Lee

582 Luo W.

583 Drasner A. and Z. Blazina

584 Kodama T. and H. Kaminaka

585 Bououdina M.

586 Gao X. P.

587 Klyamkin S. N. and V. N. Verbetsky

588 Balasubramaniam R. M. N. Mungole, and K. N. Rai

589 Cantrell J. S. T. A. Beiter, and R. C. Bowman

590 Nakamura Y.

591 Sorgic B. A. Drasner, and Z. Blazina

592 Wang X. C. Chen, C. Wang, and Q. Wang

593 Mitrokhin S. V.

A. Pasturel, A. Percheron-Guegan, and J. C. AchardK. Oguro, H. Miyamura, N. Kuriyama, A. Kato, and H. Ishikawa

G. T. Bayer, E. B. Boltich, and W. E. WallaceH. Ikeda, T. Ohta, T. Katayama, and T. GotoV. Kotroczo, T. W. Button, N. J. Clark, and B. Bruer

J. D. Clewley, T. B. Flanagan, and W. A. Oates

J. L. Soubeyroux, D. Fruchart, E. Akiba, and K. NomuraW. Zhang, H. B. Yang, D. Y. Song, Y. S. Zhang, Z. X. Zhou, and P. W. Shen

H. Nakamura, S. Fujitani, and I. Yonezu

V. N. Verbetsky, R. R. Kajumov, C. Hong, and Y. Zhang

594 Yoshida M.

595 Klyamkin S. N. K. N. Semenenko, and I. A. Kinas

596 Raj P.

597 Yartys' V. A.

598 Kanematsu K.

599 Au M.

600 Skripov A. V. A. A. Podlesnyak, and P. Fischer

601 Imoto T.

602 Kuijpers F. A. and B. O. Loopstra

603 Sakamoto Y.

604 Sakamoto Y. F. L. Chen, and R.-A. McNicholl

605 Mishima R.

606 Nemirovskaya I. E. A. M. Alekseev, and V. V. Lunin

607 Christodoulou C. N. and T. Takeshita608 Doyle M. R. C. J. Wileman, and I. R. Harris

609 Feenstra R.

610 Bernauer O. and C. Halene

611 McColm I. J. and V. Kotroczo

612 Smith H. K. W. E. Wallace, and R. S. Craig

613 Wicke E. and K. Frolich

614 Doyle M. L. and I. R. Harris

615 Yamaguchi M.

616 Flanagan T. B. and H. Noh

617 Ronnebro E.

F. Bonhomme, K. Yvon, and P. Fischer

P. Suryanarayana, A. Sathyamoorthy, K. Shashikala, R. M. Iyer, S. K. Dhar, L. C. Gupta, V. C. Sahni, and R. J. BegumI. I. Bulyk, O. M. Sichevich, and N. I. Yomasczuk

Y. Horikawa, S. Tokita, M. Sawada and K. I. KobayashiF. Pourarian, S. G. Sankar, W. E. Wallace, and L. Zhang

K. Satoh, K. Nishimura, T. Yonesaki, S. Fujitani, and Y. Yonetsu

K. Ohira, N. Isimaru, F. L. Chen, M. Kokubu, and T. B. Flanagan

H. Miyamura, T. Sakai, N. Kuriyama, H. Ishikawa, and I. Uehara

D. G. de Groot, R. Griessen, J. P. Burger, and A. Menovski

I. Yamamoto, Y. Fujita, and T. Goto

D. Noreus, T. Sakai, and M. Tsukahara

618 Fruchart D.

619 Joubert J. M.

620 Latroche M.

621 Hong C. Y. Zhang, and J. Wang

622 Yoshida M.

623 Soubeyroux J. L.

624 Holder J. S. and J. R. Wermer

625 Isselhorst A.

626 Ishiyama S. H. Ugachi, and M. Eto

627 Zhan F.

628 Asada K.

629 Dolukhanian S. K.

630 Gross K. J.

631 Nakamura Y.

632 Rodriguez D.

633 Visintin A.

O. Isnard, S. Miraglia, and J.-L. Soubeyroux

M. Latroche, and A. Percheron-Guegan

A. Percheron-Guegan, Y. Chabre, J. Bouet, J. Pannetier, and E. Ressouche

E. Akiba, Y. Shimojo, Y. Morii, and F. IzumiM. Bououdina, D. Fruchart, and P. de Rango

D. Bao, L. Jiang, L. Zhang, X. Yu, and Y. ZhouK. Ono, K. Yamaguchi, T. Yamamoto, A. Maekawa, S. Oe, and M. YamawakiH. G. Hokabian, A. G. Aleksanian, N. N. Aghadjanian, S. S. Simonian, and V. M. Beibutian

P. Spatz, A. Zuttel and, L. Schlapbach

K. Sato, M. Kato, K. Oguro, and I. Uehara

G. Meyer, H. A. Peretti, and J. C. Bolcich

W. E. Triaca, H. A. Peretti, J. C. Bolcich, W. Zhang, S. Shrinivasan, and A. J. Appleby

634 Verbetsky V. N. R. A. Sirotina, and E. A. Umerenko

635 Sorgic B. A. Drasner, and Z. Blazina

636 Verbetsky V. N.

637 Sakamoto Y.

638 Semenenko K. N.

639 Ivanova T. N. R. A. Sirotina, and V. N. Verbetsky

640 Luo S.

641 Witham C. R. C. Bowman, and B. Fultz

642 Bowman R. C.

643 Yasuda K.

644 Cocciantelli J. M. P. Bernard, S. Fernandez, J. Atkin

645 Higashiyama N

646 Wanner M.

647 Morita Y. T. Gamo, and S. Kuranaka

648 Paul-Boncour V.

649 Bououdina M.

650 Gingl F. K. Tvon, T. Vogt, and A. Hewat

651 Kolomiets A. V.

652 Joubert J.-M.

S. N. Klyamkin, A. Yu. Kovriga, and A. P. BesphalovM. Ura, T. Hisamoto, and T. B. FlanaganV. N. Verbetskii, S. V. Mitrokhin, and V. V. Burnasheva

J. D. Clewley, T. B. Flanagan, R. C. Bowman, and J. S. Cantrell

C. Witham, B. Fultz, B. V. Ratnakumar, T. W. Ellis, and I. E. Anderson

Y. Matsura, H. Nakamura, M. Kimoto, M. Nogami, I. Yonezu, and K. Nishio

G. Friedlmeier, G. Hoffmann, and M. Groll

L. Guenee, M. Latroche, M. Escorne, A. Percheron-Guegan, Ch. Reichl, and G. WiesingerP. Menier, J. L. Soubeyroux, and D. Fruchart

L. Havela, V. A. Yartys, and A. V. Andreev

D. Sun, M. Latroche, and A. Percheron-Guegan

653 Zuttel A.

654 Yamashita I.

655 Klyamkin S. N. and K. N. Semenenko

656 Fruchart D.

657 Yartys V. A.

658 Andersson Y. T. Larsson, and R. Tellgren

659 Obbade S.

660 Poyser P. A. M. Kemali, and D. K. Ross

661 Sakamoto Y.

662 Flanagan T. B. D. Wang, and H. Noh

663 Bloch J. M. H. Mintz

664 Uehara I. T. Sakai, and H. Ishikawa

665 Wang Q. D. C. P. Chen, and Y. Q. Lei

666 V.Z.

667 Sarynin V. K.

668 Mikheeva V. I. M. E. Kost, and A. P. Nazarov

669 Gubbens P. C. M.

670 Andreev B. M.

671 Yagisawa K. A. Yoshikawa, and T. Matsumoto

672 Shilov A. L. M. E. Kost, and N. T. Kuznetsov

673 Kim S.-R. and J.-Y. Lee

D. Chartouni, K. Gross, M. Bachler, and L. Schlapbach

H. Tanaka, H. Takashita, N. Kuriyama, T. Sakai, and I. Uehara

M. Bacmann, P. de Rango, O. Isnard, S. Liesert, S. Miraglia, S. Obbade, J.-L. Soubeyroux, E. Tomey, and P. WolfersO. Gutfleisch, V. V. Panasyuk, and I. R. Harris

D. Fruchart, M. Bououdina, S. Miraglia, J. L. Soubeyroux, and O. Isnard

K. Ohira, M. Kokubu, and T. B. Flanagan

MordkovichV. Z.

V. V. Burnasheva, and K. N. Semenko

A. M. van der Krann, and K. H. J. BuschowYa. D. Zel’venskii, A. I. Shafiev, and V. V. Shitikov

674 Meli F. A. Zuettel, and L. Schlapbach

675 Kisi E. H. E. M. A. Gray, and S. J. Kennedy

676 Lee S.-G.

677 Luo S.

678 Fukumoto Y.

679 Zhang W.

680 Kesavan T. R.

681 Kesavan T. R.

682 Ramesh R.

683 Sankar S. G. D. M. Gualtieri, and W. E. Wallace

684 Andreev B. M.

685 Buschow K. H. J.

686 Christodoulou C. N. and T. Takeshita

687 Park J.-M, Y.-G. Lee, and J.-Y. Lee

688 Klyamkin S. N.

689 Sun D.

690 Liu B.H.

691 Bartashevich M. I.

692 Smith H. K.

693 Boschow K. H. J. and R. M. van Essen694 zu Reckendorf R. M. P. C. Schmidt, and A. Weiss

H.-H. Lee, K.-Y. Lee, and J.-Y. LeeT. B. Flanagan, and P. H. L. Notten

M. Miyamoto, H. Inoue, M. Matsuoka, and C. Iwakura

M. P. S. Kumar, A. Visintin, S. Srinivasan, and H. J. Ploehn

R. Ramesh, and K. V. S. Rama Rao

S. Ramaprabhu, K. V. S. Rama Rao, and T. P. DasS. Annapoorni, and K. V. S. Rama Rao

E. P. Magomedbekov, Yu. S. Pak, and M. G. Zagliev

V. N. Verbetsky, and V. A. Demidov

J. M. Joubert, M. Latroche, and A. Percheron-Guegan

D. M. Kim, K.-Y. Lee, and J.-Y. LeeK. Koui, T. Goto, M. Yamaguchi, I. Yamamoto, and F. Sugaya

J. J. Rhyne, K. A. Hardman-Rhyne, and W. E. Wallace

695 Obbade S.

696 Skripov A. V. Yu. G. Cherepanov, and H. Wipf

697 Libowitz G. G. and A. J. Maeland

698 Mintz M. H. Z. Gavra, and G. Kimmel

699 Buchner H. O. Bernauer, and W. Strauss

700 Nachman J. F. and D. A. Rohy

701 Guinet Ph. P. Perroud, and J. Rebiere

702 Khrussanova M.

703 Pezat M. B. Darriet, and P. Hagenmueller

704 Boulet J. M. and N. Gerard

705 Ogawa K. H. Aoki, and T. Kobayashi

706 Shaltiel D.

707 Khrussanova M. and P. Peshev

708 Ivanov E.

709 Akiba E.

710 Pal K.

711 Au M. J. Wu, and Q. Wang

712 Selvam P.

O. Isnard, S. Miraglia, D. Fruchart, Ph. L’Heritier, F. Lazaro, F. Lera, C. Rillo, and K. H. Buschow

M. Pezat, B. Darriet, and P. Hagenmuller

N. Kaplan, A. Grayevsky, and A. Moran

I. Konstanchuk, A. Stepanov, and V. Boldyrev

H. Hayakowa, Y. Ishido, and K. Nomura

B. Viswanathan, C. S. Swamy, and V. Srinivasan

713 Friedlmeier G. M. and J. C. Bolcich

714 Friedlmeier G.

715 Selvam P.

716 Biris A.

717 Lupu D.

718 Post M. L. J. J. Murray, and J. B. Taylor

719 Bogdanovic’ B. and M. Schwickardi

720 T. N.

721 Sullivan E. A. and R. C. Wade

722 Stetson N. T. K. Yvon and P. Fischer723 Stetson N. T. and K. Yvon

724 Huang B. K. Yvon and P. Fischer

725 Didisheim J. J.

726 Huang B. K. Yvon, and P. Fischer

727 Huang B. K. Yvon, and P. Fischer

728 Huang B. K. Yvon, and P. Fischer

729 Bonhomme F.

730 Bonhomme F. K. Yvon and P. Fischer

731 Zolliker P. K. Yvon, P. Fischer and J. Schefer

732 Cerny R.

733 Zolliker P.

734 Huang B. K. Yvon and P. Fischer

B. Viswanathan, C.S. Swamy, and V. ShrinivasanD. Lupu, R. V. Bucur, E. Indrea, G. Borodi, and M. Bogdan

A. Biris, E. Indrea, N. Aldia, and R. V. Bucur

DymovaT. N.

Yu. M. Dergachev, V. A. Sokolov, and N. A. Grechanaya

P. Zolliker, K. Yvon, P. Fischer, J. Schefer, M. Gubelmann, and A. F. Williams

K. Yvon, G. Triscone, K. Jansen, G. Auffermann, P. Müller, W. Bronger, and P. Fischer

F. Bonhomme, K. Yvon, P. Fischer, P. Zolliker, D. E. Cox and A. HewatK. Yvon, J. D. Jorgensen and F. J. Rotella

735 Yoshida M. K. Yvon and P. Fischer

736 Bortz M. K. Yvon and P. Fischer

737 Bortz M. K. Yvon and P. Fischer

738 Huang B. K. Yvon, and P. Fischer

739 Bonhomme F.

740 Huang B.

741 Bortz M. A. Hewat and K. Yvon

742 Lindberg P.

743 Kritikos M.

744 Kritikos M.

745 Kritikos M. and D. Noreus

746 Kadir K. and D. Noreus

747 Kadir K. and D. Noreus

748 Kadir K. and D. Noreus

749 Kadir K. and D. Noreus

750 Gingl F K. Yvon and P. Fischer

751 Bronger W.

N. T. Stetson, K. Yvon, P. Fischer and A. W. HewatF. Bonhomme, P. Selvam, K. Yvon and P. Fischer

D. Noreus, M. R. A. Blomberg and P. E. M. Siegbahn

D. Noreus, B. Bogdanovic and U. WilczokD. Noreus, A. F. Andresen and P. Fischer

752 Moyer R. O. R. Lindsay and D. N. Marks

753 Lindsay R.

754 Mackay K. M.

755 Siegel B. and G. G. Libowitz

756 Block J. and A. P. Gray

757 Lupu D.

758 Biris A. D. Lupu, E. Indrea and R. V. Bucur

759 Bronger W. G. Auffermann and P. Muller

760 Bronger W. G. Auffermann and P. Muller

761 Bronger W. G. Auffermann and P. Muller

762 Bronger W. and G. Auffermann

763 Bronger W.

764 Bronger W. and G. Auffermann

765 Bronger W. and G. Auffermann

766 Bronger W. K. Jansen and P. Muller

767 Bronger W. and G. Auffermann

768 Bronger W. and G. Auffermann

769 Bronger W. and G. Auffermann

770 Bronger W.

771 Bronger W. and G. Ridder

772 Bronger W. R. Beissmann and G. Ridder

773 Bronger W. K. Janssen and G. Auffermann

774 Bronger W. M. Gehlen and G. Auffermann

R. O. Moyer, W. Strange and B. J. Burnim

A. Biris, R. V. Bucur, E. Indrea and M. Bogdan

P. Muller, D. Schmitz and H. Spittank

P. Muller, J. Kowalczyk and G. Auffermann

775 Moyer R. R. Ward, L. Katz and J. Tanaka

776 Moyer R.

777 Thompson R. J. R. Moyer and R. Lindsay

778 Mendelsohn M. H.

779 Lindsay R.

780 Moyer R. R. Lindsay and D. F. Storey

781 Lindsay R.

782 Moyer R. O. B. J. Burnim and R. Lindsay

783 Block J. and A. P. Gray

784 Smith M. B. and G. E. Bass

785 Wiberg E. R. Bauer, M. Schmidt and R. Uson

786 Wiberg E. and R. Bauer

787 Wiberg E. and R. Bauer

788 Finholt A. E.

789 Ashby E. C. G. J. Brendel and H. E. Redman

790 Clasen H.

791 Monnier G.

792 Schaeffer G. W. J. S. Roscoe and A. C. Stewart

793 Reid W. E. J. M. Bisch andA. Brenner

794 Batha H. D.

795 Amberger E. and M-R. Kula

796 Kollonitsch J. O. Fuchs and V. Gabor

797 Waddington T. C.798 Zange E.

799 Rulon R. and L. S. Mason

C. Stanitski, J. Tanaka, M. I. Kay and R. Kleinberg

J. Tanaka, R. Lindsay and R. Moyer and R. Moyer, J. S. Thompson and D. Kuhn

R. O. Moyer, W. Strange, W. H. Clapp, D. F. Storey and J. R.

G. D. Barbaras, G. K. Barbaras, G. Urry, T. Wartik and H. I.

E. D. Whitney, T. L. Heying, J. P. Faust and S. Papetti

800 Hoekstra R. H. and J. J. Katz

801 Klingen T. J.

802 Schlesinger H. I. H. C. Brown and E. K. Hyde

803 Stephanson C. C. D. W. Rice and W. H. Stockmeyer

804 Abrahams S. C. and J. Kalnajs

805 Schlesinger H. I.

806 Schlesinger H. I.

807 Schlesinger H. I. and H. C. Brown808 Wu J.

809 Nakamura H.

810 Iwakura C.

811 Nasako K. Y. Ito, N. Hiro and M. Osumi

812 Sorgic B. Z. Blazina and A. Drasner

813 Latroche M.

814 Bobet J-L.

815 Luo S.

816 Nakamura Y.

817 Srivastava S. and O. N. Srivastava

818 Liu B.-H. and J.-Y. Lee

819 Paul-Boncour V.

820 Chen J. S. X. Dou and H. K. Liu

821 Yu J-S. K-Y Lee and J-Y Lee

H. C. Brown, H. R. Hoekstra and L. R. Rapp

H. C. Brown, A. E. Finholt, J. R. Gilbreath, H. R. Hoekstra and E. K. Hyde

J. Li, W. Zhang, F. Muo, L. Tai and R. XuY. Nakamura, S. Fujitani and I. Yonezu

M. Myamoto, H. Inoue, M. Matsuoka and Y. Fukumoto

A. Percheron-Guegan and F. Bouree-Vigneron

S. Pechev, B. Chevalier and B. DarrietJ. D. Clewley, T. B. Flanagan, R. C. Bowman and L. A. WadeK. Sato, S. Fujitani, K. Nishio, K. Oguro and I. Ishikawa

M. Latroche, L. Guenee and A. Percheron-Guegan

822 Lee H-H. K-Y. Lee and J-Y. Lee

823 Spatz P.

824 Spatz P.

825 Kolomiets A.

826 Kesavan T. R.

827 Kim D-M. S-M. Lee, K-J. Jang and J-Y. Lee

828 Yuan H.

829 Zavaily I. Yu.

830 Tsushio Y. and E. Akiba

831 Bortz M. A. Hewat and K. Yvon

832 Huang B.

833 Gingl F. K. Yvon and T. Vogt

834 Bronger W. S. Hasenberg and G. Auffermann

835 Christodoulou C. N. and T. Takeshita

836 Revel R.

837 Yartys V. A. G. Wiesinger and I. R. Harris

838 Isnard O.

839 Pechev S.

840 O

841 Ohira K. Y. Sakamoto and T. B. Flanagan

842 Wang D.

843 Huot H.

K. J. Gross, A. Zuttel and L. SchlapbachK. J. Gross, A. Zuttel F. Fauth, P. Fischer and L. SchlapbachL. Havela, A.V. Andreev, V. Sechovsky and V. A. Yartys

S. Ramaprabhu, K. V. S. Rama Rao and T. P. Das

H. Yang, Z. Zhou, D. Song and Y. Zhang

A. B. Riabov, V. A. Tartys, G. Weisinger, H. Michor and G. Hilscher

F. Gingl, F. Fauth, A. Hewat and K. Yvon

E. Tomey, J. L. Soubeyroux, D. Fruchart, T. H. Jacobs and K. H. J. Buschow

S. Miraglia, D. Fruchart, E. Akiba and K. Nomura

B. Chevalier, M. Khrussanova, M. Terzieva, J. L. Bobet, B. Darriet and P. Peshev

IsnardO.

S. Miraglia, C. Giorgetti, E. Dartyge, G. Krill and D. Fruchart

K.-Y. Lee, S. Luo and T. B. FlanaganS. Bouaricha, S. Boily, J.-P. Dodedlet, D. Guay and R. Schultz

844 Jang K-J.

845 Akiba E.

846 Esayed A. Y. and D. O. Northwood

847 Fyodorov R. A.

848 Nikitin S. A.

849 Mungole M. N.

850 Hahne E. and J. Kallweit

851 Gao X. P.

852 Rajalakshmi N. and K. S. Dhathathreyan

853 Fernandez G. E. D. Rodriguez and G. Meyer

854 Dehouche Z.

855 Gao X.-P.

856 Gamo T.

857 Kim D-M.

858 Konishi S.

859 Sakumura Y.

860 Au M.

J-H. Jung, D-M. Kim, J-S. Yu and J-Y. Lee

S. I. Alisov, V. S. Chubrikov, V. N. Chernyshov, V. N. Verbetsky, R. A. Sirotina and E. A. UmerenkoV. N. Verbetsky, E. O. Ovchenkov and A. A. SalamovaR. Balasubramaniam and K. N. Rai

S. H. Ye, J. Liu, D. Y. Sang and Y. S. Zhang

J. Goyette, T. K. Bose, S. Boily, J. Huot and R. Schultz

B.-H. Liu, M. Imai, H. Ohta and S. Suda

Y. Morita, S. Kuranaka, J. Suzuki, M. Uchida, A. Aota and N. Itoh

S-M. Lee, J-H. Jung, K-J. Jang and J-Y. Lee

T. Nagasaki, T. Hayashi and K. OkunoH. Obayashi, K. Ohnishi, T. Kabutomori and Y. Wakisaka

F. Pourarian, S. G. Sankar, W. W. Wallace and L. Zhang

861 Suda S.

862 Flanagan T. B. D. Wang and J. D. Clewley

863 Guthrie S. E. and G. J. Thomas

864 Ting J.

865 Sakai H.

866 Hunter J. B.

867 Noh H. W. Luo and T. B. Flanagan

868 Sakamoto Y.

869 Noh H.

870 Flanagan T. B. H. Noh

871 Flanagan T. B.

872 Carpetis C.

873 Eklund G. and O. von Krusenstierna

874 Kelley J. H. and R. Hagler, Jr.

875 Strickland G. J. J. Reilly, and R. H. Wiswall

Z.P. Li, Y.-M. Sun, B.-H. Liu and X.-P. Gao

V. K. Pecharsky, I. E. Anderson, C. Whitam, R. C. Bowman, Jr. and B. Fultz

T. Nakajima, N. Yoshida and S. Kishimoto

Y. Haraguchi, M. Ura and F. L. ChenJ. D. Clewley, T. B. Flanagan and A. P. Craft

J. D. Clewley, H. Noh, J. Barker and Y. Sakamoto

876 Rosso M. J. and G. Strickland

877 Guinet Ph. P. Perroud, and J. Rebiere

878 Ono S. H. Kanazawa and H. Toma

879 Povel R.

880 Nishimiya N. A. Suzuki, and S. Ono

881 Anon.

882 Anon.

883 Anon.

884 Anon.

885 Anon.

886 Anon.

887 Strickland G. and J. J. Reilly

888 Robinson S. L. and J. J. Iannucci

889 McCue J.

890 Arnold M.

891 Wenzl H. and K. H. Klatt

892 Baker N.

893 Bridger N. J.

894 Wiswall R. H. and J. J. Reilly

895 Gell H. A.

J. Topler, G. Withalm, and C. Halene

L. Houston, F. Lynch, L. Olavson and G. Sandrock

896 Nakane M. Y. Osumi, H. Suzuki and A. Kato

897 Bruning H. A. C. M.

898 Lucas G. G. and W. L. Richards

899 Turillon P. P.

900 Klatt K. H. and H. Wenzl

901 Tuscher E. P. Weinzierl, and O. J. Eder

902 Robinson S. L. and J. L. Handrock

903 Malinowski M. E. and K. D. Stewart

904 Olavson L. G.

905 Hoffman K. C.

906 Brooman E. W. and C. M. Allen

907 Scott D.

908 Teitel R. J.

909 Podgorny A. N. A. I. Mishchenko, and V. V. Solovey

910 Reilly J. J. R. H. Wiswall, and K. C. Hoffman

911 Williams L. O.

912 Austin R. L.

913 Marinescu-Pasoi L.

914 Reilly J. J.

J. H. N. van Vucht, F. F. Westendorp and H. Zijlstra

N. R. Baker, F. E. Lynch, and L. C. Mejia

W. E. Winsche, R. H. Wiswall, J. J. Reilly,T. V. Sheehan, and C. H.

U. Behrens, G. Langer, W. Gramatte, A. K. Rastogi, and R. E. K. C. Hoffman, G. Strickland, and R. H. Wiswall

915 Weingartner S.

916 Anon.

917 Reilly J. J.

918 Wiswall R.

919 Wenzl H.

920 Berry G. D. and S. M. Aceves

921 Dantzer P.

922 Sandrock G.

923 Buchner H.

924 Sandrock G. D. and E. L. Huston

925 Snape E. and F. E. Lynch

926 Snape E. E. L. Huston, and G. D. Sandrock

927 Cohen R. L. and J. H. Wernick

928 Schmitt R.

929 Garg S. C. and A. W. McClaine

930 Ivey D. G.

931 Hoffman K. C.

932 Woolley R. L.

933 Billings R. E.

934 Billings R. E.

935 Davidson D. M. Fairlie, and A. E. Stuart

936 Henriksen D. L. D. B. Mackay, and V. R. Anderson

937 Mackay D. B.

938 Billings R. E.

939 Woolley R. L.

940 Anderson V. R.

R. I. Chittim, K. J. Chittim and D. O. Northwood

J. J. Reilly, F. J. Salzano, C. H. Waide, R. H. Wiswall and W. E. Winsche

R. L. Woolley, B. C. Campbell, J. H. Ruckman and V. R. Anderson

941 Billings R. E.

942 Bernauer O.

943 Suzuki H.

944 Burger J. M. and P. A. Lewis

945 Wang Q.-d.

946 Wu Y.-m.

947 Ghete P.

948 Muller H. and K. Weymann

949 Sandrock G. D.

950 Sandrock G.

951 Turillon P. P. and G. D. Sandrock

952 Sandrock G. D. and E. Snape

953 Gidaspow D. and Y. Liu

954 Reidinger F. and F. B. Hill

955 Blytas G. C.

956 Meyerhoff R. W.

957 Wang Q.-d. J. Wu, C.-p. Chan, and Z. Ye

Y. Osumi, A. Kato, K. Oguro, and M. Nakane

J. Wu, C.-p. Chen, W.-f. Lou, and T.-S. Fang

R. Sarbu, R. Lupu, D. Lupu, A. Biris, and C Bratu

958 Block F. R. A. Dey, H. Kappes and K. Reith

959 Gill J. T. B. E. Anderson and R. A. Watkins

960 Buchner H.

961 Rummel W.

962 Tanaka J. and J. J. Reilly

963 Tanaka J. and J. J. Reilly

964 Aldridge F. T.

965 Aldridge F. T.

966 Cullingford H. S.

967 Biris A.

968 Lasser R. and K.-H. Klatt

969 Wong T. W. and F. B. Hill

970 Wong T. W. F. B. Hill, and Y. N. I. Chan

971 Orbach H. K. and R. C. Oliver

972 Imoto S. T. Tanabe, and K. Utsunomiya

973 Andreev B. M.

974 Hamrin C. E. and K. Weaver

975 Carstens D. H. W.

976 Bowman R. C.

977 Nobile A.

M. G. Wheeler, and J. W. McMullen

R. V. Bucur, P. Ghete, E. Indrea, and D. Lupu

A. N. Pervezentsev, and V. V. Shitikov

R. H. Steinmeyer, L. K. Matson, A. Attalla, and B. D. Craft

978 Ono S. M. Yamaguchi, and T. Ohta

979 van Mal H. H.

980 Lynch F. E. R. A. Nye, and P. P. Turillon

981 Klein G. A. and J. A. Jones

982 Jones J. A. and P. M. Golben

983 Tuscher E. O. J. Eder, and P. Weinzierl

984 Carstens D. H. W. and W. R. David

985 Meyerhoff R. W.

986 Golben P. M.

987 Buchner H. and Saufferer

988 Golben P. M. and J. Fox

989 Golben P. M. and G. D. Sandrock

990 Golben P. M. D. DaCosta and G. Sandrock

991 Libowitz G. G.

992 Libowitz G. G. and Z. Blank

993 Wolf S.

994 McLaine A. W.

995 Cottingham J. G.

996 van Mal H. H.

997 Cottingham J. G.

998 Terry L. E.

999 Terry L. E.

1000 Terry L. E.

1001 Gruen D. M.

1002 Sheft I.

1003 Gruen D. M. M. H. Mendelsohn, and I. Sheft

1004 Chase V. D.

1005 Gruen D. M. and P. R. Fields

1006 Gruen D. M. F. Schreiner, and I. Sheft

1007 Gruen D. M.

1008 Alefeld G.

1009 Bowman W. H. and B. E. Sirovich

1010 Sirovich B. E.

1011 Nishizaki T.

1012 Retallick W. B.

1013 Dantzer P. and E. Orgaz

1014 Orgaz E. and P. Dantzer

I. Sheft, G. Lamich, and M. Mendelsohn

D. M. Gruen, G. J. Lamich, L. W. Carlson, A. E. Knox, J. M. Nixon, and M. H. Mendelsohn

M. Mendelsohn, I. Sheft, and G. Lamich

K. Oguma, K. Sakagami, and K. Yoshida

1015 Anevi G. and D. Lewis

1016 Lewis D.

1017 Lewis D.

1018 Anevi D.G. L. Jansson, and D. Lewis

1019 Rohy D. A. T. A. Argabright, and G. W. Wade

1020 Lewis D.

1021 Gorman R. and P. Moritz

1022 Gorman R. and P. Moritz

1023 Billings R. E.

1024 Gorman R. and P. M. Moritz

1025 Abelson H. and J. S. Horowitz

1026 Nagel M.

1027 DaCosta D. H.

1028 Suda S.

G. Anevi, H. Bjurstrom, L. Jansson, and R. Westin

Y. Komazaki, M. Uchida, S. Suda, and Y. Matsubara

1029 Yonezu I.

1030 Wakao S.

1031 Kawamura M. S. Ono, and Y. Mizuno

1032 Nishizaki T. K. Miyamoto, and K. Yoshida

1033 Bogdanovic’ B. B. Spliethoff, and A. Ritter

1034 Wierse M. R. Werner, and M. Groll

1035 Werner R. and M. Groll

1036 Suda S.

1037 Turillon P. P.

1038 Golben P. M. and E. L. Huston

1039 Ron M. and Y. Joshepy

1040 Nomura K. E. Akiba, and S. Ono

1041 Tuscher E. and P. Weinzierl

1042 Bernauer O.

K. Nasako, N. Honda, and T. Sakai

M. Sekine, H. Endo, T. Ito, and H. Kanazawa

Y. Komazaki, H. Narasaki, and M. Uchida

1043 Topler J. and K. Feucht

1044 Ron M. and Y. Joshepy

1045 Bjurstrom H.

1046 Suda S.

1047 Werner R.

1048 Wang Q-d. J. Wu, M. Au, and Z-p. Li

1049 Bjurstrom H. and S. Suda

1050 Gambini M.

1051 Suda S.

1052 Suda S.

1053 Steyert W. A.

1054 Ron M. and Y. Joshepy

1055 Meijer R. J.

1056 Winsche W. E.

1057 Powell J. R.

1058 Powell J. R.

F. J. Salzano, W-s. Yu, and J. S. Milau

F. J. Salzano, W-s. Yu, and J. S. Milau

1059 Powell J. R. and F. J. Salzano

1060 Terry L. E. and R. J. Schoeppel

1061 Terry L. E. and R. J. Schoeppel

1062 Barmin V. P.

1063 Nomura K. Y. Ishido, and S. Ono

1064 Hinkebein T. E. C. J. Northrup, and A. A. Heckes

1065 Heckes A. A.

1066 Yeaple F.

1067 Northrup C. J. and A. A. Heckes

1068 Golben P. M.

1069 Golben P. M.

1070 Golben P. M.

1071 Welter J.-M. and J.-D. Witt

1072 Welter J.-M.

1073 Shinoda K. and K. Oguma

1074 Hanley D. J. E. L. Huston, and P. M. Golben

1075 Golben P. M.

1076 Wong T. W. and F. B. Hill

1077 Sicking G. P. Albers, and E. Magomedbekov

1078 Lasser R.

1079 Schober T.

A. N. Podgorny, Ye. M. Savitsky, I. L. Varshavsky, V. P. Terekhova, and I. A. Markova

T. E. Hinkebein, and C. J. Northrup

R. Lasser, C. Dieker, and H.

1080 Rosso M. J. and P. M. Golben

1081 Takeshita T. W. E. Wallace, and R. S. Craig

1082 Coon V. T.

1083 Elattar A.

1084 Atkinson G. B. and L. J. Nicks

1085 Atkinson G. B. and L. J. Nicks

1086 Ozyagcilar M. N.

1087 Lewis D. C.

1088 Breda F. and P. Jonville

1089 Schlapbach L. A. Seiler, and F. Stucki

1090 Schlapbach L. A. Seiler, and F. Stucki

1091 Schlapbach L. A. Seiler, and F. Stucki

1092 Hirata T.

1093 Wallace W. E.

1094 Barrault J.

1095 Barrault J.

1096 Lindholm I.

T. Takeshita, W. E. Wallace, and R. S. Craig

T. Takeshita, W. E. Wallace, and R. S. Craig

D. Duprez, A. Percheron-Guegan, and J. C. Achard

A. Guilleminot, A. Percheron-Guegan, V. Paul-Boncour, and J.

1097 Dilworth L. R.

1098 Soliman A.

1099 Lindberg J. E.

1100 Huston E. L. and J. J. Sheridan III

1101 Salomon R. E.

1102 Clark W. D. K. M. N. Hull, and J. T. Arms

1103 Hall D. E. and V. R. Shepard

1104 Johnson E. L.

1105 Posa J. G.

1106 Mordkovich V. Z.

1107 Hynek S. and W. Fuller

1108 Yonezu I.

1109 Freeman B. D.

1110 Bowman R. C. P. B. Karlmann, and S. Bard

1111 Huiberts J. N.

1112 Huiberts J. N.

Yu. K. Baichtok, N. N. Korostyshevsky, and M. H. Sosna

S. Fujitani, T. Yonesaki, T. Imoto, N. Hiro, K. Nasako, and T. Saito

E. L. Ryba, R. C. Bowman, and J. R. Phillips

R. Griessen, J. H. Rector, R. J. Wijngaarden, J. P. Decker, D. G. de Groot, and N. J. Koeman

1113 Griessen R.

1114 Sandrock G.

1115 Anon.

1116 Adlhart O.

1117 Anon.

1118 Lynch F. B. J. Mork, and J. S. Wilkes

1119 Browning D. P. Jones, and K. Packer

1120 Shmal’ko Yu. F. V. V. Solovey, and M. V. Lototsky

1121 Kawano H.

1122 Cheng Y-S. Y. Li, D. Lisi, ans W. M. Yang

1123 Shashikala K.

1124 Machida K.

1125 Nasako K.

1126 Wallace W. E.

J. N. Huiberts, M. Kremers, A. T. M. van Gogh, N. J. Koehman, J. P. Dekker, and P. H. L. Notten

H. Nagayasu, N. Serizawa, H. Ohta, M. Takeda, M. Wada, and M. Sasao

N. M. Gupta, P. Suryanarayans, A. Sathyamoorthy, V. S. Kamble, and P. Raj

M. Enyo, I. Toyoshima, K. Myahara, K. Kai, and K. Suzuki

T. Yonesaki, I. Yonezu, S. Fujitani, T. Saito, M. Moroto, M. Osumi, and N. FurukawaH. K. Smith, W. B. Lynch, R. S. Craig, and F. Pourarian

1127 Wallace W. E.

1128 Ram Gopal M. and S. Srinivasa Murthy

1129 Lloyd G. M. A. Razani, and K. J. Kim

1130 Willers E. and M. Groll

1131 Pons M.

1132 Sakaguchi H.

1133 Sakaguchi H. E. Yamamoto, and G. Adachi

1134 Sakaguchi H.

1135 Mitsuishi N. S. Fukada, and K. Kuroiwa

1136 Walters R. T.

1137 Walters R. T. A. Nobile, and W. C. Mosley

1138 Sicking G.

1139 Charton S. J. P. Corriou, and D. Schweich

1140 Bowman R. C. P. B. Karlmann and S. Bard

1141 Wade L. A.

H. K. Smith, R. S. Craig, and F. Pourarian

F. Meunier, G. Cacciola, R. E. Critoph, M. Groll, L. Puigjaner, B. Spinner, and F. ZeiglerH. Nagai, G. Adachi, and J. Shiokawa

Y. Yagi, J. Shiokawa, and G. Adachi

P. Bhandari, R. C. Bowman, C. Paine, G. Morgante, C. A. Lindensmith, D. Crumb, M. Prina, R. Sugimura, and D. Rapp

1142 Collaudin B. and T. Passvogel

1143 Benson D. K. T. F. Potter, and C. E. Tracy

1144 Benson D. K. and T. F. Potter

1145 Burch S. D. T. F. Potter, and M. A. Keyser

1146 Burger J. F.

1147 Prina M.

1148 Mitrokhin S. V.

1149 Verbetsky V. N.

1150 Verbetsky V. N.

1151 Semenenko K. N.

1152 Verbetsky V. N.

1153 Verbetsky V. N. and V. S. Zontov

1154 Semenenko K. N.

1155 Verbetsky V. N.

1156 Verbetsky V. N.

1157 Yakovleva N. A. and V. N. Verbetsky

1158 Sirotina R. A. and V. N. Verbetsky

1159 Reiser A.

1160 Tolle J.

H. J. Holland, H. van Egmond, M. Elwenspoek, H. J. M. ter Brake, and H. RogallaP. Bhandari, R. C. Bowman, C. G. Paine, and L. A. Wade

V. N. Verbetsky, and K. N. SemenenkoV. S. Zontov, and K. N. SemenenkoV. A. Pilchenko, S. S. Kashkadov, and K. N. SemenenkoV. N. Verbetsky, T. H. Kurbanov, B. C. Alyev, and A. A. Gasan-zade

N. A. Dovyborov, and K. N. Semenenko

V. N. Verbetsky, and V. A. PilchenkoA. P. Savchenkova, and A. N. SytnikovR. R. Kayumov, and K. N. Semenenko

1161 Naito K.

1162 Salzano F.J.

1163 Chen J.-R. C.-C. Chuang, and K. Hong

1164 Raj P.

1165 Shashikala K. P. Raj, and A. Sathyamoorthy

1166 Hightower A.

1167 Bagchi S.

1168 Wallace W. E. and F. Pourarian

1169 Wallace W. E. and F. Pourarian

1170 Pourarian F.

1171 Nagel M. Y. Komazaki, and S. Suda

1172 Dantzer P. and E. Orgaz

1173 Mandelis A. and J. A. Garcia

1174 Fukada S. K. Fuchinoue, and M. Nishikawa

1175 Mitsuishi N. S. Fukada, and N. Tanimura

1176 Shmayda W. T. A. G. Heics, and N. P. Kherani

T. Matsunami, K. Okuno, M. Matsuoka, and C. Iwakura

C. Braun, A. Beufrere, S. Srinivasan, G. Strickland, an J. J. Reilly

P. Suryanarayana, A. Sathyamoorthy, K, Shashikala,

C. K. Witham, R. C. Bowman, B. V. Ratnakumar, B. Fultz, B. Czajkowski, L. Zhang, D. Singh, M. Klein, and L. HustonD. Chandra, W. N. Cathy, R. C. Bowman, R. B. Schwartz, and F. E. Lynch

1177 Iwakura C.

1178 Vogt T.

1179 Lee S-F. Y-Y. Wang, and C-C. Wan

1180 Yang X. G.

1181 Senoh H.

1182 Shu K.Y.

1183 Zhang Z. and D. Sun

1184 Hu W.K. D.M. Kim, S.W. Jeon and J.Y. Lee

1185 Corre S.

1186 Joubert J.-M.

1187 Oh J.W. C.Y. Kim, K.S. Nahm and K.S. Sim

1188 Imoto T.

1189 Kodama T.

1190 Hu W.-K.

1191 Hagstrom M.T. S.N. Klyamkin and P.D. Lund

1192 Willey D.B. I.R. Harris and A.S. Pratt

T. Oura, H. Inoue, and M. Matsuoka

J. J. Reilly, J. R. Johnson, G. D. Adzic, and J. McBreen

W. K. Zhang, Y. Q. Lei, and Q. D. Wang

K. Morimoto, H. Inoue, C. Iwakura and P.H.L. Notten

X.G. Yang, S.K. Zhang, G.L. Lu, Y.Q. Lei and Q.D. Wang

M. Bououdina, D. Fruchart and G.Y. Adachi

M. Latroche, A. Percheron-Guegan and F. Bouree-Vigneron

K. Kato, N. Higashiyama, M. Kimoto, Y. Itoh and K. Nishio

1193 Latroche M.

1194 Yeh M.T. V.M. Beibutian and S.E. Hsu

1195 Sandrock G.

1196 Takaguchi Y. and K. Tanaka

1197 Hu W.-K.

1198 Rozdzynska-Kielbik B.

1199 Wang L.

1200 Valoen L.O.

1201 Ye H,

1202 Wang L.B.

1203 Liang G. J. Huot and R. Schultz

1204 Fernandez G.E. D. Rodriguez and G. Meyer

1205 Mungole M.N. R. Balasubramaniam and K.N. Rai

1206 Mungole M.N. and R. Balasubramaniam

1207 Nakamura Y. K. Oguro, I. Uehara and E. Akiba

1208 Jain I.P. M.I.S. Abu Dakka and Y.K. Vijay

1209 Gamboa S.A. and P.J. Sebastian

1210 Venkateswara Sarma V.

A. Percheron-Guegan and Y. Chabre

W. Twasieczko, H. Drulis V.V. Pavlyuk and H. BalaH. Yuan, H. Yang, K. Zhou, D. Song and Y. Zhang

A. Zaluska, L. Zaluski, H. Tanaka, N. Kuriyama, J.O. Strom-Olsen and R. Tunold

H. Zhang, J.X. Cheng and T.S. Huang

H.T. Huan, Y.J. Wang, H.B. Yang Q.D. Li, Y.N. Lin, Y.S. Zhang

S.S. Sai Raman, D.J. Davidson and O.N. Srivastava

1211 Lee S.-M. and T.-P. Perng

1212 Shimizu E. K. Aoki and T. Masumoto

1213 Miletic G.I. A. Drasner and Z. Blazina

1214 Ye H.

1215 Balema V.P.

1216 Reule H. and M. Hirscher

1217 Nishimiya N.

1218 Zhang L.Y.

1219 Verbetsky V.N.

1220 Simonovic B.R.

1221 Rajalakshmi N. and K.S. Dhathathreyan

1222 Ma J.

1223 Lee S.-M. and T.-P. Perng

1224 Song M.Y. and H.R. Park

1225 Yartys V.A.

1226 Liang G.

1227 Forker M.

1228 Sun D. H. Enoki, F. Gingl and E. Akiba

1229 Yuan H.T.

H. Zhang, W.Q. Wu and T.S. Huang

A.O. Pecharsky, T.W. Ellis and V.K. Pecharsky

T. Wada, A. Matsumoto and K. TsutsumiM. Klein, B. Czajkowski, L. Huston, R. Pechloff, D. Chan and K. Yang

S.P. Malyshenko, S.V. Mitrokhin, V.V. Solovei and Yu. F. Shimal’ko

SA. Mentus, R. Dimitrijevic and M.V. Susic

H. Pan, X. Wang, C. Chen and Q. Wang

H. Fjellvag, B.C. Hauback and A.B. Riabov

J. Huot, S. Boily, A, Van Neste and R. Schultz

S. Muller, A.F. Pasquevich and S.M. Van Eek

E.D. Yang, H.B. Yang, B. Liu, L.B. Wang, R. Cao and Y.S. Zhang

1230 Mukai D. H. Miyata and K. Aoki

1231 Klyamkin S.N. and K.N. Semenenko

1232 Reilly J.J.

1233 Yang H.

1234 Chen J.

1235 Sorby M.H.

1236 Li L. T. Akiyama and J.-I. Yagi

1237 Lee S.-M.

1238 Song M.Y. D. Ahn, I.K. Kwon and H. Chough

1239 Bobet J.-L. B. Chevalier and B. Darriet

1240 Kozhanov V.N. A.V. Skripov and E.P. Romanov

1241 Yamamoto T. Y. Ishii and H. Kayano

1242 Hagstrom M.T. J.P. Vanhanen and P.D. Lund

1243 Latroche M.

1244 Jung C.B. and K.S. Lee

1245 Yu J.-S. B.-H. Liu, K. Cho and J.Y. Lee

1246 Yartys V.A.

G.D. Adzic, J.R. Johmson, T. Voght, S. Mukerjee and J. McBreen

H. Yuan, Z. Zhou, G. Wang and Y. Zhang

T. Sakai, N. Kitamura, H. Tanaka, H.T. Takeshita, N. Kuriyama, D. Harimoto, H. Nagai and Y. FukaiH. Fellvag, B.C. Hauback, A.J. Maeland and V.A. Yartys

S.-H. Kim, S.-W. Jeon and J.Y. Lee

V. Paul-Boncour, A. Percheron-Guegan and F. Bouree-Vigneron

F. Gingl, K. Yvon, L.G. Akselrud, A.V. Kolomietz, L. Havela, T. Vogt, I.R. Harris and B.C. Hauback

1247 Kim D.-M. S.-W. Jeon and J.-Y. Lee

1248 Klein B.

1949 Bououdina M. H. Enoka and E. Akiba

1250 Kim D.-M. H. Lee, K. Cho and J.-Y. Lee

1251 Ron M.

1252 Przewoznik J.

1253 Kohlmann H. F. Fauth and K. Yvon

1254 Chuang H.J.

1255 Fukada S. and Y. Toyoshima

1256 Lupu D.

1257 Mushnikov N.V.

1258 Beeri O.

1259 Ivanova T.V. and V.N. Verbetsky

1260 Yamanaka S.

1261 Soubeyroux J.L. D. Fruchart and A.S. Biris

1262 Skripnyuk V.M. and M. Ron

1263 Suda S.

1264 Kim D.-M. K.-J. Jang and J-Y. Lee

N. Simon, S. Klyamkine, M. Latroche and A. Percheron-Guegan

J. Zukrowski, K. Friendl, E. Japa and K. Krop

S.S. Huang, C.Y. Ma and S.L.I. Chan

A.R. Biris, E. Indrea, A.S. Biris, G. Bele, L. Schlapbach and A. Zuttel

T. Goto, V.S. Gaviko and N.K. ZajkovD. Cohen, Z. Gavra, J.R. Johnson and M.H. Mintz

T. Iguchi, Y. Fujita, M. Uno, M. Katsura, Y. Hoshino and W. Saiki

M. Imai, M. Uchida, Y. Komazaki and E. Higuchi

1265 Lee S.-M.

1266 Liu B.H.

1267 Song M.Y.

1268 Irodova A.V. and E. Suard

1269 Beeri O.

1270 Gross K.J. D. Chartouni and F. Fauth

1271 Lai L.-C. C.-L. Lee and T.-P. Perng

1272 Lee S.-M.

1273 Aono K. S. Orimo and H. Fujii

1274 Skripov A.V.

1275 Lupu D.

1276 Hsu Y.-S. S.-L. Chiou and T.-P. Perng

1277 Nakhl M.

1278 Bobet J.-L.

1279 Paul-Boncour V.

1280 Park J.G.

1281 Klyamkin S.N. A. Yu. Kovriga and V.N. Verbetsky

1282 Verbetsky V.N.

J.-S. Yu, H. Lee, K.-J. Jang and J-Y. Lee

Z.P. Li, Y. Matsuyama, R. Kitani and S. Suda

D. Ahn, I.-H. Kwon, R. Lee and H. Rim

D. Cohen, Z. Gavra, J.R. Johnson and M.H. Mintz

H. Lee, J.-H. Kim, P.S. Lee and J.Y. Lee

T.J. Udovic, Q. Huang, J.C. Cook and V.N. KozhanovA.S. Biris, A.R. Biris, I. Misan and E. Indrea

B. Chevalier, J.-L. Bobet and B. Darriet

B. Chevalier, B. Darriet, M. Nakhl, F. Weill and J. EtourneauS.M. Filipek, A. Percheron-Guegan, I. Marchuk and J. H.-Y. Jang, S.-C. Han, P.S. Lee, J.-Y. Lee

O.A. Petrii, S. Ya. Vasina and A.P. Bespalov

1283 Fang S.

1284 Bobet J.-L. and B. Darriet

1285 Prakash M. and S. Ramaprabhu

1286 Kesavan T.R.

1287 Bououdina M.

1288 Davidson D.J. and O.N. Srivastava

1289 Du Y.L.

1290 Xu Y.-H.

1291 Visintin A.

1292 Park J.-G. K.-J. Jang, P.S. Lee and J.-Y. Lee

1293 Singh B.K.

1294 Kwon I. H. Park and M.Y. Song

1295 Chen J.

1296 Hashi K. K. Ishikawa, K. Suzuki and K. Aoki

1297 Mommer N.

1298 Isnard O.

1299 Zavaliy I.Yu.

1300 Ming L. and A.J. Goudy

1301 Chacon C. O. Isnard and S. Miraglia

Z. Zhou, J. Zhang, M. Yao, F. Feng and D.O. Northwood

S. Ramaprabhu and K.V.S. Rama Rao

J.L. Soubeyroux, P. de Rango and D. Fruchart

X.G. Yang, Q.A. Zhang, Y.Q. Lei and M.S. Zhang

C.-P. Chen, W.-X. Geng and Q.-D. Wang

H.A. Peretti, C.A. Tori and W.E. Triaca

A.K. Singh, A.M. Imam and O.N. Srivastava

N. Kuriyama, H.T. Takeshita, H. Tanaka, T. Sakai and M. Haruta

J. van Lier, M. Hirscher and H. KronmullerS. Miraglia, M. Guillot and D. FruchartV.K. Pecharsky, G.J. Miller and L.G. Akselrud

1302 Gingl F. T. Vogt, E. Akiba and K. Yvon

1303 Yartys V.A.

1304 Kadir K. T. Sakai and I. Uehara

1305 Kadir K. H. Tanaka, T. Sakai and I. Uehara

1306 Nikitin S.A.

1307 Yartys V.A.

1308 Hauback B.C.

1309 Lushnikov S.A.

1310 Raj P.

1311 Skolozdra R.V.

1312 Riabov A.B.

1313 Takeshita H.T.

1314 Kadir K. T. Sakai and I. Uehara

1315 Sivakumar R.

1316 Chen J.

1317 Teresiak A.

1318 Andersson Y.

1319 Zavaliy I.Yu.

H. Fjellvag, B.C. Hauback, A.B. Riabov and M.H. Sorby

I.S. Tereshina, N.Yu. Pankratov, V.N. Verbetsky and A.A. H. Fjellvag, I.R.Harris, B.C. Hauback, A.B. Raibov, M.H. Sorby and I.Yu. Zavaliy

H. Fjellvag, L. Palhaugen, V.A. Yartys and K. Yvon

S.N. Klyamkin, A.V. Morozkin and V.N. Verbetsky

A. Sathyamoorthy, K. Shashikala, N. Harish Kumar, C.R. Venkateswara Rao and S.K. MalikD. Fruchart, M. Kalychak and M. Bououdina

V.A. Yartys, H. Fjellvag, B.C. Hauback and M.H. Sorby

H. Tanaka, N. Kuriyama, T. Sakai, I. Uehara and M. Haruta

S. Ramaprabhu, K.V.S. Rama Rao, B. Mayer and P.C. Schmidt

H.T. Takeshita, H. Tanaka, N. Kuriyama, T. Sakai, I. Uehara and M. Haruta

M. Uhlemann, M. Cubis, B. Gebel, N. Mattern and K.-H. MullerT. Larsson, B. Nolang and S. RundqvstW.B. Yelon, P.Y. Zavalij, I.V. Saldan and V.K. Pecharsky

1320 Morozkin A.V.

1321 Kohno T.

1322 Takeshita H.T.

1323 Yartys V.A.

1324 Sornadurai D.

1325 Hassen M.A. and I.J. McColm

1326 Nikitin S.A.

1327 Zavaliy I.

1328 Ishikawa K. K. Hashi, K. Suzuki and K. Aoki

1329 Nikotin S.A.

1330 Chacon C. O. Isnard and E. Suard

1331 Joubert J.-M. and A. Percheron-Guegan

1332 Yartys V.A. A.B. Riabov and B.C. Hauback

1333 Konstanchuk I.G.

1334 Brinks H.W. V.A. Yartys and B.C. Hauback

1335 Kolomiets A.V.

1336 Morozkin A.V.

1337 Maeland A.J.

S.M. Klyamkin, V.N. Verbetsky, S.N. Lushnikov, V.K. Portnoy, E.A. Movlaev, A.P. Chernavskii and A.V. TarasovH. Yoshida, F. Kawashima, T. Inaba, I. Sakai, M. Yamamoto and H. Tanaka, N. Kuriyama, T. Sakai, I. Uehara and M. HarutaR.V. Denys, I.I. Bulyk, R.G. Delaplane and B.C Hauback

B.K. Panigrahi, K. Shashikala, P. Raj, V.S. Sastri and Ramani

N.V. Tristan, T. Palewski, Yu.V. Skourski, K. Nenkov, V.N. Verbetsky and A.A. Salamova

G. Wojcik, G. Mlynarek, I. Saldan, V. Yartys and M. Kopczyk

I.S. Tereshina, V.N. Verbetsky and A.A. Salamova

E.Yu. Ivanov, B.B. Bokhonov and V.V. Boldyrev

L. Havela, V. Sechovsky, A.V. Andreev, V.A. Yartys and I.R. Harris

S.N. Klyamkin, V.N. Verbetsky, Yu.D. Seropegin and V.K. PortnoyB. Hauback, H. Fjellvag and M. Sorby

1338 Pal K.

1339 Akselrud L.G.

1340 Sivakumar R.

1341 Dobrovolsky V.D.

1342 Yartys V.A.

1343 Yartys V.A.

1344 Takamura H.

1345 Vennstrom M. and Y. Andersson

1346 Brinks H,

1347 Kuji T.

1348 Bobet J.-L.

1349 Udovic T.J.

1350 Ishikawa K. K. Hashi, K. Suzuki and K. Aoki

1351 Hashi K. K. Ishikawa, K. Suzuki and K. Aoki

1352 Lushmikov S.A. S.N. Klyamkin and V.N. Verbetsky

1353 Tanaka K.

1354 Baker N. F. Lynch, L. Mejia and L. Olavson

1355 Bogdanovic’ B.

1356 Bogdanovic’ B.

1357 Güther V. and A. Otto

1358 Willers E. M. Wanner and M. Groll

D. Fruchart, N.D. Koblyuk, O. Isnard, G.A. Melnyk and R.V. SkolozdraS. Ramaprabhu, K.V.S. Rama Rao, B. Mayer and P.C. Schmidt

E.I. Kopylova, L.M. Kulikov, A.A. Semjanov-Kobzar, Yu.M. Solonin and L.G. AkselrudR.V. Denys, B.C Hauback, H. Fjellvag, I.I. Bulyk, A.B. Riabov and Ya.M. KalychakT. Olavesen, B.C Hauback, H. Fjellvag, H. BrinksH. Kakuta, A. Kamegawa and M. Okada

V.A. Yartys, B.C Hauback and H. Fjellvag

H. Uchida, K. Kinoshita, Y. Yamamuro and A. KomatsuB. Chevalier, F. Weill and J. EntourneauC. Kormonic, Q. Huang, J.J. Rush, M. Vennstrom, Y. Andersson and T.B. Flanagan

M. Sowa, Y. Kita, T. Kubota and N. Tanaka

A. Ritter, B. Spliethoff and K. Strassburger

H. Hoffmann, A. Neuy, A. Riser, K. Schlichte, B. Spliethoff and S. Wessel

1359 Imamura H.

1360 Fateev G.A.

1361 Imamura H.

1362 Prina M. J.G. Kulleck and R.C. Bowman, Jr.

1363 Chernikov A.S.

1364 Yamaguchi S. H. Yugami and S. Ikeda

1365 Jiuxin Q.

1366 Fukada S.

1367 Fukada S. and N. Mitsuishi

1368 Nikolic’ R. K. Zmbov and M. Veljkovic’

1369 Mordkovich V.Z.

1370 Gambini M.

1371 Gambini M.

1372 Kruglov A.V.

1373 Lee S.-G. Y.-K. Kim and J.-Y. Lee

1374 Kang B.H. and A. Kuznetsov

1375 Au M.

1376 Mat M.D. and Y. Kaplan

1377 Solovey A.I. and V.P. Frolov

1378 Fleming W.H. J.A. Kahn and C.A. Rhodes

T. Tanaka, Y. Sakata and S. Tsuchiya

K.-J. Jang, J.-G. Park, S.-C. Han, P. Lee and J.-Y. Lee

Y. Noda, Y. Sakata and S. Tsuchiya

L.A. Izhvanov, A.I. Solovey, V.P. Frolov and Yu.I. Shanin

D. Xiaoping, Z. Chaogui and Y. Yupu

T. Yamasaki, H. Matsuo and N. Mitsuishi

Yu. K. Baichtock, N.V. Dudakova, N.N. Korostyshevsky and M.H. Sosna

A.N. Perevezentsev and B.M. Andreev

C. Chen, Z. Ye, T. Fang, J. Wu and Q. Wang

1379 Levesque S.

1380 Federov E.M. Y.I. Shanin and L.A. Izhvanov

1381 Vanhanen J.P. M.T. Hagstrom and P.D. Lund

1382 Iwata K. Y.-M. Sun and S. Suda

1383 Willers E. and M. Groll

1384 Golben P.M.

1385 Sapru K.

1386 Stetson N.T. and M.R. Nies

1387 Shaffer J.W.

1388 Zaluska A.

1389 Back D.D. C. Ramos and J.A. Meyer

1390 Marchionna N.R. and M.J. Brusstar

1391 Kuranaka S. T. Gamou, Y. Morita and K. Hatoh

1392 Hueng L.K. G.G. Wicks and M.W. Lee

1393 Hueng L.K.

1394 Astakhov B.A.

1395 Gorokhovsky V.I.

1396 Tsukahara M.

1397 Kim S.-H. S.-M. Lee, P.S. Lee and J.-Y. Lee

1398 Cho S.-W.

M. Ciureanu, R. Roberge and T. Motyka

S. Venkatesan, N.T. Stetson and K. Rangaswamy

L. Zaluski, J. Strom-Olsen and R. Schulz

T. Kamiya, K. Takahashi, A. Kawabata, S. Sakurai, J. Shi, H.T. Takashita, N. Kuriyama and T. Sakai

C.-S. Han, C.-N. Park and E. Akiba

1399 Cho S.-W.

1400 Zhang W. S. Luo and T.B. Flanagan

1401 Park J.-G.

1402 Cantrell J.S. and R.C. Bowman, Jr.

1403 Flanagan T.B. and C.-N. Park

1404 Verbetsky V.N. S.V. Mitrokhin and E.A. Movlaev

1405 Kuriiwa T.

1406 Yasumatsu T.

1407 Cho S.-W.

1408 Flanagan T.B. D. Wang, J.D. Clewley and H. Noh

1409 Nakamura Y. and E. Akiba

1410 Nakamura Y.

1411 Yukawa H.

1412 Itoh H.

1413 Nambu T.

1414 Okada M.

1415 Tamura T.

1416 Fazle Kibria A.K.M. and Y. Sakamoto

1417 Fazle Kibria A.K.M.

1418 Esayed A.Y.

C.-S. Han, C.-N. Park and E. Akiba

D.-M. Kim, K.-J. Jang, J.-S. Han, K. Cho and J.-Y. Lee

T. Tamura, T. Amemiya, T. Fuda, A. Kamegawa, H. Takamura and M. OkadaJ.L. Wan, M. Matsuyama and K. Watanabe

E. Akiba, Y. Nakamura and H. Enoki

K. Oikawa, T. Kamiyama and E. Akiba

M. Takagi, A. Teshima and M. Morinaga

H. Arashima, K. Kubo and T. Kabutomori

H. Izaki, M. Takagi, H. Yukawa and M. MorinagaT. Kuriiwa, T. Tamura, H. Takamura and A. KamegawaY. Tominaga, K. Matsumoto, T. Fuda, T. Kuriiwa, A. Kamegawa, H. Takamura and M. Okada

T. Kubota, A. Kagawa and Y. Sakamoto

1419 Esayed A.Y.

1420 Fazle Kibria A.K.M. and Y. Sakamoto

1421 Fazle Kibria A.K.M.

1422 Bogdanovic’ B. and M. Schwickardi

1423 Zaluska A. L. Zaluski and J.O. Strom-Olsen

1424 Huot J. S. Boily, V. Guther and R. Schulz

1425 Jensen C.M.

1426 Zidan R.A.

1427 Zaluski L. A. Zaluska and J.O. Strom-Olsen

1428 Balema V.P K.W. Dennis and V.K. Pecharsky

1429 Gross K.J.

1430 Zaluska A. L. Zaluski and J.O. Strom-Olsen

1431 Bogdanovic’ B.

1432 Jensen C.M. and K.J. Gross

1433 Bogdanovic’ B. and M. Schwickardi

1434 Zaluska A. L. Zaluski and J.O. Strom-Olsen

R. Zidan, N. Mariels, A. Hee and C. Hagen

S. Takara, A.G. Hee and C.M. Jensen

S. Guthrie, S. Takara and G. Thomas

R.A. Brand, A. Marjanovic’, M. Schwickardi and J. Tolle

1435 Sandrock G.

1436 Balema V.P. V.K. Pecharsky and K.W. Dennis

1437 Balema V.P.

1438 Sun D.

1439 Sandrock G. K. Gross and G. Thomas

1440 Meisner G.P.

1441 Jensen C.M.

1442 Gross K.J.

1443 Jensen C.M.

1444 Gross K.J.

1445 Huot J. S. Boily, E. Akiba and R. Schulz

1446 Gingl F. T. Vogt, E. Akiba and K. Yvon

1447 Bertheville B. and K. Yvon

1448 Ronnebro E.

1449 Gingl F. T. Vogt and E. Akiba

1450 Zaluska A. L. Zaluski and J.O. Strom-Olsen

1451 Kohlmann H.

K. Gross, G. Thomas, C. Jensen, D. Meeker and S. Takara

J.W. Wiench, K.W. Dennis, M. Pruski and V.K. Pecharsky

T. Kiyobayashi, H.T. Takeshita, N. Kuriyama and C.M. Jensen

G.G. Tibbetts, F.E. Pinkerton, C.H. Olk and M.P. Balough

D. Sun, B. Lewandowski, K.K. Kumashiro, W.P. Niemczura, D. Morales-Morales and Z. WangG.J. THomas, E. Majzoub and G. Sandrock

D. Sun, S.S. Raman, K. Murphy, W.P. Niemczura, K.K. Kumashiro, M. Eberhard, Z. Wang and X-Q. GuE. Majzoub, G.J. THomas and G. Sandrock

D. Noreus, K. Kadir, A. Reiser and B. Bogdanovic’

B. Bertheville, T. Hansen and K. Yvon

1452 Bertheville B. T. Herrmannsdorfer and K. Yvon

1453 Bertheville B. P. Fischer and K. Yvon

1454 Hagemann H. and R.O. Moyer

1455 Bronger W.

1456 Gross K.J. G.J. Thomas and C.M. Jensen

1457 Gross K.J. G. Sandrock and G.J. Thomas

1458 Thomas G.J.

1459 Zhang Q.A. H. Enoki and E. Akiba

1460 Gennari F.C.

1461 Cerny R.

1462 Bogdanovic’ B.

1463 Reiser A. B. Bogdanovic’ and K. Schlichte

1464 Jiang J.-J. and M. Gasik

1465 Zhang Y.

1466 Ikeda K.

1467 Tsushio Y. H. Enoki and E. Akiba

1468 Dong M.Y. J-P. Manaud and B. Darriet

1469 Sun D.

1470 Han S-C.

T. Sommer, G. Auffermann and P. Mueller

K.J. Gross N.Y.C. Yang and C. Jensen

F.J. Castro and J.J. Andrade Gamboa

J.-M. Joubert, H. Kohlmann and K. Yvon

A. Reiser, K. Schlichte, B. Spliethoff and B. Tessce

H. Yang, H. Yuan, E. Yang, Z. Zhou and D. Song

S. Orimo, A. Zuttel, L. Schlapbach and H. Fujii

H. Enoki, M. Bououdina and E. Akiba

J-J. Jiang, J-G. Park, K-J Jang, E-Y. Chin and J-Y. Lee

1471 Spassov T. and U. Koster

1472 Yang J. M. Ciureanu and R. Roberge

1473 Bertheville B. and K. Yvon

1474 Liang G.

1475 Friedlmeyer G. M. Arakawa, T. Hirai and E. Akiba

1476 Davidson D.J.

1477 Sai Raman S.S. D.J. Davidson and O.N. Srivastava

1478 Liang G.

1479 Tanaka K.

1480 Wang P.

1481 Liang G.

1482 Bouaricha S.

1483 Dehouche Z.

1484 Khrussanova M.

1485 Wang P. H.F. Zhang, B.Z. Ding and Z.Q. Hu

1486 Wang P.

1487 Oelerich W. T. Klassen and R. Bormann

1488 Oelerich W. T. Klassen and R. Bormann

J. Huot, S. Boily, A. Van Neste and R. Schulz

S.S. Sai Raman and O.N. Srivastava

J. Huot, S. Boily, A. Van Neste and R. Schulz

Y. Kanda, M. Furuhashi, K. Saito, K. Kuroda and H. Saka

A. Wang, H. Zhang, B. Ding and Z. Hu

J. Huot, S. Boily, A. Van Neste and R. Schulz

J.P. Dodelet, D. Guay, J. Huot, S. Boily and R. Schulz

R. Djaozandry, J. Huot, S. Boily, J. Goyette, T.K. Bose and R. Shilz

J.-L. Bobet, M. Terzieva, B. Chevalier, D. Radev, P. Pedhev and B. Darriet

A.M. Wang, H.F. Zhang, B.Z. Ding and Z.Q. Hu

1489 Yuan H-t.

1490 Khrussanova M.

1491 Chen J.

1492 Kuji T. H. Nakano and T Aizawa

1493 Yang H.

1494 Hong T-W. and Y.J. Kim

1495 Song M-Y. J.-L. Bobet and B. Darriet

1496 Ivanov E.Yu.

1497 Verbetsky V.N. and S.N. Klyamkin

1498 Semenenko K.N. V.N. Verbetsky and A.V. Kochukov

1499 Semenenko K.N.

1500 Semenenko K.N.

1501 Verbetsky V.N.

1502 Semenenko K.N. V.N. Verbetsky and A.N. Sytnikov

1503 Verbetsky V.N. and S.N. Klyamkin

1504 Kuliev S.I.

R. Cao, L-b. Wang, Y-j. Wang, X-p. Gao, H-b. Yang, M-z. Li and S-f. Wang

E. Grtgorova, I. Mitov, D. Radev and P. Peshev

T. Sakai, N. Kitamura, H. Tanaka, T. Kiyobayashi, H.T. Takeshita and N. Kuriyama

H. Yuan, J. Ji, H. Sun, Z, Zhou and Y. Zhang

B. Darriet, M. Pezat, V.V. Boldyrev and P. Hagenmuller

V.N. Verbetsky, A.V. Kochukov and A.N. Sytnikov

V.N. Verbetsky, S.I. Kuliev and A.A. Gasan-zade

A.N. Sytnikov and K.N. Semenenko

S.N. Klyamkin, V.N. Verbetsky, A.A. Gasan-zade and K.N. Semenenko

1505 Semenenko K.N.

1506 Semenenko K.N.

1507 Semenenko K.N. V.N. Verbetsky and A.V. Kochukov

1508 Jurczyk M.

1509 Salamova A.A. S.N. Klyamkin and V.N. Verbetsky

1510 Ishikawa K.

1511 Yamamoto I.

1512 Joubert J.-M,

1513 Bowman R.C.

1514 Luo S.

1515 Park C.-N. H.-J. Lee and S.-R. Jung

1516 Ye H. Y. Huang, J. Chen and H. Zhang

1517 Burnasheva V.V. V.K. Sarynin and K.N. Semenenko

1518 Burnasheva V.V. V.K. Sarynin and K.N. Semenenko

1519 Yartys V.A.

1520 Petrova L.A.

1521 Ganich E.A.

1522 Filatova E.A.

1523 Ganich E.A.

1524 Filatova E.A.

1525 Mordkovich V.Z.

V.N. Verbetsky, S.I. Kuliev, A.A. Gasan-zade and T.H. Kurbanov

V.N. Verbetsky, B.Ch. Alyev, A.A. Gasan-zade and T.H. Kurbanov

S. Misusaki, I. Yamamoto, F. Ishikawa and M. YamaguchiS. Misusaki, K. Ishikawa, F. Isikawa, Y. Shimazu and M. M. Latroche, R. Cerney, A. Percheron-Guegan, K. Yvon

C.A. Lindensmith, S. Luo, T.B. Flanagan and T. VogtT.B. Flanagan and R.C. Bowman, Jr

V.V. Burnasheva, S.E. Zyrkunova, E.N. Kozlov and K.N. SemenenkoV.V. Burnasheva and K.N. Semenenko

E.A. Lyandina, E.P. Khoroshutina, N.A. Yakovleva and K.N. SemenenkoN.A. Yakolova and K.N. SemenenkoN.A. Yakolova and K.N. SemenenkoN.A. Yakolova and K.N. SemenenkoN.V. Dudakova, I.B. Rodkina, Yu.K. Batchtok and V.P. Mordovin

1526 Sarynin V.K.

1527 Filatova E.A.

1528 Burnasheva V.V. L.A. Petrova and K.N. Semenenko

1529 Verbetsky V.A. A.L. Shilov and N.T. Kuznetsov

1530 Burnasheva V.V. and V.K. Darynin

1531 Ma J. H. Pan, C. Chen and Q. Wang

1532 Chwn Y.

1533 Jain I.P.

1534 Jain I.P. and M.I.S. Abu Dakka

1535 Fukuda S. K. Fuchinoue and M. Nishikawa

1536 Golben M. and D. DaCosta

1537 Yvon K. and J.-L. Lorenzoni

1538 Yvon K. and J.-L. Lorenzoni

1539 Akuto K. and Y. Sakurai

1540 Schlapbach L. and A. Züttel

1541 Heung K.

1542 Potter T.F. D.K. Benson and S.D. Burch

1543 Fujita N.

1544 Potter T.F.

1545 Balk S.

1546 DaCosta D.H. and P.M. Golben

1547 Uchida M.

1548 Wilson W.H.

1549 Stetson N.T. K. Sapru and H. Van Kirk

V.V. Burnasheva and K.N. SemenenkoN.A. Yakovleva and K.N. Semenenko

C.A.C. Sequeira, X. Song, R. Neto and Q. Wang

Y.K. Vijay and Mohammed I.S. Abu Dakka

H. Mitsui, H. Aoki, H. Kubo, K. Toh and M. Miura

Y. Fukupka, Y. Sugawara and N. Eda

1550 Rosso M.J. and N.C. Allen

1551 Yamashita I.

1552 Ohara H. and M. Uchida

1553 Carrea G. and B.D. Warrick

1554 Wicks G.G. M.W. Lee and L.K. Heung

1555 Heung L.K.

1556 Stetson N.T. and S. Ramachandran

1557 Ovshinksy S.R. and R.T. Young

1558 Woodbury R.W. and B.A. Woodbury

1559 Lomax F.D. and M.I. Ijaz

1560 Ovshinsky S.R. and R.T. Young

1561 Heung L.K.

1562 James B.D. and G.S. Saloka

1563 Oshima H. and H. Hiramatsu

1564 Hu W.-K. and D. Noreus

1565 Bowman Jr. R.C.

1566 Sandrock G. and R.C. Bowman, Jr.

1567 Yamada H. M. Fujimura and S. Goto

1568 Fukada S.

1569 Dedrick D.E.

1570 Ao B.Y. S.X. Chen and G.Q. Jiang

1571 Wang L. C. Ma, Y. Sun and S. Suda

S. Morimitsu, N. Shimoozaki and M. Nishikawa

M.P. Kanouff, B.C. Replogle and K.J. Gross

1572 Dehouche Z.

1573 Dehouche Z.

1574 Lokhorst A.C.

1575 Jensen J.O.

1576 Chen Y.

1577 Wang X.

1578 Wang X. R. Chen, C. Chen and Q. Wang

1579 Zhang J.

1580 Oi T. K. Maki and Y. Sakaki

1581 Jiang Z.

1582 Wilson P.R.

1583 Bowman, Jr. R.C.

1584 Sandrock G.

1585 Kang K.-J.

1586 Muthukumar P.

N. Grimard, F. Laurencelle, J. Goyette and T.K. Bose

M. Savard, F. Laurencelle and J. GoyetteB. Dam, I.A.M.E. Giebels, M.S. Welling, W. Lohstroh and R. GriessenQ. Li, R. He, C. Pan and N.J. BjerrumC. Sequeira, T. Allen and C.P.Chen

R. Chen, Y. Zhang, C. Chen and Q. Wang

T.S. Fischer, P.V. Ramachandran, J.P. Gore and I. Mudawar

R.A. Dougal, S. Liu, S.A. Gadre, A.D. Ebner and J.A. Ritter

R.C. Bowman, Jr., J.L. Mora and J.W Reiter

G.A. Fateev, J.-G. Park, S.-C. Han, P. Lee and J.-Y. Lee

M. Prakish Maiya and S.Shrinivasa Murthy

1587 Chen Y.

1588 Rodriguez Sanchez A. H.-P. Klein and M. Groll

1589 Takeichi N.

1590 Mori D.

1591 Das D. and M. Ram Gopal

1592 Askri F. A. Jemni and S. Ben Nasrallah

1593 Asakuma Y.

1594 Rajendra Prasad U.A.

1595 Neelis M.L.

1596 Askri F. A. Jemni and S. Ben Nasrallah

1597 Fukada S. S. Morimitsu and N. Shimoozaki

1598 Klein H.-P. and M. Groll

1599 Feldman E.P.

1600 Mazumdar S.

1601 Sarkar A. and R. Banerjee

1602 Muthukumar P.

C.A.C. Swqueira, C. Chen, X. Wang and Q. Wang

H. Senoh, T. Yokota, H. Tsuruta, K. Hamada, H.T. Takeshita, H. Tanaka, T. Kiyobayashi, T. Takano and N. KuriyamaN. Haraikawa, N. Kobayashi, H. Kubo, K. Toh, M. Tsuzuki, T. Shinozawa and T. Matsunaga

S. Miyauchi, T. Yamamotu, H. Aoki and T. Miura

M. Prakash Maiya and S. Srivastava Murthy

H.J. van der Kooi and J.J.C. Geerlings

A.D. Alexeev, T.N. Melnik and L.N. Gumen

M. Ram Gopal and S. Bhattacharyya

M. Prakish Maiya and S.Shrinivasa Murthy

1603 Demircan A.

1604 Muthukumar P.

1605 Kikkinides E.S. M.C. Georgiadis and A.K. Stubos

1606 Laurencelle F.

1607 MacDonald B.D. and A.M. Rowe

1608 Maddalena A.

1609 Lloyd G.M. and K.J. Kim

1610 Forde T.

1611 Ahluwalia R.K.

1612 Beneito R. J. Vilaplana and S. Gisbert

1613 Varkarki E.

1614 Pommer H.

1615 Miller A.R. and D.L. Barnes

1616 Young R.C.

M. Demiralp, Y. Kaplan, M.D. Mat and T.N. Veziroglu

M. Prakish Maiya and S.Shrinivasa Murthy

Z. Dehouche, J. Goyette and T.K. Bose

M. Petris, P. Palade, S. Sartori, G. Principi, E. Settimo, B. Molinas and S. Lo Russo

J.P. Maehlen, V.A. Yartys, M.V. Lototsky and H. Uchida

N. Lymberopolous, E. Zoulias, D. Guichardot and G. Poli

P. Hauschild, R. Teppner and W. Hartung

Y. Li, J. Giedzinski, B. Chao, V. Myasnikov, S.R. Ovshinsky, B. Falls and A. Lutz

Source Volume No. Year First Page Last Page1978 235 249

1979 425 438

J. of Less-Common Metals 74 1980 287 294

J. of Less-Common Metals 104 1984 159 173

J. of Less Common Metals 99 1984 1 14

J. of Less Common Metals 73 1980 135 142

J. of Less Common Metals 74 1980 175 184

J. of Less Common Metals 89 1983 45 54

J. of Less Common Metals 89 1983 117 125

J. of Less-Conmon Metals 89 1983 437 446

J. of Less Common Metals 89 1983 447 455

Electrochemical Technology 4 1966 211 215

Transactions TMS AIME 239 1967 1593 1596

J. of Less-Common Metals 53 1977 117 131

1978 1689 1706

Solid State Communications 27 1978 175 180

Mat. Res. Bull. 15 1980 1149 1155

J. Phys. Chem. 85 1981 3112 3116

J. Phys. Chem. 85 1981 3105 3111

J. of Less-Common Metals 87 1982 297 303

J. of Less-Common Metals 78 1981 275 280

27 1982 215 220

Hydrides for Energy Storage, A. F. Andresen and A. J. Maeland, Eds., Oxford:PergamonHydrogen in Metals, Munster International Meeting, March 1979

HYDROGEN ENERGY SYSTEM, T. N. Veziroglu and W. Seifritz, Eds., Pergamon Press

J. of Magnetism and Magnetic Materials

J. of Less-Common Metals 91 1983 229 237

J. of Less-Common Metals 91 1983 239 249

J. of Less-Common Metals 87 1982 283 296

Chem. Letters (Japan) 1982 75 78

Chem. Letters (Japan) 1982 205 208

J. of Solid State Chem. 46 1983 336 341

3 1984 1395 1406

J. of Less-Common Metals 89 1983 263 268

1980 2127 2144

J. of Less-Common Metals 89 1983 495 504

U.S. Patent 4144103 1979

U.S. Patent 4153484 1979

U.S. Patent 4160014 1979

U.S. Patent 4195989 1980

U.S. Patent 4228145 1980

U.S. Patent 4350673 1982

J. of Less-Common Metals 89 1983 269 274

J. of Less-Common Metals 89 1983 257 262

J. of Less-Common Metals 88 1982 107 114

J. of Less-Common Metals 73 1980 345 354

Mat. Res. Bull. 15 1980 275 283

Scientific American 242 (No.2, Fe1980 118 129

Hydrogen Energy Progress V, T. N. Veziroglu and J. B. Taylor, Eds., Pergamon, New York

Hydrogen Energy Progress III; Proc. 3rd World Hydrogen Energy Conf., Tokyo, Japan

1962 1 59

1976 1 94

1977

J. of Less-Common Metals 89 1983 173 182

77-6 1977 497 504

J. of Less-Common Metals 55 1977 53 59

U. S. Patent 4,163,666 1979

J. of Appl. Phys. 48 1977 5289 5295

Z. Metallkunde 72 1981 238 243

J. of Less-Common Metals 51 1977 173 175

Zeit. Phys. Chem. 117 1979 221

15-18 1980 1261 1263

J. of Phys. Chem. 85 1981 2319 2321

4 1983 222 228

31-34 1983 223 224

J. of Less-Common Metals 70 1980 285 288

J. of Less-Common Metals 86 1982 L1 L43 1982 1217 1226

J. of Less-Common Metals 83 1982 95 103

17 1981 980 984

J. of Less-Common Metals 73 1980 369 376

Summary Report, AEC Contract AT(33-3)-3, Denver Research InstituteLawrence Livermore Laboratory Report for D.O.E., UCRL-52110

Proc. Second International Congress on Hydrogen in Metals, Paris, France

Proc. Symp. on Electrode Materials and Processes for Energy Conversion and Storage, The Electrochemical

J. of Magnetism and Magnetic Materials

J. of Materials for Energy Systems

J. Magnetism and Magnetic Materials

Hydrogen Energy Progress IV, T. N. Veziroglu, W. D. Van Vorst, and J. H. Kelly, Eds., IAHE

Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy

J. of Less-Common Metals 62 1978 407 416

1977 390 400

J. Phys. Chem. 62 1958 76 793 1984 1443 1453

1978 431 446

Z. Metallkunde 63 1972 497 500

Power Sources 4 1973 79 91

J. Chem. Soc. Japan 8 1975 1267 1272

Nippon Kagaku Kaishi 16 1980 57 83

1974

I 1976 965 971

J. of Less-Common Metals 74 1980 435 443

J. of Less-Common Metals 89 1983 275 279

J. of Less-Common Metals 89 1983 281 285

J. of Less-Common Metals 72 1980 79 86

Nippon Kagaku Kaishi 32 1981 87 91

J. of Less-Common Metals 80 1981 179 185

The Chem. Soc. Japan 8 1981 1223 1226

J. Phys. Chem. Solids 39 1978 883 890

3 1984 1327 1337

1981

Inorganic Chem. 6 1967 2220 2223

Inorganic Chem. 7 1968 2254 2256

Proc. Munster Meeting on Hydrogen in Metals

Hydrogen Energy Progress V, T. N. Veziroglu and J. B. Taylor, Eds., Pergamon, New YorkHydrides for Energy Storage, Ed. A. F. Andresen and A. J. Maeland, Pergamon Press

Brookhaven National Laboratory Report, BNL 19436Proc. of the Eleventh Intersociety Energy Conversion Engineering Conference

Hydrogen Energy Progress V, T. N. Veziroglu and J. B. Taylor, Eds., Pergamon, New York1725th Report of Res. Inst. for Iron and Steel

1978 151 183

1979 1 74

J. of Less-Common Metals 83 1982 L43 L46

Metallurgical Trans. 13A 1982 1329 1336Philips Res. Repts. 25 1970 133 140

J. of Less-Common Metals 23 1971 395 398

J. of Less-Common Metals 29 1972 203 210

J. of Less-Common Metals 27 1972 27 34

J. of Less-Common Metals 32 1973 289 296

J. of Less-Common Metals 35 1974 65 76

1973 1 8

Inorganic Chem. 13 1974 2283 2284

Inorganic Chem. 13 1974 2282 2283

J. of Less-Common Metals 41 1975 187 189

1976 1 92

1978 337 352

J. of Less-Common Metals 52 1977 13 28

I 1977 951 958

Hydrides for Energy Storage, A. F. Andresen and A. J. Maeland, Eds., Pergamon Press

Final Contract Report DOE, SAN-1167-1

Los Alamos Informal Report LA-5320-MS

Ph.D. Thesis, University of Delft

Hydrides for Energy Storage, A. F. Andresen and A. J. Maeland, Eds., Pergamon Press

Proc. 12th Intersociety Energy Conversion Engineering Conference, Am. Nuclear Soc.

1977 3713 3738

Nature 269 1977 45 47

1977

J. of the Metal Soc. of Japan 41 1977 420 425

J. of the Metal Soc. of Japan 41 1977 412 420

J. of Solid State Chem. 23 1978 271 274

3 1978 1625 1656

J. of Less-Common Metals 60 1978 209 219

J. Chem. Soc. Chem. Comm. 1978 581 582

Mat. Res. Bull. 13 1978 1221 1224

1978 1472 1477

J. Japan Inst. Metals 43 1979 104 107

J. of Less-Common Metals 66 1979 67 75

1 1979 45 48

6 1979 722 726

J. of Less-Common Metals 74 1980 271 277

2 1980 865 878

1981 1493 1502

7 1981 1065 1069

J. of Less-Common Metals 79 1981 207 214

J. of Less-Common Metals 84 1982 99 106

J. of Less-Common Metals 78 1981 P43 P47

Proc. Miami Int. Conf. on Alt. Energy Sources, Univ. Miami

Proc. of the 13th Rare Earth Res. Conf., Oglebay, W. Va.

HYDROGEN ENERGY SYSTEM, T. N. Vezeroglu and W. Seifritz, Eds., Pergamon Press

J. of Chem. Soc. Japan, Chem. and Industrial Chem.

J. of the Chem. Soc. of Japan, Chem. and Idust. Chem.J. of the Chem. Soc. of Japan, Chem. and Indust. Chem.

Hydrogen Energy Progress, Proc. 3rd World Hydrogen Energy Conf., IAHE

J. of the Chem. Soc. of Japan, Chem. and Indust. Chem.

J. of the Chem. Soc. of Japan, Chem. and Indust. Chem.

3 1982 1255 1262

J. of Less-Common Metals 87 1982 275 281

J. of Less-Common Metals 88 1982 81 87

J. of Less-Common Metals 90 1983 11 20

J. of Less-Common Metals 89 1983 287 292

J. of Less-Common Metals 103 1984 367 373

J. of Solid State Chem. 33 1980 263 266

J. of Less-Common Metals 84 1982 73 78

12 1982 L1 L6

J. of Less-Common Metals 84 1982 263 271

Phys. Rev., Rapid Comm. 1982

21 1980 321 324

Physical Review B 21 1980 21 22

J. of Less-Common Metals 80 1981 201 209

J. of Less-Common Metals 80 1981 211 219

J. of Less-Common Metals 81 1981 345 348

Solid State Comm. 1982

J. of Less-Common Metals 72 1980 87 105

J. of Less-Common Metals 77 1981 287 289Solid State Comm. 7 1969 857 859

1977

1979 1 80

Hydrogen Energy Prog. IV, T. N. Veziroglu, W. D. Van Vorst, and J. H. Kelly, Eds., IAHE

J. Phys. F: Met. Phys. - Letter to the Editor

Hydrogen in Metals, Proc. Second JIM International Symp., Minakami, Japan, Nov. 1979; Suppl. to Trans. JIM

Report, Denver Research Inst., U. of DenverRept. ANL-79-8, Argonne National Laboratory

1976 1 30

U. S. Patent 3,883,346 1975

U. S. Patent 3,825,418 1974

J. of Less-Common Metals 91 1983 275 292

Int. J. Hydrogen Energy 7 1982 775 781

35 1983 114 116

J. of Less-Common Metals 37 1974 91 101

I 1976 961 964

J. of Less-Common Metals 46 1976 133 138J. of Less-Common Metals 46 1976 91 99

J. Inorg. Nucl. Chem. 36 1974 461 463

J. of Less-Common Metals 55 1977 149 152

77-6 1977 470 481

J. of Less-Common Metals 55 1977 61 651979

1976 1 9

J. of Less-Common Metals 53 1977 167 176

77-6 1977 482 488

1978

1976 1 22

J. Chem. Phys. 73 1980 2937 2948

J. of Solid State Chem. 33 1980

Final Technical Report, AFOSR-TR-76-1124, Univ. Denver

J. of Magnetism and Magnetic Materials

Proc. 11th IECEC, AIChE, New York

Proc. Symp. on Electrode Meterials and Processes for Energy Conv. and Storage, The Electrochemical Soc.

Lawrence Livermore Lab Report UCRL-82829

Lawrence Livermore Lab Report UCRL-52039

Proc. Symp. on Electrode Materials and Processes for Energy Conversion and Storage, The Electrochem. Paper Presented at The Physics of Rare Earths, Lawrence Livermore Lab Report UCRL-7745

Z. fur Phys. Chem. NF 116 1979 197 207

1981

J. of Catalysts 51 1978 9 17

J. of Less-Common Metals 51 1977 79 91

J. of Less-Common Metals 87 1982 225 236

J. of Less-Common Metals 79 1981 157 160

J. of Appl. Phys. 53 1982 2788 2792

J. of Less-Common Metals 79 1981 297 309

1982

J. of Less-Common Metals 86 1982 195 202

Ann. Rev. Mater. Sci. 12 1982 271 294

1980 293 322

3 1982 1245 1254

Thesis, University of Pittsburgh 1976 1 115

J. of Less-Common Metals 42 1975 163 178

J. of Less-Common Metals 55 1977 139 141

J. of Less-Common Metals 60 1978 83 89

J. of Less-Common Metals 61 1978 253 259

J. of Less-Common Metals 58 1978 231 240

Report UCLA-ENG-7489 1974 1 35

Proc. of the Miami International Symp. on Metal Hydrides, April 1981, Ed. T. N. Veziroglu, Univ. Miami

Proc. 5th Int. Conf. on Alternative Energy Sources,

ACS Symp. Series No. 116 - Hydrogen: Production and Marketing, W. N. Smith and J. G. Santangelo, Eds.

Hydrogen Energy Progress IV, Proc 4th World Hydrogem Energy Conf., Eds. T. N. Veziroglu, W. D. Van Vorst,

Ber. Bunsenges. Phys. Chem. 82 1978 611 614

J. of Less-Common Metals 55 1977 231 242

1972 1 22

J. Appl. Phys. 47 1976 3432

1977 981 986

Physical Review Letters 40 1978 972 975

Mat. Res. Bull. 14 1979

21 1980 357 360

8 1980 77 79

J. of Less-Common Metals 73 1980 145 160

J. of Less-Common Metals 73 1980 161 168

J. of Appl. Phys. 51 1980 5847 5851

Physics Letters 91 1982 303 306

1982

J. of Less-Common Metals 88 1982 451 458

J. of Less-Common Metals 89 1983 55 62

J. of Less-Common Metals 89 1983 77 84

1984

BNL Report 17136, Brookhaven National

Proc. 12th Intersociety Energy Coversion Engineering Conf., 1977, Amer. Nuc. Soc.

Proc. Second JIM International Symp: Hydrogen in Metals, Minakami, Japan 1979, Suppl. to Trans. JIMPoroshkovaya Metallurgiya (Plenum Publishing Corp Translations)

Proc. Third International Congress on Hydrogen and Materials, Paris, France, 1982

International Energy Annex VII, Working Group on Hydrogen Storage, Conversion, and Safety Report of 1984 Toronto

1984

J. of Less-Common Metals 104 1984 223 230

J. of Less-Common Metals 103 1984 145 152

J. of Catalysis 69 1981 345 358

Appl. Phys. A 32 1983 169 182

Ber. Bunsenges. Phys. Chem. 85 1981 289 297

J. of Less-Common Metals 85 1982 145 153

React. Kinet. Catal. Lett. 19 1982 297 301

J. of Less-Common Metals 94 1983 85 87

J. of Less-Common Metals 95 1983 139 146

J. of Less-Common Metals 95 1983 147 152

J. of Less-Common Metals 95 1983 153 155

J. of Less-Common Metals 103 1984 415 415

J. of Less-Common Metals 103 1984 415 416

33 1961 114 121

J. of Less-Common Metals 45 1976 173 184

J. of Catalysis 46 1977 340 347

Appl. Phys. Lett. 33 1978 689 691

J. Chem. Phys. 68 1978 2612 2620

Int. J. Hydrogen Energy 4 1979 21 28

1979 635 655

Internation Energy Annex VII, Working Group on Hydrogen Storage, Conversion, and Safety, Report of 1984 Toronto

Advances in Chemistry Series, No. 33, Am. Chem. Soc.

Hydrogen in Metals, Proc. Int. Meeting, 1979, Munster, Germany

J. of Less-Common Metals 66 1979 77 88

J. of Less-Common Metals 73 1980 183 192

Surface Science 93 1980 L135 L142

J. Phys. F: Metal Phys. 10 1980 2477 2490

Solid State Comm. 38 1981 117 123

J. Less-Common Metals 73 1980 193 199

J. Phys. Chem. 81 1977 1762 1766

J. of Less-Common Metals 89 1983 134 134

U. S. Patent 4,036,944 1977

1974

U. S. Patent 3,957,534 1976

U. S. Patent 4,215,008 1980

Platinum Metals Review 19 1975 50 59

Int. J. Hydrogen Energy 8 1983 183 190

Int. J. Hydrogen Energy 8 1983 175 182

Surface Science 114 1982 11 22

U. S. Patent 4,077,779 1978

U. S. Patent 4,216,198 1980

1984

J. Materials Sci. 18 1983 321 347

Int. J. Hydrogen Energy 15 1990 635 6401975

Int. J. Hydrogen Energy 11 1986 789 795

U. S. Patent 3,793,435 Feb. 19, 1974

Int. Energy Agency (IEA) Annex VII Working Group, Hydrogen Storage, Conversion, and Safety, Toronto 1984

Second Semi-Annual Technical Report, ARPA No. 2552, Univ. Denver

J. of Less-Common Metals 129 1987 261 270

1980 1 176

Int. J. Hydrogen Energy 16 1991 545 549

Int. J. Hydrogen Energy 17 1992 603 606

Int. J. Hydrogen Energy 17 1992 607 611

1975

J. of Less-Common Metals 80 1981 201 209

Zeit. Phys. Chem. NF 164 1989 1441 1446

J. Electrochem. Soc. 142 1995 3424 3428

J. Electrochem. Soc. 142 1995 3429 3433

J. of Less-Common Metals 63 1979 193 207

Zeit. Phys. Chem. NF 164 1989 1485 1496

Zeit. Phys. Chem. NF 164 1989 1293 1304

J. of Less-Common Metals 130 1987 111 122

94-27 1994 196 218

Int. J. Hydrogen Energy 4 1979 445 454

1977

1978 3803

J. of Less-Common Metals 75 1980 23 29

2 1994 1199 1207

Rept. SAND79-7095, Sandia N. L., Albuquerque, NM 87185

First Annual Technical Report, AFOSR Contract F44620-74-C-0020, Univ. of Denver

HYDROGEN AND METAL HYDRIDE BATTERIES, P. D. Bennett and T. Sakai, Eds., The Electrochemical Society

Paper 1E12, Second International Congress on Hydrogen in Metals, ParisProc. Int. Conf. on Alternate Energy Sources, Ed. T. N. Veziroglu, Univ. of Miami

HYDROGEN ENERGY PROGRESS X, Proc. 10th World Hydrogen Energy Conf., D. L. Block and T. N. Veziroglu, Eds., IAHE

J. Alloys and Compounds 231 1995 473 478

J. of Less-Common Metals 131 1987 51 59

Int. J. Hydrogen Energy 19 1994 899 903

J. Alloys and Compounds 180 1992 37 54

J. of Alloys and Compounds 192 1993 167 169

J. of Less-Common Metals 105 1985 291 301

II 1977 13 48

Ch. 26 1979 299 336

Rep. Prog. Phys. 45 1982 937 1039

Ch. 13 1982 405 443

Zeit. Phys. Chem. NF 147 1986 191 209

20 1981 397 4052, Ch.1.12 1987 237 261

4 1981 2169 2183

J. of Less-Common Metals 95 1983 157 160

J. of Less-Common Metals 107 1985 105 110

J. of Less-Common Metals 120 1986 123 133

J. of Less-Common Metals 131 1987 301 309

Z. Phys. Chem. NF 164 1989 1261 1266

J. Electrochemical Soc. 138 1991 1877 1885

J. of Alloys and Compounds 192 1993 152 154

Hydrogen: Its Technology and Implications, K. E. Kox and K. D. Williamson, Eds., CRC Press

Handbook on the Physics and Chemistry of Rare Earths, K. A. Gschneidner and L. Eyring, Eds., North Holland

Intercalation Chemistry, Academic Press

Canadian Metallurgical Inorganic Reactions and Methods, J. J. Zuckerman, Ed., VCHHydrogen Energy Progress, T. N. Veziroglu, K. Fueki, and T. Ohta, Eds., Pergamon Press, Oxford

Int. J. of Hydrogen Energy 19 1994 253 257

J. of Alloys and Compounds 203 1994 61 65

Denki Kagaku 63 1995 847 852

J. Amer. Chemical Soc. 82 1960 3504 3508Int. J. Hydrogen Energy 18 1993 575 589

Int. J. Hydrogen Energy 19 1994 507 515

29 1978 73 155

Academic Press, London 1967 1 178

Annual Rev. Materials Science 21 1991 269 304

J. Vacuum Sci. and Tech. A8 1990 2881 2889

Ch. 7 1968 241 335

Ch. 13 1968 675 747

Ch. 8 1968 336 383

1960

J. of Less-Common Metals 104 1984 375 383

Ch. 11 1968 490 544

American Laboratory Oct. 1995 31 38

Inorg. Chem. 9 1970 1678 16821972 1 25

Rev. of Scientific Instruments 42 1971 1485 1486

1991

Hydrogen in Metals II, G. Alefeld and J. Volkl, Eds., Topics in Appl. Phys., Springer Verlag, Berlin

Metal Hydrides, W. M. Mueller, J. P. Blackledge, and G. G. Libowitz,Eds., Academic Press, New YorkMetal Hydrides, W. M. Mueller, J. P. Blackledge, and G. G. Libowitz, Eds., Academic Press, New YorkMetal Hydrides, W. M. Mueller, J. P. Blackledge, and G. G. Libowitz, Eds., Academic Press, New YorkUSAEC Rept. LAR-10, Denver Research Institute

Metal Hydrides, W. M. Mueller, J. P. Blackledge, and G. G. Libowitz, Eds., Academic Press, New York

Rept. BNL-16546, Brookhaven Nat. Lab.

Final Report, NAS9-18175, Hydrogen Consultants, Inc., Littleton,CO

Z. Phys. Chem. NF 183 1994 245 250

Inorg. Chem. 11 1972 1691 1696

Inorg. Chem. 13 1974 218 222

63 1988 87 138

1978 353 393

67 1992 197 258

67 1992 15 95

Int. J. Hydrogen Energy 15 1990 569 577

J. of Less-Common Metals 104 1984 259 278

Materials Res. Bull. 17 1982 887 894

J. of Less-Common Metals 74 1980 401 409

J. of Less-Common Metals 172 1991 1036 1043

Int. J. Hydrogen Energy 20 1995 29 33

1978 171 176

Z. Phys. Chem. NF 163 1989 575 578

Inorg. Chem. 18 1979 3595 3597

J. of Less-Common Metals 123 1986 233 239

67 1992 165 195

Inorg. Chem. 17 1978 3101

U. S. Patent 4,668,424 1987

U. S. Patent 4,585,561 1986

Hydrogen in Intermetallic Compounds, L. Schlapbach, Ed., Topics in Appl. Phys., Springer, BerlinHydrides for Energy Storage, A. F. Andresen and A. J. Maeland, Eds., Pergamon Press, OxfordHydrogen in Intermetallic Compounds II, L. Schlapbach, Ed., Topics in Appl. Phys., Springer, BerlinHydrogen in Intermetallic Compounds II, L. Schlapbach, Ed., Topics in Appl. Phys., Springer, Berlin

Proc. DOE Contractor Rev. Mtg. on Chem. Energy Storage and Hydrogen Energy Systems, JPL

Hydrogen in Intermetallic Compounds II, L. Schlapbach, Ed., Topics in Appl. Phys., Springer, Berlin

J. Vacuum Sci. and Tech. A 3 1985 34 38

71 1991 41 46

39 1984 1 94

Z. Phys. Chem. NF 164 1989 1381 1390

1992 1 13

Int. J. Hydrogen Energy 13 1988 243 250

Int. J. Hydrogen Energy 14 1989 187 200

92-5 1992 59 91

Z. Phys. Chem. NF 164 1989 1415 1420

J. of Less-Common Metals 172 1991 1352 1362

J. of Alloys and Compounds 187 1992 113 136

J. of Alloys and Compounds 217 1995 185 192

3 1994 2031 2040

Z. Phys. Chem. NF 145 1985 51 59

J. of Less-Common Metals 104 1984 133 139

Materials Science Forum 31 1988 177 196

J. of Less-Common Metals 129 1987 13 30

J. of Less-Common Metals 70 1980 189 198

L. of Less-Common Metals 70 1980 199 207

J. of Less-Common Metals 74 1980 161 165

J. of Less-Common Metals 130 1987 309 318

Research Reports of Kogakuin Univ.Philips J. of Research, Supplement No. 1

International Symp. on Metal Hydrogen Systems, Uppsala, Unpublished, GfE, Hoefener Str. 45, D-8500 Nurnberg

Hydrogen Storage Materials, Batteries, and Electrochemistry, D. A. Corrigan and S. Srinivasan,

Hydrogen Energy Progress X, D. L. Block and T. N. Veziroglu, Eds., Int. Assoc. Hydrogen Energy

J. of Less-Common Metals 73 1980 265 271

J. of Less-Common Metals 49 1976 473 475

J. of Less-Common Metals 65 1979 117 128

J. of Less-Common Metals 89 1983 197 200

J. of Alloys and Compounds 191 1993 101 105

J. of Less-Common Metals 73 1980 339 344J. of Less-Common Metals 172 1991 1044 1051

J. of Less-Common Metals 172 1991 1028 1035

J. of Less-Common Metals 172 1991 1211 1218

J. of Less-Common Metals 172 1991 220 230

J. of Less-Common Metals 130 1987 25 31

J. of Less-Common Metals 119 1986 63 74

1978 329 336

Z. Phys. Chem. NF 183 1994 347 353

Z. Phys. Chem. NF 183 1994 169 174

J. of Less-Common Metals 85 1982 213 219Z. Phys. Chem. NF 79 1993 199 209

Z. Phys. Chem. NF 164 1989 1349 1354

Int. J. Hydrogen Energy 11 1986 583 591

2 1990 985 993

Z. Phys. Chem. NF 179 1993 133 138

J. of Less-Common Metals 70 1980 273 276

21 1980 325 328

Materials Research Bulletin 16 1981 137 140

II 1976 8B-3 8B-26

Hydrides for Energy Storage, A. F. Andresen and A. J. Maeland, Eds., Pergamon Press, Oxford

Hydrogen Energy Progress VIII, T. N. Veziroglu and P. K. Takahashi, Eds., Pergamon Press, New York

Hydrogen in Metals, Trans. Japan Inst. of Metals (Supplement)

Proc. 1st World Hydrogen Energy Conference, T. N. Veziroglu, Ed., IAHE, Coral Gables

J. of Less-Common Metals 172 1991 136 143

J. of Less-Common Metals 92 1983 343 353

J. of Less-Common Metals 64 1979 277 284

J. of Less-Common Metals 45 1976 347 350

J. of Less-Common Metals 92 1977 323 3251978 447 462

J. Appl. Phys. 52 1981 463 467

Int. J. of Hydrogen Energy 19 1994 259 263

J. of Less-Common Metals 119 1986 131 142

1977 3739 3769

2 1981 891 895

Z. Phys. Chem. NF 179 1993 125 131

Z. Phys. Chem. NF 181 1993 283 287

J. of Less-Common Metals 119 1986 237 246

J. of Less-Common Metals 172 1991 71 78

Z. Phys. Chem. NF 164 1989 1355 1360

J. of Less-Common Metals 74 1980 33 43

Ch. 2 1986

J. of Alloys and Compounds 227 1995 69 75

J. of Alloys and Compounds 223 1995 77 80

J. of Alloys and Compounds 229 1995 268 273

J. of Alloys and Compounds 231 1995 434 435

Hydrides for Energy Storage, A. F. Andresen and A. J. Maeland, Eds., Pergamon, Oxford

Proc. International Conf. on Alternative Energy Sources, T. N. Veziroglu, Ed., Univ. MiamiHydrogen Energy Progress, T. N. Veziroglu, K. Fueki, and T. Ohta, Eds., Pergamon, Oxford

Rept. DOE/ID/12520, P. D. Goodell, W. J. Rebello and M. R. Ally, Eds., USDOE, Conservation Technologies

J. of Alloys and Compounds 231 1995 467 472

J. of Alloys and Compounds 231 1995 479 482

J. of Alloys and Compounds 231 1995 498 502

J. of Alloys and Compounds 231 1995 518 523

J. of Alloys and Compounds 231 1995 524 527

J. of Alloys and Compounds 231 1995 533 536

J. of Alloys and Compounds 231 1995 604 610

J. of Alloys and Compounds 231 1995 697 683

J. of Alloys and Compounds 231 1995 898 902

J. of Alloys and Compounds 231 1995 666 669

J. of Alloys and Compounds 231 1995 675 678

J. of Less-Common Metals 92 1983 199 205

Int. J. of Hydrogen Energy 8 1983 705 708

Int. J. of Hydrogen Energy 7 1982 783 785Paper 1F5 1977 1 8

Int. J. of Hydrogen Energy 5 1980 317 322

Int. J. of Hydrogen Energy 6 1981 181 184

Int. J. of Hydrogen Energy 10 1985 49 58

J. of Less-Common Metals 129 1987 197 205

Z. Phys. Chem. NF 163 1989 243 248

Int. J. of Hydrogen Energy 9 1991 615 617

J. of Less-Common Metals 89 1983 85 91

J. of Less-Common Metals 74 1980 295 300

J. of Less-Common Metals 65 1979 89 101

J. of Less-Common Metals 73 1980 209 218

Int. J. Hydrogen Energy 8 1983 459 461

Proc. Second International Congress on Hydrogen in Metals, Paris

Int. J. Hydrogen Energy 8 1983 961 963

Int. J. Hydrogen Energy 5 1980 173 178

J. of Less-Common Metals 83 1982 87 93

J. Alloys and Compounds 227 1995 141 144

Int. J. Hydrogen Energy 9 1985 591 594

Solid State Comm. 41 1982 135 138

J. of Less-Common Metals 90 1983 L1 L4186 1980 207 240

3 1982 1265 1270

J. of Less-Common Metals 63 1979 181 191

2 1990 1027 1034

Int. J. Hydrogen Energy 20 1995 971 973

J. of Less-Common Metals 78 1981 29 34

194 1981 501 521

1982 1 137

J. of Less-Common Metals 74 1980 75 79

J. of Less-Common Metals 61 1978 261 264

J. of Less-Common Metals 71 1980 311 315Int. J. Hydrogen Energy 21 1996 457 460

Int. J. Hydrogen Energy 21 1996 733 740

J. of Less-Common Metals 72 1980 159 165

J. of Less-Common Metals 103 1984 117 122

Zeit. Metallkunde 66 1975 362 366

Solid State Chemistry: A Contemporary Overview, Adv. in Chemistry Series, S. L. Holt, J. B. Milstein, and M. Robbins, Eds., ACSHydrogen energy Progress IV, T. N. Veziroglu, W. D. Van Vorst, and J. H. Kelly, Eds., Pergamon, Oxford

Hydrogen Energy progress VIII, T. N. Veziroglu and P. K. Takahashi, Eds., Pergamon

Mossbauer Spectroscopy: Its Chemical Applications, Adv. in Chem. SeriesDoctor's Thesis, Rijksuniversiteit Utrecht

Russian J. Inorganic Chem. 28 1983 471 476

Russian J. Inorganic Chem. 30 1985 589 592

J. of Less-Common Metals 70 1980 P57 P67

J. of Less-Common Metals 66 1979 219 222

J. of Less-Common Metals 82 1981 391 393

J. of Less-Common Metals 45 1976 215 228

J. of Less-Common Metals 61 1978 P9 P21

J. of Less-Common Metals 75 1980 P49 P53

233 1965 1005 1013

J. Phys. Chem. 77 1973 35 39

Phys. Stat. Sol. 49 1972 317 327

Trans. Faraday Soc. 66 1970 727 735

Solid State Comm. 15 1974 407 409

Z. Phys. Chem. NF 93 1974 15 32

70 1974 1615 1630

J.C.S. Chem. Comm. 4 1973 102 103

1985 1 25

J. Nuclear Materials 36 1970 211 217

J. Nuclear Materials 59 1976 201 205

Metallurgical Trans. 3 1972 1581 1585

Russian J. Phys. Chem. 37 1963 288 291

Polish J. Chem. 54 1980 819 825

Solid State Comm. 7 1969 1313 1317

1981 231 238

Trans. of The Metallurgical Soc. of AIME

J. Chemical Soc., Faradat Trans I

Final Report to Brookhaven Nat. Lab., Contract DE-AC02-76CH00016, Allied. Corp., Morristown, NJ 07960

PHYSICS OF SOLIDS UNDER HIGH PRESSURE, J. S. Schilling and R. N. Shelton, Eds., North Holland Publishing

J. Alloys and Compounds 231 1995 528 532

J. Alloys and Compounds 231 1995 513 517

J. Alloys and Compounds 228 1995 164 171

J. Alloys and Compounds 231 1995 440 447

1956 1 32

J. Alloys and Compounds 231 1995 436 439

J. of Less-Common Metals 45 1976 215 228

Inorganic Chem. 18 1979 3343 3345

2 1980 593 598

173 1978 281 295

BNL 50023 1966 36 38

1976

1974 1 84

Philips Res. Repts. 18 1963 1 20

Mat. Res. Bull. 16 1981 869 876

J. Materials Sci. 20 1985 2958 2964

Met. Trans. A 10A 1979 529 534

19 1983 792 797

Rev. de Chemie Minerale 1 1964 439 449

Russian J. Inorganic Chem. 27 1982 763 765

World Pat. WO 82/02214 1982 1 12

Rept. BMI-1112, Battelle Memorial Institute, Columbus, OH

The Rare Earths in Modern Science and Technology, G. J. McCarthy, J. J. Rhyne and H. B. Silber, Eds., Plenum PressInorganic Compounds with Unusual Properties-II, Advances in Chemistry Series, R. B. King, Ed.Annual Report, Nuclear Engineering Dept., Brookhaven National Laboratory, W. E. Winsche and F. T. Miles, Eds.Report BNL 21322, Brookhaven National Lab

Report TEC-75/001, U.S. Energy Research and Development Admin.

Izvestiya Akademii Nauk SSSR, Neorganicheskie

75 1979 561 577

75 1979 578 590

Z. Phys. Chem. 116 1979 769 779

2 1980 563 567

13 1977 2009 2013

20 1984 1503 1506

1977 25 29

J. Materials Sci. 12 1977 2134 2135Russian J. Physical Chem. 58 1984 1472 1475

J. Phys. Chem. 86 1982 4952 4956

Russian J. Inorganic. Chem. 23 1978 1871 1873

J. Electrochem. Soc. 143 1996 l205 L208

J. Phys. Chem. 82 1982 4956 4958

14 1978 1624 1628

Solid State Comm. 24 1977 283 285

Russian J. Inorganic Chem. 24 1979 1803 1805

34 1976 219 221

Phys. Rev. B 21 1980 941 944

Solid State Comm. 19 1976 79 81

Russian J. Inorganic Chem. 24 1979 1130 1132

14 1978 1302 1307

U. S. Pat. 4,457,891 1984

J. Chem. Soc., Faraday Trans. I

J. Chem. Soc., Faraday Trans. I

The Rare Earths in Modern Science and Technology, G. J. McCarthy, J. J. Rhyne, and H. B. Silber, Eds., Plenum PressIzvestiya Akademii Nauk SSSR, Neorganicheskie Izvestiya Akademii Nauk SSSR, Neorganicheskie Rare Earths in Modern Science and Technology, G. J. McCarthy and J. J. Rhyne, Eds., Plenum Press

Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy

Magnetism and Magnetic Materials-1976, J. J. Becker and G. H. Lander, Eds., AIP Conf. Series

Izvestiya Akademii Nauk SSSr, Neorganicheskie Materialy

Russian J. Phys. Chem. 56 1982 283 284

Ber. Bunsenges. Phys. Chem. 82 1978 1290 1302

Materials Res. Bull. 11 1976 1241 1248

J. Alloys and Compounds 232 1996 107 118

J. Alloys and Compounds 232 1996 232 237

Z. Phys. Chem. NF 44 1965 143 159

U. S. Pat. 4,406,874 1983

1976 1073 1082

Russian J. Inorganic Chem. 28 1981 163 166

Russian J. Phys. Chem 57 1983 338 340

Russian J. Inorganic Chem. 27 1982 766 768

Ber. Bunsenges. Phys. Chem. 86 1982 1139 1143

1977 81 86

Russian J. Inorganic Chem. 23 1978 657 661

Solid State Comm. 33 1980 921 923

Solid State Comm. 28 1978 977 980

Solid State Comm. 23 1977 599 60218 1982 1644 1645

Entropie No.116/117 1984 31 42

Journal de Physique 40 1979 C5-213 C5-215

15 1979 801 806

15 1977 251 255

Solid State Comm. 40 1981 117 120

Proc. 12th Rare Earth Research Conf., C. E. Lundin,

Rare Earths in Modern Science and Tech., G. J. McCarthy and J. J. Rhyne, Eds., Plenum Press

Izvestiya Akademii Nauk SSSR, Neorganucheskie

Izvestiya Akademii Nauk SSSR, Neorganicheskie MaterialyIzvestiya Akademii Nauk SSSR, Neorganicheskie

167 1978 312 326

J. of Less-Common Metals 113 1985 83 87

J. of Less-Common Metals 97 1984 65 71

J. of Less-Common Metals 97 1984 59 64

J. of Less-Common Metals 108 1985 313 325

J. of Less-Common Metals 162 1990 251 266

J. of Less-Common Metals 96 1984 237 248

J. of Less-Common Metals 102 1984 29 40

J. of Less-Common Metals 101 1984 229 237

J. of Less-Common Metals 106 1985 67 77

J. of Less-Common Metals 106 1985 79 87

J. of Less-Common Metals 136 1988 385 394

J. of Less-Common Metals 143 1988 39 47

J. of Less-Common Metals 147 1989 9 18

J. of Less-Common Metals 147 1989 149 159

J. of Less-Common Metals 160 1990 259 271

J. of Less-Common Metals 163 1990 151 157

J. of Less-Common Metals 167 1991 245 253

J. of Less-Common Metals 168 1991 201 209

J. of Less-Common Metals 168 1991 289 294

J. of Less-Common Metals 170 1991 75 82

J. of Less-Common Metals 109 1985 287 309

J. of Less-Common Metals 110 1985 127 129

Advances in Chemistry Series, R. Bau, Ed., ACS

J. of Less-Common Metals 132 1987 115 121

J. of Less-Common Metals 134 1987 109 122

J. of Less-Common Metals 161 1990 193 202

J. of Less-Common Metals 96 1984 133 139J. of Less-Common Metals 98 1984 109 114

J. of Less-Common Metals 106 1985 165 173

J. of Less-Common Metals 115 1986 113 125

J. of Less-Common Metals 120 1986 63 70

J. of Less-Common Metals 136 1987 51 54

J. of Less-Common Metals 142 1988 145 154

J. of Less-Common Metals 149 1989 371 376

J. of Less-Common Metals 163 1990 227 243

J. of Less-Common Metals 167 1990 107 111J. of Alloys and Compounds 182 1992 43 54

J. of Alloys and Compounds 185 1992 321 338

J. of Alloys and Compounds 199 1993 101 104

J. of Alloys and Compounds 234 1996 93 100

J. of Alloys and Compounds 235 1996 93 96

J. of Alloys and Compounds 235 1996 225 231

J. of Alloys and Compounds 194 1993 41 45

J. of Alloys and Compounds 196 1993 63 70

J. of Alloys and Compounds 207/208 1994 372 376

J. of Alloys and Compounds 210 1994 299 303

J. of Alloys and Compounds 232 1996 79 83

J. of Alloys and Compounds 232 1996 192 196

J. of Alloys and Compounds 199 1993 135 160

J. of Alloys and Compounds 190 1993 L45 L46

J. of Alloys and Compounds 204 1994 65 69

J. of Alloys and Compounds 206 1994 47 54

J. of Alloys and Compounds 189 1992 L27 L29

J. of Alloys and Compounds 193 1993 266 267

J. of Alloys and Compounds 205 1994 135 137

J. of Alloys and Compounds 210 1994 27 29

J. of Alloys and Compounds 223 1995 60 64

J. Phys. Chem. Solids 35 1974 301 306

J. of Alloys and Compounds 217 1995 226 234

J. of Alloys and Compounds 192 1993 145 148

J. of Alloys and Compounds 192 1993 176 178

J. of Alloys and Compounds 177 1991 1 15

J. of Alloys and Compounds 194 1993 113 117J. of Less-Common Metals 130 1987 79 87

J. of Less-Common Metals 130 1975 375 386

J. of Less-Common Metals 131 1987 213 224

J. of Less-Common Metals 131 1987 191 199

J. of Less-Common Metals 94 1983 89 93

Zeit. Phys. Chem. NF 163 1989 35 40

Zeit. Phys. Chem. NF 163 1989 59 64

Zeit. Phys. Chem. NF 163 1989 677 682

J. of Alloys and Compounds 231 1995 1 9

J. of Alloys and Compounds 231 1995 90 94

J. of Alloys and Compounds 231 1995 188 194

J. of Alloys and Compounds 231 1995 494 497

J. of Alloys and Compounds 231 1995 537 545

J. of Alloys and Compounds 231 1995 546 549

J. of Alloys and Compounds 231 1995 755 759

J. of Alloys and Compounds 231 1995 760 765

J. of Alloys and Compounds 231 1995 773 779

J. of Alloys and Compounds 231 1995 871 879

J. of Alloys and Compounds 231 1995 895 897

J. of Alloys and Compounds 231 1995 907 909

J. of Alloys and Compounds 231 1995 780 784

2 1996 1275 1280

2 1996 1281 1286

2 1996 1287 1292

2 1996 1305 1309

2 1996 1983 1988

HYDROGEN ENERGY PROGRESS XI, T.N. Veziroglu, C.-J. Winter, J.P. Baselt and G. Kreysa, Eds., Int. Assoc. of Hydrogen EnergyHYDROGEN ENERGY PROGRESS XI, T.N. Veziroglu, C.-J. Winter, J.P. Baselt and G. Kreysa, Eds., Int. Assoc. of Hydrogen EnergyHYDROGEN ENERGY PROGRESS XI, T.N. Veziroglu, C.-J. Winter, J.P. Baselt and G. Kreysa, Eds., Int. Assoc. of Hydrogen EnergyHYDROGEN ENERGY PROGRESS XI, T.N. Veziroglu, C.-J. Winter, J.P. Baselt and G. Kreysa, Eds., Int. Assoc. of Hydrogen EnergyHYDROGEN ENERGY PROGRESS XI, T.N. Veziroglu, C.-J. Winter, J.P. Baselt and G. Kreysa, Eds., Int. Assoc. of Hydrogen Energy

Int. J. Hydrogen Energy 21 1996 935 938

3 1996 2645 2650

Int. J. Hydrogen Energy 21 1996 997 1000

Int. J. Hydrogen Energy 21 1996 1009 1015

Russian J. Inorganic Chemistry 25 1980 961 964

J. of Alloys and Compounds 253-254 1997 21- 211

J. of Alloys and Compounds 253-254 1997 226 231

J. of Alloys and Compounds 253-254 1997 574 578

J. of Alloys and Compounds 253-254 1997 613 616

J. of Alloys and Compounds 253-254 1997 621 625

J. of Alloys and Compounds 253-254 1997 642 647

J. of Alloys and Compounds 253-254 1997 648 651

J. of Alloys and Compounds 253-254 1997 692 697

J. of Alloys and Compounds 253-254 1997 29 33

J. of Alloys and Compounds 253-254 1997 272 274

J. of Alloys and Compounds 253-254 1997 302 307

J. of Alloys and Compounds 253-254 1997 313 317

J. of Alloys and Compounds 253-254 1997 343 346

J. of Alloys and Compounds 253-254 1997 564 569

HYDROGEN ENERGY PROGRESS XI, T.N. Veziroglu, C.-J. Winter, J.P. Baselt and G. Kreysa, Eds., Int. Assoc. of Hydrogen Energy

J. of Alloys and Compounds 253-254 1997 587 589

J. of Alloys and Compounds 253-254 1997 238 240

J. of Alloys and Compounds 253-254 1997 41 43

J. of Alloys and Compounds 253-254 1997 121 127

J. of Alloys and Compounds 253-254 1997 128 133

J. of Alloys and Compounds 253-254 1997 279 281

J. of Alloys and Compounds 253-254 1997 298 301

J. of Alloys and Compounds 253-254 1997 175 180

J. of Alloys and Compounds 253-254 1997 212 215

J. of Alloys and Compounds 253-254 1997 216 220

J. of Alloys and Compounds 253-254 1997 529 541

J. of Alloys and Compounds 253-254 1997 635 641

J. of Alloys and Compounds 253-254 1997 629 634

J. of Alloys and Compounds 187 1992 9 15

Russian Metallurgy 4 1977 54 55

21 1976 1281 1284

J. Appl. Phys. 56 1984 2547 2552

52 1978 879 880

J. of Less-Common Metals 98 1984 205 213

J. of Less-Common Metals 144 1988 23 30

J. of Less-Common Metals 161 1990 37 47

Russian J. of Inorganic Chemistry

Russian J. of Physical Chemistry

J. of Alloys and Compounds 190 1992 17 24

J. of Alloys and Compounds 216 1994 123 129

J. of Alloys and Compounds 235 1996 84 92

J. of Alloys and Compounds 239 1996 214 225

J. of Alloys and Compounds 240 1996 76 78

J. of Alloys and Compounds 242 1996 143 152

J. of Alloys and Compounds 226 1995 46 50

J. of Alloys and Compounds 244 1996 164 169

J. of Less-Common Metals 170 1991 75 82

1977 69 74

58 1984 1722 1723

Solid State Communications 19 1976 421 423

J. of Alloys and Compounds 194 1993 31 40

J. of Alloys and Compounds 198 1993 L19 L23

J. of Alloys and Compounds 205 1994 L1 L2

J. of Alloys and Compounds 239 1996 193 197

J. of Alloys and Compounds 240 1996 214 218

J. of Alloys and Compounds 202 1993 7 12

J. of Less-Common Metals 130 1987 421 429

Solid State Comm. 32 1979 1241 1242J. of Less-Common Metals 159 1990 291 298

Rare Earths in Modern Science and Technology, G.J. McCarthy and J.J. Rhyne, Eds., PlenumRussian J. of Physical chemistry

J. of Less-Common Metals 168 1991 321 328

J. of Alloys and Compounds 209 1994 111 116

J. of Less-Common Metals 131 1987 275 282

J. of Less-Common Metals 74 1980 263 270

3 1978 1677 1688

1982 577 620

3 1978 1677 1675

J. of Less-Common Metals 86 1982 153 160

J. of Less-Common Metals 74 1980 427 434

J. of Less-Common Metals 89 1983 151 161

J. of Less-Common Metals 88 1982 283 288

J. of Less-Common Metals 104 1984 319 327

J. of Less-Common Metals 131 1987 379 383

J. of Less-Common Metals 131 1987 25 29

J. of Less-Common Metals 172-174 1981 1071 1075

Int. J. Hydrogen Energy 22 1997 799 804

Int. J. Hydrogen Energy 20 1995 141 150

Int. J. Hydrogen Energy 13 1988 87 94

HYDROGEN ENERGY SYSTEM, T. N. Vezeroglu and W. Seifritz, Eds., Pergamon PressProc. Miami Int. Symp. on Metal-Hydrogen Systems, T.N. Veziroglu, Ed., Pergamon PressHYDROGEN ENERGY SYSTEM, T. N. Vezeroglu and W. Seifritz, Eds., Pergamon Press

Int. J. Hydrogen Energy 13 1988 467 474

Fortschritt-Berichte VDI Reihe 5 - Nr. 1997 1 208

Int. J. Hydrogen Energy 11 1986 169 192

Int. J. Hydrogen Energy 7 1982 89 94

Int. J. Hydrogen Energy 8 1983 797 799

Int. J. Hydrogen Energy 9 1984 137 145

J. Alloys and Compounds 253-254 1997 1 9

Doklady Akademii Nauk SSSR 224 1975 591 592

12 1980 772 792

Inorganic Chemistry 33 1994 4598 4599J. Alloys and Compounds 223 1995 L4 L6

J. Alloys and Compounds 197 1993 97 99

Inorganic chemistry 23 1984 1953 1957

J. Alloys and Compounds 190 1992 65 68

J. Alloys and Compounds 187 1992 227 232

J. Alloys and Compounds 210 1994 243 246

J. Alloys and Compounds 178 1992 161 166

J. Alloys and Compounds 186 1992 309 314

Inorganic Chemistry 24 1985 4177 4180

J. Alloys and Compounds 187 1992 233 241

Inorganic Chemistry 25 1986 3590 3593

J. Alloys and Compounds 178 1992 173 179

Kirk-Othmer Encyclopedia of Chemical Technology

J. Alloys and Compounds 194 1993 L11 L13

J. Alloys and Compounds 216 1994 39 42

J. Alloys and Compounds 216 1994 43 45

J. Alloys and Compounds 197 1993 65 68

J. Alloys and Compounds 200 1993 65 68

J. Alloys and Compounds 171 1991 301 311

J. Alloys and Compounds 253-254 1997 13 16

J. Chem. Phys. 85 1986 4530 4537

L. Less-Common Met. 162 1990 337

J. Solid-State Chem. 92 1991 514 519

J. Solid-State Chem. 93 1991 256 262

Z. Phys. Chem. 179 1993 249 253

Z. Phys. Chem. 179 1993 237 242

Z. Phys. Chem. 179 1993 243 247

J. Alloys and Compounds 209 1994 213 215

J. Alloys and Compounds 206 1994 73 75

J. Alloys and Compounds 229 1995 1 9

1978 366 381

J. Alloys and Compounds 243 1996 90 94

E&F.N. Spon Ltd, London 1966 1 186

1968 545 674

Inorganic Chem. 4 1965 304 305

1982 437 443

Paper D13 1982 383 387

J. of Less-Common Metals 116 1986 9 15

J. of Less-Common Metals 142 1988 243 252

566 1988 31 38

621 1995 1318 1321

516 1984 35 41

J. of Alloys and Compounds 219 1995 45 47

J. of Less-Common Metals 158 1990 163 167

J. of Less-Common Metals 161 1990 299 302

J. of Alloys and Compounds 187 1992 81 85

J. of Alloys and Compounds 187 1992 87 93

J. of Alloys and Compounds 228 1995 119 121

J. of Alloys and Compounds 176 1991 263 268

J. of Alloys and Compounds 210 1994 53 55

J. of Alloys and Compounds 203 1994 91 96

J. of Alloys and Compounds 199 1993 47 51

J. of Alloys and Compounds 176 1991 255 262

Transition Metal Hydrides, Advances in Chemistry Series 197, R. Bau, Ed., American Chemical Society

Metal Hydrides, W.M. Mueller, J.P. Blackledge, G.G. Libowitz, Eds., Academic Press, New York

Proc. Miami Int. Symp on Metal-Hydrogen Systems, Pergamon, OxfordProc. Third Int. Congress on Hydrogen and Materials, Paris

Zeit. fur anorganische und allgemeine ChemieZeit. fur anorganische und allgemeine ChemieZeit. fur anorganische und allgemeine Chemie

Inorganic Chemistry 8 1969 1010 1012

J. of Solid State Chem. 3 1971 541 549

Inorganic Chemistry 14 1975 1866 1869

Inorganic Chemistry 14 1975 2910 2912

Inorganic Chemistry 15 1976 3050 3053

Z. Phys. Chen NF 165 1989 83 94

Z. Phys. Chen NF 179 1993 457 465

J. of Solid State Chem. 121 1996 56 60

Inorganic Chem. 4 1965 304 305

8 1963 342 346

Zeit. f. Naturforschung 6b 1951 393 394

Zeit. f. Naturforschung 5b 1950 397 398

Zeit. f. Naturforschung 7b 1952 131 132

1 1955 317 325

Inorganic Chem. 2 1963 499 504

Angew. Chem. 73 1961 322 331

Ann. de Chem. 13 1957 14 57

J. Am. Chem. Soc. 78 1958 729 733

J. Electrochemical Soc. 104 1957 21

J. appl. Chem. 12 1962 478 481

Chem. Berichte 96 1963 2556 2559

Nature 173 1954 125 126

J. Chem. Soc 1958 4783 4784Chem. Berichte 93 1960 652 657

J. American Chem. Soc. 73 1951 5491 5493

J. of Chemical and Engineering Data

J. Inorganic and Nuclear Chem.

J. American Chem. Soc. 71 1949 2488 2492

Inorganic Chem. 3 1964 1058 1059

J. American Chem. Soc. 75 1953 209 213

J. Chem. Phys. 23 1955 1960 1960

J. Chem. Phys. 22 1954 434 436

J. American Chem. Soc. 75 1953 199 204

J. American Chem. Soc. 75 1953 215 218

J. American Chem. Soc. 75 1953 219 221J. Alloys and Compounds 248 1997 180 184

J. Alloys and Compounds 252 1997 83 87

J. Alloys and Compounds 259 1997 129 131

J. Alloys and Compounds 264 1998 271 276

J. Alloys and Compounds 265 1998 185 189

J. Alloys and Compounds 265 1998 209 214

J. Alloys and Compounds 267 1998 136 141

J. Alloys and Compounds 267 1998 171 181

J. Alloys and Compounds 267 1998 205 210

J. Alloys and Compounds 267 1998 240 245

J. Alloys and Compounds 255 1997 43 49

J. Alloys and Compounds 255 1997 195 202

J. Alloys and Compounds 256 1997 40 44

J. Alloys and Compounds 259 1997 270 275

J. Alloys and Compounds 260 1997 201 207

J. Alloys and Compounds 260 1997 211 216

J. Alloys and Compounds 261 1997 263 268

J. Alloys and Compounds 262-263 1997 206 210

J. Alloys and Compounds 268 1998 10 15

J. Alloys and Compounds 268 1998 241 247

J. Alloys and Compounds 260 1997 256 259

J. Alloys and Compounds 265 1998 6 14

J. Alloys and Compounds 267 1998 246 251

J. Alloys and Compounds 248 1997 L1 L4

J. Alloys and Compounds 248 1997 13 17

J. Alloys and Compounds 256 1997 155 158

J. Alloys and Compounds 257 1997 75 81

J. Alloys and Compounds 191 1993 279 285

J. Alloys and Compounds 202 1993 57 61

J. Alloys and Compounds 252 1997 201 208

J. Alloys and Compounds 257 1997 150 155

J. Alloys and Compounds 259 1997 24 28

J. Alloys and Compounds 262-263 1997 198 201

236 1996 42 49

J. Alloys and Compounds 252 1997 209 218

J. Alloys and Compounds 266 1998 307 310

J. Alloys and Compounds 268 1998 290 294

8 1997 101 109

Int. J. Hydrogen Energy 22 1997 77 82

Int. J. Hydrogen Energy 22 1997 225 231

Int. J. Hydrogen Energy 22 1997 255 257

Int. J. Hydrogen Energy 22 1997 679 682

Int. J. Hydrogen Energy 23 1998 107 114

Int. J. Hydrogen Energy 23 1998 781 786

Int. J. Hydrogen Energy 23 1998 879 884

2 1998 1015 1023

2 1998 1055 1063

2 1998 1075 1084

2 1998 1105 1114

J. Electrochemical Soc. 145 1998 93 98

J. of Nuclear Materials 223 1995 300 304

Trans. of Fusion Technology 27 1995 91 94

B33 1995 53 57

J. Korean Hydrogen Energy Soc.

HYDROGEN ENERGY PROGRESS XII, J. C. Bolcich and T. N. Veziroglu, Eds., International Association for Hydrogen EnergyHYDROGEN ENERGY PROGRESS XII, J. C. Bolcich and T. N. Veziroglu, Eds., International Association for Hydrogen EnergyHYDROGEN ENERGY PROGRESS XII, J. C. Bolcich and T. N. Veziroglu, Eds., International Association for Hydrogen EnergyHYDROGEN ENERGY PROGRESS XII, J. C. Bolcich and T. N. Veziroglu, Eds., International Association for Hydrogen Energy

Material Science and Engineering

513 1998 25 36

513 1998 85 92

513 1998 93 98

513 1998 305 310

React. Kinet. Catal. Lett. 19 1982 297 301

1963 B-49 B-60

J. Alloys and Compounds 196 1993 7 16

Ber. Bunsenges. Phys. Chem. 98 1994 964 969

J. Alloys and Compounds 240 1996 7 16

Z. Naturforschung 50a 1995 475 486

Acta Mater. 46 1998 2173 2183

Int. J. Hydrogen Energy 7 1982 191 203

Int. J. Hydrogen Energy 8 1983 463 470

Int. J. Hydrogen Energy 5 1980 35 54

1974 S4-9 S4-21

Hydrogen in Semiconductors and Metals, N. H. Nickel, W. B. Jackson, R. C. Bowman and R. G. Leisure, Eds., Materials Research Society Symp. Proc.Hydrogen in Semiconductors and Metals, N. H. Nickel, W. B. Jackson, R. C. Bowman and R. G. Leisure, Eds., Materials Research Society Symp. Proc.Hydrogen in Semiconductors and Metals, N. H. Nickel, W. B. Jackson, R. C. Bowman and R. G. Leisure, Eds., Materials Research Society Symp. Proc.Hydrogen in Semiconductors and Metals, N. H. Nickel, W. B. Jackson, R. C. Bowman and R. G. Leisure, Eds., Materials Research Society Symp. Proc.

Symposium on Production of Hydrogen, ACS New York Meeting

Proc. The Hydrogen Economy Miami Energy (THEME) Conf., T. N. Veziroglu, Ed., U. of Miami, Coral Gables

1980 26 30

Int. J. Hydrogen Energy 5 1980 609 618

1984 1349 1357

1984 1563 1577

2 1981 917 929

1984

1983

144 1984 1 1

April 1984

1974 1 31

1979 1 51

J. of Less-Common Metals 74 1980 333 339

Process Engineering 68 (No.8, Aug1987 24 25

1978 323 327

1981 1 219

1980 1 9

1970

1980

Proc. DOE Chemical Energy Storage and Hydrogen Energy Systems Contracts Review, Nov. 1979, Rept. CONF-

HYDROGEN ENERGY PROGRESS V, T. N. Veziroglu and J. B. Taylor, Eds., Pergamon PressHYDROGEN ENERGY PROGRESS V, T. N. Veziroglu and J. B. Taylor, Eds., Pergamon Press

HYDROGEN ENERGY PROGRESS, T. N. Veziroglu, K. Fueki and T. Ohta, Eds., Pergamon PressSuzuki Shokan Co., 3-1, Kojimachi, Chiyoda-ku, Tokyo Hydrogen Components, Inc., 12420 North Dumont Way, Littleton, CO 80105Baseline Industries, P.O. Box 649, Lyons, CO 80540Baseline Industries, P.O. Box 649, Lyons, CO 80540Kawasaki Topics, Kawasaki Heavy Industries, JapanReport C 02, Mannesmannrohren-Werke AG, Postfach 11 04, D-4000 Dusseldorf 1, GermanyBrookhaven National Lab, Report BNL 50421Sandia National Laboratories Report SAND79-8646

Hydrides for Energy Storage, A. F. Andresen and A. J. Maeland, Eds., Oxford:PergamonFinal Phase I Report for U.S. Bureau of Mines Contract H0202034, Eimco Mining Machinery InternationalU.K. Patent 1 538 374, 29 May 1980U.S. Patent 3,516,263, June 23, 1970U.S. Patent 4,225,320, Sep. 30, 1980

1981

1983

3 1982 1275 1288

3 1982 1289 1305

1982

J. of Less-Common Metals 95 1983 171 179

Sandia Report SAND94-8229 1994 1 48

Sandia Report SAND97-8289 1997 1 47

1984 1 16

1969 1 6

1977 263 268

86 (5) 1978 78 81

1981

3 1982 1207 1216

Report BNL-14804 1970 1 17

Cryogenics, December, 1973 1973 693 698

1972 1 33

Int. J. Hydrogen Energy 16 1991 407 412

Report BNL-18651 1974 1 28

U.S. Patent 4,270,360, Jan. 2, 1981U.S. Patent 4,375,257, Mar. 1, 1983HYDROGEN ENERGY PROGRESS IV, T. N. Veziroglu, W.D. Van Vorst, and J.H. Kelley, PergamonHYDROGEN ENERGY PROGRESS IV, T. N. Veziroglu, W.D. Van Vorst, and J.H. Kelley, PergamonU.S. Patent 4,311,232, Jan. 19, 1982

SAE Technical Paper 840233, Society of Automotive Engineers

SAE Technical Paper 690232, Society of Automotive The Metallurgist and Materials Technologist, May, 1977Automotive Engineering, May, 1978

US Patent 4,302,217, Nov. 24, 1981

HYDROGEN ENERGY PROGRESS IV, T. N. Veziroglu, W.D. Van Vorst, and J.H. Kelley, Pergamon

Lawrence Livermore Laboratory Report UCRL-51228

1994

Z. Phys. Chem. NF 117 1979 155 184

29 1978 201 242

International Metals Reviews 27 1982 140 168

Energy and Fuels 12 1998 49 55

73 1997 279 340

295 1995 253 280

6 1980 331 346

Chemtech 11 1981 754 762

Chemtech 10 1980 768 773

1981 3569 3586

Paper presented at 5th Annual U.S. Hydrogen Meeting, National Hydrogen Assoc.FT/P4063, Daimler-Benz Research and Technology, D-7000 Stuttgart 80, Germany

Hydrogen in Metals II, G. Alefeld and J. Volkl, Eds., Topics in Applied Physics

Hydrogen in Metals III, H. Wipf, Ed., Topics in Applied Physics

Hydrogen Energy System - Production and Utilization of Hydrogen and Future Aspects, Y. Yurum, Ed., NATO ASI Series E, Kluwer Academic Publishers

Progress in Energy Combustion Science

Proc. 2nd Int. Conf. on Alternative Energy Sources, T. N. Veziroglu, Ed., Hemisphere Pub.

Science 214 1981 1081 1087

NASA TM-76610 1981 1 42

1975 1 55

3 (No.3) 1981 3 19

Int. J. Hydrogen Energy 1 1976 133 151

2nd Qtr. 1977 22 27

Fall 1977 28 36

1974 S8-51 s8-61

4 1984 1623 1630

3 1976 7C-1 7C-12

3 1976 7C-13 7C-23

4 1978 1709 1730

4 1978 1829 1849

4 1978 1879 1901

Report TN-1393, Navy Civil Engineering Lab, Port Hueneme, CA (NTIS AD-A014 174)

J. Materials for Energy Systems, Dec. 1981

Hydrogen Progress, Billings Energy Corp., Provo, UT

Hydrogen Progress, Billings Energy Corp., Provo, UT

Proc. The Hydrogen Economy Miami Energy (THEME) Conf., T. N. Veziroglu, Ed., U. of Miami, Coral GablesHYDROGEN ENERGY PROGRESS V, T. N. Veziroglu and J. B. Taylor, Eds., Pergamon PressProc. 1st World Hydrogen Energy Conference, T. N. Veziroglu, Ed., IAHE, Coral GablesProc. 1st World Hydrogen Energy Conference, T. N. Veziroglu, Ed., IAHE, Coral GablesHYDROGEN ENERGY PROGRESS, T. N. Veziroglu and W. Seifritz, Eds., Pergamon Press

HYDROGEN ENERGY PROGRESS, T. N. Veziroglu and W. Seifritz, Eds., Pergamon PressHYDROGEN ENERGY PROGRESS, T. N. Veziroglu and W. Seifritz, Eds., Pergamon Press

Int. J. Hydrogen Energy 3 1978 49 59

Int. J. Hydrogen Energy 14 1989 727 735

J. of Less-Common Metals 89 1983 545 550

1974 428 434

2 1986 881 886

2 1986 893 897

2 1986 921 932

J. of Less-Common Metals 119 1986 115 126

1981 67 109

1997 1 159

1979

1986

1 1976 920 925

1981

1977

1985

J. of Less-Common Metals 131 1987 321 328

Proc. 9th Intersociety Energy Conversion Engineering Conf., ASME, New YorkHydrogen Energy Progress VI, T. N. Veziroglu, N. Getoff and P. Weinzierl, Eds., Pergamon PressHydrogen Energy Progress VI, T. N. Veziroglu, N. Getoff and P. Weinzierl, Eds., Pergamon PressHydrogen Energy Progress VI, T. N. Veziroglu, N. Getoff and P. Weinzierl, Eds., Pergamon Press

Hydrogen Energy, IVA Report 199, The Royal Swedish Academy of Engineering SciencesFinal Report for Contract N00014-97-M-0001, U.S. Office of Naval Research, NTIS Order No. AD-A328 073/2INZ

U.S. Patent 4,135,621, January 23, 1979U.S. Patent 4,566,281, Jan. 28, 1986

Proc. 11th Intersociety Energy Conversion Engineering Conference, AIChE, New YorkProc. 2nd World Congress of Chemical Engineering, Montreal, Oct. 4-9, 1981U.S. Patent 4,036,944, July 19, 1977U.S. Patent 4,544,527, Oct. 1, 1985

J. of Less-Common Metals 131 1987 329 335

A1 1983 856 864

1976

10 1981 371 378

1978

Inorganic Chem. 17 1978 498 500

1981

1984 1 51

1982 601 617

J. of Less-Common Metals 49 1976 477 482

Physical Review B 28 1983 748 758

AIChE Journal 25 1979 592 599

15 1980 423 455

1963

Int. J. Hydrogen Energy 1982 597 601

Russian J. Phys. Chem. 55 1981 1132 1135

1976

1978 1 9

Fusion Technology 8 1985 2337 2343

Fusion Technology 20 1991 186 199

J. Vacuum Science and TechnologyU.S. Patent 3,940,912, March 2, 1976Siemens Forsch.-u. Entwickl.-Ber.U.S. Patent 4,075,312, Feb. 21, 1978

U. S. Patent 4,276,060, Jun. 30, 1981

Report UCID-20111, Lawrence Livermore National Laboratory, May 9, 1984

Proc. Miami Int. Symp. on Metal-Hydrogen Systems, Pergamon Press

Separation Science and Technology

U.S. Patent 3,081,156, Mar. 12, 1963

71982

U.S. Patent 3,989,484, Nov. 2, 1976

Report LA-7209-MS, Los Alamos National Lab, March, 1978

1979 193 224

Chemie-Ing.-Techn. 45 1973 80 83

1981 1 45

1982

1984 1 7

1982 675

1982 667 674

1981 3555 3567

1983 1746 1753

1980

1995

1997

J. of Alloys and Compounds 253-254 1997 686 688

1974 322 325

1976 673 680

1975 1349 1351

1977

1977

1978

1975

Solar-Hydrogen Energy Systems, T. Ohta, Ed., Pergamon Press, Oxford

Phase I Final Report for Contract BNL 484822-S, DOE Brookhaven National Laboratories, January, 1981Paper AIAA-82-0830, AIAA/ASME 3rd Joint Thermophysics, Fluids, Plasma and Heat Transfer Conference, Paper AIAA-82-0058 AIAA Areospace Sciences Conference, January 9-12, 1984Proc. Miami Int. Symp. on Metal-Hydrogen Systems, Pergamon PressProc. Miami Int. Symp. on Metal-Hydrogen Systems, Pergamon PressProc. 2nd Int. Conf. on Alternate Energy Sources, Ed. T. N. Veziroglu, Hemisphere Pub.Proc. 18th Intersociety Energy Conversion Engineering ConferenceU.S. Patent 4,214,699, Jul. 29, 1980U.S. Patent 5,450,721, Sep. 19, 1995U.S. Patent 5,673,556, Oct. 7, 1997

Proc. 9th Intersociety Energy Conversion Engineering Conf., ASME, New YorkProc. 11th Intersociety Energy Conversion Engineering Conf., AIChE, New YorkProc. 10th Intersociety Energy Conversion Engineering Conf., IEEE, New YorkU.S. Patent 4,093,023, Aug. 2, 1977U.S. Patent 4,044,819, Aug. 30, 1977U.S. Patent 4,111,002, Sep. 5, 1978BNL Rept. 19914, March 20, 1975

1977

1980

1982

1977 1 45

1978 551 557

Solar Energy 21 1978 153 156

Popular Science, Oct. 1978 1978 104 107

1981

Int. J. Hydrogen Energy 3 1978 303 310

3 1978 1931 1946

3 1978 1947 1957

1979

1980

1983

1990

Int. J. Hydrogen Energy 11 1986 797 806

J. of Less-Common Metals 131 1987 385 398

U.S. Patent 4,055,962, Nov. 1, 1977U.S. Patent 4,188,795, Feb. 19, 1980U.S. Patent Re. 30,840, Jan. 5, 1982Rept. ANL-77-39, Argonne National Laboratory

Hydrides for Energy Storage, A. F. Andresen and A. J. Maeland, Eds., Oxford:Pergamon

U.S. Patent 4,262,739, Apr. 21, 1981

HYDROGEN ENERGY SYSTEM, T. N. Veziroglu and W. Seifritz, Eds., Pergamon Press

HYDROGEN ENERGY SYSTEM, T. N. Veziroglu and W. Seifritz, Eds., Pergamon PressU.S. Patent 4,178,987, Dec. 18, 1979U.S. Patent 4,200,144, Apr. 29, 1980U.S. Patent 4,402,915, Sep. 6, 1983

U.S. Patent 4,939,902, Jul. 10, 1990

1981

1984

1982 33 41

J. of Less-Common Metals 104 1984 341 348

1982 1160 1165

1987 1 85

1 1978

2 1978

1 1979 109 113

2 1980 936 945

J. of Less-Common Metals 104 1984 307 318

1993 C-215 C-222

J. of Less-Common Metals 104 1984 211 222

Arbetsrapport ET-81/118, Studsvik Energiteknik, Nykoping, Sweden

Rept. EI-84/145, Studsvik Energiteknik, Nykoping, Sweden

Dynamics of Solid/Gas Processes for Energy Conversion, Rept. TRITA-FYK-8201, Royal Institute of Technology, Stockholm, Sweden

Proc. 17th Intersociety Energy Conversion Engineering Conference, IEEE, New YorkArbetsrapport ET-87/26, Studsvik Energiteknik, Nykoping, Sweden

Rept. ANL/EES-TM-66, Vol. I, Argonne N. L., Argonne, IL, USA

Rept. ANL/EES-TM-66, Vol. II, Argonne N. L., Argonne, IL, USA

Final Rept. for Contract BNL 481417-S, Billings Energy Corp., Independence, MO, USAProc. 14th Intersociety Energy Conversion Engineering Conference, ACS, Washington

Proc. 15th Intersociety Energy Conversion Engineering Conference, AIAA

Proc. Refrigeration and Air-Conditioning Technology Workshop, P. J. Lewis and D. M. Counce, Eds., Rept. ORNL-6797, Oak Ridge N.L., Oak Ridge, TN, USA

J. of Less-Common Metals 89 1983 351 358

J. of Less-Common Metals 89 1983 341 350

J. of Less-Common Metals 89 1983 365 372

J. of Less-Common Metals 89 1983 559 566

Z. Phys. Chem. NF 164 1989 1497 1508

J. of Less-Common Metals 172-174 1991 1111 1121

J. of Less-Common Metals 172-174 1991 1122 1129

J. of Less-Common Metals 172-174 1991 1092 1110

0.1984

1989

Z. Phys. Chem. NF 164 1989 1475 1484

J. of Less-Common Metals 89 1983 551 558

Int. J. Hydrogen Energy 9 1984 783 797

1988 1 13

Final Report for New York State ERDA Contract ER-215-78/79 NET, Ergenics, Inc., Wyckoff, NJ, USA

Final Report for US Army TROSCOM Contract DAAK70-86-C-0123, Ergenics Inc., Wyckoff, NJ, USA (NTIS Order No. AD-A213 756)

Proc. Int. Workshop on Metal Hydrides for Hydrogen Storage, Purification and Thermodynamic Devices, IKE der U. Stuttgart and Technion-Israel Inst. of Tech.

1988 21 40

1988 43 54

1988 59 71

1988 72 90

1988 91 103

1988 114 117

Int. J. Hydrogen Energy 11 1989 19 28

Int. J. Hydrogen Energy 14 1989 821 830

Chemical Engineering (Japan) 28 1983 1 19

Int. J. Hydrogen Energy 11 1985 757 765

1979 1 4

4 1989 2097 2103

1973

1970

1975 1339 1347

1975 1 9

Proc. Int. Workshop on Metal Hydrides for Hydrogen Storage, Purification and Thermodynamic Devices, IKE der U. Stuttgart and Technion-Israel Inst. of Tech.Proc. Int. Workshop on Metal Hydrides for Hydrogen Storage, Purification and Thermodynamic Devices, IKE der U. Stuttgart and Technion-Israel Inst. of Tech.Proc. Int. Workshop on Metal Hydrides for Hydrogen Storage, Purification and Thermodynamic Devices, IKE der U. Stuttgart and Technion-Israel Inst. of Tech.Proc. Int. Workshop on Metal Hydrides for Hydrogen Storage, Purification and Thermodynamic Devices, IKE der U. Stuttgart and Technion-Israel Inst. of Tech.Proc. Int. Workshop on Metal Hydrides for Hydrogen Storage, Purification and Thermodynamic Devices, IKE der U. Stuttgart and Technion-Israel Inst. of Tech.Proc. Int. Workshop on Metal Hydrides for Hydrogen Storage, Purification and Thermodynamic Devices, IKE der U. Stuttgart and Technion-Israel Inst. of Tech.

Rept. LA-7822, Los Alamos N.L., Los Alamos, NM, USAProc. 24th Intersociety Energy Conversion Engineering Conf., IEEE, New YorkU.S. Patent 3,732,690, May 15, 1973U.S. Patent 3,504,494, Apr. 7, 1970Proc. 10th Intersociety Energy Conversion Engineering Conf., IEEE, New York

Paper 75-WA/Ener-2, ASME, New York

1978

1976

2E+07

1977 1 7

Energy Conversion 19 1979 49 57

1978 1 26

1979 743 746

Design News, Nov. 23, 1987 1987

J. of Less-Common Metals 74 1980 419 426

1981

1983

1983

Regelungstechnische Praxis 25 (No.2) 1983 51 56

J. of Less-Common Metals 104 1984 251 257

1981 427 429

1996

1989

1981

J. of Less-Common Metals 89 1983 373 391

J. of Less-Common Metals 131 1987 263 273

J. of Less-Common Metals 131 1987 293 299

U.S. Patent 4,085,590, Apr. 25, 1978U.S. Patent 3,943,719, Mar. 16, 1976U.S. Patents 4,090,361 (May 23, 1978); 4,198,827 (Apr. 22, 1980); 4,311,014 (Jan. 19, 1982); 4,358,931 (NOv. 16, 1982); 4,397,153 (Aug. 9, 1983); 4,537,031 (Aug. 27, 1985)Paper 6A7, Proc. 2nd International Congress on Hydrogen in Metals, Paris, 1977

Rept. SAND 78-2228, Sandia National Laboratories, Albuquerque, NM, USAProc. 14th Intersociety Energy Conversion Engineering Conference, ACS, Washington

U.S. Patent 4,282,931, Aug. 11, 1981U.S. Patent 4,377,209, Mar. 22, 1983U.S. Patent 4.385,494, May 31, 1983

Proc. 15th Fall Meeting of the Society of Chemical Engineers of JapanU.S. Patent 5,485,884, Jan. 23, 1996

U.S. Patent 4,884,953, Dec. 5, 1989Rept. BNL 29364, Brookhaven N.L., Upton, NY, USA

J. of Less-Common Metals 131 1987 283 292

J. of Catalysis 44 1976 236 243

J. of Phys. Chem. 80 1976 1878 1879

Science 196 1977 1093 1094

J. of Catalysis 46 1977 417 419

1978

1981 1 18

1982

1978

Materials Research Bulletin 14 1979 785 790

Materials Research Bulletin 13 1978 697

Materials Research Bulletin 13 1978 1031 1037

J. of Alloys and Compounds 124 1986 11 19

1978 501 514

J. of Less-Common Metals 89 1983 537 543

J. of Less-Common Metals 131 1987 425 425

1966

U.S. Patent 4,071,473, Jan. 31, 1978

European Patent Application 0 034 403, Aug. 28, 1981U.S. Patent 4,325,931, Apr. 20, 1982U.S. Patent 4,120,763, Oct. 17, 1978

Hydrides for Energy Storage, A. F. Andresen and A. J. Maeland, Eds., Oxford:Pergamon

U.S. Patent 3,262,816, Jul. 26, 1966

1968

J. Appl. Chem. 1 (March) 1951 98 104

1966

1981 223 250

Solar Energy 33 1979 91 92

1983 1 12

Int. J. Hydrogen Energy 9 1984 1005 1009

1 1981 798 804

High Technology 1981 21 24

2 1994 1029 1037

2 1994 1341 1353

3 1994 1547 1556

3 1994 2031 2040

1997 1 64

Nature 380 1996 231 234

1995 1 183

U.S. Patent 3,405,008, Oct. 8, 1968

U.S. Patent 3,277,860, Oct. 11, 1966Industrial Applications of Rare Earth Elements, K. A. Gschneidner, Ed., ACS Symposium Series 164, ACS, Washington, DC, USA

Canada Patent 1 142 131, Mar. 1, 1983

Proc. 16 Intersociety Energy Conversion Engineering Conference

Hydrogen Energy Progress X, D. L. Block and T. N. Veziroglu, Eds., International Association of Hydrogen EnergyHydrogen Energy Progress X, D. L. Block and T. N. Veziroglu, Eds., International Association of Hydrogen EnergyHydrogen Energy Progress X, D. L. Block and T. N. Veziroglu, Eds., International Association of Hydrogen EnergyHydrogen Energy Progress X, D. L. Block and T. N. Veziroglu, Eds., International Association of Hydrogen EnergyJPL Publication 97-14, Jet Propulsion Laboratory, Pasadena, CA, USA

Doctor’s Thesis, Vrije University, Amsterdam

J. of Alloys and Compounds 253-254 1997 44 50

76 1994 29 36

1 2

1996

1 1

1998

J. of Power Sources 66 1997 187 195

2 1994 1311 1319

Rev. Sci. Instrumen. 67 1996 1190 1192

Sensors and Actuators B 30 1996 11 16

J. of Molecular Catalysis 91 1994 223 235

Bull. Chem. Soc. Japan 56 1983 3393 3399

2 1990 1343 1347

1990

Kogakuin University Research Reports

Ball Aerospace & Technologies Corp., Broomfield, CO, USA, http://www.ball.comU.S. Patent 5,514,353, May 7, 1996

AF Sammer Corp., Ringwood, NJ, USA

Paper IECEC-98-217, Proc. 33rd Intersociety Engineering Conference on Energy Conversion

HYDROGEN ENERGY PROGRESS X, Proc. 10th World Hydrogen Energy Conf., D. L. Block and T. N. Veziroglu, Eds., IAHE

Proc. 1989 Congress of the International Solar Energy SocietyU.S. Patent 4,928,496, May 29, 1990

1992

Ind. Eng. Chem. Res. 34 1995 2305 2313

120 1998 305 313

Int. J. of Refrigeration 22 1999 47 58

Int. J. of Refrigeration 22 1999 5 17

J. of Less-Common Metals 126 1986 83 88

J. of Less-Common Metals 171 1991 353 356

J. of Less-Common Metals 149 1989 185 191

J. of Less-Common Metals 113 2E+07 23 31

J. of Less-Common Metals 157 1990 97 108

J. of Less-Common Metals 170 1991 63 74

J. of Less-Common Metals 101 1984 169 190

Chemical Engineering Science 54 1999 103 113

43 1988 1017 1024

45 2000 499 506

U.S. Patent 5,122,338, Jun. 16, 1992

Trans. ASME, J. of Energy Resources Technology

Advances in Cryogenic Engineering

Advances in Cryogenic Engineering

Cryogenics 39 1999 157 165

1994 1 6

1994

1995 1 6

1999 585 574

45 2000 553 560

22 1981 418 418

Russian J. Inorganic Chemistry 29 1984 864 868

Russian J. Inorganic Chemistry 29 1984 2188 2191

Russian J. Inorganic Chem 30 1985 1133 1137

26 1985 413 418

22 1986 75 79

27 1986 332 333

25 1989 34 37

1991.6 179 183

33 1992 516 519

36 1995 70 72

D 0006 1998 1 122

4 1998 1 144

SAE Tech. Paper 940315, SAE, Warrendale, PA, USA

U.S. Patent 5,318,108, Jun. 7, 1994Rept. NREL/TP-473-7025, National Renewable Energy Lab, Golden, CO, USACryocoolers 10, Kluwer Academic/Plenum

Advances in Cryogenic Engineering

Bulletin of Moscow University, Chemistry

Bulletin of Moscow University, ChemistryProc. Academy Sciences USSR, Inorganic Materials

Bulletin of Moscow University, ChemistryProc. Academy Sciences USSR, Inorganic MaterialsProc. Academy Sciences USSR, MetalsBulletin of Moscow University, ChemistryBulletin of Moscow University, ChemistryWissenschaftliche Monographien aus dem Max-Planck-Institut fur Kohlenforschung, Mulheim am RhurDissertation aus dem Max-Planck-Institut fur Kohlenforschung, Mulheim am Rhur

J. Appl. Electrochemistry 23 1993 1051 1055

1976 1 37

2 1994 1089 1098

J. Non-Crystalline Solids 146 1992 63 73

Materials Research Bulletin 31 1996 957 963

1998 399 404

1997 75 85

1985

1985

1996

J. of Less-Common Metals 120 1986 45 53

J. Chem. Phys. 85 1986 2961 2973

Sensors and Actuators B B 49 1998 258 267

J. of Alloys and Compounds 201 1993 49 55

J. of Less-Common Metals 123 1986 65 74

J. of Less-Common Metals 162 1990 117 127

Rept. BNL 20931, Brookhaven National Lab, Upton, NY, USA

HYDROGEN ENERGY PROGRESS X, Proc. 10th World Hydrogen Energy Conf., D. L. Block and T. N. Veziroglu, Eds., IAHE

The Thirteenth Annual Battery Conference on Applications and Advances, H. A. Frank and E. T. Seo, Eds, IEEERARE EARTHS Science, Technology and Applications III, R. G. Bautista, C. O. Bounds, T. W. Ellis and B. T. Kilbourn, Eds., The Minerals, Metals & Materials Society, Warrendale, PA, USAU.S. Patent 4,512,965, Apr. 23, 1985

U.S. Patent 4,556,551, Dec. 3, 1985

U.S. Patent 5,525,435, Jun. 11, 1996

Electrochemica Acta 41 1995 117 121

2 1999 111 114

J. of Power Sources 66 1997 165 168

J. Electrochemical Society 146 1999 1245 1250

J. Electrochemical Society 147 2000 2451 2455

J. of Power Sources 96 2001 288 292

J. of Alloys and Compounds 270 1998 L7 L9

J. of Alloys and Compounds 270 1998 255 264

J. of Alloys and Compounds 275-277 1998 99 104

J. of Alloys and Compounds 275-277 1998 118 122

J. of Alloys and Compounds 278 1998 270 276

J. of Alloys and Compounds 282 1999 274 278

J. of Alloys and Compounds 289 1999 207 212

J. of Alloys and Compounds 289 1999 299 305

J. of Alloys and Compounds 293-295 1999 67 73

J. of Alloys and Compounds 293-295 1999 613 620

Electrochemical and Solid State Letters

J. of Alloys and Compounds 293-295 1999 637 642

J. of Alloys and Compounds 293-295 1999 721 723

J. of Alloys and Compounds 293-295 1999 877 888

J. of Alloys and Compounds 297 2000 73 80

J. of Alloys and Compounds 297 2000 206 210

J. of Alloys and Compounds 298 2000 237 243

J. of Alloys and Compounds 302 2000 65 69

J. of Alloys and Compounds 306 2000 235 244

J. of Alloys and Compounds 308 2000 163 171

J. of Alloys and Compounds 319 2001 242 246

J. of Alloys and Compounds 321 2001 146 150

Int. J. Hydrogen Energy 23 1998 1193 1196

Int. J. Hydrogen Energy 24 1999 467 471

Int. J. Hydrogen Energy 25 2000 55 60

Int. J. Hydrogen Energy 25 2000 531 537

Int. J. Hydrogen Energy 25 2000 663 667

Int. J. Hydrogen Energy 26 2001 117 121

Int. J. Hydrogen Energy 26 2001 231 236

J. of Alloys and Compounds 291 1999 254 261

J. of Alloys and Compounds 293-295 1999 526 530

J. of Alloys and Compounds 296 2000 170 174

J. of Alloys and Compounds 312 2000 68 76

J. of Alloys and Compounds 296 2000 67 71

J. of Alloys and Compounds 298 2000 1 8

J. of Alloys and Compounds 313 2000 53 58

J. of Alloys and Compounds 293-295 1999 608 612

Int. J. Hydrogen Energy 23 1998 1165 1177

Int. J. Hydrogen Energy 24 1999 449 454

Int. J. Hydrogen Energy 24 1999 625 629

Int. J. Hydrogen Energy 25 2000 779 782

Int. J. Hydrogen Energy 25 2000 831 836

J. of Alloys and Compounds 270 1998 164 167

J. of Alloys and Compounds 274 1998 217 221

J. of Alloys and Compounds 282 1999 286 290

J. of Alloys and Compounds 285 1999 12 20

J. of Alloys and Compounds 285 1999 279 283

J. of Alloys and Compounds 291 1999 244 247

J. of Alloys and Compounds 293-295 1999 417 420

J. of Alloys and Compounds 293-295 1999 293 295

J. of Alloys and Compounds 293-295 1999 569 582

J. of Alloys and Compounds 305 2000 282 289

J. of Alloys and Compounds 307 2000 L1 L5

J. of Alloys and Compounds 309 2000 154 164

J. of Alloys and Compounds 316 2001 118 123

J. of The Electrochem. Soc. 147 2000 4464 4469

J. of The Electrochem. Soc. 148 2001 A1041 A1044

Intermetallics 8 2000 359 363

J. of Alloys and Compounds 269 1998 141 143

J. of Alloys and Compounds 269 1998 162 165

J. of Alloys and Compounds 269 1998 288 293

J. of Alloys and Compounds 274 1998 59 64

J. of Alloys and Compounds 274 1998 254 259

J. of Alloys and Compounds 278 1998 283 290

J. of Alloys and Compounds 279 1998 L4 L7

J. of Alloys and Compounds 279 1998 204 214

J. of Alloys and Compounds 280 1998 284 289

J. of Alloys and Compounds 281 1998 290 300

J. of Alloys and Compounds 282 1999 261 267

J. of Alloys and Compounds 283 1999 178 191

J. of Alloys and Compounds 284 1999 31 34

J. of Alloys and Compounds 285 1999 204 211

J. of Alloys and Compounds 285 1999 284 291

J. of Alloys and Compounds 289 1999 306 310

J. of Alloys and Compounds 291 1999 289 294

J. of Alloys and Compounds 292 1999 51 56

J. of Alloys and Compounds 293-295 1999 14 18

J. of Alloys and Compounds 293-295 1999 34 37

J. of Alloys and Compounds 293-295 1999 52 56

J. of Alloys and Compounds 293-295 1999 88 92

J. of Alloys and Compounds 293-295 1999 385 390

J. of Alloys and Compounds 293-295 1999 391 395

J. of Alloys and Compounds 293-295 1999 583 592

J. of Alloys and Compounds 293-295 1999 601 607

J. of Alloys and Compounds 296 2000 201 208

J. of Alloys and Compounds 298 2000 254 260

J. of Alloys and Compounds 299 2000 32 38

J. of Alloys and Compounds 299 2000 217 226

J. of Alloys and Compounds 306 2000 203 218

J. of Alloys and Compounds 307 2000 266 271

J. of Alloys and Compounds 308 2000 259 268

J. of Alloys and Compounds 309 2000 L1 L4

J. of Alloys and Compounds 311 2000 234 237

J. of Alloys and Compounds 312 2000 302 306

J. of Alloys and Compounds 313 2000 263 268

J. of Alloys and Compounds 314 2001 275 280

J. of Alloys and Compounds 317-318 2001 67 70

J. of Alloys and Compounds 317-318 2001 83 87

J. of Alloys and Compounds 325 2001 293 298

Int. J. Hydrogen Energy 24 1999 149 152

Int. J. Hydrogen Energy 24 1999 247 249

Int. J. Hydrogen Energy 25 2000 143 149

Int. J. Hydrogen Energy 25 2000 767 772

Int. J. Hydrogen Energy 25 2000 871 878

Int. J. Hydrogen Energy 25 2000 983 986

Int. J. Hydrogen Energy 25 2000 1059 1068

Int. J. Hydrogen Energy 26 2001 219 223

Int. J. Hydrogen Energy 26 2001 333 337

Int. J. Hydrogen Energy 26 2001 593 596

Int. J. Hydrogen Energy 26 2001 683 689

Int. J. Hydrogen Energy 26 2001 701 706

Int. J. Hydrogen Energy 26 2001 817 821

Int. J. Hydrogen Energy 27 2002 171 176

3 2000 249 252

Scripta Materialia 44 2001 2591 2595

J. of Alloys and Compounds 270 1998 58 62

J. of Alloys and Compounds 275-277 1998 637 641

J. of Alloys and Compounds 283 1999 106 116

J. of Alloys and Compounds 283 1999 146 150

J. of Alloys and Compounds 283 1999 320 326

Electrochemical and Solid-State Letters

J. of Alloys and Compounds 284 1999 L4 L6

J. of Alloys and Compounds 287 1999 189 194

J. of Alloys and Compounds 287 1999 264 270

J. of Alloys and Compounds 289 1999 66 70

J. of Alloys and Compounds 291 1999 8 10

J. of Alloys and Compounds 293-295 1999 74 87

J. of Alloys and Compounds 293-295 1999 178 184

J. of Alloys and Compounds 293-295 1999 429 432

J. of Alloys and Compounds 296 2000 20 26

J. of Alloys and Compounds 296 2000 258 264

J. of Alloys and Compounds 296 2000 312 316

J. of Alloys and Compounds 298 2000 114 118

J. of Alloys and Compounds 302 2000 112 117

J. of Alloys and Compounds 302 2000 146 154

J. of Alloys and Compounds 302 2000 304 313

J. of Alloys and Compounds 305 2000 298 305

J. of Alloys and Compounds 360 2000 193 196

J. of Alloys and Compounds 309 2000 75 82

J. of Alloys and Compounds 309 2000 197 200

J. of Alloys and Compounds 311 2000 L5 L7

J. of Alloys and Compounds 311 2000 188 193

J. of Alloys and Compounds 312 2000 158 164

J. of Alloys and Compounds 312 2000 251 256

J. of Alloys and Compounds 313 2000 95 103

J. of Alloys and Compounds 314 2001 22 28

J. of Alloys and Compounds 314 2001 124 131

J. of Alloys and Compounds 314 2001 257 261

J. of Alloys and Compounds 316 2001 46 50

J. of Alloys and Compounds 317-318 2001 60 66

J. of Alloys and Compounds 317-318 2001 71 76

J. of Alloys and Compounds 317-318 2001 92 97

J. of Alloys and Compounds 319 2001 290 295

J. of Alloys and Compounds 322 2001 160 165

Int. J. Hydrogen Energy 24 1999 119 127

Int. J. Hydrogen Energy 24 1999 141 143

Int. J. Hydrogen Energy 24 1999 163 168

Int. J. Hydrogen Energy 24 1999 357 341

Int. J. Hydrogen Energy 24 1999 899 907

Int. J. Hydrogen Energy 25 2000 861 869

Int. J. Hydrogen Energy 26 2001 477 481

J. of Alloys and Compounds 330-332 2002 132 140

J. of Alloys and Compounds 330-332 2002 141 145

J. of Alloys and Compounds 330-332 2002 157 161

J. of Alloys and Compounds 330-332 2002 166 168

J. of Alloys and Compounds 330-332 2002 169 174

J. of Alloys and Compounds 330-332 2002 197 201

J. of Alloys and Compounds 330-332 2002 373 375

J. of Alloys and Compounds 330-332 2002 458 461

J. of Alloys and Compounds 330-332 2002 543 546

J. of Alloys and Compounds 330-332 2002 547 550

J. of Alloys and Compounds 330-332 2002 574 578

J. of Alloys and Compounds 330-332 2002 732 737

3 1984 1421 1428

Int. J. Hydrogen Energy 20 1995 811 822

J. of Alloys and Compounds 292 1999 51 57

J. of Alloys and Compounds 293-295 1999 889 892

J. of Alloys and Compounds 293-295 1999 915 918

Proc. 19th Intersociety Energy Conversion Engineering Conf., Am. Nuclear Soc.

J. of Alloys and Compounds 293-295 1999 919 922

J. of Alloys and Compounds 313 2000 174 181

J. of Alloys and Compounds 323-324 2001 601 604

J. of Alloys and Compounds 330-332 2002 886 891

J. of Alloys and Compounds 330-332 2002 907 910

J. of Alloys and Compounds 330-332 2002 911 915

Int. J. Hydrogen Energy 11 1986 129 131

Int. J. Hydrogen Energy 16 1991 809 813

Int. J. Hydrogen Energy 18 1993 227 230

Int. J. Hydrogen Energy 18 1993 743 746

Int. J. Hydrogen Energy 18 1993 839 842

Int. J. Hydrogen Energy 19 1994 67 80

Int. J. Hydrogen Energy 19 1994 67 80

Int. J. Hydrogen Energy 19 1994 363 367

Int. J. Hydrogen Energy 20 1995 77 85

Int. J. Hydrogen Energy 20 1995 665 674

Int. J. Hydrogen Energy 21 1996 33 37

Int. J. Hydrogen Energy 26 2001 957 963

Int. J. Hydrogen Energy 26 2001 707 709

Int. J. Hydrogen Energy 26 2001 711 724

Int. J. Hydrogen Energy 25 2000 1095 1105

Int. J. Hydrogen Energy 24 1999 1027 1032

Int. J. Hydrogen Energy 24 1999 441 448

Int. J. Hydrogen Energy 24 1999 251 256

Int. J. Hydrogen Energy 24 1999 269 276

1997

1997

1999

1998

1999

1999

1999

1999

1999

2000

1999

2000

J. Electrochemical Soc. 147 2000 2941 2944

J. Electrochemical Soc. 148 2001 A696 A700

J. of Alloys and Compounds 288 1999 294 298

US Patent 5,688,611, Nov. 18, 1997

US Patent 5,697,221, Dec. 16, 1997US Patent 5,953,922, Sep. 21, 1999US Patent 5,705,887, Jan. 6, 1998US Patent 5,882,623, Mar. 16, 1999

US Patent 5,922,926, Jul. 13, 1999

US Patent 5,938,207, Aug. 17, 1999US Patent 5,562,155, Oct. 5, 1999US Patent 5,965,482, Oct. 12, 1999US Patent 6,015,041, Jan. 18, 2000US Patent 6,000,463, Dec. 14, 1999US Patent 6,019,077, Feb. 1, 2000

J. of Alloys and Compounds 289 1999 244 250

J. of Alloys and Compounds 293-295 1999 1 6

J. of Alloys and Compounds 293-295 1999 150 155

J. of Alloys and Compounds 293-295 1999 156 160

J. of Alloys and Compounds 293-295 1999 161 168

J. of Alloys and Compounds 293-295 1999 421 425

J. of Alloys and Compounds 293-295 1999 433 436

J. of Alloys and Compounds 293-295 1999 293 295

J. of Alloys and Compounds 297 2000 253 260

J. of Alloys and Compounds 305 2000 172 182

J. of Alloys and Compounds 311 2000 317 321

J. of Alloys and Compounds 316 2001 284 289

J. of Alloys and Compounds 330-332 2002 105 109

J. of Alloys and Compounds 330-332 2002 287 291

J. of Alloys and Compounds 330-332 2002 318 322

J. of Alloys and Compounds 330-332 2002 511 516

J. of Alloys and Compounds 330-332 2002 522 525

Int. J. Hydrogen Energy 24 1999 47 52

Int. J. Hydrogen Energy 24 1999 747 757

Int. J. Hydrogen Energy 25 2000 357 362

Int. J. Hydrogen Energy 25 2000 363 368

Int. J. Hydrogen Energy 25 2000 853 859

Int. J. Hydrogen Energy 25 2000 997 1003

1997 1 33

World Patent WO 99/19250 1999 1 21

J. of Alloys and Compounds 283 1999 304 306

Int. J. Hydrogen Energy 24 1999 461 465

J. of Alloys and Compounds 285 1999 119 122

J. of Alloys and Compounds 290 1999 71 78

Chem. Commun. 2000 1665 1666

J. of Alloys and Compounds 297 2000 270 281

J. of Alloys and Compounds 298 2000 125 134

J. of Alloys and Compounds 302 2000 36 58

Appl. Phys. A 72 2001 213 219

Appl. Phys. A 72 2001 221 223

Appl. Phys. A 72 2001 157 165

World Patent WO 97/03919, 6 Feb. 1997

J. of Alloys and Compounds 330-332 2002 696 701

J. of Alloys and Compounds 313 2000 69 74

J. of Alloys and Compounds 329 2001 108 114

J. of Alloys and Compounds 337 2002 L8 L11

J. of Alloys and Compounds 339 2002 299 308

J. of Alloys and Compounds 337 2002 254 263

2001 500 518

2001 509 523

2002 1 10

2002 1 14

J. of Alloys and Compounds 280 1998 306 309

J. of Alloys and Compounds 282 1999 125 129

J. of Alloys and Compounds 288 1999 197 199

J. of Alloys and Compounds 299 2000 101 106

J. of Alloys and Compounds 306 2000 127 132

J. of Alloys and Compounds 307 2000 157 166

J. of Alloys and Compounds 322 2001 59 68

Proceedingas of the 2001 U.S. DOE Hydrogen Program Review, NREL/CP-570-30535Proceedingas of the 2001 U.S. DOE Hydrogen Program Review, NREL/CP-570-30535

Proceedingas of the 2002 U.S. DOE Hydrogen and Fuel Cells Annual Program/Lab R&D Review, NREL/CP-610-32405Proceedingas of the 2002 U.S. DOE Hydrogen and Fuel Cells Annual Program/Lab R&D Review, NREL/CP-610-32405

J. of Alloys and Compounds 325 2001 L13 L16

J. of Alloys and Compounds 330-332 2002 152 156

J. of Alloys and Compounds 330-332 2002 296 300

J. of Alloys and Compounds 330-332 2002 536 542

J. of Alloys and Compounds 330-332 2002 683 690

J. of Alloys and Compounds 330-332 2002 691 695

J. of Alloys and Compounds 330-332 2002 702 707

J. of Alloys and Compounds 337 2002 136 142

J. of Alloys and Compounds 339 2002 261 267

J. of Alloys and Compounds 340 2002 180 188

J. of Alloys and Compounds 345 2002 77 89

Int. J. Hydrogen Energy 25 2000 425 430

J. of Power Sources 89 2000 117 124

J. of Alloys and Compounds 269 1998 278 283

J. of Alloys and Compounds 280 1998 279 283

J. of Alloys and Compounds 281 1998 301 305

J. of Alloys and Compounds 282 1999 243 247

J. of Alloys and Compounds 282 1999 252 257

J. of Alloys and Compounds 285 1999 L8 L11

J. of Alloys and Compounds 287 1999 243 250

J. of Alloys and Compounds 287 1999 251 255

J. of Alloys and Compounds 290 1999 L8 L10

J. of Alloys and Compounds 291 1999 295 299

J. of Alloys and Compounds 292 1999 107 117

J. of Alloys and Compounds 292 1999 194 201

J. of Alloys and Compounds 292 1999 202 211

J. of Alloys and Compounds 292 1999 247 252

J. of Alloys and Compounds 293-295 1999 521 525

J. of Alloys and Compounds 297 2000 240 245

J. of Alloys and Compounds 297 2000 261 265

J. of Alloys and Compounds 297 2000 282 293

J. of Alloys and Compounds 305 2000 264 271

J. of Alloys and Compounds 307 2000 283 289

J. of Alloys and Compounds 313 2000 209 213

J. of Alloys and Compounds 313 2000 218 223

J. of Alloys and Compounds 315 2001 237 242

J. of Alloys and Compounds 322 2001 L5 L9

J. of Alloys and Compounds 322 2001 246 248

J. of Alloys and Compounds 327 2001 230 234

J. of Alloys and Compounds 330-332 2002 162 165

J. of Alloys and Compounds 330-332 2002 590 596

J. of Alloys and Compounds 330-332 2002 640 644

J. of Alloys and Compounds 333 2002 L1 L6

J. of Alloys and Compounds 340 2002 256 262

7 (No.3) 1983 8 14

2 1988 1319 1341

258 (No. 2) 1981 362 366

24 (No.1) 1983 16 26

28 (No.11) 1983 2948 2951

29 (No.3) 1984 622 624

25 (No.5) 1984 509 512

23 (No.8) 1987 13-3 1306

No.1 1988 173 176

Proceedings of Ac. Sc. USSR, Siberian Branch, Chemical Science SeriesProc. 7th World Hydrogen Energy Conf., International Association of Hydrogen Energy

Reports of the Academy of Sciences USSR

Bulletin of Moscow University, Chemistry Series

Russian Journal of Inorganic Chemistry

Russian Journal of Inorganic ChemistryRussian Journal of Inorganic ChemistryProceedings of the Academy of Sciences USSR, Inorganic MaterialsProceedings of the Academy of Sciences USSR, Metals

29 (No.9) 1984 2192 2194

No.5 1985 108 111

1494-B86 1986 1 27

J. of Alloys and Compounds 307 2000 279 282

J. of Alloys and Compounds 330-332 2002 41 44

J. of Alloys and Compounds 330-332 2002 52 55

J. of Alloys and Compounds 330-332 2002 56 58

J. of Alloys and Compounds 330-332 2002 208 214

J. of Alloys and Compounds 330-332 2002 271 275

J. of Alloys and Compounds 330-332 2002 531 535

J. of Alloys and Compounds 330-332 2002 821 824

J. of Power Sources 105 2002 293 299

3575-78 1978 1 19

3574-78 1978 1 18

Crystallography (Russian) 27 1982 242 246

50 1989 1697 1703

69 1999 353 357

10 1999 1841 1844

69 1999 1288 1295

41 2000 331 334

No.3 1993 213 217

Russian Journal of Inorganic Chemistry

Azerbaijan Journal of Chemistry

VINITI Depositor, Bulletin of Moscow University

VINITI Depositor, Bulletin of Moscow UniversityVINITI Depositor, Bulletin of Moscow University

J. of General Chemistry (Russian)

J. of General Chemistry (Russian)

Proc. Academy of Sciences USSR, ChemistryJ. of General Chemistry (Russian)Bulletin of Moscow University, Chemistry SeriesProc. Russian Academy of Sciences, Metals

22 1981 494 498

71 2001 1084 1088

29 1984 869 874

34 1989 2403 2406

22 1981 610 611

Int. J. Hydrogen Energy 27 2002 57 62

Int. J. Hydrogen Energy 27 2002 63 68

Int. J. Hydrogen Energy 27 2002 85 90

Int. J. Hydrogen Energy 27 2002 395 401

J. Nuclear Materials 226 1995 311 318

1999 1 5

Int. J. Hydrogen Energy 18 1993 345 348

Int. J. Hydrogen Energy 31 2006 1763 1767

148 2001 A121 A125

Nature 414 2001 353 358

1999 1 5

1997 1 23

1997 1 46

1998 1 23

1999 1 18

2000 1 16

2000 1 21

2000 1 9

2000 1 6

Bulletin of Moscow University, Chemistry SeriesJ. of General Chemistry (Russian)

J. of Inorganic Chemistry (Russian)J. of Inorganic chemistry (Russian)Bulletin of Moscow University, Chemistry Series

SAE Paper 1999-01-2524, SAE International

J. of The Electrochemical Society

US Patent 5,958,098, Sep. 28, 1999

US Patent 5,643,485, Jul. 1, 1997US Patent 5,678,410, Oct. 21, 1997

US Patent 5,813,454, Sep. 29, 1998US Patent 5,862,855, Jan. 36, 1999US Patent 6,042,960, Mar. 28, 2000US Patent 6,057,051, May 2, 2000US Patent 6,063,166, May 16, 2000US Patent 6,099,811, Aug. 8, 2000

2000 1 6

2001 1 11

2001 1 8

2001 1 6

2001 1 7

2001 1 9

2001 1 14

2001 1 12

2001 1 7

2002 1 7

2002 1 8

2002 1 9

2002 1 5

2002 1 13

J. of Alloys and Compounds 356-357 2003 734 737

J. of Alloys and Compounds 356-357 2003 789 793

J. of Alloys and Compounds 356-357 2003 794 799

J. of Alloys and Compounds 375 2004 202 204

J. of Alloys and Compounds 381 2004 258 265

J. of Alloys and Compounds 389 2005 299 305

J. of Alloys and Compounds 390 2005 122 126

J. of Alloys and Compounds 391 2005 318 322

US Patent 6,128,904, Oct. 10, 2000US Patent 6,182,717 B1, Feb. 6 2001US Patent 6,194,092 B1, Feb. 27, 2001US Patent 6,261,528 B1, Jul. 17, 2001US Patent 6,262,328 B1, Jul. 17, 2001US Patent 6,267,229 B1, Jul. 31, 2001

US Patent 6.293,110 B1, Sep. 25, 2001US Patent 6,318,453 B1, Nov. 20, 2001US Patent 6,328,121 B1, Dec. 11, 2001US Patent 6,368,735 B1, Apr. 9, 2002US Patent 6,378,601 B1, Apr.30, 2002

US Patent 6,432,379 B1, Aug. 13, 2002

US Patent 6,406,805 B1, Jun. 18, 2002US Patent 6,444,016 B2, Sep. 3, 2002

J. of Alloys and Compounds 399 2005 224 236

J. of Alloys and Compounds 400 2005 276 280

J. of Alloys and Compounds 404-406 2005 465 468

J. of Alloys and Compounds 404-406 2005 653 656

J. of Alloys and Compounds 404-406 2005 661 664

J. of Alloys and Compounds 420 2006 322 325

J. of Alloys and Compounds 425 2006 291 295

J. of Heat Transfer 127 2005 1391 1397

J. of Power Sources 12512004 2004 52 61

J. of Power Sources 142 2005 92 102

J. of Alloys and Compounds In press

CP837 2006 175 199

3-2 2003 101 112

Int. J. Hydrogen Energy 26 2001 237 241

Int. J. Hydrogen Energy 27 2002 1083 1092

Proc. Second International Symposium on Hydrogen in Matter (ISOHIM), R.G. Mynemi and B Hjorvarsson, Eds., Am. Inst. of PhysicsHandbook of Fuel Cells - Fundamentals, Technology and Applications, W. Vielstich, A. Lamm, H.A. Gasteiger, Eds., John Wiley & Sons, Chichester, UK

Int. J. Hydrogen Energy 28 2003 329 333

Int. J. Hydrogen Energy 28 2003 515 527

Int. J. Hydrogen Energy 28 2003 1121 1129

884E 2005 GG6.4.1 GG6.4.7

Int. J. Hydrogen Energy 29 2004 103 112

Int. J. Hydrogen Energy 29 2004 195 208

Int. J. Hydrogen Energy 29 2004 209 216

Int. J. Hydrogen Energy 29 2004 501 508

Int. J. Hydrogen Energy 29 2004 537 545

Int. J. Hydrogen Energy 29 2004 635 647

Int. J. Hydrogen Energy 29 2004 1493 1501

Int. J. Hydrogen Energy 29 2004 1503 1511

Int. J. Hydrogen Energy 30 2005 509 514

Int. J. Hydrogen Energy 30 2005 631 641

Int. J. Hydrogen Energy 30 2005 867 877

Int. J. Hydrogen Energy 30 2005 879 892

MRS Symposium Proceedings Vol. 884E, Materials Research Society

Int. J. Hydrogen Energy 30 2005 1437 1446

Int. J. Hydrogen Energy 30 2005 1569 1581

Int. J. Hydrogen Energy 31 2006 737 751

Int. J. Hydrogen Energy 31 2006 762 768

Int. J. Hydrogen Energy 31 2006 1721 1731

Int. J. Hydrogen Energy 31 2006 2097 2103

Int. J. Hydrogen Energy 32 2007 247 255

Int. J. Hydrogen Energy 32 2007 1041 1049

Int. J. Hydrogen Energy 32 2007 1251 1261

Int. J. Hydrogen Energy 32 2007 1554 1558

Int. J. Hydrogen Energy 32 2007 1589 1596

1 2006 65 69

2002 1 7

2006 1 23

ThyssenKrupp Techforum, ThyssenKrupp AG, Düsseldorf, GermanyProc. of the 2002 U.S. DOE Hydrogen Program Review, NREL/CP-610-32405 (http://www1.eere.energy.gov/hydrogenandfuelcells/pdfd/32405a30.pdf)Proceedings NHA Annual Hydrogen Conference 2006, National Hydrogen Association, Washington, DC 20036 (http://www.hydrogenassociation.org)

Title Language Key WordsEnglish

English

English

English

English

English

English

English

English

English

English

English

English

English

English

English

English

English

English

English

English

English

Hydrogen Absorption in Rare Earth Intermetallic Compounds

AB5, R0.2La0.8Ni5 (R=Er, Y, Gd, Nd, La), LaNi4M, (M= Pd,Ag,Cu,Co,Fe,Cr), Structure, Enthalpy, Rule of Reverse Stability

Thermodynamic Relationships and Structural Transformations in the TiCo and TiNi Intermetallic Alloy + Hydrogen Systems

AB, TiCo, TiNi, PCT, TPD, Disproportionation

Hydrogenation of Oxygen-Stabilized Ti2MOx (M = Fe, Co, Ni; 0<x>0.5) Compounds

A2B, Ti2Ni, Ti2Co, Ti2MOx (M=Fe,Co,Ni), PCT, Disproportionation

Cyclic Life of Metal Hydrides with Impure Hydrogen: Overview and Engineering Considerations

AB5, LaNi5, AB, TiFe0.85Mn0.15, Cyclic Life, Impurity Effects, O2, H2O, CO, CO2, N2, CH4, NH3, H2S, Review, Application, Separation, Purification

Stability of Rechargeable Hydriding Alloys During Extended Cycling

AB5, CaNi5, LaNi5, LaNi4.7Al0.3, Cyclic Life, Disproportionation

Kinetic and Dynamic Aspects of Rechargeable Metal Hydrides

AB5, LaNi5, AB, TiFe, Kinetics, Dynamic PCT, Heat Transfer

Thermal Conductivity of Hydriding Alloy Powders and Comparisons of Reactor Systems

AB5, LaNi5, AB, TiFe, Heat Transfer, Thermal Conductivity, Reactor Design

Cycling Hydriding Response for LaNi5 in Hydrogen Containing Oxygen as a Minor Impurity

AB5, LaNi5, LaNi4.7Al0.3, Kinetics, Cyclic Life, Impurity Effects, O2

Hydriding and Dehidriding Rates of the LaNi5-H2 System

AB5, LaNi5, Kinetics, Heat Transfer, Thermal Ballast, Isothermal Kinetics, Kinetic Model

Hydrogen Separation from Gas Mixtures Using LaNi5 Pellets

AB5, LaNi5, Application, Application, H2-Separation, Pellets, Kinetics, Thermal Ballast, Reactor Design, Model

Hydrogen Separation from Mixed Gas Streams Using Reversible Metal Hydrides

AB5, LaNi5, Application, H2-Separation, Pellets, NH3, Breakthrough, Pressure Swing AbsorptionThermochemical and Structural Aspects of the

Reaction of Hydrogen with Alloys and Intermetallic Compounds of Zirconium

AB2, ZrV2, ZrFe2, ZrCo2, ZrNi2, ZrCr2, ZrMo2, A2B, Zr2Cu, Zr2Ni, PCT, Enthalpy, Entropy

Equilibrium Studies on the Systems ZrCr2-H2, ZrV2-H2, and ZrMo2-H2 Between 0 and 900 C

AB2, ZrCr2, ZrV2, ZrMo2, PCT, Enthalpy, Entropy, Structure, Test

Hydrogen Absorption and Desorption Properties of AB2 Laves-Phase Pseudobinary Compounds

AB2, Zr(V,X)2, Zr(Cr,X)2, Zr(Mn,X)2, (X=V, Cr, Mn, Fe), PCT, Enthalpy, Entropy, Structure

The Influence of Al on the Hydrogen Sorption Properties of Intermetallic Compounds

AB2, Zr(Al,V)2, Zr(Al,Cr)2, Gd(Al,Co)2, PCT, Enthalpy, Structure

Hydrogen Absorption in Zr(AlxB1-x)2, (B = Fe,Co) Laves Phase Compounds

AB2, Zr(Al,Fe)2, Zr(Al,Co)2, PCT, Structure, H-Capacity, Model

Composition and Hydrogen Absorption of C14 Type Zr-Mn Compounds

AB2, ZrMn2, ZrMn1.8-2.8, PCT, Structure, Volume Change, Magnetism

Magnetic, Crystallographic, and Hydrogen-Storage Characteristicsof Zr1-xTixMn2 Hydrides

AB2, (Zr,Ti)Mn2, PCT, Structure, Volume Change, Magnetism

Stabillity and Magnetism of Hydrides of Nonstoichiometric ZrMn2

AB2, ZrMn2, ZrMn2-3.8, PCT, Enthalpy, Entropy, Structure, Volume Change, Magnetism, Kinetics, Auger

Zr0.7Ti0.3Mn2Fe0.8 As a Material for Hydrogen Storage

AB2, Zr0.7Ti0.3Mn2Fe0.8, PCT, Kinetics, Enthalpy, Entropy

The Pesudo-Binary System Zr(V1-xCrx)2: Hydrogen Absorption and Stability

AB2, Zr(V,Cr)2, PCT, Structure, Thermodynamics, van’t Hoff

Effect of Hydrogen Absorption on the Magnetic Properties of Zr(Fe1-xAlx)2 Compounds

AB2, Zr(Fe,Al)2, PCT, Enthalpy, Entropy, Magnetism, Structure, Alloys, Phase Relations, Zr, Al, Fe

English

English

English

English

Hydriding Behaviors of Zr(FexMn1-x)2 Alloys English

English

English

English

English

Method of a Hydrogen Storage Alloy and Product English

Hydrogen Storage Material English

Hydrogen Storage Material English

Hydrogen Storage Material English

Hydrogen Storage Material English

Method of Storing Hydrogen English

Equilibrium Properties of Ti-Zr-Fe-Mn Hydrides English AB2, (Ti,Zr)(Mn,Fe)2, PCT, Hysteresis

English

On the Existence of F.C.C. TiCr1.8H5.3 English

English

Hydriding Behavior in Ca-Mg-Ni-B English

Hydrogen Storage in Metal Hydrides English

The Hyperstoichiometric ZrMn1+xFe1+y-H2 System, I: Hydrogen Storage Characteristics

AB2, ZrMn1+xFe1+y, PCT, Enthalpy, Entropy, Kinetics, Structure

The Hyperstoichiometric ZrMn1+xFe1+y-H2 System II: Hysteresis Effect

AB2, ZrMn1+xFe1+y, PCT, Hysteresis, Enthalpy, Entropy, Strain

Hydrogenation Characteristics of Zr1-xTixMnFe Alloys

AB2, Zr1-xTixMnFe, PCT, Enthalpy, Entropy, Kinetics, Structure, Volume Change, Application, Compressor

Hydriding Behaviors of ZrxTi1-x(FeyMn1-y)z Alloys

AB2, (Zr,Ti)(Mn,Fe)2, PCT, Structure, ActivationAB2, Zr(Fe,Mn)2, PCT, Enthalpy, Annealing

Calorimetric Enthalpies of Formation and Decomposistion of Hydrides ZrMn2, ZrCr2, and Related Systems

AB2, ZrMn2, ZrCr2, ZrMn2T0.8 (T=Mn,Fe,Co,Ni,Cu), PCT, H-Capacity, Enthalpy, Entropy

Hydrogen Absorption-Desorption Characteristics of Zr(FexCr1-x)2

AB2, Zr(Fe,Cr)2, PCT, Enthalpy, Entropy, Structure, Microstructure, Alloy Impurities, Oxygen, Test Apparatus

Thermodynamic Properties of Zr(FexMn1-x)2-H2 Systems

AB2, Zr(Fe,Mn)2, PCT, Enthalpy, Entropy, Structure

Formation and Properties of Titanium-Manganese Alloy Hydrides

AB2, TiMn1.5, (Ti,Zr)(Mn,X)2, PCT, Enthalpy, Structure, Activation, Decrepitation, Test Apparatus, Application, Storage

Life Properties of Ti-Mn Alloy Hydrides and Their Hydrogen Purification Effect

AB2, TiMn1.5, (Ti,Zr)(Mn,X)2, PCT, Hysteresis, Structure, Cyclic Life, Stability, Impurity Effects, N2, CO, CO2, Application, PurificationAB2, TiMn1.5, PCT, Structure, TCD, AnnealingAB2, (Ti,Zr)Mn2, (Ti,Zr)(Mn,Y)2 (Y=Cu,Fe,Mo), PCT, StructureAB2, (Ti,Zr)(Mn,X)2 (X=Ni,Cr,V,Mo, Cu,Nb,Ta,Ce,La), PCT, H-Capacity, StructureAB2, Ti, Mn, Laves Phases, Ti(Mn,X)2 (X=V,Cr,Fe,Co,Ni,Cu,Mo), PCT, AB2, (Ti,Zr)(Mn,X)29X=Co,Cr,Cu,Fe,Mo,Ce), PCT, StructureAB2, TiMn1.5, Application, Stationary Storage

Hydrogen Storage Properties of Tix+1Cr2-yMny Alloys

AB2, Tiy(Cr,Mn)x, PCT, Hysteresis, Activation, StructureAB2, TiCr2, TiCr1.8, PCT, Structure, Phase Diagram

Reaction of Hydrogen With the High-Temperature (C14) Form of TiCr2

AB2, TiCr2, PCT, Enthalpy, Entropy, Hysteresis, Phase DiagramAB2, CaNi2, (Ca,Mg)Ni2, AB3, CaNi3, CeNi3, AB5, CaNi5, CaNi4B, PCT, Structure, EnthalpyAB, TiFe, AB5, LaNi5, A2B, Mg2Ni, Review, PCT, Hysteresis, Structure, Microstructure, Decrepitation, Applications, Vehicular Storage, Compressor, Battery, Heat Engine

English

English

English

Investigation of Some New Hydride Systems English

New Alloy Systems for Hydrogen Storage English AB2, AB, TiFe, A2B, Ti2Fe

English

English

English

English

English

English

English

English AB2, (Zr,Ti)Mn2, PCT

English

English

English

The Hydrides YFe2 and GdFe2 EnglishEnglish AB2, TiCr2, Diffusion, NMR

English

English Tra

English

Investigation of Hydriding Characteristics of Intermetallic Compounds

AB, AB2, A2B, AB5, MIC, Survey, H-Capacity, Structure, Disproportionation, Interstitial Analysis

Hydrogen Storage by Binary and Ternary Intermetallics for Energy Applications - A Review

AB, AB2, A2B, AB5, A2B7, AB3, MIC, Review, PCT, Enthalpy, Structure, Rule of Reverse Stability, Phase Diagram, Test Apparatus, Application, Stationary Storage, Vehicular Storage, Peak Shaving, Heat Storage, Heat Pump, Heat Engine, LH2, Hydrogen Vehicle

Hydrogen Sorption Properties of AB2 Laves Phase Pseudobinary Compounds

AB2, Zr(A,B)2 (A&B=V,Cr,Mn,Fe,Co) PCT, Structure, Enthalpy

AB2, A2B, Ti2Cu, Zr2Pd, A2BOx, MoSi2-phases, AlB2-phases, Review, PCT, Structure

Hydrogen Capacity and Crystallography of ErFe2-Based and ErCo2-Based Ternary Systems

AB2, ErFe2, ErCo2, Er(Fe,Al)2, Er(Fe,Mn)2, Er(Fe,Co)2, Er(Co,Ni)2, H-Capacity, Structure

Hydrogen Charged Alloys of Zr(A1-xBx)2 And Method of Hydrogen Storage

AB2, Zr(A,B)2 (A&B=Mn,V,Cr,Fe,Co), PCT, Enthalpy, Entropy

What is the Mechanism of Hydrogen Absorption in Rare Earth Intermetallics?

AB2, EuRh2, AB, EuPd, Disproportionation, Structure, Magnetism, Mossbauer, Enthalpy, ThermodynamocsAbsorption and Diffusion Rates of Hydrogen in

TiMn2AB2, TiMn2, Diffusion, Kinetics, Thermodynamics, Rate Control

Note on the Change in Magnetic Properties of GdCo2 on Hydrogen Absorption

AB2, GdCo2, Magnetism, Disproportionation

The Relation Between Electronic Structure and Hydrogen Storage Properties of Intermetallic Compounds

AB2, Zr(V,Co)2, H-Capacity, Electronic Structure, NMR

Changes in Magnetic Properties Upon H2 Absorption in Various 3d Intermetallic

AB2, LuFe2, A2B7, La2Co7, Magnetism, Mossbauer

Queries Concerning Local Models for Hydrogen Uptake in Metal HydridesHydrogen Storage Characteristics Of Zr(BxB’1-x)2, B = Fe, Co, B’= Cr, Mn and x = 0.4, 0.5, 0.6

AB2, Zr(Fe,Cr)2, Zr(Fe,Mn)2, Zr(Co,Mn)2, Zr(Co,Cr)2, PCT, H-Capacity, Enthalpy, Volume Change, Structure, MicrostructureEffect of Hydrogen Absorption on the Magnetic

Properties of Y(Fe1-xCox)2AB2, Y(Fe,Co)2, Y, Magnetism, H-Capacity, Mossbauer

Hydrogen Absorption Capacity in Pseudo-Binary Compounds

AB2, Zr(Mn,Fe)2, PCT, H-Capacity, ModelAB2, YFe2, GFe2, PCT,

Hydrogen Diffusion Behavior in Titanium-Chromium Hydrides with Laves Structures

Magnetic Characteristics of RCo2-xFex Hydrides (R = Tb, Dy)

AB2, R(Co,Fe)2 (R=Tb,Dy), Magnetism, H-Capacity, Structure, Volume Change

Hydride Phases Based on Scandium-Containing Intermetallides With the Structure of Laves Phases

AB2, ScFe2, ScCo2, ScNi2, (Sc,Y)fe2, Sc(Fe,Ga)2, (Sc,Y,Ti)Co2, PCT, Structure, Volume Change, Density, PhasesHydrogen Absorption in (ZrxTi1-x)B2 (B = Cr,

Mn) and the Phenomenological Model for the Absorption Capacity in Pseudo-Binary Laves-Phase Compounds

AB2, (Zr,Ti)(Cr,Mn)2, PCT, H-Capacity, Structure, Model

English

English AB2, ZrMn2, HfV2, Diffusion, NMR

The System Zirconium-Nickel and Hydrogen English AB, ZrNi, PCT, Enthalpy, StructureEnglish AB, ZrNi, TCD, Kinetics

English

German A2B, AB, TiNi, Ti2Ni, PCT, Structure

English

English Tra

Japanese

Hydrogen Storage and Purification Systems II English

English

Engineering Properties of Metal Hydrides English

English

English

English

Japanese

English

Japanese

English

Hydrogen Compression By Metal Hydrides English

English

English

Hydride Properties of AB2 Laves Phase Compounds

AB2, Review, H-Capacity, Structure, Activation

NMR Investigation of ZrMn2 and HfV2H2.1 Hydrides

Hydriding Kinetics of the NiZr Intermetallic Compounds

The Effect of Induced Disorder on the Hydrogenation Behaviour of the Phase ZrCo

AB, ZrCo, PCT, Cyclic Life, Stability, Strain

Hydrogen in Intermetallic Phases: The System Titanium-Nickel-HydrogenA New Type of Reversible Negative Electrode for Alkaline Storage Batteries Based on Metal Alloy Hydrides

AB, TiNi, A2B, Ti2Ni, Electrochemistry, Electrode, Battery, Corrosion, Structure, Application

Hydride Formation of Intermetallic Compounds of Titanium-Iron, Titanium- Cobalt, Titanium-Nickel, and Titanium Copper

AB, TiFe, TiNi, TiCo, TiCu, A2B, Ti2Ni, Ti2Cu, PCT, Enthalpy, Entropy, Disproportionation, Test Apparatus

Effects of Additional Elements on the Hydride Formation in TiNi

AB, TiNi, Ti(Ni,X) (X=Cr,Cu,Fe,Mn), Kinetics, PTC, StructureAB, FeTi, TiFe, TiCo, Ti(Fe,Mn), PCT, Enthalpy, Entropy

Metallurgical Considerations in the Production and Use of FeTi Alloys for Hydrogen Storage

AB, FeTi, TiFe, Ti(Fe,X)(X=V,Cr,Mn,Ni, PCT, Decrepitation, Microstructure, Alloy Impurity Effects, OxygenAB, A2B, AB5, PCT, Enthalpy, Entropy, Hysteresis, Plateau slope, Heat Capacity, Engineering Properties, ReviewHydrogen Storage Properties of TiFe1-xNiyMz

AlloysAB, Ti(Fe,Ni,X) (X= V,Nb), Kinetics, PCT, Enthalpy, Entropy, Activation

Hydrogen Storage Characteristics of Fe-Ti-Zr-Nb Alloys

AB, TiFe, Ti(Fe,Zr,Nb), Kinetics, PCT, Activation, Hysteresis, Decrepitation, Annealing

Hydrogen Absorption-Desorption Characteristics of Titanium-Cobalt-Manganese Alloys

AB, Ti(Co,Mn), PCT, Kinetics, Enthalpy, Entropy

Hydrogen Absorption-Desorption Characteristics of Titanium-Vanadium-Cobalt Alloys

AB, (Ti,V)Co, PCT, Enthalpy, Entropy, DTA, Kinetics

Hydrogen Absorption-Desorption Characteristics of Ti-Co-Fe Alloys

AB, Ti(Co,Fe), PCT, Enthalpy, Entropy, Kinetics

Hydrogen Absorption-Desorption Characteristics of Titanium-Lanthanum-Cobalt Alloys

AB, (Ti,La)Co, PCT, Enthalpy, Entropy, DTA, Activation

The Absorption of Hydrogen by Binary Vanadium-Chromium Alloys

Solid Solution, V-Cr, PCT, Enthalpy, Entropy, Structure, SolubilitySolid Solution, V-Ti-Fe, PCT, Enthalpy, Application, Compressor

Effects of Surface Oxide Layer and Metalloid Elements on the Hydrogen Absorption and Desorption Characteristics of Amorphous Ti-Ni

AB, TiNi, ZrNi, PCT, Oxide Layer, Kinetics, Amorphous

The Reaction of Hydrogen with Alloys of Magnesium and Copper

A2B, Mg2Cu, PCT, Enthalpy, Entropy, Disproportionation, Test Apparaatus

The Reaction of Hydrogen with Alloys of Magnesium and Nickel and the Formation of

A2B, Mg2Ni, PCT, Enthalpy, Entropy, Structure

English

English

English

Thermodynamics of the Ti-H System EnglishEnglish

English AB5, LaNi5, SmCo5, PCT, Hysteresis

English

English

English

English

Hydrogen Absorption by AB5 Compounds English

Solubility of Hydrogen in RCo3 Compounds English

English

Hydrides of Praseodymium-Cobalt Compounds English

English

English

English

English

The Storage and Release of Hydrogen from Magnesium Alloy Hydrides for Vehicular Applications

Mg-alloys, Solid Solution, Mg-1X (X=Al,In,Y,Ag,Cd,Zn,Pb), Multiphase Alloys, Mg-5X (X+Ag,Y,Sn,Ca,Mn,Bi,Co,Si,Sb), Mg-5Al-5Y, Mg-5Al-5Ni, Mg-5Ni-5Y, Mg-1Ag-1Y, Mg-1Al-1Ag, Kinetics, Decrepitation, Microstructure

Automotive Storage of Hydrogen Using Modified Magnesium Hydrides

Mg-alloys, Mg-Ni-Cu-Zn, PCT, Kinetics, Impurity Effects, O2, N2, Test Apparatus, Microstructure, Regression AnalysisPressure-Composition Isotherms of Mg-Ni-H2

AlloysA2B, Mg2Ni, Multiphase, Mg-Ni, PCT, Enthalpy, HysteresisA, Ti, Thermodynamics, Enthalpy,

Reversible Room-Temperature Absorption of Large Quantities of Hydrogen by Intermetallic

AB5, LaNi5, (La,Ce)Ni5, SmCo5, PCT, Kinetics, Structure

Sorption Hysteresis in the LaNi5-H and SmCo5-H SystemsPhase Relations and Hydrogen Absorption in the Lanthanum-Nickel System

AB5, LaNi5, AB, LaNi, LaNi1.4, AB2, LaNi2, AB3, LaNi3, A2B7, La2Ni7, LaNi5+x, PCT, Structure, Microstructure

Investigations on the LaCo5-H and CeCo5-H Systems

AB5, LaCo5, CeCo5, PCT, Enthalpy, Entropy, Magnetism, Structure, Alloys

Hydrogen Absorption and Magnetic Properties of LaCo5xNi5-5x Compounds

AB5, LaNi5, LaCo5, La(Co,Ni)5, PCT, Structure, Volume Change, Magnetism

Hydrogen Absorption in LaNi5 and Related Compounds: Experimental Observations and Their Explanation

AB5, LaNi5, LaNi4M (M=Pd,Co,Fe,Cr,Ag,Cu), (La,R)Ni5 (R=Nd,Gd,Y,Er,Zr,Th), PCT, Enthalpy, Entropy, Rule of Reverse StabilityAB5, LaNi5, PrNi5, SmCo5, NdNi5, SMNi5, GdNi5, YbNi5, LaCo5, YCo5, YNi5, LaPt5, LaNix (x=4.76-15), PCT, Hysteresis, Enthalpy, Entropy, StructureAB5, AB3, RCo3, ErCo3, DyCo3, HoCo3, PCT, Enthalpy, Entropy

Hydrogen Solubility in 1:5 Compounds between Yttrium or Thorium and Nickel or Cobalt

AB5, YCo5, ThCo5, PCT, Enthalpy, EntropyAB5, PrCo5, AB2, PrCo2, AB3, PrCo3, A2B7, Pr2Co7, PTC, Enthalpy

Stability of Ternary Hydrides and Some Applications

AB2, AB5, LaNi5, AB3, A2B, MIC, Review, Substitution Effects, PCT, Enthalpy, Entropy, Structure, Rule of Reverse Stability, Decrepitation, Test Apparatus, Expansion, Applications, Storage, Compressor, Battery, Refrigerator, Heat Storage, Heat PumpsHydrogen Sorption Properties in Binary and

Pseudobinary Intermetallic CompoundsAB5, La(Ni,Cu)5, AB, Ti(Fe,X) (X=Mn,Cr,V,Co,Ni,Cu), (La,Ca)Ni5, ZrX2 (X=V,Cr,Mn,Fe,Co), PCT, Enthalpy, Entropy, Structure, Model

Hydrogen Absorption by Rare Earth-Transistion Metal Alloys

AB5, RT5 (R=Ce,La,Nd,Pr,Mm; T=Co,Ni,Fe), Mm(Co,Ni)5, H-Capacity, Cyclic Life, Decrepitation, Impurity Effects, CO, CO2, H2O, O2, He, N2, CH4, Alloy Impurity Effects, SEM

A New Family of Hydrogen Storage Alloys Based on the System Nickel-Mischmetal-Calcium

AB5, (Mm,Ca)Ni5, CaNi5, CaNix (x=0.93-1.07), PCT, Hysteresis, Enthalpy, Density, Cost, Microstructure, Structure

English

English

English

Japanese AB5, MmNi5, Kinetics

Japanese

English

English

English

English

English

Japanese

Japanese

English

Japanese

Japanese

English

English

Japanese

Japanese

English

English

English

A Survey of the Hydrogen Storage Properties of Nickel-Copper-Mischmetal-Calcium Alloys

AB5, (Mm,Ca)(Ni,Cu)5, PCT, H-Capacity, Density, Cost, Structure

LaNi5-xAlx is a Versatile Alloy System for Metal Hydride Applications

AB5, La(Ni,Al)5, Enthalpy, Entropy, Structure, Cell Volume

Hydrogen Absorption in Ternary Substituted AB5 Alloys with Particular Reference to La1-xYxNi5 and LaNi5-xAlx Alloys

AB5, (La,Y)Ni5, La(Ni,Al)5, PCT, Enthalpy, Entropy

Hydrogen Absorption and Desorption Characteristics in Mischmetal-Nickel AlloysAbsorption-Desorption Characteristics of Hydrogen for LaNi5, CeCo5, and SmCo5

AB5, LaNi5, CeCo5, SmCo5, PTC, Kinetics

Hydrogen Absorption in RNi4Al (R= Rare Earth) Ternary Compounds

AB5, R(Ni,Al)5 (R=Ce,Pr,Nd,Sm,Gd,Tb,Dy,Ho,Er,Tm), PCT, Structure, Volume Change

Development of Low Cost Nickel-Rare Earth Hydrides for Hydrogen Storage

AB5, (Mm,Ca)(Ni,X)5 (X=Cu, Fe, Mn, Al), PCT, Enthalpy, Hysteresis, Structure, Cost, Microstructure

Hydrogen Sorption Properties of the La1-xCaxNi5 and La(Ni1-xCux)5 Systems

AB5, (La,Ca)Ni5, CaNi5, La(Ni,Cu)5, PCT, Enthalpy, Entropy, Structure,

Hydrogen Absorption in YNi4Mn, an Alloy with the Cubic UNi5 Structure

AB5, YNi4Mn, H-Capacity, Structure, UNi5 Structure

The Effect on Hydrogen Decomposistion Pressures of Group IIIA and IVA Element Substitutions for Ni in LaNi5 Alloys

AB5, LaNi5, La(Ni,X)5 (X=In,Sn,Al,Ga), PTC, Hysteresis, Enthalpy, Entropy, Structure

Absorption-Desorption Characteristics of Hydrogen for Mischmetal Based Alloys

AB5, MNi5, MmCo5, (Mm,Ti)Ni5, (Mm,Ca)Ni5, PCT, Enthalpy, Entropy, Kinetics, Cyclic Life

Effect of Fe and Cr Substitution on the Hydride Formation in LaNi5

AB5, La(Ni,Fe)5, La(Ni,Cr)5, PCT, Hysteresis, Enthalpy, Entropy, Structure, Kinetics, Mossbauer, MicrostructureHydrogen Absorption-Desorption Characteristics

of Mischmetal-Nickel-Aluminum AlloysAB5, Mm(Ni,Al)5, PCT, Enthalpy, Entropy, DTA, TGA, Test Apparatus

Absorption-Desorption Characterisitcs of Hydrogen for Mischmetal-Nickel-Manganese

AB5, Mm(Ni,Mn)5, PCT, Enthalpy, Entropy, DTA, TGA, Kinetics, Cyclic

Absorption-Desorption Characteristics of Hydrogen for Mischmetal-Nickel-Cobalt Alloys

AB5, Mm(Ni,Co)5, PCT, Enthalpy, Entropy, DTA, TGA, Kinetics, Cyclic

Development of Mischmetal-Nickel and Titanium-Cobalt Hydrides for Hydrogen Storage

AB5, (Mm,A)Ni5 (A=Ca,Ti), Mm(Ni,B)5 (B=Al,Co,Cr,Mn), AB, Ti(Co,A), (Ti,A)Co (A=Cr,Cu,Fe,La,Mn,Ni,V), PCT, Enthalpy, Rating

Hydrogen Absorption-Desorption Characteristics of Mischmetal-Nickel Alloys

AB5, (Mm,A)(Ni,B)5 (A=Ca,Ti; B=Al,Co,Cr,Cu,Fe,Mn,Si), PCT, Enthalpy, DTA, TGA, Cyclic Life, Microstructure, Rating, Test Apparatus

Effect of Metal-Substitution on Hydrogen Storage Properties for Mischmetal-Nickel Alloys

AB5, (Mm,A)(Ni,B)5 (A=Ca,Ti; B=Al,Co,Cr,Cu,Fe,Mn,Si), PCT, Enthalpy, Cyclic Life, Microstructure, Structure, Test Apparatus

Hydrogen Absorption-Desorption Characterisitcs of Mischmetal-Nickel-Chromium Alloys

AB5, Mm(Ni,Cr)5, PCT, Enthalpy, Entropy, Structure, DTA, TGA, Kinetics,

Hydrogen Absorption-Desorption Characteristics of Mischmetal-Ni-Cr-Mn Alloys

AB5, Mm(Ni,Cr,Mn)5, PCT, Enthalpy, Entropy, DTA, TGA

Hydrogen Absorption-Desorption Characteristics of Mischmetal-Nickel-Silicon Alloys

AB5, Mm(Ni,Si)5, PCT, Enthalpy, Entropy, DTA, TGA

High Pressure Hydrogen Absorption Study on YNi5, LaPt5 and ThNi5

AB5, YNi5, LaPt5, ThNi5, CaNi5, PCT, Structure, Specific Heat,

English

Hydrogen Storage in CeNi5-xCux English

English

English

English

English

English

English

English

English

English AB5, LaNi5, GdNi5, Electronic Structure

English

English

English AB5, LaNi5, PCT, Enthalpy, Calorimetry

English

AB5, La(Ni,Al)5, Diffusion, NMR

English

On the Structure of CaNi5H5 English AB5, CaNi5, Structure, English AB5, SmCo5, PCT, Magnetism

English

English

The Study of Hydrogen Storage Property of Direct Melted LaNi5

AB5, LaNi5, PCT, Enthalpy, Entropy, Structure, Annealing, Hysteresis, Deuterium, Kinetics, Application, H-StorageAB5, Ce(Ni,Cu)5, PCT, Enthalpy, Entropy, Structure, Volume Change,

The Influence of Cerium, Praseodymium, Neodymium and Samarium on Hydrogen Absorption in LaNi5 Alloys

AB5, (La,R)Ni5, (R=Ce,Pr,Nd,Sm), PCT, Enthalpy

RNi5 Hydrogen Storage Compounds (R = Rare Earth)

AB5, RNi5 (R=La,Ce,Pr,Nd,Mm), MmNi5, PCT, Enthalpy, Hysteresis, Regression Analysis

Hydrogen Absorption-Desorption Characteristics of Mm-Al-M and Mm-Ni-Mn-M Alloys (Mm = Mischmetal)

AB5, Mm(Ni,Al,Mn,M)5 (M=Cr,Co,Cu,Nb,Ti,V), PCT, Hysteresis, Structure, Decrepitation

Factors Affecting the Hydriding Properties of CaxEu1-xNi5 (0<x<1) Compounds

AB5, (Ca,Eu)Ni5, Structure, Electronic Structure, Surface, Auger, EPS

Effect of Hydrogen Absorption-Desorption Cycle on the Magnetic Susceptibility of CeNi4Al

AB5, CeNi4Al, Magnetic Properties, Cyclic Effects, Impurity Effects, O2,

Thermodynamic Properties of LaNi4M Compounds and Their Related Hydrides

AB5, LaNi5, LaNi4Mn, LaNi4Cu, LaNi4Fe, LaNi4Al, Th(Ni,Al)5, Enthalpy,

Influence of Electron Concentration on the Hydrogen Absorption by RM5 Haucke Compounds

AB5, La(Ni,Al)5, Y9Ni,Al)5, La(Ni,Cu)5, Th(NiAl)5, PTC, Electronic Structure, Structure, Specific Heat

Study of the Crystal Structure of CaNi5 Hydrides by In Situ X-Ray Diffractometry

AB5, CaNi5, PCT, Crystal Structure, Volume Change

Calculation of the Spin-Polarized Energy Band Structure of LaNi5 and GdNi5HVEM in Situ Hydriding of Hydrogen Storage Materials

AB5, LaCo5, LaNi2Co3, TEM, Cracking, Decrepitation, Thin Film, Dislocation, Stacking Fault

Low Temperature Heat-Capacity Study of Haucke Compounds CaNi5, YNi5, LaNi5 and ThNi5

AB5, CaNi5, YNi5, LaNi5, ThNi5, PCT, Structure, Electronic Structure, Specific Heat

The Thermodynamics of the LaNi5-H System by Differential Heat Flow Calorimetry I: Techniques; the Alpha + Beta Two Phase Region

AB5, LaNi5, PCT, Enthalpy, Calorimetry, Test Apparatus

The Thermodynamics of the LaNi5-H2 System by Differential Heat Flow Calorimetry II: The Alpha and Beta Single-Phase RegionsThe Effect of Hydrogen Absorption on the Electrical Resistivity of LaNi5 Film

AB5, LaNi5, Electrical Resistivity, Thin Film

NMR Studies of Hydrogen Diffusion in Beta-LaNi5-yAly HydridesHydrogen and Deuterium Sorption by Selected Rare Earth Intermetallic Compounds at Pressures up to 1500 atm

AB5, LaNi5, LaCo5, CeCo5, PrCo5, ErCo5, (La,Ce)Ni5, La(Mn,Co)5, (La,Ce)Co5, (La,Nd)Co5, (Pr,Er)Co5, AB3, PrCo3, ErCo3, Deuterium, High Pressure, PCT, Structure, Test Apparatus

Influence of Hydrogen on the Magnetic Properties of SmCo5Hysteresis Effects in Rare Earth Pentanickel Hydrides

AB5, LaNi5, CeNi5, (La,Ce)Ni5, PCT, Hysteresis, Hole Size, Stability Model

HYCSOS: A Chemical Heat Pump and Energy Conversion System Based on Metal Hydrides

AB5, LaNi5, CaNi5, Plateau Pressure, Enthalpy, Thermodynamics, Heat Transfer, Application, Heat Pump, Model, Tes Apparatus

English

English AB5, LaNi5, RD Process

Alloys for the Isolation of Hydrogen English

English

English

Magnetic Behavior of SmCo5-Hydrogen System English

English

English

The Crystal Structure of La2Ni3 English A2B3, La2Ni3, StructureHydrogen Sorption in LaNi5 English

English Nb, LaNi5, Kinetics, Catalysis

English

English

Hydrogen Absorption in Th(Ni,Al)5 Ternaries AB5, Th(Ni,Al)5, PTC, Structure, ModelEnglish

English

English

English AB5, AB, Review, Model

English

English

English

Solid-State Hydrogen Storage Materials for Application to Energy Needs

AB5, LaNi5, CaCu5, CaNi5, CeCo5, RCu5 (R=Er,Gd,Y), RFe5 (R=Gd,Er), (La,Ce)Ni5, CeNi5, MmNi5, CFMmNi5, PrNi5, NdNi5, HoNi5, YNi5, AB, HfNi, TiNi, CeMg, PCT, Enthalpy, Entropy, Safety, PyrophoricityNickel-Lanthanum Alloy Produced by a

Reduction-Diffusion ProcessAB5, La(Ni,Cu)5, Separation, Impurity Effects, Application, Purification, CO, CO2, H2O

A Geometric Model for the Stoichiometry and Interstitial Site Occupancy in Hydrides (Deuterides) of LaNi5, LaNi4Al and LaNi4Mn

AB5, LaNi5, LaNi4Mn, LaNi4Al, Diffusion, Structure, Hole Size, Model, Deuterium

Long Term Testing and Stability of CaNi5 Alloy for a Hydrogen Storage Application

AB5, CaNi5, Enthalpy, Entropy, Cyclic Life, Disproportionation, Application, H-AB5, SmCo5, PCT, Enthalpy, Entropy, Magnetism

On the Eutectoid Decomposition of CaCu5-Type Rare Earth-Cobalt Phases

AB5, RCo5, R2Co7, R2Co17, Structure, Microstructure, Eutectoid

Some Useful Relationships Between the Physical and Thermodynamic Properties of Metal

AB5, AB, Plateau Pressure, Thermodynamics, Hole Size

AB5, LaNi5, PCT, Enthalpy, Kinetics, Test Apparatus

The Formation of Niobium Dihydride from Niobium Catalyzed by LaNi5Configurational Entropies and the Stabilities of Intermetallic Hydrides

AB5, LaNi5, CeCo5, YCo5, PrCo5, LaCo5, SmCo5, NdNi5, LaNi4Cu,

Hydrogen Storage by LaNi5: Fundamentals and Applications

AB5, LaNi5, Review, PCT, Hysteresis, Solution, Applications

Hydrogen and Deuterium Sorption by Selected Rare Earth Intermetallic Compounds at Pressures up to 1500 atm

AB5, LaNi5, LaCo5, CeCo5, PrCo5, ErCo5, (La,Ce)Ni5, La(Mn,Co)5, (La,Ce)Co5, (La,Nd)Co5, (Pr,Er)Co5, AB3, PrCo3, ErCo3, Deuterium, High Pressure, PCT, Structure, Test ApparatusHigh Pressure Hydrogen Apparatus for PCT

Studies up to 700 MPa and 200 C: Preliminary Results on LaCo5H9.0 at 21 C

AB5, LaCo5, PCT, High Pressure, Test Apparatus

The Relative Stabilities and Structural Characteristics of Intermediate Phases of the

AB5, Structure, Enthalpy, Electronegativity, Stability Model

Absorption of Hydrogen by the Intermetallics NdNi5 and LaNi4Cu and a Correlation of Cell Volumes and Desorption Pressures

AB5, NdNi5, La(Ni,Cu)5, PCT, Hysteresis, Enthalpy, Entropy

Hydrogen Storage Properties and Characteristics of Rare Earth CompoundsStorage of Hydrogen Isotopes in Intermetallic Compounds

Elements, AB5, LaB5 (B=Ni,Co,Pd,Fe), LaCo5, YNi5, AB, ZrNi, TiFe, A2B7, PCT, Structure, Model, Enthalpy, High PressureExperimental Heat Capacities of LaNi5, alpha-

LaNi5H0.36, and beta-LaNi5H6.39 From 5 to 300 K. Thermodynamic Properties of LaNi5

AB5, LaNi5, Heat Capacity, Enthalpy, Entropy

Thermodynamics of Hydrogen Trapping in Intermetallic Compounds: Application to LaNI5/H

AB5, LaNi5, Solution Range, Enthalpy, Entropy

English AB5, LaNi5, Enthalpy, Calorimetry

English

English

Behavior of H-LaNi5 Solid Solutions English

English AB5, LaNi5, Entropy, Structure

English

English

Metal Hydride Slurries English

English

Metallurgy of Rechargeable Hydrides English

English

English

English

English

Hydrogen Sorption in La2Mg17 English A2B17, La2Mg17, PCT, Structure

English

English

English

English

Calorimetric Enthalpies for Solution of Hydrogen in the LaNi5-H SystemThermodynamics of LaNi5+H2 by Differential Heat Flow Calorimetry: Hysteresis and Entropies

AB5, LaNi5, Hysteresis, Enthalpy, Entropy, Calorimetry

Low-Temperature Absorption, Equilibrium and Chemsorption in the LaNi5(Activated)/H2 System

AB5, LaNi5, PTC, Hysteresis, Enthalpy, Solution Range, Calorimetry

Thermodynamics of the Solution of Hydrogen in LaNi5 at Small Hydrogen Contents

AB5, LaNi5, PCT, Solution Range, Enthalpy, Entropy, StructureAB5, LaNi5, PCT, Solution Range, Enthalpy, Entropy

Configurational Entropy and Structure of beta-LaNi5 HydrideMagnetic Behavior of Metal Hydrides as a Function of Hydrogen Pressure and Composition

AB5, NdCo5, PCT, Hysteresis, Magnetism, Test Apparatus

Magnetic Studies of Oxidation Characteristics of Fine Particle LaNi5

AB5, LaNi5, SmCo5, Magnetism, Oxidation, Surface, O2, EncapsulationAB5, LaNI5, La(Ni,Al)5, Ti(Fe,Mn), Slurry, Kinetics, Test Apparatus

Electronic Structure and Surface Oxidation of the Haucke Compounds CaNi5, YNi5, LaNi5 and ThNi5

AB5, LaNi5, CaNi5, YNi5, ThNi5, Oxidation, Surface, Photoelectron SpectroscopyAB2, AB3, AB, AB5, Review, PCT, Thermodynamics, Structure, Model, Rule of Reverse Stability

Rechargeable Metal Hydrides: A New Concept in Hydrogen Storage, Processing, and Handling

AB5, AB, A2B, Review, PCT, Thermodynamics, Enthalpy, Entropy, Engineering Properties, Activation, Decrepitation, Applications, Storage, Compression, Separation

Effects of Aluminum Substitution on Hydrogen Storage in MNi5-xAlx System

AB5, Mm(Ni,Al)5, H-Capacity, Kinetics, Structure, Microstructure, Enthalpy, Decrepitation, Electrode

Hydrogen Solubility in Rare Earth Intermetallic Compounds

AB3, RFe3 (R=Gd,Tb,Dy,Ho,Er), ErNi3, A2B7, Pr2Co7, Gd2Co7, Ce2Co7, Ho2Co7, A2B3, Pr2Ni3, PCT, Enthalpy, Entropy, Structure, Volume Change, Kinetics, Test Apparatus

Hydrogen Absorption in Intermetallic Compounds of Thorium

AB, A7B3, A2B7, Th2Co7, Th2Fe7, AB2, AB5, ThFe5, LaNi4M (M=Pd,Pt,Ag,Cu,Co,Fe,Cr), R0.2La0.8Ni5 (R=Th,Y,Zr), PCT, Enthalpy, Model, Rule of Reverse Stability

Hydrides of La-Ni and Ce-Ni Intermetallic Compounds

AB, LaNi, A7B3, Ce7Ni3, La7Ni3, AB5, La, Ni, Ce, H-Capacity Enthalpy, Calorimetry, Model

The Absorption of Deuterium by Binary Alloys of Lanthanum and Nickel

AB, LaNi, A3B, La3Ni, AB2, LaNi2, La5,25Ni, Deuterium, PCT, Enthalpy, Structure, Disproportionation

The Formation of Metastable Hydrides Ti0.75Al0.25Hx with x<1.5

A3B, Ti3Al, PCT, Enthalpy, Entropy, Structure, Kinetics, Model

Studies Pertaining to Hydrogen Car Development: Part A - The Kinetics and Mechanism of Magnesium Alloy-Hydride Formation and Dissociation

Mg-Alloy, Mg-10Al, Mg-25Ni, Multiphase, Microstructure, Kinetics, SEM, Model

English

English

Hydrogen Storage and Purification Systems English

English

English

English

English

English

English Tr

English

English

English

English

English

English

English

English

Storage of Hydrogen by Metal Hydrides English

Hydrogen Absorption and Hydride Formation in Ti3Sn

A3B, Ti3Sn, PCT, Phase Diagram, Enthalpy, Entropy, Structure

Hydrogen Pressures, Phase Behavior and Structure in Systems of Calcium Hydride with Lanthanum Hydrides at Equimolar Metal Comp.

Solid Solution, Multiphase, Ca-Pr, Ca-Nd, Ca-Gd, Ca-Y, PCT, Structure

Solid Solution, Nb-X (X=Fe,Si,Ge), V-X (X=B,C,Si,Ge,Sn,Nb,Ta,Ti,Zr,Cr,Mo,W,

Control of the Hydrogen Absorption and Desorption of Rare Earth Intermetallic Compounds

AB3, HoCo3, ErCo3, AB2, ErFe2, AB5, PrNi5, LaNi5, Impurity Effects, SO2, Structure, Test Apparatus

Hydrogen Separation and Production From Coal Derived Gases Using FexTiNi1-X

AB, Ti(Fe,Ni), Impurity Effects, N2, CH4, CO2, Application, Separation, Apparatus, Breakthrough

Self Restoring of the Active Surface in the Hydrogen Sponge LaNi5

AB5, LaNi5, Impurity Effects, O2, H2O, Surface, XPS, Magnetism, Segregation, Ni-Precipate

Catalytic Effect in the Hydrogenation of Mg and Mg Compounds: Surface Analysis of Mg-Mg2Ni and Mg2Ni

A2B, Mg2Ni, Multiphase, Mg-Ni, Impurity Effects, O2, Surface, Segregation, Ni-Precipitation, XPS, AESEffects of Adsorbed Gas Molecules on

Hydrogen-Sorbing Behavior of Magnesium - Nickel Alloys

Mg-Alloy, Multiphsae, Mg-10Ni, Impurity Effects, Air, N2, CO2, CO, CH4, DTA, TGA, Test Apparatus

Resistance of the Intermetallic Compound LaNi5 to Attack by Liquid and Gaseous Media

AB5, LaNi5, Impurity Effects, Air, O2, N2, NH3, HCL, HNO3, H2SO4, Structure

Surface Effects and the Formation of Metal Hydrides

AB5, LaNI5, AB, FeTi, A2B, Mg2Ni, AB2, ErFe2, Review, Cyclic Life, Surface, Ni-Precipitation, XPS

Surface Poisoning of LaNi5, FeTi, and (Fe,Mn)Ti by O2, CO, and H2O

AB5, AB, LaNi5, TiFe, Ti(Fe,Mn), Impurity Effects, O2, H2O, Co, Segregation, Cyclic Life, Chemisorption, Adsorption EnthalpyElectronic Structure and Surface Oxidation of

LaNi5, Er6Mn23, and Related SystemsAB5, LaNi5, A6B23, Er6Mn23, La(Ni,Ti)5, Impurity Effects, Surface, Electronic Structure, O2, Oxidation, XPS, Synchrotron Radiation

Surface Properties of ZrMn2 and Electronic Structure of ZrMn2 Hydride

AB2, ZrMn, Impurity Effects, Surface, O2, Segregation, Electronic Structure,

Surface Segregation in LaNi5-xAlx and its Implication on the Cycle Life Time for Hydrogen Storage

AB5, La(Ni,Al)5, Surface, Impurity Effects, O2, H2O, Cyclic Life, Segregation, XPS

Kinetics and Thermodynamics of ZrMn2 - Based Hydrides

AB2, ZrMn2+, (Zr,Ti)Mn2+, Nonstoichiometric, PCT, Kinetics, Enthalpy, Entropy, Structure, Volume Change, Impurity Effects, O2,

Cycling Response of Reversible Hydriding Alloys in Hydrogen Containing Carbon Monoxide

AB5, LaNi5, A2B, Mg2Ni, AB, TiFe, Impurity Effects, CO, Cyclic Life, Recovery, Segregation, Model

Investigation of Selective Absorption of Hydrogen by LaNI5 and FeTi

AB5, LaNi5, AB, TiFe, Impurity Effects, Reactivation, CH4, CO2, CO, H2S, N2, Application, Separation, SEMAB5, Mm(Ni,Al)5, Impurity Effects, CO, CO2, Pellets, Cyclic Life

Mg-Ni Alloys as Hydrogen Transporting Media English

English

English

English

The Activation of FeTi for Hydrogen Absorption English

English

English

English

English

English

English

English

English

English

English

English

English

English

English

Self Restoring of the Active Surface in LaNi5 English

How FeTi Absorbs Hydrogen English

A2B, Mg2Ni, Imputity Effects, CO2, H2O, N2, CH4, Application, Storage, Purification

Selective Absorption of Hydrogen by Ti-Mn Based Alloys from Gas Mixtures Containing CO or CH4

AB2, Ti1.2Mn1.8, Ti0.98Zr0.02V0.45Fe0.1Cr0.05Mn1.4, Impurity Effects, CO, CH4, Cyclic Life, Reactivation, Application, Separation

A Kinetics Study of the H-(Mg2Ni-2.7wt.%Ni) System

A2B, Mg2Ni, Kinetics, Surface, Structure, Model

The Electronic Effect in Alloy Chemisorption: CO and H2 Studies on Nickel Titanium Alloys

AB3, TiNi3, Solid Solution, Ni0.9Ti0.1, Surface, Ni3Ti, CO, H2, Adsorption, AB, TiFe, Ti(Fe,Mn), Review, Activation, Surface, Ti-Fe-O, Oxides, Surface, XPS, Chemisorption, Catalysis, Isotope Exchange

Interaction of Carbon Monoxide and Hydrogen with Metal Films of Fe, Co, Ni, and FeCo Alloy

Surface, Adsorption, Desorption, Fe, Co, Ni, Fe-Co, Impurity Effects, CO

Surface Aggregates Produced on Activated as Determined by X-Ray Diffraction

AB, TiFe, Surface, O2, Activation, Oxide, Segregation, O-Stabilized Ti2Fe, Structure, XRD

Poisoning Effect of Carbon Monoxide on the Desorption Process of Hydrogen from Palladium

Surface-Studies, Pd, CO, Poisoning, Impure-H2

Hydrogen Kinetics and Surface Composistions of ErT2 Systems (T = Mn, Fe, Co, Ni)

AB2, ErT2 (T=Mn,Fe,Co,Ni), Surgace, Segregation, Kinetics,

Kinetics of Hydrogen Absorption by Titanium, Tantalum, Tungsten, Iron, and Palladium Films with and without O2 Preabsorption

Ti, Ta, W, Fe, Pd, Thin Films, Surface, Adsorption, Impurity Effects, H2, O2, H2O, Kinetics, Sticking Probabilities

Kinetics of H2O Adsorption by Titanium, Tantalum, Tungsten, Iron, and Palladium Films at

Ti, Ta, W, Fe, Pd, Thin Films, Surface Adsorption, Impurity Effects, H2O,

Effect of Palladium and Oxygen Layers on the Hydrogen Absorption Rate of Tantalum Films at

Ta, Pd-Coating, Surface, Adsorption, Impurity Effects, O2, Kinetics

A Quantitative Interpretation of the Surface Seggregation in Air-Exposed Intermetallic Compounds. A Test Case UNiAl

UNiAl, Impurity Effects, Aior, O2, Surface-Free-Energy

Surface Alterations of Intermetallic Hydrogen Storage Materials on Interactions with Hydrogen and Oxygen

AB2, TiMn1.5, ZrMn2, AB5, LaNi5, LaNi4Al, TiCr1.8, Surface, Segregation, Impurity Effects, O2, AES

The Mechanism of Oxygen Chemisorption on Nickel, Solid Surfaces and the Gas-Solid Interface

Ni, Surface, Ni, Adsorption, O2, LEED, Photoelectric Work Function, Test Apparatus

Effects of Contamination on the Interaction of Hydrogen Gas with Palladium: A Review

Pd, Surface, Impurity Effects, HCl, SiF4, H2S, CO2, CO, O2, CCl4, Chemisorption, Corrosion, Review

The Stoichemistry and Poisoning by Sulfur of Hydrogen, Oxygen, and Carbon Monoxide Chemisorption on Unsupported Ni

Ni, Impurity Effects, CO, H2, H2S, BET, Adsorption, Chemisorption, Inco Ni Powder, Catalysis

Surface Segregation in LaNi5 Induced by Oxygen

AB5, LaNI5, Impurity Effects, O2, Surface, Segregation, LEED, AES

Effect of Surface Processes on Hydrogen and Nitrogen Permeation. I. Adsorption

Surface, Permeation, Adsorption, H2, N2, Diffusion, Model, TheoreticalAB5, LaNi5, Impurity Effects, O2, Surface, Segregation, Magnetism, Ni-Precipitation, XPSAB, TiFe, Impurity Effects, O2, Surface, Segregation, Activation, Magnetism, Structure, XPS, AES

English

English

English

English

English

English

Hydrogenation of Ethylene Over LaNi5 Alloy English

English

Hydrogen Sorbent Composistion and Its Use English

Separation of Hydrogen from Other Gases English

English

The Separation of Hydrogen from Gas Mixtures English

English

English

Hydrogen Purification by Selective Adsorption English

English

English

English

EnglishEnglish

English

Effects of Oxygen Sorption Layers on the Kinetics of Hydrogen Absorption by Tantalum at

Ta, Impurity Effects, O2, H2, Surface, Adsorption, Kinetics, Sticking

Electronic Structure, Bonding and Chemisorption in Metallic Hydrides

Rare Earths, Actinides, V, Surface, Electronic Structure, Adsorption, Chemisorption, Review

Interaction of Hydrogen, Carbon Monoxide, and Methanol with Ni (100)

Ni, Impurity Effects, H2, CO, CH3OH, Surface, Catalysis

Magnetic Properties of LaNI5 and Their Variation with Hydrogen Absorption and Desorption

AB5, LaNI5, Magnetism, Surface, Segregation, Cyclic Effects, Ni-Precipitation

XPS/UPS Study of the Oxidation of La and LaNI5 and of the Electronic Structure of LaNi5

AB5, LaNI5, Impurity Effects, O2, Surface, Electronic Structure,

Surface Analysis of Mg2Ni-Mg, Mg2Ni, and Mg2Cu

Surface-Studies, A2B, Mg2Ni, Mg2Cu, Multiphase, Mg-Mg2Ni, Impurity Effects, O2, Segregation, OxideAB5, LaNi5, Catalysis, Kinetics, Surface, Ethylene, Hydrogenation,

Hydrogen Absorbing Reaction of LaNi5 in the Presence of Other Gases

AB5, LaNi5, Impurity Effects, CO, CO2, He, N2, Ar, KineticsAB5, LaNi5, Pellets, Impurity Effects, N2, CH4, C2H6, C3H8, Kinetics, Application, Separation, Purification, AB5, LaNi5, La(Ni,Cu)5, Impurity Effects, CO2, CO, Application,

Diaphram for the Separation of Hydrogen from Hydrogen - Containing Gaseous Mixtures

AB, TiNi, Diffusion, Membrane, Separation, Purification

Rare Earth - Containing Alloys and Method for Purification of Hydrogen Gas

AB5, LaNi5, SmCo5, Impurity Effects, CO, CO2, N2, Ar, CH$, NH3, Application, Purification, Cyclic, ApparatusPd, Impurity Effects, CO, CO2, CH4, C2H4, Cyclic, Application, Separation, Purification, Pressure Swing Absorption, Apparatus

Clean-Up and Processing of Coal-Derived Gas for Hydrogen Applications

Purification, Separation, Particulates, Impurities, H2S, N2, H2O, Coal Gases, Non-Hydride

U-Gas Process for Production of Hydrogen from Coal

Production, Separation, Purification, Coal Gases, Non-Hydride

Calculation of Chemisorption and Absorption Induced Surface Segregation

Pd, PdZrx, Impurity Effects, O2, CO, Surface, SegregationPurification, Adsorption, Separation, PSA, CO, CH4, CO2, Apparatus

Self-Regenerating Method and System of Removing Oxygen and Water Impurities from

AB5, Purification, Separation, O2, H2O, Catalysis

Heat/Mass Flow Enhancement Design for a Metal Hydride Assembly

Hydride, Heat Pump, Heat Transfer, Mass Transfer, Cyclic, Application

Storing Energy in Metal Hydrides : A Review of the Physical Metallurgy

Activation, Impurity Effects, Review, AB5, AB, AB2, AB3, A2B7, Mg, Thermodyn. Properties, Kinetics

The Reaction Kinetics of Hydrogen Storage in AB5, CaNi5, Properties, Kinetics, Solid-State Hydrogen Storage Materials of Application to Energy Needs

AB5, LaNi5, CeFe5, CoTi, 60V-40Cr, Ti-Al, Nb-Mo, PCT, Enthalpy, Reactor

Stability of Some Ternary and Quatenary CeNi5-Based and PrNi5-Based Hydride Systems

AB5, (Ce,La)(Ni,Cu)5, Pr(Ni,Fe)5, Pr(Ni,Cu)5, PCT, Enthalpy, Entropy

English

English

English

English

English

English

AB5, LaNi5, PCT, Enthalpy, Calorimetry

English

English

English

English

English

English

English

English

English

French

English

English

English

Hydrogen Absorption by LaCu5 and Nuclear Magnetic Resonance (NMR) Studies of Hydrogen Diffusion in beta-LaCu5 Hydride

AB5, LaCu5, PCT Structure, Diffusion, NMR

Microstructure and Hydriding Studies of AB5 Hydrogen Storage Compounds

AB5, PCT, Dynamic PCT, (La,A)Ni5, A= Mg, Ca, Sr, B, Mm(Ni,B)5, La(Ni,B)5, B= Co, Al, Fe, Cr, Si, Sn, Mn, B, C, Pd, SHydrogen Storage of MmNi5-xAlx System Based

on Indian MischmetalAB5, Mm(Ni,Al)5, PCT, Microstructure, Enthalpy, Entropy

Hydrogen Storage Properties of the MmNi4.6Sn0.4 System

AB5, Mm(Ni,Sn)5, PCT, Microstructure, Enthalpy, Entropy

Hydrogen Storage Properties of MmNi5-xMnx System Based on Indian Mischmetal

AB5, Mm(Ni,Mn)5, PCT, Microstructure, Enthalpy, Entropy

Solid State Hydrogen Storage Materials for Application to Energy Needs

AB5, LaNi5, PCT, Enthalpy, Safety, Reactor, Kinetics, Test Equipment

The Thermodynamics of the LaNi5-H2 System by Differential Heat Flow Calorimetry, I. Techniques; The alpha+beta Two-Phase RegionRecovery of Efficacy-Lost LaNi5 by Chemical Preparation Method

AB5, LaNi5, PCT, Enthalpy, Entropy, Chemical Preparation, RD Process

Effect of Ce, Co, and Sn Substitution on Gas Phase and Electrochemical Hydriding/Dehydriding Properties of LaNi5

AB5, (La,Ce)(Ni,Co,Sn)5, PCT, Electrochemical, Electrode, Cyclic, Impedance

Cerium Content and Cyclic Life of Multicomponent AB5 Hydride Electrodes

AB5, (La,Ce)(Ni,Co,Mn,Al)5, Mm(Ni,Co,Mn,Al)5, PTC, Electrochemical, Cyclic Life, Electrode

The Effect of Aluminum Additions on the Structural and Hydrogen Absorption Properties of AB5 Alloys with Particular Reference to the LaNi5-xAlx Ternary Alloy System

AB5, La(Ni,Al)5, PCT, Enthalpy, Entropy, Structure

Dynamic Pressure-Concentration-Isotherms and their Impact on Metal Hydride Machine Design

AB5, La(Ni,Al)5, LaLm(Ni,Co,Mn,Al)5, Lm(Ni,Sn)5, PCT, Dynamic PCT, Enthalpy, Entropy

Development of New Mischmetal-Nickel Hydrogen Storage Alloys According to the Specific Requirements of Different Applications

AB5, Mm(Ni,Al)5, Mm(Ni,Mn)5, (Mm,Ca)(Ni,Al,Cu,Zr)5, PCT, Enthalpy, Electrode, Cyclic Stability

Thermodynamic, Structural and Magnetic Properties of LaNi5-xFex Hydrides

AB5, La(Ni,Fe)5, PCT, Structure, Magnetic Properties

Correlations Between the Structural and Thermodynamic Properties of LaNi5 Type Hydrides and their Electrodes Performances

AB5, La(Ni,B)5, Co, Mn, Al, Cu, Fe, Si, PCT, Electrodes, Structure

Thermodynamic and Structural Properties of LaNi5-yAly Compounds and their Related

AB5, La(Ni,Al)5, PCT, Enthalpy, Entropy, Structure

Hydrures Ternaires de Terres Rares. Application au Stockage de L'Hydrogene

AB5, La(Ni,Al)5, La(Ni,Cu)5, (La,Tb)Ni5, PCT, Electrode, Structure

Modification of Hydriding Properties of AB5 Type Hexagonal Alloys through Manganese Substitution

AB5, La(Ni,Mn)5, Mm(Ni,Mn)5, PCT, Enthalpy, Microstructure, Annealing

Thermodynamic and Structural Properties of LaNi5-xMnx Compounds and their Related

AB5, La(Ni,Mn)5, PCT, Enthalpy, Structure

Hydriding Properties of the Pseudo-Binary Alloys LaNi5-y-zMnySnz

AB5, La(Ni,Mn,Sn)5, PCT, Enthalpy, Entropy

English

English

English

English

English

The EuNi5-H System English

English

Hydrides

English

Hydrogen-Containing Materials English

Metal Hydrides for Energy storage English Review, AB5, AB, A2B, PCT

English

Mg, THF, Kinetics, Mixture, Composite

English

English

English

English

English

Thermodynamic and Degredation Studies of LaNi4.8Sn0.2-H using Isotherms and Calorimetry

AB5, La(Ni,Sn)5, PCT, Enthalpy, Entropy, Calorimetry, Cyclic Stability

Dynamic Characteristics of the Hydrogen Sorption Process in MmNi4.15Fe0.85Hx

AB5, Mm(Ni,Fe)5, Dynamic PTC, Test Methods, PM Compacts

A Study of the Hydrogenation Properties of the MmNi4.5Al0.5Zrx (x=0-0.2) Alloys

AB5, Mm(Ni,Al,Zr)5, PCT, Structure, Microstructure, Cyclic Life

Rechargeable hydrogen batteries using rare-earth-based hydrogen storage alloys

AB5, Mm(Ni,Co,Al,Mn)5, PCT, Electrode, Structure, Battery, Cyclic Life

Hydrogen storage alloy powder produced by reduction-diffusion process and their electrode properties

AB5, Mm(Ni,Co,Mn,Al)5, PTC, Electrode, R-D Process

AB5, EuNi5, PCT, Enthalpy, Entropy, Hysteresis

Metal Hydrides as Hydrogen Storage Media and Their Applications

Review, Elements, AB, AB5, A2B, MmNi5, TiFe, Mg, Mg2Ni, V, PCT, Thermodynamics, Experimental, Application, Safety, Vehicular Storage, Stationary Storage, Heat Storage, Compression, Peak ShavingReview, Elements, AB5, PCT, Thermodynamics, Phases, Magnetic, Electronic, Structure, Bonding, Kinetics, Diffusion

Hydrides formed from intermetallic compounds of two transition metals: a special class of ternary alloys

Review, Intermetallics, PCT, Thermodynamics, Rare-Earth Alloys, Electronic, Structure, Diffusion, Experimental, NMR, ApplicationReview, Intermetallics, PCT, Thermodynamics, Applications,

Storing Hydrogen in AB2 Laves-Type Compounds

Review, AB2, PCT, Enthalpy, Entropy, Structure

Reversible Formation of Metal Hydrides by Direct Reaction of Hydrogen

Review, Rare-Earths, Elements, AB5, AB2, AB, AB3, A2B7, A6B23, Nonmetals

Mixing Effects of Metal Hydrides on Equilibrium Behavior and Reaction Kinetics

AB2, AB5, PCT, Mixture, Composite, Kinetics

Exceptionally Active Magnesium for Hydrogen Storage: Solvated Magnesium Clusters Formed in Low Temperature MatricesPreparation and Properties of Hydrogen Storage Alloy-Copper Microcapsules

AB5, LaNi5, MmNi4.5Al0.5, Microencapsulation, Structure, Kinetics, Cu-plating, Decrepitation, Composite

Preparation and Properties of Hydrogen Storage Alloys Microencapsulated by Copper

AB5, LaNi5, Composite, Microencapsulation, Cu-plating, Kinetics, Conductivity, Cyclic, DecrepitationHydrogen Absorption Properties of FeTi(1+x)-

Rare Earth Oxide Composite MaterialsAB, TiFe, Composite, Rare Earth, Oxide, Activation, PCT

Hydriding Kinetics of Mixtures Containing Some 3d-Transition Metals Oxides and Magnesium

Mg, TiO2, V2O5, Cr2O3, Mixture, Composite, Mechanical Alloying,

Double-Phase hydride Forming Compounds: A New Class of Highly Electrocatalytic Materials

AB5, LaNi5.5, Composite, Multiphase, Electrochemical, Electrode, Cyclic Life, Microstructure, (La,Nd)(Ni,Co,Si)5

Electrochemical characterization of hydrogen storage alloys modified with metal oxides

AB5, MmNi3.6Mn0.4Al0.3Co0.7, RuO2, Co3O4, Mixture, Composite, Electrode, Rate, Cyclic Life

English

Japanese

The Magnesium-Hydrogen System EnglishEnglish

English

Hydrogen in Palladium and Palladium Alloys English

The Palladium Hydrogen System English

The Palladium-Hydrogen System English

English

Zirconium Hydrides and Hafnium Hydrides English

Fabrication of Hydrides English

Titanium Hydrides

Research and Development of Metal Hydrides English Ti, PCT

English

The Actinide Hydrides English

English

The Higher Hydrides of Vanadium and Niobium English V, Nb, PCT, Enthalpy, EntropyEnglish

English V, Pump, Compressor, Applications

English

The Synthesis and Hydrogenation Behavior of Some New Composite Storage Materials: Mg-xwt% FeTi(Mn) and La2Mg17-xwt% LaNi5

Mg, La2Mg17, Ti(Fe,Mn), LaNi5, Composite, PCT, Kinetics, Structure

Low temperature Formation of MgH2 in Ti0.6Zr0.4Mn0.8CrCu0.2/Mg

Mg, AB2, Composite, PCT, Kinetics, Structure, EPMA

Metal Hydride Electrodes Made by Dry Powder Process Using Flake Copper and Flake Nickel Powders

AB5, AB2, Composite, Electrode, MH Battery, Microstructure, Cyclic Life

Mg, PCT, Enthalpy, Entropy, Heat The development, Testing and Optimization of Energy Storage Materials Based on the MgH2-

Mg, Ni-doping, Surface, Mixture, Composite, Cyclic Life

Metal Hydride Devices for Environmentally Clean Energy Technology

Mg, AB5, Applications, Heat Pump, Solar, Heat Storage, Heat TransferPd, Pd alloys, PCT, Thermodynamics, Electronic, Diffusion, Isotope Effects

Pd, Pd alloys, PCT, Thermodynamics, Enthalpy, Entropy, Mechanical, Electrical, Surface, Diffusion, Structure, Isotope EffectsPd, PCT, Hysteresis, Thermodynamics, Enthalpy, Entropy, Bonding, Diffusion, Stress Effects, Kinetics, Surface, Isotope Effects

Tritium Processing at the Savannah River Site: Present and Future

AB5, La(Ni,Al)5, (Ca,Mm)Ni5, Pd, Tritium, Isotope Effects, Applications, Storage, Compressor, Isotope Separation, Pump, PurificationZr, Hf, PCT, Thermodynamics, Enthalpy, Entropy, Structure, Microstructure, Impurity Effects, Mechanical, Phase DiagramsZr, Ti, Y, Ca, Fabrication, Massive Hydrides, Powder, Compaction, ExtrusionTi, Ti alloys, PCT, Phase Diagrams, Thermodynamics, Enthalpy, Entropy, Structure, Microstructure, Properties, Physical

Aircraft Thermal Detection Utilizing Metal Hydrides

Ti, Application, Actuator, Temperature Sensor, Fire DetectionU, Th, U alloys, Th alloys, PCT, Thermodynamics, Enthalpy, Entropy, Review, Phase Diagrams, Structure

Modern tritium handling in the synthesis laboratory

U, Tritium, Applications, Storage, Pump, Purification

The Effect of Minor Constituents on the Properties of Vanadium and Niobium Hydrides

V, Nb, Impurity Effects, PCT, Enthalpy, Entropy,

A New Laboratory Gas Circulation Pump for Intermediate PressuresInvestigation of Long Term Stability, in Metal Hydrides

V, AB5, LaNi5, La0.9Gd0.1Ni5, LaNi4.8Sn0.2, PCT, Cyclic Life, Structure, Microstructure, Disproportionation, DPA, Expansion

English

English

English

English

English

Applications English

Surface Properties and Activation English

English

A Hydride Heat Pump as a Bus Air Conditioner

Hydrides and Deuterides of CaNi5 English

English

English AB, TiFe0.8Ni0.2, Kinetics

English

English A2B, Mg2Ni, Na2Pd, Complex Hydride

Allotropic Transformations of Mg2NiH4 English A2B, Mg2Ni, Structure, Transformation

English

Hydride Formation and Decomposition Kinetics English

English

Low Temperature Reusable Hydrogen Getter English

English

Performance Testing of a Vanadium Hydride Compressor

V, V-C alloy, Applications, Compressor, Cyclic Life

Inverse Hydrogen Isotope Effects in Some Metal Hydrides

V, Nb, LaNi5, Mg2Ni, TiFe, PCT, Isotope Effects, Enthalpy, Entropy, Isotope Separation

Formation and Properties of Iron Titanium Hydride

Ab, TiFe, Ti-Fe Alloys, PCT, Enthalpy, Entropy

Crystal and Magnetic Structures of Ternary Metal Hydrides

Intermetallics, Structure, XRD, Neutron Diffraction, Magnetic, Deuterides, Review

The Metallurgy and Production of Rechargeable Hydrides

Ab, AB5, TiFe, Mm(Ni,Ca)5, PCT, Impurity Effects, Microstructue, Metallurgy, Melting, ProductionReview, Applications, PCT, Properties, Storage, Isotope Separation, Compressor, Heat Pump, Heat Engine, Battery, SensorIntermetallics, Activation, Review, Elements, AB, AB5, AB2, Mg-Alloys, Surface, Composites, Poisoning, Surface Catalysis

Reaction Kinetics of Hydrogen-Metal hydride systems

LaNi5, TiFe, Mg2Ni, Kinetics, Reactor, Heat transferApplications, Refrigerator, Vehicle, PCT, van't Hoff, Compact, Heat Conductivity, Heat Transfer, AB5, Mm(Ni,Fe)5, La(Ni,Al)5, PerformanceAB5, CaNi5, PCT, Isotope Effects, Cyclic Stability, Disproportionation

Current Status and Performance of the Argonne HYCSOS Chemical Heat Pump System

Application, Heat Pump, HYCSOS, CaNi5, LaNi5, Cyclic Stability, Heat Transfer, Disproportionation

Investigation of kinetics and structural changes in TiFe0.8Ni0.2 after prolonged cycling

AB, TiFe0.8Ni0.2, PCT, Cyclic Life, Kinetics

Hydrogen Absorption and Desorption Kinetics of TiFe0.8Ni0.2The Metal Hydride Development Program at Brookhaven National Laboratory

AB, Ti(Fe,Mn), PCT, Cl2 Impurity Effect, TiCr1.8, TiCrMn

Properties of Formal Low-Valence Transition Metal-Hydrogen Complexes in Mg2NiH4 and

Twinning at the Unit Cell Level in the Low Temperature Phase of Mg2NiH4 Studied by Electron Microscopy

A2B, Mg2Ni, Transformation, Microstructure, Microtwinning, Structure

AB5, AB2, AB, Mg-alloys, Kinetics, Experimental, Review, Heat Transfer

The Reaction of Hydrogen with the Low Temperature Form (C15) of TiCr2

AB2, TiCr1.8, PCT, Enthalpy, Entropy, Phase DiagramAB, ZrNi, Mm, PCT, Vacuum Insulation, Surface, Oxidation, Getter

Low Temperature Heat Pipe Employing Hydrogen Getter

Ab, AB2, ZrNi, ZrMn2, Getter, Application, Heat Pipe

English

Japanese

English

Metal Hydride Storages English

English

English

English

English

English

English

English

English

English

English

English

English

English

English

English

English

Thermodynamics of the ErFe2-H(D) System English

Supply and recovery of hydrogen isotopes in high vacuum systems using ZrNi hydride getter

AB, ZrNi, Deuterium, PCT, van’t Hoff, Getter Pump, Application

Equilibrium Properties of the ZrMn- and ZrCr-Hydrides

AB2, ZrMn2, ZrCr2, PTC, Stoichiometry Effects

Metal Hydride Electrodes: Stability of LaNi5-Related Compounds

AB5, LaNi5, La(Ni,Co,Si)5, La(Ni,Cu)5, Electrode, PCT, Experimental, Corrosion, Battery, Application, ElectrochemicalAB2, PCT, Applications, Storage, Container Design, Vehicle, Purification

Large Scale Production And Quality Assurance of Hydrogen (Battery)-Storaging Alloys

AB5, AB, AB2, PCT, Production, Melting, Microstructure, Properties

Hydrogen Drive for Road Vehicles - Results from the Fleet test Run in Berlin

Application, Vehicular Storage, Berlin Fleet, Impurity Effects, Expansion

Fundamentals and Properties of some Ti/Mn Based Laves Phase Hydrides

AB2, (Ti,Zr)(Mn,V,Cr,Fe)2, PCT, Gas Impurity Effects, Cyclic Life, Diffusion

Nickel-Metal Hydride Batteries using Rare-Earth Based Hydrogen Storage Alloys

AB5, Mm(Ni,Co,Mn,Al)5, Electrochemical, Electrode, Battery, Cyclic Life, Microstructure, Gassing, Rate, Metallurgy, Manufacture

Heat Transfer and Kinetics of a Metal Hydride Reactor

AB5, LaNi4.25Al0.75, Heat Transfer, Kinetics, Reactor Design

Effects of radiolytic tritium decay on the thermodynamic behavior of LaNi4.25Al0.75 tritides

AB5, LaNi4.25Al0.75, PCT, Tritium, Ageing Effects, Disproportionation, Strain, Structure, He-3

Investigation of hydriding properties of LaNi4.8Sn0.2, LaNi4.27Sn0.24 and La0.9Gd0.2Ni5 after thermal cycling and aging

AB5, La(Ni,Sn)5, PCT, Enthalpy, Entropy, Cyclic Life, Disproportionation, SDA, Structure, La0.8Gd0.2Ni5, Strain, Particle Size

The effect of tin on the degradation of LaNi(5-y)Sny metal hydrides during thermal cycling

AB5, La(Ni,Sn)5, PCT, Cycling, Cyclic Life, Structure, Microstr cture, Disproportionation

Progress towards the Development of Hydrogen sorption Cryocoolers for Space Applications

V, AB5, La(Ni,Sn)5, AB, ZrNi, van’t Hoff, Applications, Compressor, Cryocooling, Joule-Thompson Cooling

Lattice Parameter Variation and Thermodynamics of Dihydride Formation in the Vanadium-Rich V-Ti-Fe/H2 System

V Alloys, V-Ti-Fe Solid Solution, Enthalpy, Entropy, Structure

Hydride Formation Rates of B.C.C. Group V Metals

V, Nb, Nb0.8V0.2, Beta alloys, Activation, Substitution Effects, Size

Hydride Formation by B.C.C. Solid Solution Alloys

Ti-V alloys, Solid Solutions, Beta alloys, PCT, Enthalpy, Entropy, Substitution effects, Applications, Heat Pumps, IsotopeFrom Permanent Magnets to Rechargeable

Hydride ElectrodesAB5, SmCo5, LaNi5, (la,Nd)(Ni,Co,Si)5, Electrode, Cyclic Life, Corrosion, Surface, Magnetic, Battery

Hydrogen Sorption Characteristics of Ce-3d and Y-3d Intermetallic Compounds

AB3, A2B7, CeCo3, Ce2Co7, CeNi3, Ce2Ni7, YCo3, Y2Co7, YNi3, Y2Ni7, PCT, Structure, AB2, YFe2, YCo2, YNi2, AB5, YCo5, YNi5

Thermodynamic Properties of ErFe2 and DyFe2 Hydrides

AB2, ErFe2, DyFe2, PCT, Thermodynamics, Enthalpy, Entropy

DyFe2-H2 System: Magnetism and Pressure-Composition Isotherms to 1400 atm

AB2, DyFe2, PCT, Magnetism, High PressureAB2, ErFe2, PCT, Thermodynamics, Enthalpy, Entropy, Isotope effect, Disproportionation

English

English

English

English AB2, TiBe2, ZrBe2, HfBe2, PCT

English

Hydride formation in La(1-x)MgxNi2 English AB2, (La,Mg)Ni2, LaNi2

English

English

English

Hydride Formation of C14-Type Ti Alloy English

English

Thermodynamic Properties of TmFe2 Hydrides English AB2, TmFe2, PCT, Enthalpy, EntropyEnglish

Hysteresis in the Zr(FexCr1-x)2-H Systems

English

English

English

English

English

English

English

166Er Mossbauer and X-Ray Diffraction Study of ErMn2 Hydrides

AB2, ErMn2, PCT, Mossbauer, Structure

Hydrogen Absorption of Rare-Earth (3d) Transition Intermetallic Compounds

A3B, A3B2, A4B3, AB, AB2, AB3, A6B23, A2B17, Intermetallics, Rare-

Hydrogen Sorption Properties of some AB2 Laves Phase Compounds

AB2, GdMn2, GdFe2, GdCo2, GdNi2, LaRh2, GdRh2, GdRu2, Enthalpy, Entropy, Structure, PCT

Hydrides of Beryllium-Based Intermetallic CompoundsHydrogen absorption characteristics of the Zr1-xHoxCo2 system in the pressure range 0-40 bar

AB2, (Ho,Zr)Co2, PCT, Enthalpy, Entropy, Structure, Kinetics

Characteristics of hydrogen absorption and reactivation of TiMn1.25Cr0.25 alloy

AB2, TiMn1.25Cr0.25, PCT, Surface, Air Impurity, Reactivation

Control of hydrogen equilibrium pressure for C14-type Laves phase alloys

AB2, (Ti,Zr)(Mn,Cr)2, PCT, Enthalpy, Annealing

Electrode characteristics of C15-type Laves phase alloys

AB2, Zr(Mn,Cr,Ni)2, Zr(Mn,Cr,V,Ni)2, PCT, Structure, Electrode, Cyclic Life

Relation between equilibrium hydrogen pressure and lattic parameters in pseudobinary Zr-Mn alloy systems

AB2, Zr(Mn,M)2, M=V;Fe;Co;Ni, PCT, Structure, Enthalpy

Magnetic, Crystallographic and Hydrogen Absorption Properties of YMn2 and ZrMn2

AB2, ZrMn2, YMn2, PCT, Enthalpy, Entropy, Structure, Magnetism

On the Equilibrium Properties of some ZrMn2-Related Hydride-Forming Metals

AB2, ZrMn2.8, ZrMn1.11Fe1.22, ZrMn1.22Fe1.14, Zr0.8Ti0.2MnFe, ZrCrFe1.6, PCT, Enthalpy, EntropyAB2, (Ti,Zr)(Cr,Mn)2, PCT, Enthalpy, Structure, TiCr2, TiMn2, ZrMn2

Hydrogen Absorption and Electrode Characteristics of (Ti,Zr)-(Ni,V,X)2+a Alloys

AB2,Ti0.5Zr0.5Ni1.3V0.7X0.2, PCT, Structure, Microstructure

Hydrogen Absorption Properties of Pseudo-Binary Alloys Ti0.8Zr0.2Mn1.5M0.5

AB2, Ti0.8Zr0.2Mn1.5M0.5, M=Ti;V;Cr;Mn;Fe;Co;Ni;Cu;Al;Nb, PCT, Structure

Correlation Between structure and Hydriding Behaviors in Laves Phases: Zr(MxCr1-x)2,

AB2, ZrCr1.2Ni0.8, Zr(Cr,Fe)2, PCT, Enthalpy, Entropy, Structure, KineticsAB2, Zr(Fe,Cr)2, PCT, Hysteresis, Cyclic Effects

Hydriding Properties of Zr(FexCr1-x)2 Intermetallic Compounds

AB2, Zr(Fe,Cr)2, PCT, Enthalpy, Entropy, Impurity, Oxygen, Microstructure, Structure, Kinetics, Particle SizeA Study on the Sloping Plateaus in the Zr1-

xTixCr1-yFe1+y Laves Phase AlloysAB2, (Ti,Zr)(Cr,Fe)2+, PCT, Enthalpy, Entropy, Structure, Plateau Slope

Hydrogen Absorption Characteristics of the Giant Magnetostrictive Compound, Tb0.27Dy0.73Fe2

AB2, Tb0.27Dy0.73Fe2, PTC, Amorphous, Disproportionation

Hydrogen absorption in the new ternary phase LaNi4.4B0.6

AB5, LaNi4.4B0.6, PCT, Enthalpy, Entropy, Structure, Microstructure

Hydrogen Absorption and Hydriding of Ti-Based Intermetallic Compounds

AB, AB2, Ti(Fe,Co), Ti(Fe,Mn), Ti(Fe,Cr), TiMn2, TiNi, TiCu, PCT, Enthalpy, Entropy, Disproportionation

Anomolous Isotope Effect for Hydrogen Absorption in La0.4Ce0.6Ni5

AB5, La0.4Ce0.6Ni5, PCT, Isotope Effects, Enthalpy, Entropy

Titanium Alloy Hydrides; Their Properties and Applications

AB, TiFe, TiFe0.9Co0.1, Ti(Fe,Cr), TiFe0.9Cu0.1, Ti(Fe,Mn), TiFe0.9Mo0.1, TiFe0.95V0.05, PCT, Enthalpy, Entropy, Applications

English

English

English

Hydrides of lanthanum-nickel compounds English

Uber die Systeme LiyPtHx und LiyPdHx German AB, LiPt, LiPd, Enthalpy, EntropyEnglish

English

English

English

English

Hydrogen Storage Properties of Fe1-xNbxTi English AB, (Ti,Nb)Fe, PCT, Activation

AB, Ti(Fe,Ni), PTC, Enthalpy, Structure

English

English

English

Hydrogen Isotopes in Pure and Nitrided ZrCo English

Literature Survey of Hydriding Alloy Properties English

English

English

English AB2, HfV2, PCT, Structure

Solubility of hydrogen in CsCl-type Group Ib-Erbium alloys XEr (X = Cu, Ag, Au)

AB, ErCu, ErAg, ErAu, PCT, Enthalpy, Entropy, Structure

Hydrides and Valence Changes in Some Compounds of Yb-Ni, Yb-Pd and Related Systems

AB, AB2, YbNi, LaNi, ErNi, LuNi, YbPd, LuPd, YbNi2, ErNi2, LuNi2, Enthalpy, Structure, Magnetic

Hydrogen Absotption in Various Zirconium- and Hafnium-Based Intermetallic Compounds

AB, A2B, A3B, Zr2Ni, ZrNi, Zr3Co, Zr2Co, ZrCo, Zr3Fe, Zr2Fe, Hf2(Mn/Co/Fe/Ni/Cu/Rh), HfCo, HfNi, PCT, Enthalpy, StructureAB, AB2, AB3, A2B7, AB5, LaNi, LaNi2, LaNi3, La2Ni7, LaNi5, Enthalpy,

Comparison of Hydrogen Absorption in Glassy and Crystalline Structures

A2B, AB, Amorphous, Glass, Ti2Cu, TiCu, Thermodynamics, Structure, Thermal Analysis, Crystallization, DisproportionationHydrides of Ternary TiFexM1-x (M=Cr,Mn,Co,Ni)

IntermetallicsAB, Ti(Fe,Mn), Ti(Fe,Ni), Ti(Fe,Cr), Ti(Fe,Co), PTC, Enthalpy, Entropy, Structure

Effect of the Second Phase on the Initiation of Hydrogenation of TiFe1-xMx (M=Cr,Mn) Alloys

AB, Ti(Fe,Mn), Ti(Fe,Cr), PCT, Microstructure, Second Phases,

Effect of Simultaineous Addition of Oxygen with Copper or Niobium on the Hydriding Characteristics of FeTi for Hydrogen Storage

AB, (Ti,Cu)Fe, (Ti,Nb)Fe, Fe2O3, PCT, Activation, Microstructure, Structure

The Use of Manganese Substituted Ferrotitanium Alloys for Energy Storage

AB, Ti(Fe,Mn), PCT, Activation, Cl2-effects, Cyclic Life

Investigation of Thermodynamic Properties of the TiFe1-xNix-H SystemHydriding Characteristics of FeTi-Based Ti-Fe-V-Mn Alloy

AB, Ti0.46V0.05Fe0.45Mn0.05, PTC, Structure, Surface, Impurity Effects, Cyclic Life

Effect of Substitution of Titanium by Zirconium in TiFe on Hydrogenation Properties

AB, (Ti,Zr)Fe, PTC, Enthalpy, Entropy, Activation, Kinetics, Microstructure

Hydrogen absorption-desorption properties of UCo

AB, UCo, PTC, Enthalpy, Entropy, Structure, DisproportionationAB, ZrCo, PTC, Enthalpy, Entropy, Isotope Effects, N2-impurity Effects

An Investigation of the Systems ZrCo-H2 and ZrCo0.84Ni0.16-H2

AB, ZrCo, ZrCo0.84Ni0.16, PCT, Entropy, Entropy, MicrostructureReview, AB5, AB, AB2, A2B, Mg-alloys, PCT, Enthalpy, Impurity Effects, Cyclic Life, Kinetics,

Hydrogen absorption-desorption characteristics of Ti0.35Zr0.65NixV2-x-yMny alloys with C14 Laves phase for nickel/metal hydride

AB2, (Ti,Zr)(Ni,V,Mn)2, PCT, Enthalpy, Entropy, Structure, Microstructure, Electrode, Electrochemical

Characteristics of the stoichiometric and non-stoichiometric Laves phase alloys and their hydride electrodes

AB2, (Ti,Zr)(Fe,Mn,V,Ni)2, PCT, Electrode

Electrochemical and surface properties of the Zr(V0.2Mn0.2Ni0.6)2.4 alloy electrode

AB2, Zr(V,Mn,Ni)2, PCT, Enthalpy, Entropy, Structure, Surface, Electrode, EC Impedance, HF Trearment

Study of the pressure composition of the HfV2-H2 system

English

English

English

English AB, AB2, LiPd, PCT, Enthalpy, Entropy

English

English

English AB2, Ca(Al,B)2, PTC, Structure

French

English

EnglishEnglish

English

English

English

English A2B, Zr2Pd, PTC, Structure

Phase Separation in Hf2Fe Hydrides English

English A2B, Mg2Fe, Mg2Co, Mg2Ni, Structure

English

English

English

English A2B, Hf2Rh, Hf2Co, NMR, Diffusion

Hydrogen Storage in Mg51Zn20 English

Thermodynamic studies of the LaNi5-xSnx-H system from x=0 t0 0.5

AB5, La(Ni,Sn)5, PCT, Enthalpy, Entropy, Hysteresis, Calorimetry

Thermodynamic particularities of some CeNi5-based metal hydride systems with high dissociation pressure

AB5, CeNi5, Ce.8La.2Ni5, Ce.8La.2Ni4.7Cu.3, PCT, Hysteresis

Equilibria in the hydrogen-intermetallics systems with high dissociation pressure

AB5, (Ce,La)(Ni,Co,Al)5, AB2, (Ti,Zr)(Cr,Fe)2, PCT

Thermodynamic properties and the degredation of ZrNiHx at elevated temperatures

AB, ZrNi, PCT, Enthalpy, Entropy, Structure, Disproportionation, DPA

Hydriding characteristics in (Ti,Zr)(Ni,Mn,X)2 alloys

AB2, (Ti,Zr)(Ni,Mn,V,Fe,Cr)2, PCT, Enthalpy, Hysteresis

Hydrogen solubility in PdLi0.94 and Pd2Li1.04 compoundsHow to achieve long-term electrochemical cycling stability with hydride-forming electrode materials

AB5, La.8Nd.2Ni2.4Co2.5Si.1, PCT, Structure, Expansion, Electrode, Cyclic Stability

Effect of KOH pretreatment on the hydriding properties of LaNi2.5Co2.5 alloy

AB5, LaNi2.5Co2.5, PCT, Electrode, Cyclic Life, Surface, KOH Treatment

Characteristics of a hydrogen-absorbing alloy developed for a portable fuel cell

AB5, Mm0.82Y0.18Ni4.95Mn0.05, PCT, Applications, Storage, Fuel Cell

F-treatment effect on the hydriding properties of the La-substituted AB2 compound (Ti,Zr)

AB2, (Ti,Zr,La)(Mn,Cr,Ni)2, PCT, Activation, Impurity Effects, Powder

Hydriding behavior of pseudobinary CaAl2-xMx (M=B,Si, 0<x<1)Influence de la Substitution du Cuivre au Nickel dans Mg2Ni sur le Stockage de l'Hydrogene

A2B, Mg2Ni, Mg2Cu, Mg2(Ni,Cu), PCT, Structure, Kinetics, Enthalpy

The Mg2No0.75M0.25 Alloys (M=3d Element): Their Application to Hydrogen Storage

A2B, Mg2Ni0.75M0.25 (M=Cu,Co,Cr,Fe,V,Zn), PCT, Enthalpy, Kinetics

Hydrogen Absorption in Beryllium Substituted A2B, Mg2(Ni,Be), PCT, Enthalpy, Determination of the Hydrogen Absorption Characteristics of Metallic Materials by Thermogravimetric Methods

A2B, Mg2Ni, Teat Apparatus, PCT, Thermogravimetric, Dynamic PCT, Kinetics

Hydrogen Storage in a Berryllium Substituted TiFe Compound

AB, Ti(Fe,Be), PCT, Hysteresis, Enthalpy

Hydrogen Storage in Aluminum-Substituted TiFe Compounds

AB, Ti(Fe,Al), PCT, Hysteresis, Enthalpy

The Effect of Substitution of Mn of Al on the Hydrogen Sorption Characteristics of CeNi5

AB5, Ce(Ni,Mn)5, Ce(Ni,Al)5, PCT, Enthalpy, Entropy, Hysteresis, Structure, Kinetics

Hydride Phase Coposition and Crystal Structure in Zr2PdHx

A2B, Hf2Fe, PCT, Enthalpy, Structure, Mossbauer

Synthesis of Mg2FeH6, Mg2CoH5 and Mg2NiH4 by High-Pressure Sintering of the ElementsDehydriding Reaction Kinetics in the Improved Intermetallic Mg2Ni-H System

A2B, (Mg,Al)2Ni, PCT, Enthalpy, Entropy, Kinetics

Hydrogen Absorption in some A2B Intermetallic Compounds with the MoSi2-Type structure

A2B, Zr2Cu, Ti2Cu, Hf2Cu, Zr2Pd, Ti2Pd, Hf2Pd, Structure,

The Reaction of Gaseous Hydrogen with CuZr2 at Temperatures above 500 C

A2B, Zr2Cu, PCT, Enthalpy, Entropy, Structure, Disproportionation

1H Nuclear Magnetic Resonance Studies of Hf2RhH2.2 and Hf2CoH3.8: Structure and

MIC, Mg51Zn20, PCT, Enthalpy, Entropy, Structure

English

English

English

English

English

English

Hydrogen absorption in La3Ni13B2 English AB5, LaNi4.33B0.67, Structure, PCTEnglish

English

English A2B, Ti2NiOx, Capacity, TG, DTA

English

English

The Hydrides of NdCo3 and GdCo3 English

Hydrogen Storage Materials English

English

English

English

Desorption Isotherms of DyFe3 Hydrides English AB3, DyFe3, PCT, Enthalpy, EntropyEnglish

English

English

Hysteresis in the Nb-V-H System English

English

Investigation of Interaction of Certain Intermetallic Compounds and Alloys with Hydrogen at Room Temperature

MIC, AB, SS-alloys, Y3Co2, YCo3, Zr4Si, TiMn, BeNi, Zr-Si, Zr-V, Ti-Cr, Ti-Mo, Capacity, Kinetics

Application of Magnesium Rich Rare-Earth Alloys to Hydrogen Storage

MIC, CeMg12, La2Mg17, Ce5Mg41, PTC, Kinetics, Disproportionation

Hydrogen Absorption Properties of Selected Uranium Intermetallic Compounds

MIC, AB5, UNiAl, UCoAl, UMnAl, ThNiAl, UNi5, U5Ni4Pd, PCT, Enthalpy, Entropy, Structure

Preparation of fine Nb3Al powder by hydriding and dehydriding of bulk material

MIC, Nb3Al, Structure, H/D Grinding, Decrepitation, Powder Size

Calcium-Substituted Lanthanum-Magnesium Alloys for Hydrogen Storage

MIC, A2B17, (La,Ca)2Mg17, Capacity, Kinetics

Hydrogen Absorption by Th7Fe3 and the Related Magnetic, Structural, and Surface Properties

MIC, Th7Fe3, Structure, Capacity, Magnetic, ESCA

Hydrogen Absorption by Intermetallic Compounds

Review, MIC, AB5, AB3, A2B7, A3B, A7B3, AB, A6B23, AB2, PCT, Enthalpy, Structure, Kinetics, Superconductivity

Hydrides of Oxygen-Stabilized Intermetallic Phases

MIC, O-Stabilized Phase, Zr3V30, Capacity, Enthalpy, Entropy

Hydrogenation Characteristics of Ti2NiOx Compounds (0<X<0.5)Investigation on Synthesis, Characterization and Hydrogenation Behavior of La2Mg17 and Related Intermetallics

MIC, La2Mg17, PCT, Structure, Synthesis

The Hydriding-Dehydriding Characteristics of La2Mg17

MIC, La2Mg17, Capacity, Kinetics, Metallurgical Preparation, Chemical PreparationMIC, AB3, NdCo3, GdCo3, PCT, Enthalpy, Entropy,MIC, AB5, AB2, AB, A2B, Review, PCT, Mossbauer, Structure, Surface

The Thermodynamics and Kinetics of Hydrogen Solution in Some Metallic Glasses

MIC, Zr-Ni Alloys, Amorphous, Zr36Ni64, Zr2Ni5, Zr7Ni10, ZrNi, PCT, Enthalpy, Structure, Kinetics, Surface, OxidationStructural Relationships in Rare Earth-Transition

Metal HydridesAB3, A2B7, NdCo3, GdCo3, DyCo3, Pr2Ni7, Dy2Co7, PCT, Structure

Absorption of Hydrogen by LaNi5, NdCo5 and ErCo3 at Low Temperatures

AB5, AB3, LaNi5, NdCo5, ErCo3, Capacity, Kinetics

Cycle Performance of a Hydrogen-Absorbing La0.8Y0.2Ni4.8Mn0.2 Alloy

AB5, La0.8Y0.2Ni4.8Mn0.2, PCT, Structure, Cyclic Life

Mathematical Model for the Dynamic P-C-T Curves of the MmNi4.6Al0.2Fe0.2V0.03 Alloy in a Tubular Reactor

AB5, MM(Ni,Al,Fe,V)5, PCT, Dynamic PCT, Heat Transfer, Kinetics, Model

The Reaction of Hydrogen with Alloys of Vanadium and Titanium

Solid Solution, V-Ti, PCT, Enthalpy, Entropy, StructureSolid Solution, Nb-V, PCT, van't Hoff, Hysteresis

Crystallographic Investigation of Ternary Titanium Vanadium Hydrides

Solid Solution, Ti-V, H-content, Structure, Magnetics, Phase Diagram

English Tr

English Tr

English

English AB2, ErFe2, PCT

English

English

English

English

English

English

English Solid Solution, Pd-Ag, PCT, Lattice Gas

English

English Solid Solution, Pd-Cu, PCT

English

English

English Solid Solution, Pd-Ce, PCT, Structure

English

English

English

English

English

English

English Solid Solution, Pd-Ag, PCT

English

Interaction of Hydrogen with Alloys of the Fe-Ti-V System which Crystallise with the beta-Titanium Structure

Solid Solution, Ti-V-Fe, H-Capacity, Volume Change, Structure, DTA

The Reaction of Hydrogen with Alloys of the Titanium-Vanadium-Nickel System

Solid Solution, Ti-V-Ni, H-Capacity, Structure, Phase Diagram, DTA

The Preparation, Structure and Properties of Eu2IrH5

A2B, Eu2Ir, Capacity, Structure, Magnetic, Resistivity

Pressure-Composition Phase Diagram for Hydrides of Rare Earth-Fe2 Laves CompoundsHydrogen absorption of some AB2-type pseudobinary systems

AB2, Ce(Ni,Co)2, Ce(Al,Co)2, Ce(Al,Ni)2, Ti(V,Cr)2, Ti(V,Mn)2, Ti(V,Fe)2, (Ti,Zr)(V,Fe)2, Capacity, ActivationAbsorption of Hydrogen by Vanadium-Palladium

AlloysSolid Solution, V-Pd, Structure, Resistivity, PCT, Thermodynamics,

A Comparative Study of Hydrogen Permeabilities and Solubilities in Some Palladium Solid Solution Alloys

Solid Solution, Pd-Ag, Pd-Y, Pd-Ce, H-Permeability, Capacity, Thermogravimetric, Diffusion

Some Further Observations on the Systems Palladium-Titanium and Palladium-Titanium-Hydrogen

Solid Solution, Capacity, PCT, Enthalpy, Phase Diagram

The Zirconium-Hafnium-Hydrogen System at Pressures Less Than 1 Atm: Part 1-A Thermochemical Study

Solid Solution, Zr-Hf, PCT, Enthalpy, Entropy, Phase Diagram

A High-Pressure Investigation of the Rhodium/Palladium/Hydrogen System

Solid Solution, Pd-Rh, PCT, Thermodynamics, Phase Diagram

Hydrogen in Palladium-Silver in the Neighbourhood of the Critical pointAbsorption of Hydrogen by Palladium+Boron and Palladium+Silver+Boron Alloys

Solid Solution, Pd-B, Pd-Ag-B, PCT, Resistivity

Pressure-Composition Isotherms in the Palladium-Copper-Hydrogen SystemAbsorption of Hydrogen by Substitutional fcc Lead/Palladium alloys

Solid Solution, Pd-Pb, PCT, Electronic, Enthalpy, Entropy, Strucre

Absorption of Hydrogen by Iridium/Palladium Substitutional Alloys

Solid Solution, Pd-Ir, PCT, Resivity, Enthalpy, Entropy

Formation of beta-Phase Hydrides by Palladium-Cerium Solid SolutionsAdvanced Hydrogen Storage: Modified Vanadium Hydrides

Solid Solution, V-Ti. V-Ti-Fe, V-Ti-Fe-Al, PCT, Enthalpy, Entropy

A Pressure-Composition-Temperature Study of the Zirconium/2.5 wt% Niobium+Hydrogen

Solid Solution, PCT, Enthalpy, Entropy, Phase Diagram

Effect of Alloying Elements on the Solubility of Hydrogen in the Zr-2.5 Wt.% Nb Alloy

Solid Solution, Zr-Nb-Ni, Zr-Nb-V, Zr-Nb-Ti, PCT

A Pressure-Composition-Temperature Study of Zr-Nb-H System

Solid Solution, Zr-Nb, Phase Diagram, Enthalpy, Entropy

Sorption of Hydrogen by Titanium-Zirconium and Titanium Molydenum Alloys

Solid Solution, Ti-Zr, Ti-Mo, Capacity, Kinetics, TCD

Ab- and Desorption Isotherms of Hydrogen in Ni-Cu Alloys in the High Pressure Range

Solid Solution, Ni-Cu, PCT, Thermodynamics

On the Role of Silver Atoms in the Absorption of Hydrogen by Palladium-Silver AlloysSome Recent Results in Metal-Hydrogen Systems in the High-Pressure Region

Solid Solution, Ni-Fe, PCT, Electronic, Resistivity

English

English

English

English

Study of Hydrides English

English

English

Group 3A and 4A Substituted AB5 Hydrides English

English

English

Metal Hydrides English

Hydrogen Storage and Purification Systems III English

English

English

French

English

English

English Tr

French

English Tr

Alloys for Hydrogen Storage English AB, (Ti,V)(Fe,Mn), PCT

Hydrogen absorption properties of Ti-Cr-A (A=v, Mo or other transition metal) B.C.C. solid solution

Solid Solution, Ti-Cr, Ti-Cr-Mo, Ti-Cr-V, PCT, Structure, Cyclic Effects

H2 Absorbing-desorbing characterization of the Ti-V-Fe alloy system

Solid Solution, Ti-V-Fe, Ti43.5V49.0Fe7.5, PCT, Cyclic Effects,

Solubility and thermodynamics of hydrogen in homogeneous f.c.c. Pd-Pt alloys

Solid Solution, Pd-Pt, PCT, Enthalpy, Entropy

Structural and thermodynamic properties of the deuterium-palladium solid solutions systems: D2-[Pd(Pt), Pd(Rh), Pd(Pt,Rh)]

Solid Solution, Pd-Pt, Pd-Rh, Pd-Pt-Rh, Deuterium, PCT, Structure, Microstructure, Enthalpy, EntropySolid Solution, Elements, Cr, V, Nb, Hf, Ti-A, Zr-A, (A=V, Nb, M, Mn, Cr, Ni, Sn), AB2, ZrCr2, ZrV2, A2B, Zr2Ni, CapacityHydrogen absorption characteristics of Pd-Cr and

Pd-Mo solid solution alloysSolid Solution, Pd-Cr, Pd-Mo, PCT, Enthalpy, Entropy, Structure, Thermodynamics

Absorption of Hydrogen by Vanadium-Palladium Alloys

Solid Solution, Pd-V, PCT, Enthalpy, Entropy, Thermodynamics, Structure, ResistivityAB5, La(ni,Al)5, La(Ni,Ga)5, La(ni,In)5, La(Ni,Si)5, La(Ni,Ge)5, La(Ni,Sn)5, PCT, Structure, Enthalpy, Entropy

The Effect of Group III A and IV A Element Substiyutions (M) on the Hydrogen Dissociation Pressures of LaNi5-xMx Hydrides

AB5, La(Nni,B), La(Ni,Al)5. La(Ni,Ga)5, La(Ni,In)5, La(Ni,Si)5, La(Ni,Ge)5, La(ni,Sn)5, PCT, Structure, Enthalpy, Entropy

Effect of Aluminum Additions on the Thermodynamic and Structural Properties of LaNi5-xAly Hydrides

AB5, La(Ni,Al)5, PCT, Enthalpy, Entropy, Structure, Heat Pump

A2B, Mg2Ni, Mg2Cu, Ti2Co, Ti2Ni, Zr2Co, Zr2Cu, AB, ZrCo, PCT

MP Alloys, Mg-Al, MIC, Mg4Al5, Mg2Al3, BaMg10.5, Ba2Mg17, CeMg9, MmMg9, AB, TiFe, TiCo, Ti(Fe,Mn), Ti(Fe,Cr), AB2, TiCr2,TiCrMn, PCT

Motor Vehicle Storage of Hydrogen using Metal Hydrides

MP Alloys, Mg Alloys, MIC, MmMg9, CeMg9, Ba2Mg17, BaMg10.5, Mg4Al, MgAl, Mg2Al3, Review, Vehicle Criteria, Capacity, PCT

Equilibrium Pressures in the System Th2Al-Hydrogen

A2B, Th2Al, (Th0.875Ce0.125)2Al, PCT, Thermodynamics, Enthalpy, Entropy, Experimental

Absorption d'Hydrogene par Ti4Fe2O et Diverses Phases M6O

A2B, O-stabilized A2B, Ti4Fe2O, Ti4Ni2O, Ti4Co2O, Capacity, Structure

Hydriding mechanism of Mg2Ni in the presence of oxygen impurity in hydrogen

A2B, Mg2Ni, Oxygen, Impurity, Cyclic Life, Structure, Thermodynamics

Application of the Metal-Hydrogen Equilibrium for Determining Thermodynamic Properties in the Ti-Cu System

AB3, TiCu3, AB, TiCu, A2B, Ti2Cu, PCT, Thermodynamics, Enthalpy, Entropy,

Synthesis of Hydrides of Intermetallic Compounds of the Zr-Ni System under

A2B, Zr2Ni, AB, ZrNi, Capacity, Activation, Particle Size,

Hydrures ternaires dans le systeme zirconium-argent

AB, ZrAg, A3B, Zr3Ag, PCT, Structure, Experimental

Interaction of Hydrogen with Certain alloys and Intermetallic Comopunds of Titanium

A2B, Ti2Cu, Ti2Ni, AB, TiCu, TiNi, TiFe, AB2, TiCr2, Capacity, DTA

English

English

English

English

Reaction of LaNi5 with Hydrogen English Tr

English Tr

English AB5, La(Ni,Al)5, PCT, Structure

Absorption-desorption characteristics for MmCo5 EnglishEnglish Tr

Hydrogen Absorption by ZrMn2Fex English

English Tr

English

Hydrogen Absorption by ZrMn2MnyFex English

English Tr

English

English Tr

English

English

English

English Tr

English Tr

Hydrogen Storage Alloy English

Absorption of Hydrogen by Titanium-Cobalt and Titanium-Nickel Intermetallic Alloys, Part 1 - Experimental Results

AB, TiCo, TiNi, PCT, Enthalpy, Entropy, Phase Diagram, TPD

Absorption of Hydrogen by Titanium-Cobalt and Titanium-Nickel Intermetallic Compounds, Part 2 Thermodynamic Parameters and Theoretical Models

AB, TiCo, TiNi, PCT, Enthalpy, Entropy, Thermodynamics

Thermodynamic Relationships and Structural Transformations in TiCo and TiNi Intermetallic Alloy-Hydrogen Systems

AB, TiCo, TiNi, PCT, Enthalpy, Entropy, TCD

Low Temperature Heat Capacity Studies on Hydrogen Absorbing Intermetallic Compounds

AB5, Th(Ni,Al)5, Y(Ni,Al)5, La(Ni,Cu)5, Capacity, Heat Capacity, Structure

AB5, LaNi5, PCT, Enthalpy, Impurity Effects, Experimental

Thermodynamics and Diffusion of Hydrogen in LaCo5Hx Alloys

AB5, LaCo5, PCT, H-diffusion, Thermodynamics

HYdrogen Absorption in Ternary Substituted Alloys with Reference to La1-xYxNi5 and LaNi5-xAlx Alloys

AB5, MmCo5, PCT, Hysteresis, Isotope Effects in the Hydrogen-LaNi5, SmCo5 Systems

AB5, LaNi5, SmCo5, PCT, Enthalpy, Entropy, Deuterium, Isotope EffectsAB2, Zr(mn,Fe)2, PCT, Enthalpy, Entropy, Kinetics

Hydrides of Intermetallic Compounds of Samarium and Ruthenium

A2B, SmRu2, A3B, Sm3Ru, Capacity, DTA

Electrochemical Evaluation of LaNi5-xGex Metal Hydride Alloys

AB5, La(Ni,Ge)5, PCT, Structure, Electrode, Electrochemical, EC Cyclic AB2, Zr(Mn,Fe)2, PCT, Enthalpy, Entropy, Structure

Synthesis and Properties of Ternary Compounds with Hydrogen in the system Zr-M-H (M is V, Cr, Mn, Fe, Co, or Ni)

AB2, ZrV2, ZrCr2, ZrMn2, ZrFe2, ZrCo2, ZrMo2, Capacity, DTA

Hydrogen Absorption and its Effect on Structure and Magnetic Behavior of GdNi2

AB2, GdNi2, Capacity, Magnetics, Amorphous

Thermal Stability of the Hydrides of Various Intermetallic Compounds of the Lanthanides Having Structures of the Laves Phase Type

AB2, ScMn2, ScFe2, YMg2, LaMg2, LaNi2, CeMg2, CeCoAl, SmMn2, SmFe2, SmCo2, SmNi2, SmRu2, ErNi2, Capacity, DTA, Disproportionatio

Magnetic Properties of the Hydrides of Selected Rare-Earth Intermetallic Compounds with Transition Metals

AB2, HoFe2, ErFe2, TmFe2, Capacity, Magnetics

Mossbauer studies of hydrogen absorption in Dy, DyMn2, DyFe2, DyCo2, and DyNi2

AB2, Dy, Dy, DyMn2, DyFe2, DyCo2, DyNi2, Capacity, Mossbauer, TCD

Effect of Hydrogen Absorption on the Magnetic Properties of YFe2 and GdFe2

AB2, Yfe2, GdFe2, Capacity, Magnetics, Mossbauer

Hydride Phases Based on Intermetallic Compounds with a Laves Phase structure Formed by Yttrium, Lanthanum, and the Lanthanides

AB2, DyFe2, HoFe2, ErFe2, TmFe2, YCo2, LaCo2, PrCo2, NdCo2, GdCo2, Capacity, Structure

Reaction of Hydrogen with Intermetallic Compounds of Composition(Ln)M2, where M is

AB2, LnFe2, LnCo2, LnNi2, Ln=Most Lanthanides, Capacity, Density, TPDAB2, TiV0.6Fe0.15Mn1.28, TiV0.62Mn1.4, TiV0.8Mn1.2,

English Tr AB2, TiMn1.5, PCT, Enthalpy, Entropy

English

Hydrides of La-Ni Compounds English

English

English

Wasserstoff in Palladium/Silber-Legierungen German

English

Some Light Rare Earth Intermetallic Hydrides English

The Stability of Intermetallic Hydrides English Tr

English Tr

English Tr

Hydrogen Absorption in Cubic Ti3Sb English

English AB3, (Er,Th)Fe3, Capacity, Magnetics

English Tr

English

English

English A6B23, Y6Mn23, Capacity, MagneticsEnglish A2B17, Ce2Co17, Capacity

Hydrures metalliques riches magnesium French

English

English Tr

English Tr

English

The Interaction of Hydrogen with the Intermetallic Compound Titanium Manganide (TiMn1.5)

Solubility of Hydrogen in CuTi, CuTi2, PdTi2, and Cu0.5Pd0.5Ti2 - Reactions of Titanium Alloys with Gaseous Hydrogen

AB, TiCu, A2B, Ti2Cu, Ti2Pd, Ti2Cu0.5Pd0.5, PTC, Structure, Enthalpy, Entropy, Phase DiagramA7B3, La7Ni3, AB, LaNi, AB2, LaNi2, AB3, LaNi3, A2B7, La2Ni7, AB5, LaNi5, Capacity, PCT, Amorphous, Structure

X-ray diffraction and extended X-ray absorption fine structure study of RMn2 hydride (R=Y, Gd,

AB2, GdMn2, YMn2, DyMn2, Capacity, Structure, EXAFS

Effects of Ni-substitution and F-treatment on the hydriding behaviors and microstructures of AB-compound (Ti,Zr)(Mn,Cr)2

AB2, (Ti,Zr)(Mn,Cr)2, PTC, Structure, Microstructure, Surface Treatment, ActivationSolid Solutions, Pd0.9Ag0.1, Pd0.8Ag0.2, Pd0.7Ag0.3, Pd0.6Ag0.4, PCT, Thermodynamics, Enthalpy, EntropyZrMn2-Type Alloy Partially Substituted with

Cerium/Praeseodymium/Neodymium and Characterized by AB2 Stoichiometry

AB2, Zr0.8Ce0.2Mn2, Zr0.7Ce0.3Mn2, PCT, Structure, Volume Change, ActivationAB3, SmCo3, CeCo3, YCo3, PCT, Enthalpy, EntropyAB2, ScMn2, ErFe2, ScFe2, HoRu2, AB3, SmCo3, AB5, LaCo5, Capacity, Disproportionation, DTA

Determination of the Enthalpy of Formation of Intermetallic Compounds and their Hydrides from Differential Thermal Analysis Data

AB2, AB3, AB5, A2B, Enthalpy, Entropy, DTA, Disproportionation

Interaction of Titanium Intermetallic Compounds with Hydrogen

A2B, Ti2Al, AB, TiFe, TiAl, AB2, TiFe2, AB3, TiAl3, A3B, Ti3Al, Capacity, DTAA3B, Ti3Sb, PCT, Enthalpy, Entropy, Structure

Magnetization Measurements on Er1-xThxFe3 and some of their Hydrides

Hydrogen-containing Intermetallic Compounds of the La-Ni System

A, La, A3B, La3Ni, AB, LaNi, AB2, LaNi2, AB3, LaNi3, A2B7, La2Ni7, AB5, LaNi5, B, Ni, Capacity, PCT, DTA, StructureEffect of Absorbed Hydrogen on Magnetic

Behavior of Th7Co3 and Th7Ni3A7B3, Th7Co3, Th7Ni3, Capacity, Magnetics

Influence of Absorbed Hydrogen on the Magnetic Behavior of RCo3 (R=Gd, Dy and Ho)

AB3, GdCo3, DyCo3, HoCo3, PCT, Structure, Volume Change, Magnetics

Hydrogen Induced Magnetic Ordering in Reaction of Hydrogen with Ce24O11, Ce5Co19, and Ce2Co17

AB12, CeMg12, PCT, Review, Kinetics, Composite, Mg+LaNi5, A2B17, La2Mg17, A5B41, Ce5Mg41, Mg-alloy

Hydrogen absorption characteristics of oxygen-stabilized rare-earth iron intermetallic compounds

A3B8Ox, Ho3Fe8Ox, Dy3Fe8Ox, Y3Fe8Ox, PCT, Structure

Synthesis, Thermal Stability, and Structure of Hydride Phases based on RCo3 Compounds (where R = Rare Earth or Yttrium)

AB3, YCo3, CeCo3, PrCo3, NdCo3, GdCo3, TbCo3, DyCo3, HoCo3, ErCo3, Capacity, TGA, DTA, Volume Change

Equilibria in the Systems RCo3-H2, Where R is Ce, Pr, Tb, Dy, or Er

AB3, CeCo3, PrCo3, TbCo3, DyCo3, ErCo3, PCT, Enthalpy, Entropy

Influence of Hydrogen on Structure and Magnetic Properties of Ho6Fe23 and Er6Fe23

A6B23, Ho6Fe23, Er6Fe23, PCT, Capacity, Structure, Volume Change,

English

English

English

English

English

English

English

English

English

English

English

English

English

English

English

English

English

English

English

English

English

English

English

Thermodynamics and Kinetics of Hydrogen Absorption in Rare Earth-Cobalt (R2Co7 and RCo3) and Rare Earth-Iron (RFe3) Compounds

A2B7, AB3, Gd2Co7, Dy2Co7, Pr2Ni7, ErNi3, DyCo3, ErCo3, DyFe3, ErFe3, PCT, Enthalpy, Structure, Volume Change, Kinetics

Heats of Formation and Decomposition of Nickel and Ni0.8Cu0.2 Hydrides Measured in High Pressures of Gaseous Hydrogen

Solid Solution, Ni-Cu, PCT, Enthalpy, Experimental

The Effects of Aluminum Substitution in TiFe on its Hydrogen Absorption Properties

AB, Ti(Fe,Al), PCT, Enthalpy, Entropy, Hysteresis, Decrepitation

The Effects of the Addition of Aluminum on the Kinetic properties of the Interemetallic Compound

AB, TiFe0.94Al0.06, TiFe, PCT, Kinetics, Experimental

Hydrogen Absorption Characteristics of an FeTi+Misch Metal Alloy

AB, TiFe, TiFe(Mm), PCT, Activation, Microstructure, Decrepitation, Kinetics

Thermodynamic Characterization of the ZrNi-H System by Reaction Calorimitry and p-c-T Measurements

AB, ZrNi, PCT, Enthalpy, Entropy, Hysteresis, Annealing

Hydrogen Sorption Properties of Non-Stoichiometric ZrMn2-based Systems

AB2, ZrMn2Co0.8, ZrMn2Cu0.8, ZrMn2Niy, ZrMn2Fe0.8, PCT, Enthalpy, Entropy, Structure, Hysteresis

Thermodynamics and Kinetics of Zr(Fe1-xMnx)2Hx and the Storage Compound

AB2, Zr(Fe,Mn)2, Ti0.8Zr0.2CrMn, PCT, Enthalpy, Entropy, Kinetics

Magnetic Properties and Electron Paramagnetic Presonace Studies of the GdXAlHx (X=Fe,Ni) Hydrides

AB2, GdFeAl, GdNiAl, PCT, Structure, Volume Change, Magnetic

Hydrogen Storage in some Ternary and Quaternary Zirconium-Based Alloys with the C14 Structure

AB2, ZrMnCr, Zr0.8Ti0.2MnCr1.25, ZrMnFeCr0.25, ZrMnFeNi0.4, ZrMnFeCo0.4, ZrCrFe1.5, PCT, Structure, Enthalpy, Entropy, Kinetics

The Crystallographic, Thermodynamic and Kinetic Properties of the Zr1-xTixCrFe-H2

AB2, (Zr,Ti)CrFe, PCT, Structure, Volume Change, Enthalpy, Entropy,

Equilibria and Thermodynamic Properties of the ThZr2-H System

AB2, ThZr2, PCT, Enthalpy, Entropy, Structure

Thermodynamics and Kinetics of Hydrogen Absorption in the Intermetallic Compounds Zr(Cr1-xVx)2

AB2, Zr(Cr,V)2, PCT, Kinetics, Impurity Effects, Air

Formation and Magnetic Properties of Crystalline and Amorphous SmCo2 Hydrides

AB2, SmCo2, PCT, Structure, Magnetic, Amorphous

Thermodynamic Characterization of Zr(FexCr1-x)2-H Systems

AB2, Zr(Fe,Cr)2, PCT, Enthalpy, Entropy, Hysteresis, Plateau Slope

Hydrogenation Characteristics of the Zr1-xTixCr1-yFe1+y Laves Phase Systems

AC2, (Zr,Ti)(Cr,Fe)2, PCT, Enthalpy, Entropy, Hysteresis, Structure

On the Structure and Hydrogen Desorption Properties of the Zr(Cr1-xNix)2 Alloys

AB2, Zr(Cr,Ni)2, PCT, Capacity, Structure

Thermodynamic Properties of the Zr0.8Ti0.2(MnxCr1-x)Fe-H2 System

AB2, Zr0.8Ti0.2(Mn,Cr)Fe, PCT, Enthalpy, Entropy, Hysteresis, Plateau

Characteristics of Hydrogen-Absorbing Zr-Mn Alloys for Heat Utilization

AB2, ZrMn2, Zr(Mn,Co)2, Zr(Mn,Co,V)2, PCT, van't Hoff, Hysteresis, Structure

Thermodynamic Properties of the ZrCr2T0.8-H2 Systems (T=Fe,Co,Ni)

AB2, ZrCr2Fe0.8, ZrCr2Co0.8, ZrCr2Ni0.8, PCT, Enthalpy, Entropy,

Solubility of hydrogen in Zr1-xHoxCo2 (0<x<1) alloys

AB2, (Zr,Ho)Co2, PCT, Enthalpy, Entropy, Structure

Correlations between the structural Properties, the Stability and the Hydrogen Content of Substituted LaNi5 Compounds

AB5, LaNi5, LaNi4Co, LaNi4Cu, LaNi4Fe, LaNi4Al, LaNi4Mn, La(Ni,Cu)5, PCT, Enthalpy, Structure, Review, MicrostructureHydrogen Desorption Characteristics of MmNi5-

xFex CompoundsAB5, Mm(Ni,Fe)5, PCT, Enthalpy, Entropy

Hydrides in the PrNi5-H2 System English

English

English

Thermodynamic Properties of LuCo3 Hydrides English AB3, LuCo3, PCT, Enthalpy, EntropyEnglish

English

English

English

English

English

English

Hydrogen Absorption in the Zr-Al System English

Magnetic Properties of Th2Fe14B and its Hydride EnglishEnglish

English

English

English

Study of the System Zr(Cr0.8-xCoxV0.2)2-H2 English

English

English

English

English

English

English

English

English

AB5, PrNi5, PCT, Enthalpy, Entropy, Structure, Hysteresis

Enthalpies of Formation and Hydrogenation of La(ni(1-x)Cox)5 Compounds

AB5, La(Ni,Co)5, PCT, Enthalpy, Entropy, Structure

Some Factors Affecting the Cycle Lives of LaNi5-Based Alloy Electrodes of Hydrogen Batteries

AB5, LaNi5, La(Ni,Cu)5, La(Ni,Mn)5, La(Ni,Cr)5, La(Ni,Al)5, LaNi2.5Co2.5, PCT, Electrode, Cyclic Life, Structure, Hardness

Magnetic Behavior of Lower Hydrides of T6Mn23 and Th6Mn23

A6B23, Y6Mn23, Th6Mn23, PCT, Structure, Magnetic

Influence of Hydrogen on the Magnetic Properties of Y-Co Compounds

A2B7, Y2Co7, AB3, YCo3, PCT, Enthalpy, Entropy, Structure, Magnetic

Hydrogen Sorption Properties of D88-Type Systems: I Hydrides of Y5Si3

A5B3, Y5Si3, PCT, Hysteresis, Enthalpy, Entropy, Structure, Impurity

Influence of Hydrogen on the Magnetic Characteristics of R2Fe14B (R=Ce,Pr,Nd,Sm or Y)

R2Fe14B, Y2Fe14B, Ce2Fe14B, Pr2Fe14B, Nd2Fe14B, Sm2Fe14B, Capacity, Magnetic

On the Interaction of Hydrogen with the Intermetallic Phase Mg6Pd

A6B, Mg6Pd, PCT, Enthalpy, Entropy, TCNE

Hydrogen Absorption by M5X3 Phase Zr-Al Compounds

A5B3, Zr5Al3, Zr5Al3Ox, Capacity, Structure

Structural and Magnetic Properties of RTiFe11 and their Hydrides (R=Y,Sm)

RTiFe11, YTiFe11, SmTiFe11, Capacity, Structure, MagneticMIC, Zr-Al, Capacity, Structure, DTA, Enthalpy, Entropy, XPS, ISSTh2F14B, Capacity, Structure,

Effect of alloying element on the sloping hydrogen plateaux in zirconium-based Laves phase systems

AB2, (Zr,Ti)MnFe, (Zr,Ti)V0.5Fe1.5, PCT, Enthalpy, Entropy, Hysteresis, Plateau Slope, Structure

Thermodynamic characterization of the Zr-Mn-H system Part 1. Reaction of H2 with single-phase ZrMn2+x C-14 Laves phase alloys

AB2, ZrMn2, ZrMn2+, PCT, Enthalpy, Entropy, Hysteresis, Calorimetry, Structure

The influence of Si and Ge on the hydrogen sorption properties of the intermetallic compound

AB2, Zr(Cr,Si)2, Zr(Cr,Ge)2, PCT, Structure

Hydriding properties of the intermetallic compounds Zr(Mn1-yNby)x (x=0.97-2.91, y=0-

AB2, Zr(Mn,Nb)2, Zr(Mn,Nb)2-, Zr(Mn,Nb)2+, PCT, Enthalpy, EntropyAB2, Zr(Cr,Co,V)2, PCT, Enthalpy, Structure

Electrochemical properties of the Zr(V0.4Ni).6)2.4 hydrogen storage alloy electrode

AB2, Zr(V0.4Ni).6)2.4, PCT, Structure, Electrode, SEM, XPS, Surface Treatment, Electrochemical

Interaction of intermetallic compounds with hydrogen at pressures up to 250 MPa: the LaCo5-xMnx and CeNi5-H2 systems

AB5, La(Co,Mn)5, CeNi5, PCT, Enthalpy, Entropy, Hysteresis, Structure, van't Hoff

Hydriding properties of MmNi5 system with aluminum, manganese and tin substitutions

AB5, Mm(Ni,Al)5, Mm(Ni,Mn)5, Mm(Ni,Sn)5, PTC, Enthalpy, Entropy, Structure, Microstructure, High-Fe Mm

Crystal structure and hydriding behavior of LaNi5-ySny

AB5, La(Ni,Sn)5, PCT, Structure, Alloy Impurity Effects

Homogenizing behavior in a hydrogen-absorbing LaNi4.55Al0.45 alloy through annealing and rapid quenching

AB5, LaNi4.55Al0.45, La(Ni,Al)5, PCT, Structure, Plateau Slope, Annealing Effects, SEM, EPMA, Microstructure

The effect of aluminum on the structural and hydrogen sorption properties of ErNi5

AB5, ErNi5, Er(Ni,Al)5, PCT, Enthalpy, Entropy, Structure

Hydrogen storage properties of M11-xCaxNi5 pseudobinary intermetallic compounds

AB5, (Mm,Ca)Ni5, (M1,Ca)Ni5, PCT, Activation, Structure, Low-Ce Mm

Hydrogen sorption properties in FeTi-type Ti-Fe-V-Mn alloys

AB, Ti(fe,Mn), (Ti,V)(Fe,Mn), PCT, Enthalpy, Entropy, Structure, EDXA

English A2B, Mg2Co, PCT, Structure

English

English

English

English AB3, (Y,Zr)C02.9, PCT, Magnetic

R3Ni alloys and their hydrogenation behavior English

English

English

English

English

English

English

English

Hydrogenation of Sm2Fe17 English A2B17, Sm2Co17, Capacity, TPDEnglish

English

English

English

An Investigation of R6Fe23Hx Thermodynamics English

English

English

English

English

English

On the composition and structure of the cubic delta-phase in the Mg-Co-H systemNew hydride formation of MoSi2-type intermetallic compounds at hydrogen pressures

A2B, Zr2Pd, Hf2Pd, Hf2Cu, PCT, Structure

Effect of hydrogen absorption on structure, superconductivity, magnetic susceptibility and heat capacity of Zr2Rh

A2B, Zr2Rh, Capacity, Structure, Superconductivity, Magnetic, Heat Capacity

Hydrogen absorption-desorption and crystallographic characteristics of RCo3-xGax (R=Y, Gd; x=0.6-1.2) intermetallics

AB3, Y(Co,Ga)3, Gd(Co,Ga)3, Capacity, Activation, Structure, Volume Change

Magnetic properties of PuNi3-type hydrides Y1-xZrxCo2.9Hy

A3B, La3Ni, Ce3Ni, Pr3Ni, Nd3Ni, Pr3Ni0.5Cu0.5, Pr2.5Mg0.5Ni, Pr2DyNi, PCT, Electrochemical, MicrostructureNeutron diffraction study of the structure of the

A15-type deuteride Ti3SbD2.6A3B, Ti3Sb, Capacity, Deuterium, Structure

Poisoning by air of AB5 type rare-earth nickel hydrogen-absorbing alloys

AB5, Mm0.9Y0.1Ni4.9Mn0.1, LaNi4.55Al0.45, PCT, Structure, Cyclic Life, Impurity Effects, Air, Poisoning

A Neutron-Diffraction Study on the Structural Relationships of RCo5 Hydrides

AB5, LaCo5, CeCo5, PrCo5, NdCo5, PCT, Structure, Magnetic, Neutron

Absorption of hydrogen by palladium-nickel-rhodium ternary alloys

Solid Solution, Pd-Ni-Rh, PCT, Enthalpy, Entropy, Structure

Thermodynamic studies of hydrogen solution in Pd-Sc alloys

Solis Solution, Pd-Sc, PCT, Enthalpy, Entropy

Hydrogen storage alloys rapidly solidified by the melt-spinning method and their characteristics as metal hydride electrodes

AB5, LaNi4.6Al0.4, LaNi4Co0.6Al0.4, PCT, Electrode, EC Cyclic Life, Microstructure, Rapid Solidification, TEMThermodynamics of processes of hydrogen

sorption by hydrides of intermetallic compounds of CrB structural type

AB, HfNi, ZrNi, HfCo, ZrCo, Capacity, DTA, Enthalpy, Entropy

Electrical Resistance and hydrogen Solubility Anomalies in a Pd-8at.%Y Solid Solution Alloy

Solid Solution, Pd-Y, Capacity, TCD, Resistivity

Absorption of Hydrogen in Pd-Co and Pd-U Alloys

Solid Solution, Pd-Co, Pd-U, PCT, Enthalpy, Entropy,

Properties of Metal Hydrides for Use in Industrial Applications

AB2, Ti0.8Zr0.2CrMn, TiVMn, TiV1.5Fe0.4Mn0.1, (Ti,Zr)CrMn, PCT, Volume Change, Microstructure, (Ti,Zr)(V,Fe,Cr,Mn)2, Application

Hydrogen Sorption Properties of D88-Type Systems III. The Effect of Germaniun Substitution in Y5-aScaSi3 Phases

A5B3, (Y,Sc)5(Si,Ge)3, PCT, Hysteresis, Enthalpy, Structure

A6B23, Y6Fe33, Ho6Fe33, Er6Fe33, LuY6Fe33, PCT, Enthalpy, Entropy,

Electronic and Elastic Effects in the Phase Diagrams of Binary Pd Alloys Hydrides

Solid Solution, Pd-Nb, Pd-Ru, Pd-Mo, Pd-V, PCT, Magnetic

Order-Disorder Transformations and Hydrogen Solubility in a Series of Pd-Y Solid Solution

Solid Solution, Pd-Y, PCT, Enthalpy, Resistivity, Cooling Rate Effects

Magnetic Moments in the Hydrides of YCo3-Related Compounds

AB3, YCo3, YFe1.5Ni1.5, YCo2.4Ni0.6, YCo2.4Fe0.6, PTC, Magnetic, DOS

A possible role for hydrogen-induced lattice migration in alloy materials processing

Solid Solution, Pd-Rh, Pd-Ni, Pd-Pt, PCT, Lattice Diffusion, Metal Segregation, H-Induced M-Segregation

Structural Studies of a new Laves phase alloy (Hf,Ti)(Ni,V)2 and its very stable hydride

AB2, Hf0.57Ti0.43(Ni0.85V0.15)2, Capacity, Structure, Electrochemical

Magnetic properties of the R2Fe17Hx series English

English

English

English

English AB2, ZrNiAl, PCT, Structure, Deuterium

English

English

English

English

English

Hydrogen absorption properties of uranium alloys English

Thermal Stability of Zr-Based SHS Hydrides English

English

English

English

English

A2B17, R2Fe17, R=Ce,Th,Pr,Nd,Sm,Gd,Tb,Dy,Ho,Er,Tm,Lu, Capacity, Structure, Magnetic, Curie Temperature

Hydrogen absorption properties of several intermetallic compounds of the Zr-Ni system

A8.8B11.2, Zr8.8Ni11.2, A7B10, Zr7Ni10, A8B21, Zr8Ni21, A2B7, Zr2Ni7, PCT, Structure, Kinetics

Intrinsic behavior analysis of substituted LaNi5-type electrodes by means of in-situ neutron diffraction

AB5, LaNi4Co, LaNi4.5Mn0.5, LaNi4.5Al0.5, LaNi3.55Mn0.4Al0.3Co0.75, PCT, Structure, Electrode, EC Cycling,

Second phase and electrode characteristics of rare-earth-based AB5+x alloys

AB5, AB5+, M1Ni5, AB6.2, AB5.6, B=(Co,Mn,Al), A=La-rich Mm, PCT, Structure, Electrode, EC Cycling

Hexagonal ZrNiAl alloy and its hydride (deuteride) with the Fe2P-type structurePhase stability and neutron diffraction studies of Laves phases (Zr(Cr1-xMx)2 with M=(Cu0.5Ni0.5) and 0<x<0.2 and their hydrides

AB2, Zr(Cr,Cu,Ni)2, Capacity, Structure, Microstructure, Volume Change, EDX

Thermodynamic characterization of new palladium alloy tritides

Solid Solution, Pd-Ni, Pd-Co, PCT, Enthalpy, Entropy, Tritium

Heat and mass transfer in coupled hydride reaction beds

AB5, LmNi4.49Co0.1Al0.23Mn0.21, LmNi4.85Sn0.15, PCT, Heat Transfer, Model

The characterization of Ti- and Ca-MH systems in the high temperature chemical heat pump for gas-cooled reactor applications

Solid Solution, Ti-Cr, AB2, CaMg2, Composite, TiCu-CuO, PCT, van't Hoff

Metal hydride compressor and its application in cryogenic technology

AB2, Ti0.77Zr0.23(Mn,Cr,Cu)2, PCT, Compressor, JT RefrigeratorAB2, UZr2, Multiphase, PCT, Pyrophoricity, Oxidation, Decrepitation, Heat StorageSolid Solution, Zr-N, Zr-Ti-N, Zr-Nb-N, AB, ZrNi, ZrCo, A2B, Zr2Ni, Zr2Co, Capacity, Structure, DTA

The Hydriding Characteristics of CeMnAl and Related Alloys

AB2, CeMnAl, MmMnAl, LaMnAl, CeFeAl, CeCuAl, CeCr0.75Al1.25, PCT, Structure, Electronic

Relation among hydriding properties and durability of (rare-earth)-Ni alloys

AB5, La0.7Sm0.3Ni4Fe, LaNi4.8Fe0.2, PCT, Structure, Volume Change, Cyclic Life, Impurity Effects, O2, Decrepitation

Hydrogen absorption/desorption characterization of Mm0.8Ca0.2Ni5-xAlx alloys

AB5, (Mm,Ca)(Ni,Al)5, PCT, Microstructure, Kinetics

Investigation of a New Modified AB5 Alloy for Nickel-Metal Hydride Batteries

AB5, La0.8Ce0.2Ca0.1Ni3.55Co0.75Mn0.4Al0.3, La0.4Ce0.2Ca0.5Ni3.55Co0.75Mn0.4Al0.3, PCT, Electrode, EC Cyclic Life, EC Rate Eff

Absorption of Hydrogen by MmNi5 Alloys English

English

English

English

English Tra

English AB5, LaNi3.92Al0.98, PCT, Enthalpy

English

English

Hydriding behavior of gas-atomized AB5 alloys English

English

English

English

English

English

English

English

English

English

English

AB5, MmNi5, PCT, Stoichiometry Effects, Activation, Enthalpy, Entropy,

A Search for Hydrogen Storage Materials other than LaNi5-xAlx in the RENi5-xAlx (RE=Rare Earth) Intermetallic Series

AB5, Tb(Ni,Al)5, Ho(Ni,Al)5, Gd(Ni,Al)5, Dy(Ni,Al)5, Er(Ni,Al)5, PCT, Enthalpy, Entropy

Hydrogen Interaction with RNi3 Type Intermetallic Compounds at High Gaseous

AB3, CeNi3, CeNi2.2Mn0.8, ErNi3, PCT, High Pressure, Enthalpy, Entropy,

Thermodynamics of Hydrogen Absorption by Pd-Sb and Pd-Bi Alloys

Solid Solution, Pd-Sb, Pd-Bi, PTC, Enthalpy, Entropy, Thermodynamics

Reaction of Hydrogen with Intermetallic Zirconium Compounds Crystallising with Laves Phase Structure

AB2, ZrCr2, ZrMo2, ZrFe2, ZrMoFe, ZrMo0.5Co1.5, Capacity, PCT, Structure, Volume Change

Calorimetric study of hydrogen interaction with LaNi3.92Al0.98Split Plateaux in the LaNi5-H System and the Effect of Sn Substitution

AB5, La(Ni,Sn)5, PCT, Cyclic Effects, Structure, Plateau Splitting

Gas-phase H2 absorption and microstructural properties of LaNi5-xGex alloys

AB5, La(Ni,Ge)5, PCT, Enthalpy, Entropy, Hysteresis, StructureAB5, LaNi5, MmNi3.5Co.8Al.4Mn.3, LaNi4.75Sn0.25, PCT, Gas Atomizing, SEM, Decrepitation, Electrode, Cyclic LifeEffects of the materials processing on the

hydrogen absorption properties of MmNi5 type alloys

AB5, Mm(Ni,Fe,Al,Cu)5, Nonstoichiometric, PCT, Structure, Microstructure, Decrepitation, Electrode, Cyclic LifeThe influence of Co and various additives on the

performance of MmNi4.3-xMn0.33Al0.4Cox hydrogen storage alloys and Ni/MH prismatic sealed cells

AB5, Mm(Ni,Mn,Al,Co)5, PCT, Structure, Decrepitation, Electrode, Battery, Cyclic Life

Influence of preparation methods of non-stoichiometric hydrogen-absorbing alloys on the performance of nickel-metal hydride secondary batteries

AB5, Mm(Ni,Al,Mn,Co)5, Nonstoichiometric, PCT, Structure, Microstructure, Electrode, Cyclic Life

Thermodynamic and structural changes of various intermetallic compounds during extended cycling in closed systems

AB5, LmNi4.85Sn0.15, LmNi4.5Co0.1Mn0.2Al0.2, LmNi4.1Mn0.6Al0.1Co0.2, PCTCyclic Life, Disproportionation, Regeneration, Structure

Effects of nonmeteal additions on hydriding properties for Ti-Mn Laves phase alloys

AB2, Ti0.9Zr0.1Mn1.4Cr0.4V0.2B0.03 (B=S,C), PCT, Structure, Microstructure, SEM, Decrepitation

Structural and magnetic study of new YFe2Dx compounds (0<x<3.5)

AB2, YFe2, PCT, Structure, Volume Change, Mossbauer, Magnetism

Study of the System Zr1-xTix(Cr0.5M0.4V0.1)2 - H2 (0<x<0.2, M=Fe, Co, Ni)

AB2, (Zr,Ti)(Cr0.5M0.4V0.1)2 (M=Fe,Co,Ni), PCT, Structure, Volume Change

Synthesis and crystal structure of tetragonal LnMg2H7 (Ln=La, Ce), two Laves phase hydride derivatives having ordered hydrogen distribution

AB2, LaMg2, CeMg2, H-Capacity, Structure

Hydrogen absorption-desorption, crystal structure and magnetism in RENIAL intermetallic compounds and their hydrides

AB2, YNiAl, GdNiAl, TbNiAl, DyNiAl, ErNiAl, LuNiAl, H-Capacity, Structure, Volume Change, Magnetism

Electrochemical performances of ZrM2 (M=V, Cr, Mn, Ni) Laves phases and the relation to microstructures and thermodynamical properties

AB2, Zr(Ni,Mn,V,Cr)2, Zr(Cr,Ni)2, Multiphase, H-Capacity, Plateau Pressure, Structure, Microstructure, Phase Diagram, Electrode, Cyclic Life, Activation, Rare Earth Addition

English

English

English

Hydrogen in hard magnetic materials English

English

English

About hydrogen insertion in ThMn12 type alloys English

Deuterium Absorption in Pd0.9Y0.1 English

English

English

English

English

English

English

English Tra

Chemical Properties of LaNi5-hydride English Tra

57Fe Mossbauer effect in ThFe5 hydride English

English Tra

English

The System LaNi5-H2 English

English

Structural- and hydriding properties of the Zr(V0.25Ni0.75)a (1<a<4) alloy system

AB2, AB2+, AB2-, Nonstoichiometric, Multiphase, H-Capacity, Structure, Electrode, Rate Effects

Hydrogenation characteristics of TiFe1-xPdx (0.05<x<0.30) alloys

AB, Ti(Fe,Pd), PCT, Structure, Activation

High pressure hydride phases formation in Ti2Ni- and MoSi2-type intermetallic compounds

A2B, Hf2Fe, Hf2Ni0.5Mn0.5, PCT, High Pressure, StructureA2B17, CeFe17, PrFe17, HoFe17, NdFe17, PCT, Structure, Magnetism, Hard Magnets

Desorption characteristics of the rare earth (R) hydrides (R=Y, Ce, Pr, Nd, Sm, Gd and Tb) in relation to the HDDR behavior of R-Fe-based-compounds

Rare Earths, A6B14, Nd6Fe13Ge, Nd6Fe13Ga, Structure, Volume Change, DTA

Neutron powder diffraction investigations of pure and deuterated Ti3PO0.58

A3B, Ti3PO0.58, Structure, Neutron Diffraction, DeuteriumAB12, YFE11Ti, HoFe11Ti, YFE10.5Mo1.5, HoFe10.5Mo1.5, HoFe11Mo, HoFe10Mo2, Structure, Magnetism, MossbauerSolid Solution, Pd0.9Y0.1, PCT, Hysteresis, Deuterium, Structure, Neutron Diffraction, Dilute Range

Thermodynamic properties for solution of hydrogen in Pd-Pt-Rh ternary alloys

Solid Solution, Pd-Pt-Rh, PCT, Enthalpy, Entropy, Structure

The effect of cycling through the hydride phase on isotherms for fcc Pd-rich alloys

Solid solution, Pd-Cr, Pd-Mo, Pd-Au, Pd-Ag, PCT, Hysteresis, van’t Hoff, Cyclic Effects, Recovery, Dilute Region

Kinetics and mechanisms of hydrides formation-a review

Elements, Ce, Th, Zr, Hf, U, Gd, AB5, La(Ni,Al)5, Review, Activation, Kinetics, Nucleation, Decrepitation, Impurity Effects, Surface, Models

The state of research and development for applications of metal hydrides in Japan

Review, AB5, Application, Electrode, Battery, Electric Vehicles, Storage, Transport, Purification, Refrigeration

The recent research, development and industrial applications of metal hydrides in the Peoples Republic of China

AB5, AB, Applications, Review, Storage, Separation, Compressor, Vehicles, Heat Pumps, Catalyst, ElectrodeEquilibria in CexLa1-xNi5-yAly-H2 systems at

subcritical and supercritical parametersAB5, (Ce,La)(Ni,Al)5, PCT, Critical Parameters, Non-Classic PCT

Solubility of Hydrogen in the Compounds YCo5 and YNi5

AB5, YCo5, YNi5, PCT, Enthalpy, StructureAB5, LaNi5, PCT, Enthalpy, Deuterium, DTA, Kinetics, Impurity Effects, HNO3, H2O, Air, O2AB5, ThFe5, H-Capacity, Mossbauer, Structure

The Phase Equilibrium in the Hydrogen-Lanthanum Pentanickelide (LaNi5) System at

AB5, LaNi5, PCT, Enthalpy, Entropy, Low Temperature, Structure

Thermodynamic Analysis of Absorption Pressure-Composition Isotherms of CaNi5Hx and CaNi5Dx (x=0-1.1)

AB5, CaNi5, PCT, Enthalpy, Entropy, Deuterium, Structure

AB5, LaNi5, PCT, Enthalpy, Entropy, Structure, Phase Diagram, Phases

The Effect of Thermal cycling on the Hydriding Rate of MmNi4.5Al0.5

AB5, MmNi4.5Al0.5, PCT, Kinetics, Cyclic Life, Cyclic Effects

English

English

English

English

English

English

Hydrogen absorption studies in Zr0.4Ho0.6Fe2 English

English

English

English

English Tra

English

Hydrogenation and nitrogenation of SmFe2 English

English

English

English

English

English

English

English AB3, YNi3, H-Capacity, MagnetismEnglish

Surface and Bulk Properties of LaNi5-xSix alloys from the viewpoint of battery applications

AB5, La(Ni,Si)5, PCT, Dynamic PCT, Hysteresis, Enthalpy, Entropy, Structure, Volume Change, Electrode, Cyclic Life, SEM, Surface, XPS

A neutron diffraction investigation of the LaNi5-D phase diagram

AB5, LaNi5, PCT, Deuterium, Structure, Phase Analysis, Line Broadening

Dynamic reaction characteristics of the tubular hydride bed with large mass

AB5, MmNi4.6Al0.2Fe0.2V0.03, PCT, Dynamic PCT, Reactor, Heat Transfer

Thermodynamic properties of non-stoichiometric LaNix-1Cu-H systems

AB5, La(Ni,Cu)5+, Nonstoichiometric, PCT, Enthalpy, Entropy, Structure, Calorimetry, Critical Temperature

Effect of alloy composition on enthalpy and entropy changes of hydride formation for stoichiometric and nonstoichiometric hydrogen storage alloys

AB5, La(Ni3.6Mn0.4Al0.3Co0.7)5+, Nonstoichiometric, PCT, Plateau Slope, Enthalpy, Entropy,

A microcalorimetric investigation of the thermodynamics and kinetics of hydriding-dehydriding reactions

AB5, (La,Ce)(Ni,Co,Sn)5, La(Ni,Co,Sn)5, PCT, Enthalpy, Entropy, Structure, Volume Change, Kinetics, ModelAB2, Zr0.4Ho0.6Fe2, PCT, Enthalpy, Entropy, Structure, Volume Change, Kinetics

Hydrogen absorption and kinetic studies in Zr0.2Ho0.8Fe2

AB2, Zr0.2Ho0.8Fe2, Enthalpy, Entropy, Structure, Kinetics

Solubility of hydrogen in Zr1-xHoxCo2 (0<x<1) alloys

AB2, (Zr,Ho)Co2, PCT, Enthalpy, Entropy, Structure

Low Temperature Magnetic Properties of the Hydrides and Deuterides of Er(Fe1-xMnx)2

AB2, Er(Fe,Mn)2, H-Capacity, Structure, Magnetism

Effect of Zirconium and Nickel on Phase and Isotopic Equilibria in Titanium-based Hydrogen Intermetallic Compound Hydride Systems

AB2, TiMn1.5, TiMn1.4Ni.1, TiCr1.8, Ti0.8Zr0.2Cr1.8, TiCrMn, Ti0.8Zr0.2CrMn, PCT, Enthalpy, Tritium, Isotope Separation, Separation

Hydrogen absorption and its effect on the Magnetic Properties of Rare-Earth Iron Intermetallics

AB2, Yfe2, CeFe2, AB3, YFe3, A6B23, Y6Fe23, H-Capacity, Structure, Volume Change, MagnetismAB2, SmFe2, H-Capacity, Structure, Magnetism

Discussion on the hysteresis behavior in Zr-based Laves phases

AB2, Zr.9Ti.1MnFe, Zr.9Ti.1CrFe, Zr.9Ti.1Fe1.5V.5, PCT, Hysteresis, SEM, Structure

Thermodynamics of hydride formation and decomposition for TiMn2-H2 system at pressure up to 2000 atm

AB2, TiMn2, PCT, Hysteresis, Enthalpy, Entropy, Hysteresis

Metallurgical state of lanthanum and its affect on the activation behavior of Zr(Cr0.4Ni0.6)2 hydride formation

AB2, Zr(Cr0.4Ni0.6)2, PCT, Activation, Microstructure, Structure, Electrode, Cyclic Life

Hydrogen storage properties of TiMn2-based alloys

AB2, (Ti,Zr)(Mn,Cr,V)2, PCT, Hysteresis, Structure

Magnetic properties of NdCo3 and its gamma-phase hydride NdCo3H4.1

AB3, NdCo3, H-Capacity, Magnetism, Structure

Thermodynamic Studies of Hydrides of R6Fe23 (R=Y,Er,Ho,Lu) amd R6Mn23 (R=Gd,Dy,Er,Ho)

A6B23, Ho6Fe23, Er6Fe23, Lu6Fe23, Ho6Mn23, Er6Mn23, H-Content, Enthalpy, Entropy, Structure, Deuterium, Isotope Effect

Loss of Ferromagnetism in YNi3 after H2 Hydrogen-Supported Formation of G Phase Cu16Zr6Al7 in the Ternary System Cu-Zr-Al

A6B23, Zr6Cu16Al7, H-Capacity, Structure

English

English

English

English

English

Magnesium-Alloy Hydrides English

English

English

English

English

English

English

English

English

Mg-Zn-Ni hydrogen storage compounds English

English

English

English

Hydrogenation Crystal Structure and Magnetic Ordering of R2Fe14C (R=Sm,Er,Tm)

MIC, Carbide, A2B14C, Sm2Fe14C, Tm2Fe14C, Er2Fe14C, H-Capacity, Magnetism, Resistivity, Structure, DSC

Hydrogen in the A15 compound V3Ga: 51V and 1H nuclear magnetic resonance study

A3B, V3Ga, H-Capacity, NMR, Structure

Use of Vanadium-Based Solid Solution Alloys in Metal Hydride Heat Pumps

Solid Solution, (V0.89Ti0.11)0.95Fe0.05, PCT, Enthalpy, Entropy, van’t Hoff, Application, Heat PumpThe Reaction of Hydrogen with Magnesium

Alloys and Magnesium Intermetallic CompoundsMg-alloys, A2B, A2B3, Mg2Ni, Mg2Al3, PCT, Structure, Enthalpy, Entropy, Disproportionation

Development of High TemperatureHydrides for Vehicular Applications

Mg-Alloy, Mg-Ni, Mg-Mg2Ni, Mg-Y, A2B, Mg2Ni, PCT, Kinetics, Applications, Vehicular StorageMg-Alloys, Mg-Ni-Cu-Zn, Mg-Li-X, Mg-Al, Mg-Al-X, PCT, Microstructure, SEM, Phase Diagrams, Alloy Impurity Effects

Technological Aspects and Characteristics of Industrial Hydrides Reservoirs

Mg-Alloys, AB, TiFe, A2B, Mg2Cu, Mg2Si, Mg-Cu, Mg-Si, PCT, Kinetics, Activation, Cyclic Life, Impurity Effects, Applications, Storage

Le Stockage de L’Hydrogene par les Alliages La2Mg17 et La2Mg16Ni

Mg-alloys, A2B17, La2Mg17, La2Mg16Ni, CeMg12, Capaity, Kinetics, Disproportionation,

A Comparative Study of Magnesium-Rich Rare-Earth-Based Alloys for Hydrogen Storage

Mg-Alloys, AB12, CeMg12, CeMg11M (M=V,Cr,Mn,Fe,Co,Ni,Cu,Zn), A2B17, La2Mg17, A5B41, Ce5Mg41, Capacity, Kinetics, Disproportionation

The Mechanism and Kinetics of Hydride Formation in Mg-10wt.%Ni and CeMg12

Mg-Alloys, Mg-10Ni, AB12, CeMg12, PCT, Enthalpy, Entropy, Kinetics, Disproportionation, Microstructure

Hydrogen Absorption and Electronic structure of Magnesium-Based Yttrium and Scandium Dilute Alloys

Mg-Alloys, Mg-Sc, Mg-Y, PCT, Enthalpy, Entropy, Electronic Structure

High Temperature Hydride Tank using MmMg12 Compounds (Mm = Misch Metal)

Mg-Alloy, AB12, MmMg12, PCT, Enthalpy, Entropy, SEM, Application, Storage Tank, Cyclic Effects

Calcium- and Nickel-Substituted Lanthanum-Magnesium Alloys for Hydrogen Storage

Mg-Alloys, A2B17, (La,Ca)2Mg16Ni, Kinetics, Disproportionation

Magnesium Mechanical Alloys for Hydrogen Storage

Mg-Alloys, Mg-Nb, Mg-Fe, Mg-Co, Mg-Ni, Mg-Ti, Mg-C, A2B, Mg2Ni, Kinetics, Mechanical AlloyMg-Alloys, A7B3, Mg7Zn3, Multiphase, PCT, TGA, DTA

Synthesis, Characterization, and Dehydriding Behavior of the Intermetallic Compound LaMg12

Mg-Alloy, AB12, LaMg2, PCT, Kinetics, Structure, Microstructure, SEM, Disproportionation

The Hydrogen Storage Properties and the Mechanism of the Hydriding Process of some Multi-component Magnesium-base Hydrogen Storage Alloys

Mg-Alloys, Mg-Ni-Cu-Si-RE, PCT, Enthalpy, Entropy, Kinetics, Microstructure, AES, Decrepitation

Studies on the Thermal Characteristics of Hydrides of Mg, Mg2Cu and MgNi1-xMx (M=Fe, Co, Cu or Zn); 0<x<1) Alloys

A2B, Mg2Ni, Mg2Cu, Mg2(Ni,M)(M=Fe, Co, Cu, Zn), DTA, Enthalpy, Entropy, Kinetics, Structure

English

German

Magnesium and Magnesium Alloy Hydrides English

English

Hydrogen Absorption in Mg-Ni-Fe Alloys English

English

English

Dissociation Pressure of NaAlH4 and Na3AlH6 Eng. Trans

Hydrides English

English Complex, BaReH9, StructureEnglish

English Complex, Mg3ReH7, Structure

English

English Complex, Ca4Mg4Fe3H22, structure

English Complex, SrMg2FeH8, Structure

English Complex, LiMg2RuH7, Structure

English

English Complex, Mg3RuD3, structure

English Complex, Mg2CoH5, Structure

English Complex, Mg6Co2D11, Structure

English Complex, A2B, Mg2Ni, Structure

English

Production and Characterization of Mg-10 wt%Ni Alloys for Hydrogen Storage

Mg-Alloys, Mg-10Ni, PCT, Enthalpy, Entropy, Synthesis, Activation, Microstructure, Apparatus

Charakterisierung von Hochtemperatur-Metall-hydriden auf Magnesium-Basis

Mg-Allous, Mg-Ni, A2B, Mg2.33Ni, PCT, Dynamic PCT, Hysteresis, Enthalpy, Entropy, Experimental, Activation, Structure, Microstructure, SEM, Decrepitation, Cyclic Life, Kinetics, Application, Heat Pump, Closed System, Review

Mg, Mg-Alloys, Mg Interemetallics, Review, PCT, Enthalpy, Entropy,

The Influence of aluminum on the properties of the Mg2Cu-H2 System

Mg-Alloys, A2B, Mg2CuAly, PCT, Enthalpy, Entropy, Structure, Multiphase, DisproportionationMg-Alloys, A2B, Mg2(Ni,Fe), PCT, Enthalpy, Entropy, Kinetics

Metal Hydride Studies at the National Research Council of Canada

AB5, LaNi5, CaNi5, A2B, Mg2.42Ni, PCT, Calorimetry, Enthalpy, Structure

Ti-doped alkali metal aluminum hydrides as potential novel reversible hydrogen storage

Complex, Na3AlH6, Na2LiAlH6, NaAlH4, Ti-doping, PCT, Kinetics, Complex, NaAlH4, Na3AlH6, PCT, Enthalpy, Entropy, Melting PointsElements, Alloy, Covalent, Complex, Review, Synyhesis, Applications, Safety, Toxicity

On the Structure of the Complex Hydride Structure of KNaReH9 by single crystal X-ray diffraction and infrared spectroscopy

Complex, KNaReH9, Structure, IR Spectroscopy

Trimagnesium renium (I) Heptahydride, Mg3ReH7, containing Octahedral [ReH5]5- Dimagnesium Iron(II) Hydride, Mg2FeH6, Containing Octahedral [FeH6]4- Anions

Complex, Mg2FeH6, Structure, PCT, Enthalpy, Mossbauer, Magnetic

Ca4Mg4Fe3H22, a new quaternary transition metal hydride containing octahedral [FeH6]4- Strontium dimagnesium iron octahydride, SrMg2FeH8, containing octahedral [FeH6]4- complex ionsLiMg2RuH7, a new quaternary metal hydride containing octahedral [Ru(II)H6]4- complex Orthorhombic diamagnesium ruthenium tetrahydride containing a diamagnetic [RuH4]4- complex anion with C2v symmetry

Complex, Mg2RuH4, structure, magnetic

Tetragonal trimagnesium ruthenium trideuteride, Mg3RuD3, containing dinuclear [Ru2D6]12- complex anionsDimagnesium cobalt(I) Pentahydride, Mg2CoH5, Containing Square-Pyramidal [CoH5]4- AnionsHexamagnesium dicobalt undecadeuteride, Mg6Co2D11, containing [CoD4]4- complex anions conforming to the 18-electron ruleStructural Studies of the Hydrogen storage Material Mg2NiH4. 2. Monoclinic Low-Calcium magnesium nickel (0) tetrahydride, CaMgNiH4, containing tetrahedral [NiH4]4- complex anions: the first quaternary transition metal hydride

Complex, CaMgNiH4, A2B, CaMgNi, Structure

English Complex, LiSr2PdH5, Structure

English Complex, K2ZnH4, Structure, Synthesis

English Complex, K3ZnH5, Structure, Synthesis

English

English

English

English

English

English Complex, Mg2OsH6, Structure

English

English

English Complex, NaPd3H2, Structure

English Complex, Sr2PtH6, Ba2PtH6, Structure

English Complex, Ba2MgH6, Structure

English Complex, Ba3Ir2H12, Structure

Complex, Sr2Mg3H10, Structure

Synthesis and structure of new metal hydrides

LiSr2PdH5, the first mixed alkali-alkaline earth transition metal hydrideSynthesis and structure determination of complex zinc hydridrs. Part 1: Dipotassiumtetrahydridozincate (II), K2[ZnH4].Synthesis and structure determination of complex zinc hydridrs. Part 1: Tripotassiumtetrahydridozincate (II), K3[ZnH4]H.Synthesis, structure and thermal stability of Yb4Mg4Fe3H22

Complex, Ca4Mg4Fe3H22, Yb4Mg4Fe3H22, structure, PCT,

Orthorhombic Mg4IrD5 with disordered deuterium distribution

Complex, Mg4IrH5, Deuterium, Structure

New ternary and quaternary metal hydrides with K2PtCl6-type structures

Complex, Ca2FeH6, Sr2FeH6, Eu2FeH6, Mg2RuH6, Mg2OsH6, Ca2OsH6, CaMgFeD6, CaMgNiH6, StructureSynthesis and structure determination of complex

zinc hydrides. Part 4: Tri rubidium and tricaesium tetrahidridozincate(II) hydride, Rb3ZnH5 and Cs3ZnH5

Complex, Rb3ZnH5, Cs3ZnH5, Structure

Transition metal-hydrogen complexes in the Mg2NiH4 and Mg2FeH6 crystals described by quantum chemical calculations

Complex, Mg2NiH4, Mg2FeH6, Structure, Quantum Calculations

Mg2OsH6 a New Ternary Hydride with the K2PtCl6 StructurePreparation and Structure of the Ternary hydrides Li4RuH6, Na4RuH6, and Li4OsH6 Containing Octahedral Transition Metal Hydrogen Complexes

Complex, Li4RuH6, Na4RuH6, Li4OsH6, Structure

Synthesis and Characterization of Ternary Alkaline-Earth Transition-Metal Hydrides Containing Octahedral [Ru(II)H6]4- and [Os(II)H6]4- Complexes

Complex, Mg2RuH6, Ba2RuH6, Ca2OsH6, Sr2OsH6, Ba2OsH6, Structure

The Structure of Sodium-substituted Palladium Hydride, NaPd3H2A2H2[PtH4](A = Sr and Ba), two hydrides with a layered Structure Type where [Pt(II)H4]2- Complexes and Hydrogen Atoms in Tetrahedral Interstices Share the same Alkaline Earth Synthesis and Structural determination of a New ternary Hydride Ba2MgH6Ba3Ir2H12, a new ternary hydride containing octahedral [IrH6]3- complex anionsMonoclinic Sr2Mg3H10 with Ba2Ni3F10-type structure

Complex, Na2PtH4, K2PtH4, Rb2PtH4, Cs2PtH4, K3PtH5, Rb3PtH5, Cs3PtH5, Na2PdH2, Li2PdH2, K3PdH3, K2PdH4, Rb2PdH4, Cs2PdH4, K3PdH5, Rb3PdH5, Cs3PdH5, Li3IrH6, Na3IrH6, Na3RhH6, Li3RhH4, Li3RhH6, CaPdH2, SrPdH2.7, Sr2RhH5, Sr8Rh5H23, Mg2RuH6, Mg3RuH6, Mg2RuH4, Na2PdH4, Na2PtH6, K2PtH6, Rb2PtH6, Cs2PtH6, Review, Structure, Synthesis

English

English

Hydrogen Compounds of the Metallic elements English

English

English Complex, LiAlH4, TSC, Enthalpy

English

English

English

German

German

German

German

English

German

German

German

German

English

German

Synthese und Strucktur von SrPdH2.7 German

Ternare Strontium-Rhodium-Hydride German

English

German

Results of Reactions Designed to Produce Ternary Hydrides of Some Rarer Platinum Metals with Europium or Ytterbium

Complex, A2B, AB2, Review, LiMH3 (M=Eu,Sr,Ba), KMgH3, Li4RhH4, LiRhH5, K2ReH9, K2TcH9, Na2ReH9, K2ReH9, [(C2H5)N]2ReH9, CaAg2H, SrPd2H, Sr2PdH4, Ca3Pd2H4, Ca2IrH5, Sr2IrH6, Ca2RhH5, Sr2RhH5, Ca2RuH6, Sr2RuH6, Eu2RuH6, Yb2RuH6, Structure, Magnetic, Resistivity, DTALow temperature magnetic behavior of some

quaternary metal hydridesComplex, (Sr,Eu)2RuH6, (Ca,Eu)2RuH6, (Sr,Eu)IrH5, Structure, Ionic, Transition Metal Hydrides, Covalent, Complex, Review

The Covalent Hydrides and Hydrides of the Groups V to VIII Transition Metals

Covalent, Complex, Elemental, Review, Structure, Thermodynamics, Phase Diagrams

The Thermal Decomposition of Lithium Aluminum HydrideHydrogen absorption in Aluminum-Magnesium-Titanium Alloys

Mg-alloys, A12B17, Mg-Al-Ti, PCT, Enthalpy, Entropy, Phase Analysis

Effects of Aluminum Additions on the Hydrogenation of Mg2Ni

Mg-Alloys, A2B, Mg2(Ni,Al), PCT, Enthalpy, Entropy, Kinetics

K2PtH4, a New Hydride with Rotating Planar [PtH4]2- Groups in its High Temperature Phase

Complex, K2PtH4, Structure, Neutron Diffraction

Komplexe Platinhydride A2PtH4, mit A = Na, K, Rb oder Cs

Complex, K2PtH4, Na2PtH4, Rb2PtH4, Cs2PtH4, Structure, Neutron Diffraction

Darstellung and structur ternarer Platinhydrid A3PtH5 mit A = R, Rb oder Cs

Complex, K3PtH5, Rb3PtH5, Cs3PtH5, Structure, Neutron Diffraction

Hochdrucksynthese und Structur von Rb2PtH6 und Cs2PtH6 ternaren Hydriden mit K2PtCl6-

Complex, Rb2PtH6, Cs2PtH6, Synthesis, Structure, Neutron

Synthese und Struktur von Na2PtH4, einem ternaren Hydrid mit quadradisch plarnen PtH4 2- - Baugruppen

Complex, Na2PtH4, Synthesis, Structure, Neutron Diffraction

High pressure synthesis and structure of Na2PtH6

Complex, Na2PtH6, Structure, Neutron Diffraction

K3PdH3, ein Komplexes Hydrid mit Linearen [PdH2 2-]-Baugruppen

Complex, K3PdH3, Structure, Neutron Diffraction

CaPdH2, ein ternares Hydrid mit Perowskitverwandter Struktur

Complex, CaPdH2, Structure, Neutron Diffraction

Darstellung and Struktur ternarer Palladiumhydride A3PdH5 mit A = K, Rb, und Cs

Complex, K3PdH5, Rb3PdH5, Cs3PdH5, Synthesis, Structure,

Darstellung, Struktur und Phasenumwandlung von Rb2PdH4 und Cs2PdH4

Complex, Rb2PdH4, Cs2PdH4, Synthesis, Structure, Neutron Diffraction, Phase Transformation

High pressure synthesis and structure of Na2PdH4

Complex, Na2PdH4, Synthesis, Structure, Neutron Diffraction

Synthese und Strucktur von Li3RhH4, einem ternaren Hydrid mit Planaren [RhH4]3- -

Complex, Li3RhH4, Structure, Neutron DiffractionComplex, SrPdH2.7, Synthesis, Structure, Neutron DiffractionComplex, Sr2RhH5, Sr8Rh5H23, Synthesis, Structure, Neutron

Mg3RuH6, a complex hydride containing two types of hydrogen atoms differing in their

Complex, Mg3RuH6, Synthesis, Structure, Neutron Diffraction

Na3RhH6, Na3IrH6 and Li3IrH6, neue komplexe Hydride mit isolierten [RhH6]3- and [IrH6]3- -Oktaedern

Complex, Na3RhH6, Na3IrH6, Li3IrH6, Synthesis, Structure, Neutron Diffraction

English Complex, A2B, Sr2IrH4, Structure

English

English

Ternary Hydrides of Calcium with Silver English

English

English

English

English

English

English

German

German

German

English

Direct Synthesis of Complex Metal Hydrides English

German

French

English

English Complex, Zr(AlH4)4

English Complex, Mg(BH4)2, Synthesis

Zinn(II)-boranat German

English

Thallous Borohydride, TlBH4 English Complex, TlBH4, Synthesis, IR SpectraGerman

The Heat of Formation of Aluminum Borohydride English

The Preparation and Properties of Strontium Iridium HydrideTernary Hydride of Calcium and Strontium with Iridium, Rhodium and Ruthenium

Complex, A2B, Sr2IrH5, Ca2IrH5, Sr2RhH5, Ca2RuH6, Sr2RuH6, Synthesis, Structure, Neutron Diffraction, Magnetic, Electrical, DTA

Preparation, Structure and Properties of Europium Ruthenium Hydride

Complex, A2B, Eu2RuH6, Synthesis, Structure, Magnetic, ElectricalComplex, AB2, CaAg2H, Synthesis, Structure, Magnetic, DTA

Preparation, Structure and Properties of Ytterbium Ruthenium Hydride

Complex, A2B, Yb2RuH6, Synthesis, Structure, Magnetic, Electrical

Synthesis and Characterization of (Ca2-xEux)RuH6

Complex, A2B, (Ca2-xEux)RuH6, Synthesis, Structure, Magnetic,

Synthesis, Structural Determination and Magnetic Behavior of (Sr2-xEux)RuH6

Complex, A2B, (Sr2-xEux)RuH6, Synthesis, Structure, Magnetic

Synthesis and Structures of (Sr2-xEux)IrH5, (Sr2-xEux)RhH5, (Ca2-xEux)IrH5 and Eu2RhH5

Complex, A2B, (Sr2-xEux)IrH5, (Sr2-xEux)RhH5, (Ca2-xEux)IrH5, Eu2RhH5, Synthesis, Structure, Magnetic

The Thermal Decomposition of Lithium Aluminum Hydride

Complex, LiAlH4, Enthalpy, Capacity, DSC

Heats and Free Energies of Formation of the Alkali Aluminum Hydrides and of Cesium Hydride

Complex, LiAlH4, NaAlH4, KAlH4, CsAlH4, CsH, Thermodynamics, Enthalpy, Entropy, Hydrolysis

Zur Kenntnis des Lithium-aluminum-wasserstoffes LiAlH4

Complex, LiAlH4, Synthesis, Decomposition, Catalysts

Zur Kenntnis eines Magnesium-aluminum-wasserstoffes Mg(AlH4)2

Complex, Mg(AlH4)2, Synthesis, Hydrolysis

Neues zur Kenntnis des Magnesium-aluminum-wasserstoffes Mg(AlH4)2

Complex, Mg(AlH4)2, Synthesis, Decomposition, Stability

The Preparation of Sodium and Calcium Aluminum Hydrides

Complex, NaAlH4, Ca((AlH4)2, Synthesis, Decomposition, StabilityComplex, LiAlH4, NaAlH4, Synthesis, Catalysts

Analyt-Synthese aus den Elementen und ihre Bedeutung

Complex, LiAlH4, NaAlH4, LiBH4, NaBH4, Synthesis, Enthalpy,

Contribution a l’Etude de l’Ether Oside d’Ethyle Milieu Reactionnel, en Chemie Minerale

Complex, Mg(AlH4)2, Be(AlH4)2, Ga(AlH4)3, Mn(BH4)2, Co(BH4)2, Synthesis

The Reduction of Iron (III) Chloride with Lithium Aluminohydride and Lithium Borohydride: Iron (II) Borohydride

Complex, Fe(AlH4)2, Fe(BH4)2, Synthesis, Stability

Preparation and Electrolysis of Titanium and Zirconium Compounds in Nonaqueous MediaPreparation of Magnesium Borohydride and Diborane

Complex, Sn(BH4)2, Synthesis, Stability, Hydrolysis

New and Known Complex Borohydrides and some of their Applications in Organic Synthesis

Complex, Ca(BH4)2, LiBH4, NaBH4, Synthesis

Entwicklung eines Mikroverfahrens zur Darstellung von Boronaten der schweren Lanthaniden

Complex, Y(BH4)3, Sm(BH4)3, Eu(BH4)3, GdBH4)3, Tb(BH4)3, Dy(BH4)3, Ho(BH4)3, Er(BH4)3, Tm(BH4)3, Yb(BH4)3, Lu(BH4)3, Complex, Al(BH4)3, Synthesis, Enthalpy, Hydrolysis

English

English Complex, CuBH4, Synthesis

English

English

English

English

English

Uranium(IV) Borohydride English Complex, U(BH4)4, Synthesis, StabilityEnglish

English

English

English

English

English

English

English

English

English

English

English AB2, YFe2, PCT, Structure, TPD

English

English

The Preparation and Properties of Group IV-B Metal Borohydrides

Complex, Th(BH4)4, Hf(BH4)4, Ti(BH4)3, Zr(BH4)4, Synthesis, Properties, Vapor Pressure

The Reaction of Copper(II) Chloride with Lithium BorohydrideThe Preparation of Other Borohydrides by Metathetical Reactions Utilizing the Alkali Metal Borohydrides

Complex, Al(BH4)3, Be(BH4)3, Synthesis

Order-Disorder Transitions in the Alkali Metal Borohydrides

Complex, KBH4, NaBH4, RbBH4, CsBH4, Order-Disorder Transitions

The Lattice Constants of the Alkali Borohydrides and the Low-Temperature Phase of Sodium

Complex, KBH4, NaBH4, RbBH4, CsBH4, Structure

Reactions of Diborane with Alkali Metal Hydrides and Their Addition Compounds. New Syntheses of Borohydrides. Sodium and Potassium Borohydrides

Complex, LiBH4, NaBH4, KBH4, Synthesis, Stability

Sodium Borohydride, Its Hydrolysis and its Use as a Reducing Agent and in the Generation of Hydrogen

Complex, NaBH4, Hydrolysis, Acid Accelerators, Catalysts

Thge study on the hydrogen storage properties of MmNi5.35Co0.75Mn0.7-xAlx compounds

AB5, Mm(Ni,Co,Mn,Al)5, PCT, Structure, Electrode, Cyclic Life

A method for designing a hydrogen absorbing LaNi5-x-yMnxAly alloy for a chemical refrigerator system

AB5, La(Ni,Mn,Al)5, LaNi4.5Mn0.5, LaNi4.5Al.5, PCT, Hysteresis, Plateau Slope, Model

Electrochemical evaluation of thermodynamic parameters for dissolved hydrogen in stoichiometric and nonstoichiometric hydrogen storage alloys

AB5, Mm(Ni,Mn,Al,Co)y, PCT, Thermodynamics, Enthalpy, Entropy

Stress on a reaction vessel by the swelling of a hydrogen absorbing alloy

AB5, La0.8Y0.2Ni4.8Mn0.2, PCT, Container Strain, Experimental,

A study of structural ans thermodynamic properties of the YNi5-xAlx-hydrogen system

AB5, Y(Ni,Al)5, PCT, Enthalpy, Entropy, Structure

Investigation of the crystallographic structures of LaNi4CoD4.4 and LaNi3.55Mn0.4Al0.3Co0.75Dx (X=2.0 and 4.6D/f.u.) by neutron powder diffraction

AB5, LaNi4Co, LaNi3.55Mn0.4Al0.3Co0.75, PCT, Structure, Neutron Diffraction

Structural and hydrogen sorption properties of NdNi5-xAlx and GdNi5-xAlx

AB5, Nd(Ni,Al)5 and Gd(Ni,Al)5, PCT, Enthalpy, Entropy, Structure

Further studies of the isotherms of LaNi5-xSnx-H for x=0-0.5

AB5, LaNi5, La(Ni,Sn)5, PCT, Enthalpy, Entropy, Hysteresis, Structure

Lattice epanding behavior and degredation of LaNi5-based alloys

AB5, La0.7Sm0.3Ni4Fe, LaNi4.8Fe0.2, PCT, Structure

Investigationa on synthesis, characterization and hydrogenation behavior of the spin- and thermal-melted versions of LaNi5-xSix (x=0.1, 0.3, 0.5) hydrogen storage materials

AB5, La(Ni,Si)5, PCT, Kineics, Structure, SEM, Melt Spinning

The electrochemical activation and surface properties of Zr-based AB2 metal hydride electrodes

AB2, Zr0.7To0.3V0,4Mn0.3Cr0.3Ni1.0, PCT, Structure, Electrode, Activation, Surface Treatment, Surface, SEM, AES, XPS

Multiplateau isotherms related to a multiphase behavior in the YFe2D2 systemHydrogen desorption and electrode properties of Zr0.8Ti0.2(V0.3Ni0.6M0.1)2 alloys

AB2, Zr0.8Ti0.2(V0.3Ni0.6Si0.1)2, Zr0.8Ti0.2(V0.3Ni0.6Mn0.1)2, Zr0.8Ti0.2(V0.3Ni0.6Co0.1)2, Zr0.8Ti0.2(V0.3Ni0.6Mo0.1)2, PCT, Microstructure, Electrode

Effect of Ni containing surface phases on the electrode characteristics of Ti1.0Mn1.0V0.5

AB2, TiMnV0.5, PCT, Microstructure, Surface, Electrode

English

English

CeMnAlHx, a new metal hydride English AB2, CeMnAl, PCT, Structure

RNiAl hydrides and their magnetic properties English

English

English

English

English

English

English

English

English Complex, BaMgH4, Structure

English

Hydrogenation and nitrogenation of SmFe3 English

English

English

English

English Gd3Ni6Al2, PCT, Magnetism

English A2B17, Ce2(Fe,Ga)17, Capacity, XAFS

English

English

English

Degradation mechanism of Ti-Zr-V-Mn-Ni metal hydride electrodes

AB2, Ti0.8Zr0.2V0.5Mn0.5Ni, PCT, Surface, EIS, AES, SEM, Electrode, Cyclic Life

Hydriding properties of Ce(Mn,Al)2 and Ce(Fe,Al)2 intermetallic compounds

AB2, Ce(Mn,Al)2, Ce(Fe,Al)2, PCT, Structure

AB2, YNiAl, SmNiAl, GdNiAl, ErNiAl, TmNiAl, TbNiAl, Capacity, Structure, Magnetism

Hydrogen absorption characteristics in Zr0.2Ho0.8CoFe

AB2, Zr0.2Ho0.8CoFe, PCT, Enthalpy, Entropy, Structure

The electrode characteristics of over-stoichiometric ZrMn0.5V0.5Ni1.4+y (Y=0.0, 0.2, 0.4 and 0.6) alloys with C15 Laves phase structures

AB2, ZrMn0.5V0.5Ni1.4+y, ZrMn0.5V0.5Ni1.4, PCT, Electrode, Surface, Structure, EIS

Pressure-composition isotherms of the Mg2Ni0.75Fe0.25-Mg system synthesized by replacement-diffusion method

A2B, Mg2Ni0.75Fe0.25, Multiphase, PCT, Enthalpy, Entropy, Structure

(Hf,Zr)2Fe and Zr4Fe2O0.6 compounds and their hydrides: phase equilibria, crystal structure and magnetic properties

A2B, (Hf,Zr)2Fe, Zr4Fe2O0.6, Capacity, Structure, Volume Change, TPD, Mossbauer, Magnetism

Hydrogen desorption properties of the quaternary alloy system Mg2-xM1xNi1-yM2y

A2B, (Mg,B,Si,Al,Ca)2(Ni,Co,Mn,Cu), PCT, Structure, DTA, Phase

Synthesis and structure determination of complex zinc hydrides Part 3. Dirubidium- and dicaesiumtetrahydridozincate (II), Rb2ZnH4 and Cs2ZnH4

Complex, Rb2ZnH4, Cs2ZnH4, Structure, TGA

New tetragonal metal hydrides BaMg2TH8 (T=Ru, Os) containing octahedral [TH6]4- complex anions and hydride anions

Complex, BaMg2RuH8, BaMg2OsH8, Structure

Synthesis and crystal structure of BaMgH4: A centrosymmetric variant of SrMgH4Alkalai metal manganese hydrides: synthesis, structure and magnetic properties

Complex, K3MnH5, Rb3MnH5, Cs3MnH5, StructureAB3, SmFe3, Capacity, Structure, Magnetism, Nitriding

Crystal structure and magnetic properties of the ternary compound YFe8.6Ti1.1 and its hydride

YFe8.6Ti1.1, Capacity, Structure, Magnetism

Hydrogenation behavior and structure of R5Fe2B6 (R=Ce, Pr, Nd, Sm, Gd, and Tb) borides

Ce5Fe2B6, Pr5Fe2B6, Nd5Fe2B6, Sm5Fe2B6, Gd5Fe2B6, Tb5Fe2B6, Capacity, Structure, Volume Change, TPA, TPD

Hydrogen absorption in R2Fe17 alloys (R=rare earth metals) thermodynamics, structural and magnetic properties

A2B17, Nd2Fe17, Ce2Fe17, Pr2Fe17, Ho2Fe17, PCT, Structure, Magnetism

Influence of hydriding on the magnetic properties of Gd3Ni6Al2

Ce valence state probed by XAFS study in Ce2Fe17-xGaxHy compoundsThermodynamic properties for solution of hydrogen in Pd-Ag-Ni ternary alloys

Solid Solution, Pd-Ag-Ni, PCT, Enthalpy, Entropy, Structure,

The thermodynamics of hydrogen absorption/desorption by Pd-Co alloys

Solid Solution, Pd-C0, PCT, Enthalpy, Entropy, Hysteresis, Cyclic Effects

Increase of specific surface area of metal hydrides by lixiviation

Solid Solution, Mg-Li, PCT, lixiviation, leaching, SEM, Surface, Kinetics

English

English

English

English

English A3B, Er3Ni, Capacity, Magnetism

English

English

English

English

English

English

English

English

English

English

English

English

Self-discharge mechanism of Vanadium-Titanium metal hydridse electrodes for Ni-MH rechargeable battery

Solid Solution, V-Ti, PCT,Electrode, Self-discharge, Structure

Hydrogen Absorption by Laves Phase Related BCC Solid Solution Alloys

Solid Solution, V, V-Ti-Mn, PCT, Structure, Multiphase, Laves Phase

Hysteresis in Metallic Solid Solution and Intermetallic Compound-Hydrogen Systems

Solid Solution, Nb-Ti, Nb-Fe-Cr, AB2, Zr(Fe,Cr)2, PCT, Hysteresis, Strain, Cyclic Effects

Development of Production Technology of Intermetallic Compounds on Base of Rare-Earth-Ni for Hydrogen Accumulators

AB5, MmNi5, PCT, Enthalpy, Entropy, Stoichiometry Effect, Application, Storage

Magnetic Properties and Interaction of Er3Ni with Hydrogen and NitrogenMagnitization Behavior of Hydrogen Storage MmNi5 Intermetallics with Al, Mn, and Sn,

AB5, Mm(Ni,Al)5, Mm(Ni,Mn)5, Mm(Ni,Sn)5, PCT, Magnetism

Thermal Conductivity of Metal Hydride Materials for Storage of Hydrogen: Experimental Investigation

AB5, LaNi4.7Al0.3, AB2, Ti0.98Zr0.02V0.43Fe0.09Cr0.05Mn1.5, PCT,Enthalp, Entropy, Hysteresis, Thermal Conductivity, Particle Size

Structure and Electrochemical Properties of Zr(V0.2Mn0.2Ni0.6-xCox)2.4 Hydrogen Storage Alloys

AB2, Zr(V,Mn,Ni,Co)2.4, PCT, Structure, Surface, Electrode, EIS, Cyclic Life

The Hydrogen Solubility and Thermodynamics of Dissolved Hydrogen in Ti0.45Fe0.45B0.1 Alloy System

AB, Ti0.45Fe0.45B0.1, PCT, Enthalpy, Entropy, Structure

Kinetics of Hydrogen Absorption in Al-Doped MmNi5

AB5, MmNi4.7Al0.3, PCT,Kinetics, Models

Cyclic Charge and Discharge Stability of Nanoc rystalline Mg2Ni Alloy

A2B, Mg2Ni, PCT, Structure, Nanocrystalline, Kinetics, Cyclic Life, Specific Heat

Kinetic and Equilibrium Properties of the Fluorinated Laves-phase Hydriding Alloys

AB2, Zr0.9Ti0.1V0.2Mn0.6Co0.1Ni1.1, Zr0.9Ti0.1V0.2Mn0.6Ni1.3La0.05, PCT, Surface Treatment, Surface, SEM, Electrode, Cyclic Life

Hydrogen Transport and Storage Technologies using Metal Hydrides

AB2, Ti0.73Zr0.27Mn1.25Cr0.75Cu0.1, PCT, Application, Storage, Container Design, Fuel Cell, Heat Pump

Electrochemical Properties of Over-stoichiometric ZrMn1-xVxNi1.4=y Alloys with C15 Laves Phase

AB2, ZrMn0.5V0.5Ni1.4+y, ZrMn0.3V0.7Ni1.4+y, ZrMn0.5V0.5Ni1.4, PCT, Electrode, Surface, Structure, SEMEquilibrium hydrogen pressure on the solid

solutions of ZrCo-HfCo intermetallic compoundsAB, ZrCo, Zr0.7Hf0.3C0, Zr0.5Hf0.5C0, PCT, Enthalpy, Structure

Evaluation of TiCrVFe for Tritium Separation and Storage

AB2, TiCr0.4V1.2Fe0.4, PCT,, van’t Hoff, Kinetics, Deuterium, Test Apparatus, SEM, Application, Storage, Isotope SeparationTiMn2-based alloys as high hydrogen storage

materialsAB2, (Ti,Zr)(Mn,Cu,Si,Cr,Al,V,Mo,La)2, PCT, Enthalpy, Structure, Microstructure, SEM, EDAX, Corrosion

English

Hydrogen Solubility in Inhomogeneous Alloys English

Properties of Mg2NiH4 at 450-570 K English

English

English Pd, Impurity Effects, CO, TPD, Kinetics

English

English

English

English

English

English

English

English

English

English

Surface Passivation of Metal Hydrides for Applications

AB2, Zr0.9Ti0.1V0.2Co0.1Ni1.1, PCT, Hysteresis, Structure, Surface, F-Treatment, XPS, Surface Area, Activation, Electrode, Cyclic Life, EIS

Solid Solution, Pd-Ni, PCT, Hysteresis, Solubility, Phase Separation

A2B, Mg2Ni, PCT, Enthalpy, van’t Hoff, Structure, Twinning, Vapor Synthesis, Kinetics

Gas Atomization Processing of LaNi5-xMx Modified with Silicon and Tin

AB5, LaNi4.6Si0.4, LaNi4.75Sn0.25, PCT, Hysteresis, Gas Atomization, Microstructure, SEM, Decrepitation

Poisoning Effect of Carbon Monoxide on the Desorption Process of Hydrogen from PalladiumUltra-Pure Hydrogen by Diffusion through Hydrogen Palladium Alloys

Solid Solution, Pd, Pd-Ag, Application, Purification, Phase Diagram, Permeation, Diffusion, Impurity Effects, Apparatus, Application, Purification

The effect of annealing pretreatment of Pd-Rh alloys on their hydrogen solubilities and thermodynamoc parameters for H2 solution

Solid Solution, Pd-Rh, PCT, Hysteresis, Enthalpy, Entropy, Solubility, EPMA, Calorimetry, Phase Separation, AnnealingHydrogen Absorption and Thermodynamic

Properties of Hydrogen in Low Rh Content Pd-Rh Solid Solution, Pd-Rh, PCT, Enthalpy, Entropy, Thermodynamics. Structure

Hydrogen-induced phase separation in Pd-Rh alloys

Solid Solution, Pd-Rh, PCT, Hysteresis, Enthalpy, Entropy, Solubility, EPMA, Structure, Phase Separation, Annealing, Heat Treatment Effects, HHT, Phase Diagram

Thermodynamics and Hysteresis for Hydrogen Solution and Hydride Formation in Pd-Ni Alloys

Solid Solution, Pd-Ni, PCT, Hysteresis, Enthalpy, Entropy, Annealing, Cyclic Effects, Deuterium

Hydrogen-Induced Lattice Migration in Pd-Pt Alloys

Solid Solution, Pd-Pt, PCT, Hysteresis, Phase Separation, Cyclic Effects, HHT, Structure, Microstructure

Estimation of Hydrogen Storage Costs for Large Hydrogen Storage Facilities

Application, Stationary Storage, Economic Model, TiFe, Storage Cost, Alternative Storage

Storage and Transportation of Merchant Hydrogen

Application, Stationary Storage, Transportation, Cost, TiFe, Mg2Ni, ZrFe1.5Cr0.5, LaNi5, Alternative StorageStorage, Transmission and Distribution of

HydrogenReview, Application, Storage, Containers, Transmission, Distribution, TiFe, Ti51Fe44Mn5, Alternate Storage

An Engineering-Scale Energy Storage Reservoir of Iron Titanium Hydride

Application, Stationary Storage, Container Design, TiFe, PCT, Rate Performance

Hydride Beds: Engineering Tests English

English

English

Hydrogen Drive in Field Testing English

English

HY-PACK Model R1 Japanese/E

Solid H - The Third State of Hydrogen English

English

Model 3165 Rechargeable Hydrogen Cell English

English Application, Stationary Storage

Hydrogen - the energy source of the future English

English

English

English

Handling Hydrogen English

English

English

English

Method of Storing Hydrogen English

Interstitial Hydrogen Storage system English

Application, Stationary Storage, TiFe0.85Mn0.15, Heat Transfer, Container Design, Alternative Storage

Technological Aspects and Characteristics of Industrial Hydrides Reservoirs

Application, Stationary Storage, TiFe, Mg2Cu, PCT, Rate Performance, Cyclic Effects, Activation, Container Design

Development of a Large-Sized Hydrogen Storage Vessel using Metal Hydrides

Application, Stationary Storage, AB5, LRNi4.8Al0.2, PCT, Container Design, Performance Test

Review, Application, Vehicular Storage, AB2, Ti0.98Zr0.02V0.43Fe0.09Cr0.05Mn1.5, Container Design, Hydrogen Vehicle, Infrastructure

A Novel Batchtype Hydrogen Transmitting System using Metal Hydrides

Application, Storage, Transport, Container Design, Compressor, Mg-10Ni, Performance Test

Application, Stationary Storage, CommercialApplication, Stationary Storage, Commercial, BT-Series, Container Design

Series 3169 Rechargeable Hydrogen Storage Units

Application, Stationary Storage, CommercialApplication, Stationary Storage, Commercial

World’s largest hydrogen storage vessel using metal hydrides developed by KHI

Review, Application, Stationary Storage, Vehicular Storage, Container Design

Operating Manual for the PSE&G Hydrogen Reservoir Containing Iron Titanium Hydride

Applications, Stationary Storage, AB, TiFe, Container Design, Activation

Technologies and Economics of Small-Scale Hydrogen Storage

Review, Application, Stationary Storage, Economic Model, Alternative

The Commercial Development of the H2YCELL - A Rare Earth Metal Hydride Storage Device

Application, Stationary Storage, Commercial, Container Design, AB5, LaNi5, Performance TestReview, Application, Stationary Storage, Compression, Separation, Getter, Commercial, AB5, MmNi4.5Al0,5, PCTThe Use of FeTi-Hydride for Production and

Storage of Suprapure HydrogenApplication, Stationary Storage, Purification, Container Design, AB, TiFe, Performance Test

A Clean Internal Combustion Engine for Underground Mining Machinery

Review, Application, Vehicular Storage, Stationary storage, H2 Engine, H2 Fuel System, Mine Vehicle, Cost

Improvements in or relating to Hydrogen from a Hydride Material

Application, Stationary Storage, Moving Bed, Container DesignApplication, Stationary Storage, Compressor, AB, TiFe, High PressureApplication, Storage, Storage, Container Design

Device for Storage of hydrogen English Application, Storage, Container Design

Hydrogen Storage and Supply Device English Application, Storage, AB5

English

English

English

English

English

Modular Hydride Beds for Mobile Applications English

English

English

English

Hydrogen Fuel Ready for Bus Fleet English

Hydrogen Supply System English

English

Metal Hydrides as a Source of Hydrogen Fuel English

English

English

English

English

Mathematical Modelling of Hydrogen Storage Systems

Application, Vehicular Storage, Model, Heat Transfer, Performance

Design of Hydride Containers for Hydrogen Storage

Review, Application, Storage, Container Design, Heat Transfer, Performance Test

FeTiMn Alloy Granulate in a Pressure Container for Storage of Hydrogen and Deuterium

Application, Stationary Storage, Container Design, AB, Ti(Fe,Mn)

Dynamic Characteristics of Single- and Dual-Hydride Bed Devices

Application, Heat Pump, Compressor, Storage, Container Design, AB5, LaNi4.6Al0.4, Dynamic PCT, Enthalpy, Entropy, Heat Transfer

Hydrogen Storage for Vehicular Applications: Technology Status and Key Development Areas

Review, Application, Vehicular Storage, Alternative StorageReview, Application, Vehicular Storage, Container Design, Modular Bed, Thermal Model, AB5, MmNi4.5Al0.5, AB2, Performance Test

Hydrogen Fuel for Underground Mining Machinery

Application, Vehicular Storage, Container Design, AB5, MmNi4.5Al0.5, MmNi4.15Fe0.85, Performance Test, Mining Vehicle, Hydrogen Engine

Metal Hydrides as a Source of Fuel for Vehicular Propulsion

Application, Vehicular Storage, A2B, Mg2Cu, Mg2Ni, Fuel System

Metal Hydride Storage for Hydrogen-Fuelled Ground Vehicles

Application, Vehicular Storage, Review, Cost, SafetyApplication, Vehicular Stprage, Container Design, AB, TiFe, A2B, Mg2Ni, Performance TestApplication, Vehicular Storage, Container Design, Microspheres, Hydride Microspheres, Dual Bed, Alternative Storage

Some Aspects of Metal hydride Applications as Automotive Hydrogen Storage Units

Review, Application, Storage, Model, Heat Transfer, AB, TiFe

Review, A2B, Mg2Ni, Element, V, Application, Vehicular Storage, Fuel Cell, Reformer

Hydrogen powered automobiles must use liquid hydrogen

Application, Vehicular Storage, Review, Complex Hydrides, Cost, Alternative Storage

A Surveyof Hydrogen’s Potential as a Vehicular Fuel

Review, Hydrogen Fuel, Hydrogen Production, Application, Vehicular Storage, Alternative Storage

Hydrogen Metal Hydride Storage with Integrated Catalytic Recombiner for Mobile Application

Application, Vehicular Storage, Dual Hydride Bed, Caytalytic Combustion

Iron Titanium Hydride as a Source of Hydrogen Fuel for Stationary and Automotive Applications

Application, Stationary Storage, Vehicular Storage, Energy Storage, Peak Shaving, AB, TiFe, Fuel Cell, Hydrogen Vehicle

English

Hydrogen: an alternative fuel English

Metal Hydride Technology English

Hydrogen Storage in Metals English

English

English

Metal-Hydride Technology: A Critical Review English

Applications of Hydrides English

Perspectives for Metal Hydride Technology English

How metals store hydrogen

Metal hydrides make hydrogen accessible-II English

English

Activities and Capabilities of Deutsche Aerospace Related to Hydrogen-Fueled Vehicles

Application, Vehicular Storage, Overview, Infrastructure, Daimler Benz, Alternative Storage, Hydrogen VehicleApplication, Vehicular Storage, Infrastructure, Alternative Storage, Hydrogen Vehicle, BusReview, Hydride Review, PCT, Enthalpy, Entropy, kinetics, Applications Review, Stationry storage, Vehicular Storage, Peak Shaving, Heat Storage, Heat Pumping, Compression, Isotope Separation, SafetyReview, Hydride Review, PCT, Enthalpy, Entropy, Applications Review, Stationry Storage, Vehicular Storage, Peak Shaving, Heat Storage, Heat Pumping, Heat Engine, Temperature Sensor, BatteryProperties ans applications of metal hydrides in

energy conversion systemsReview, Hydride Review, PCT, Enthalpy, Entropy, Metallurgy, Phase Diagrams, Structure, Activation, Decrepitation, Applications Review, Stationry Storage, Vehicular Storage, Purification, Heat Storage, Heat Pumping, Heat Engine, Isotope separationOnboard Storage Alternatives for Hydrogen

VehiclesApplication, Vehicular Storage, Alternative Storage, Model, LH2-Hydride Combined Storage, AB, TiFeApplication, Review, Thermodynamics, Cyclic Stability, Impurity Effects, Kinetics, Heat Transfer, Stationary Storage, Vehicular Storage, Getters, Purification, Separation, Isotope Separation, Compression, Heat Pump, Temperature Sensor, Battery

Application, Review, Alloy Suppliers, Stationary Storage, Vehicular Storage, Container Design, Getters, Purification, Separation, Isotope Separation, Compression, Heat Pump, Heat Storage, Temperature Sensor, LH2, BatteryReview, Application, Stationary Storage, Vehicular Storage, Container Design, Heat Storage, Hydrogen Energy, Hydrogen Vehicles, AB, TiFe, Review, AB5, LaNi5, MmNi4.5Al0.5, CaNi5, AB, TiFe, A2B, Mg2Ni, Hydride Properties, Application, Stationary Storage, Vehicular Storage, Compression, Separation, Isotope SeparationReview, Application, Separation, Compression, Purification, Vehicular Storage, Battery, Heat Pump, Heat EngineDevelopment of Solar-Hydrogen Systems Using

Metal HydridesReview, Application, Hydride Properties, Compression, Stationary Storage, Vehicular Storage, Heat Pump, Heat Engine, Solar Hydrogen, Container Design, Alternative Storage

English

English tra

Metal Hydrides for Energy Storage Applications English

Metal Hydrides for Energy Storage English

English

A Hydrogen-Powered Mass Transit System English

Tech Solution: The Hydrogen Homestead English

English

English

English

Automotive Hydride Tank Design English

Hydrogen Homestead English

English

English

Hydrogen Storage Materials: Properties and Possibilities

Review, Thermodynamics, Enthalpy, AB, TiFe, AB5, LaNi5, Mg, Activation, Cyclic Stability, Mossbauer, Application, Stationary Storage, Vehicular Storage, Heat Pump

Technical and Economic Aspects of Hydrogen Storage in Metal Hydrides

Review, Hydride Properties, Thermodynamics, Cyclic Stability, Impurity Effects, Cost, Application, Stationary Storage, Vehicular Storage, Peak Shaving, Alternative StorageReview, Hydride Properties, AB, AB5, A2B, Elements, Thermodynamics, Hysteresis, Stationary Storage, Vehicular Storage, Alternative Storage, Energy Storage, Heat Storage, Heat Pump, ModelReview, Hydride Properties, Elements, AB5, AB2, AB, A2B, PCT, Thermodynamics, Enthalpy, Structure, Test Apparatus

Metal Hydride Storage for Mobile and Stationary Applications

Review, Hydride Properties, Elements, AB5, AB2, AB, A2B, PCT, Thermodynamics, Enthalpy, Entropy, Hysteresis, Application, Vehicular Storage, Stationary Storage, Container Design, Performance Test, Hydrogen VehicleApplication, Vehicular Storage, Hydrogen Vehicle, TiFe, Container Design, Performance Test, SafetyApplication, Stationary Storage, Vehicular Storage, Container Design, Hydrogen Production, Hydrogen Appliance, Hydrogen Home, Hydrogen

Hydrogen Storage in Automobiles using Cryogenics and Metal Hydrides

Application, Vehicular Storage, LH2, TiFe, Mg2Ni, Catalyst, Hydrogen Vehicle

Development of a Hydrogen-Fuelled Farm Tractor

Application, Vehicular Storage, AB5, MmNi4.5Al0.5, Container Design, Performance Test, Hydrogen Vehicle, Farm Tractor

Protype Hydrogen Automobile using a Metal Hydride

Application, Vehicular Storage, Container Design, Hydrogen Vehicle

Application, Vehicular Storage, Container Design, Heat Transfer, Thermal Conductivity, ModelApplication, Stationary Storage, Vehicular Storage, Container Design, Hydrogen Production, Hydrogen Appliance, Hydrogen Home, Hydrogen Vehicle, Hydrogen Tractor, AB, Ti0.55Fe0.44Mn0.05, TiFeDesign Considerations for the Riverside

Hydrogen BusApplication, Vehicular Storage, Stationary Storage, Container Design, Hydrogen Vehicle, Riverside Bus, ModelHydrogen Energy in United States Post Office

Delivery SystemApplication, Vehicular Storage, Container Design, Hydrogen Vehicle, Hydrogen Postal Vehicle, AB, TiFe, PCT

A Hydrogen-Powered Mass Transit System English

English

English

English

English

A New Ultrapure Hydrogen Purifier English

Water Pump with Metallic Hydrides English

English

Hydrogen Storage English

English

Hydrogen Storage Module English

Reaction Heat Storage Method for Hydride Tanks English

English

English

Hydrogen Sorbant Composition and its Use English

Hydrogen from Ammonia English

English

Application, Vehicular Storage, Container Design, Hydrogen Vehicle, Provo Bus, AB, TiFe, Performance Test, CostDevelopment of Hydrogen-Hydride Technology in

the F.R.G.AB2, TiVMn, Ti0.8Zr0.2CrMn, TiV1.5Fe0.4Mno.1, (Ti,Zr)(Cr,Mn)2, PCT, Structure, Application, Stationary Storage, Vehicular Storage, Container Design, Purification, Getter

Development of a Hydrogen Stotrage System using Metal Hydrides

Application, Stationary Storage, AB5, MmNi4.5Mn0.5, Container Design, Performance Test

Energy Storage for Utilities via Hydrogen Systems

Application, Stationary Storage, Electric Peak Shaving, Container Design, Heat Transfer, AB, TiFe, PCT

Improvement on Metal Hydride Suprapure Hydrogen Purifier with Oxygen Removing Molecular Seive and Double-Valve Blow-Off Technique

Application, Purifier, Container Design, AB5, M1Ni5, Impurity Effects, O2, H2O, Molecular Seive Drying, Performance TestApplication, Purifier, System Design, AB5, M1Ni5, LaNi5, AB, TiFe0.9Mn0.1, Impurity Effects, O2, H2O, CO2, N2, CH4, Performance TestApplication, Heat Engine, Water Pump, System Design, Lab Prototype, Thermodynamic Model, AB, TiFe0.86Ni0.14, AB2, Ti1.2Cr1.9Mn0.1, PCT

Investigation of the Ternary Systems Nb-V-H and Ta-V-H

Solid Solution, Nb-V-H, Ta-V-H, Structure, Phase Relations, Capacity, Review, AB, AB5, AB2, A2B, Hydride Properties, Application, Stationary Storage, Alternative Storage

State-of-the-Art Review of Hydrogen Storage in Reversible Metal Hydrides for Military Fuel Cell Applications

Review, Elements, AB, AB5, AB2, A2B, AB3, A2B7, Solid Solution, Mg-Alloys, Multiphase Alloys, Amorphous, Nanocrystalline, Quasicrystalline, Complex Hydrides, Carbon, Hydride Properties, Application, Stationary Storage, Vehicular Storage, Fuel Cell

Application, Encapsulation, Decrepitation, ExpansionApplication, Stationary Storage, Enthalpy, Reaction Heat Storage, AB5, Ca0.7Mm0.3Ni5

Hydrogen Separation and Compression through Hydride Formation and Dissociation by Low-Level Heat

AB5, LaNi5, AB, TiFe, Ti(Fe,Ni), Kinetics, Application, Separation, Compression, Breakthrough

Development of a Metal Hydride Process for Hydrogen Recovery from Supplemented Natural Gas

AB5, LaNi4.7Al0.3, Impurity Effects, i-C5H12, CO2, CH3SH, t-C4H9SH, Application, SeparationAB5, LaNi5, Pellet, Polymer Binder, Flow-thru Reactor, Application, AB5, LaNi4.7Al0.3, Pellet, Silicone-binder, Flow-thru Reactor, Application,

An Investigation of the Removal of Hydrogen from Gas Mixtures usung Misch-Metal-Based Hydrogen Storage Metals

AB5, Mm(Ni,Y)5, Test Apparatus, Flow-thru, Breakthrough, Ar-H2, Application, Separation

English

English U, Tritium, Storage

English

English

English

English

Chromatographic Hydrogen Isotope Separation English

English

English

The Solubility of Deuterium in LaNi5 English

Solubility of hydrogen isotopes in palladium English

English

English

Separation of Deuterium from Hydrogen English

English

English Tr.

Separation of Isotopes by Cyclical Processes English

English

English

English

Hydrogen Purification with Metal Hydrides in a New Kind of Reactor

Application, Purification, Expansion, Reactor Design

Tritium storage/delivery and associated cleanup systems for TFTRMethod for the Preparation of Deuterium by Isotope Separation

AB, TiNi, A2B, Ti2Ni, Application, Isotope Separation

Selective Absorption of Hydrogen Isotopes by Vanadium and Nickel-Titanium

V, AB, TiNi, PCT, Deuterium, Application, Isotope Separation

Process for Recovering Evolved Hydrogen Enriched with at least one Heavy Hydrogen Isotope

AB, TiFe, TiFe0.6Mo0.2, TiCo, TiNi, TiMn, TiMo, TiCr, TiV, AB3, TiCr3, AB2, TiCr2,TiCrMn,TiMo2, A2B, Ti2Mo, Tritium, Separation Factor, Application, Isotope Separation

Hydrogen Isotope Effects in Titanium Alloy Hydrides

AB, TiFe, TiFe0.6Mo0.2, TiCo, TiNi, TiMn, TiMo, TiCr, TiV, AB3, TiCr3, AB2, TiCr2,TiCrMn,TiMo2, A2B, Ti2Mo, Tritium, Separation Factor, Application, Isotope SeparationAB5, La(Ni,Co)5, Ca(Ni,Cu)5, Deuterium, Flow-thru Reactor, Separation Factor, Application, Isotope SeparationGas Chromatographic Separation of Hydrogen

Isotopes using Metal HydridesAB5, La(Ni,Y)5, Ca(Ni,Y)5, PCT, Deuterium, Isotope Effect, Experimental, Flow-thru Reactor, Separation Factor, Application, Isotope Separation (Y=Al, Fe, Cu, Zn, Si, Ti, Cr, V, Mn, Co, Mg, Mo)A Hydrogen Storage Bed Design for Tritium

Systems Test FacilityU, Tritium, Application, Storage, Container Design

AB5, LaNi5, PCT, Deuterium, Enthalpy, Entropy, van’t HoffPd, U, PCT, Deuterium, Tritium, Enthalpy, Entropy, Application, Storage

Equilibrium and Kinetic Studies of Hydrogen isotope Exchange on Vanadium Hydride

V, PCT, Tritium, Application, Isotope Separation, Flow-thru Reactor, Separation Factor, Isotopic Exchange

Studies of the Separation of Hydrogen isotopes by a Pressure Swing Absorption Process

V, PCT, Tritium, Application, Isotope separation, Flow-thru Reactor, Separation Factor, Isotopic ExchangeAlkali Metals, Application, Isotope Separation

Separation of Hydrogen Isotopes with Uranium Hydride

U, van’t Hoff, Enthalpy, Entropy, Flow-thru Reactor, Application. Isotope

Kinetics of the Hydrogen Isotope Exchange in the Hydrogen-Metal Hydride System

Pd, AB5, LaNi5, Deuterium, Tritium, Isotopic Exchange, Application, Isotope SeparationPd, Flow-thru Reactor, Deuterium, Separation Factors, Application, Isotope Separation

The Extraction of Tritium from Helium Streams Using La5.25Ni

U, La-Ni, Eutectic La+La3Ni, van’ Hoff, Experimental Apparatus, Application, Gettering

Long-Term Behavior of the Tritides formed by Nickel-Based Intermetallic Compounds

AB, ZrNi, AB5, LaNi5, A2B, Mg2Ni, Tritium, Ageing Effects, 3He

Experience Using Metal Hydrides for Processing Tritium

AB5, La(Ni,Al)5, (Ca,Mm)Ni5, Pd, Tritium, PCT, sotope Effects, Applications, Storage, Compressor, Isotope Separation, Pump, Purification,

Solar Energy Storage by Metal Hydride English

English

Hydride Chemical Compressor English

English

English

English

English

English

Multi-Stage Hydride-Hydrogen Compressor English

English

Exhaust Gas Preheating System English

English

English

Metal Hydrides for Thermal Energy Storage English

English

Hydrogen Sponge Heat Pump English

English AB, TiFe, PCT, Application, Heat Pump

Hydride Heat Pump English

English

English

AB, TiFe, AB5, LaNi5, Review, PCT, Dynamic PCT, Application, Heat Storage, Heat Pump, Heat Engine, Experimental Apparatus

A LaNi5-Hydride Thermal Absorption Compressor for a Hydrogen Refrigerator

AB5, LaNi5, PCT, Enthalpy, Hysteresis, Decrepitation, Application, Compressor, J-T RefrigeratorAB5, LaNi4.5Al0.5, Application, Compressor

Molecular Absorption Cryogenic Cooler for Liquid Hydrogen Propulsion Systems

AB5, LaNi5, Application, Compressor, J-T Refrigerator

Life Test Results of Hydride Compressors for Cryogenic Refrigerators

AB5, LaNi5, Cyclic Life, Decrepitation, Application, Compressor, J-T Refrigerator

A Chemical Compressor based on Compacted Metal Hydrides

AB5, CaNi5, Porous Metal Compacts, Decrepitation, Application, Compressor

Use of Vanadium Dihydride for Production of High-Pressure Hydrogen Gas

V, Deuterium, Tritium, Application, Compressor, Gas Blanketing

Efficiency of Hydrogen Compression by Means of Hydrides

AB5, LaNi5, Application, Compressor, Efficiency, Model

AB5, LaNi4.9Al0.1, LaNi5, MmNi4.5Al0.5, MmNi4.15Fe0.85, Application, Compressor, Multiple StageParking Heater and Method using Hydrides in

Motor Vehicles Powered by HydrogenApplication, Heat Storage, AB, TiFe, A2B, Mg2Ni, VehicularApplication, Heat Storage, Vehicular, Automobile Catalyst

Disproportionation Resistant Metal Hydride Alloys for Use at High Temperatures in Catalytic Converters

Solid Solution, Ti-Nb, Ti-V, AB, HfNi, PCT, Disproportionation, Application, Heat Storage, Vehicular, Automobile CatalystHydride-based cold-start heater for automotive

catalystSolid Solution, Ti-Nb, PCT, Disproportionation, Application, Heat Storage, Vehicular, Automobile CatalystAB5, LaNi5, SmCo5, V, AB, TiFe, Application, Heat Storage, Solar

An Evaluation of the Use of Metal Hydrides for Thermal Energy Storage

AB5, LaNi5, YCo5, V, AB, TiFe, A2B, Mg2Ni, Application, Heat Storage, Solar, EconomicsAB, LaNi5, Application, Heat Pump, Mechanically Driven, Economics

Method and Apparatus for Heat Transfer, Using Metal Hydrides

AB5, MmNi5, AB, TiFe, Solid Solution, V-Nb, Application, Heat Pump, Solar

Cyclic Desorption Refrigerator and Heat Pump, Respectively

AB5, Application, Heat Pump, Refrigerator

A Hydride Heat Pump to Enhance Solar Energy Collection and Storage and Waste Heat

AB5, MmNi5, AB, TiFe, Solid Solution, V-Nb, Application, Heat Pump, Solar

English

English

English

English

English

Metal hydrides as chemical heat pumps English

Solar pump for heating, cooling, electricity English

English

English

English

English

Moving Bed Hydride/Dehydride Systems English Application, Compressor, Heat Pump

Hydride Heat Pump English Application, Heat Pump

Metal Hydride Reactor English

Air Conditioner for an Automobile English Application, Refrigerator, Vehicular

English

English

Hydrogen-Hydride Absorption Systems and Methods for Refrigeration and Heat Pump Cycles

Application, Refrigeration, Heat Pump, Thermodynamics

Hydrogen-Hydride Absorption Systems and Methods for Refrigeration and Heat Pump Cycles

Application, Refrigeration, Heat Pump, Thermodynamics

Hydrogen-Hydride Absorption Systems and Methods for Refrigeration and Heat Pump Cycles

Application, Refrigeration, Heat Pump, Thermodynamics

HYCSOS: A Chemical Heat Pump and Energy Conversion System based on Metal Hydrides

AB5, LaNi5, CaNi5, NdNi5, LaNi4.6Mn0.2, PCT, van’t Hoff, Enthalpy, Application, Heat Storage, Heat Pump, Refrigerator, Heat Engine, Container Design, Experimental Apparatus, SolarHYCSOS: A System for Evaluation of Hydrides

as Chemical Heat PumpsAB5, LaNi5, CaNi5, van’t Hoff, Enthalpy, Application, Heat Storage, Heat Pump, Refrigerator, Heat Engine, Experimental Apparatus, SolarAB5, LaNi5, CaNi5, van’t Hoff, Enthalpy, Application, Heat Storage, Heat Pump, Refrigerator, Heat Engine, Experimental Apparatus, SolarAB5, LaNi5, CaNi5, PCT, van’t Hoff, Enthalpy, Application, Heat Storage, Heat Pump, Refrigerator, Heat Engine, Container Design, Experimental Apparatus, Solar

System for Thermal Energy Storage, Space Heating and Cooling and Power Conversion

AB5, LaNi5, CaNi5, MmNi5, Application, Heat Storage, Heat Pump, Refrigerator, Heat Engine, Container Design, Experimental Apparatus, Solar

A Thermodynamic Analysis of HYCSOS, a Hydrogen Conversion and Storage System

AB5, LaNi5, MMNi5, Enthalpy, Application, Heat Storage, Heat Pump, Refrigerator, Heat Engine, Experimental Apparatus, Solar, Model,

Materials and Performance Characteristics of the HYCSOS Chemical Heat Pump and Energy Conversion Systems

AB5, LaNi5, CaNi5, La(Ni,Al)5, PCT, van’t Hoff, Enthalpy, Application, Heat Storage, Heat Pump, Refrigerator, Heat Engine, Experimental Apparatus, Solar, Thermodynamics

A Metal Hydrogen Heat Pump as Topping Process for Power Generation

AB, TiFe, A2B, Mg2Ni, Application, Heat Pump, Model, Thermodynamics

AB5, LaNi5, CaNi5, MmNi5, NdCo5, AB, TiFe, van’t Hoff, Container Design, Application, Heat Pump, Refrigerator

Thermodynamics of Hydride Chemical Heat Pump-II. How to Select a Pair of Alloys

AB5, AB2, AB, A2B, Review, Enthalpy, Entropy, van’t Hoff, Thermodynamics, Model, Application, Heat Pump

Thermodynamics of Hydride Chemical Heat Pump: III. Considerations for Multistage Operation

AB5, AB2, AB, A2B, Review, Enthalpy, Entropy, van’t Hoff, Thermodynamics, Model, Application, Heat Pump, Multistage

English

English

English

Dynamics of Hydride Heat Pumps English

Metal Hydride Heat Pump English

English

English

English

English

English

English

English

Metal Hydride Heat Pumps English

English

HEPTA 5. A Summary of Exploratory Work on Potential Uses of Metallic Hydrides

AB5, LaNi5, CaNi5, PCT, Enthalpy, Entropy, Application, Heat Pump, Container Design, Experimental Apparatus, Efficiency, Dynamics

Metal Hydride Heat-Pump Development at Studsvik, the Heat-Upgrading Experiment, HUGE

AB5, LaNi4.9Al0.1 AB, TiNi0.8Ni0.2, PCT, Enthalpy, Entropy, Application, Heat Pump, Container Design, Experimental Apparatus, Efficiency,

Mass Transport and Heat Exchange in Hydride Heat Pump Reactors

AB5, LaNi4.9Al0.1, Application, Heat Pump, Container Design, Experimental Apparatus, Performance, Heat Transfer, Dynamics

AB5, LaNi4.9Al0.1, PCT, Dynamic PCT, Application, Heat Pump, Container Design, Experimental Apparatus, Performance, Heat Transfer, DynamicsAB5, LaNi5, MmNi4.15Fe0.85, Application, Heat Pump, Refrigerator, Container Design, Performance

Metal Hydride Technology for Energy Conversion: Report on Basic Research at Studsvik, 1997-1987

AB5, LaNi5, CaNi5, La(Ni,Al)5, AB, TiFeo.8Ni0.2,PCT, Dynamic PCT, Enthalpy, Entropy, Review, Application, Heat Pump, Container Design, Experimental Apparatus, Efficiency, Kinetics, Dynamics, Performance

HYDRIDE HEAT PUMP, Volume I: Users Manual for HYCSOS System Design Program

AB5, LaNi5, CaNi5, PCT, Application, Heat Pump, HYCSOS. Refrigerator, Heat Engine, System design, Container Design. Thermodynamics, Heat Transfer, Model, Performance, Computer Analysis, SolarHYDRIDE HEAT PUMP, Volume II: Cost,

Performance and Cost EffectivenessAB5, LaNi5, CaNi5, PCT, Application, Heat Pump, HYCSOS, Refrigerator, Heat Engine, Container Design, System Design, Thermodynamics, Model, Performance, Cost Analysis, Computer Analysis, SolarModification and Operation of the Hydrogen

Homestead Hydride Vessel Energy Storage System

AB, Ti0.51Fe0.44Mn0.05, Application, Stationary Storage, Container Design, Performance, Safety

Design Study and Cost-Effectivness of the Metal Hydride Solar Heat Pump and Power System (HYCSOS)

Application, Heat Pump, HYCSOS, Refrigerator, Heat Engine, Container Design, System Design, Model, Performance, Cost Analysis, Solar

A Thermodynamic Analysis of a Metal Hydride Heat Pump

Application, Heat Pump, Thermodynamics, Model, Container Design

Operating Characteristics of a Metal Hydride Heat Pump for Generating Cool Air

AB5, MmNi4Fe, LaNi4.7Al0.3, Application, Refrigerator, Container Design, System Design, PerformanceApplication, Refrigerator, Performance, Economics, COP

Experimental Evaluation of Heat Pump Performance in Conjunction with Metal Hydride

AB5, Application, Heat Pump, Refrigerator, COP, Performance

English

Heat Storage Reactor for Metal Hydrides English

English

English

English

English

English

English

English

Optimization of a Hydrogen Heat Pump English

Development of a Metal Hydride Compressor English

English

State of the Art of Metal Hydride Technology English

Development of Thermal Energy Storage Technology using Metal Hydrides

AB5, CaNi5, LaNi5, Application, Heat Storage, Thermodynamics, Container Design, Heat Pipe, System Design, PerformanceAB, TiFe0.9Mn0.1, Application, Heat Storage, Thermodynamics, Container Design, Performance

Dynamic Characteristics of a Hydride Heat Storage System

A2B, Mg2Ni, Application, Heat Storage, Thermodynamics, Model, Container Design, System Design, Dynamics, Performance

Coefficients of Performance of Hydride Heat Pumps

AB5, LaNi5, LaNi4.7Al0.3, PTC, Hysteresis, Plateau Slope, Application, Heat Pump, Model, COP, Performance

The Magnesium Hydride System for Heat Storage and Cooling

A, Mg (Ni-doped), AB2, Ti0.98Zr0.02V0.45Fe0.09Cr0.05Mn1.5, PCT, Application, Heat Storage, Heat Pump, Refrigeration, Container Design, System Design, Performance, Cyclic LifeMagnesium hydride for thermal energy storage in

a small-scale solar-thermal power stationA, Mg (Ni-doped), AB2, Ti0.98Zr0.02V0.45Fe0.09Cr0.05Mn1.5, PCT, Application, Heat Storage, Heat Pump, Refrigeration, Heat Engine, Container Design, System Design

Two-stage metal hydride heat transformer laboratory model: results of reaction bed tests

AB5, LaLmNi4.4Co0.2Mn0.2Al0.2, Application, Container Design, performance

Development of a double-stage heat pump: experimental and analytical surveys

AB5, LaNi4.88Al0.23, MmNi4.57Al0.46Fe0.05, MmNi3.98Fe1.04, PCT, Hysteresis, Plateau Slope, Enthalpy, Application, Heat Pump, Three-Stage, System Design, Performance, COP, Dynamics

Hydride Heat Pump for Industrial Waste Heat Recovery

AB5, LaNi5, LaNi4.7Al0.3, Application, Heat Pump, Container Design, System Design, Waste Heat Survey, Industrial Applications Survey, Cost, Economic Survey

Design and Fabricate a Metallic Hydride Heat Pump with a Cooling Capacity of 9000 BTU/H

AB5, LaNi0.5Al0.5, CFMNi5 (CFM=cerium free mischmetal), Application, Refrigerator, Container Design, System Design, Performance, Review, Freon Refrigerator ComparisonsAB5, LaNi4.7Al0.3, MmNi4Fe, Application, Heat Pump, PMH Compact, Thermodynamics, Model, COP, Heat Transfer, Mass TransferAB5, LaNi5, Application, Compressor, Container Design, Performance

Dynamic Hydrogen Sorption and its Influence on Metal Hydride Heat Pump Operation

AB5, LaNi5, MmNi4.5Al0.5, LaNi4.7Al0.3, PCT, Dynamic PCT, Enthalpy, Entropy, System Design, KineticsAB2, PCT, Imputity Effects, Application, Stationary Storage, Vehicular Storage, Purification, Gettering, Container Design, System Design

English

English

Dynamic Behavior of Coupled Reaction Beds English

Developments of Metal Hydride Heat Pumps English

English

English

English

English

Japanese

English

English

English

English

Intermittent Power Source English

English

English

Results of Fleet Tests with Metal Hydride Motor Cars

AB2, Ti0.98Zr0.02V0.45Fe0.09Cr0.05Mn1.5, PTC, Impurity Effects, Cyclic Effects, Kinetics, Diffusion, Neutron Scattering, Application, Vehicular Storage, Container Design, Performance, ReactivationDevelopment Problems of Metal Hydride

Reaction bedsApplication, Heat Pump, PMH Compacts, Thermal Conductivity, Heat Transfer, Gas Transfer, Thermodynamics, Model

Application, Heat Pump, Coupled Beds, Dynamics, Model, Performance, PCT, Experimental Apparatus

AB5, PCT, Enthalpy, Entropy, Review, Kinetics, Heat Transfer, Application, Heat Pump, Two-Stage Heat Pump, Model

Two-Stage Metal Hydride Heat Transformer Lab Model

AB5, LmNi4.85Sn0.15, LmNi4.5Co0.1Mn0.2Al0.2, LaLmNi4.4Mn0.2Al0.2Co0.2, PCT, Application, Container Design, System Design, Performance

Measures in Preventing Expansion Damages of Metal Hydride Containers

Application, Stationary Storage, Vehicular Stotage, Container Design, PMH Compacts, Container Expansion, Lubrication

The Metal Hydride Heat Pump: Dynamics of Hydrogen Transfer

AB5, LaNi4.8Al0.2 MmNi4.5Al0.5, MmNi4.2Al0.1Fe0.7, van’t Hoff, Application, Heat Pump, Experimental Apparatus, Model, Performance

Performances of Metal Hydride Heat Pumps Operating under Dynamic Conditions

AB5, LaNi4.7Al0.3, MmNi4.5Al0.5, Application, Heat Pump, Model

Recent Advancements of the Metal Hydride Heat Pump Development

Application, Heat Pump, Refrigerator, Container Design, Performance

Recent Developments of Hydride Energy Systems in Japan

Review, Application, Heat Pump, Refrigerator, System Design,

New Heat Transfer Geometry for Hydride Heat Engines and Heat Pumps

AB5, LaNi5, PMH, Composite, Application, Heat Pump, Heat Engine,

A Hydrogen Heat Pump Incorporated into the Circuit of an Electric Power Plant

AB5, LaNi4.7Al0.7, MmNi4.15Fe0.85, van’t Hoff, Application, Heat Pump, Model, System Design, COP

Device for Converting Calorific Energy into Mechanical Energy

AB5, LaNi5, PTC, Application, Stationary Storage, Vehicular StorageAB, TiFe, A2B, Mg2Cu, Application, Heat Engine, Heat Storage

High Efficiency Power Conversion Cycles using Hydrogen Compressed by Absorption on Metal Hydrides

AB, TiFe, PCT, Application, Heat Engine, Thermodynamics, Model, Container Design, Performance, Efficiency, Economics

High Efficiency Power Conversion Cycles for Central Station and Peaking Power Plants

AB, TiFe, PCT, Application, Heat Engine, Peak Shaving, Thermodynamics, Model, Container Design, Performance, Efficiency

Hydride Compressor English

Hydride-Dehydride Power System and Methods English Application, Heat Engine

English Application, Heat Engine

English

A Novel Thermal Engine Using Metal Hydride English

Closed Cycle Hydride Engines English

Hydride Engines English

English

A Hydrogen-Actuated Pump English

Metal Hydride Actuation Device English

English

Fast-Acting Self-Resetting Hydride Actuator English

German

English

Metal Hydride Thermal Sensors Japanese

English

Solar Powered Pump with Electrical Generator English

English

English

Properties of Tritium and 3He in Metals English

Swelling of Selective Metal Tritides English

AB, TiFe, PCT, Application, Compressor, Heat Engine

Power Cycles based upon Cyclical Hydriding and Dehydriding of a Material

Absorption of Hydrogen by Metallic Compounds and Conversion of Heat Engines for Operation on Hydrogen

AB5, LaNi5, Application, Heat Engine, Refrigeration, LH2

AB5, LaNi5, PTC, Application, Heat Engine, Container Design, PerformanceAB5, LaNi5, Application, Heat Engine, Water Pump, System Design, Efficiency, SolarAB5, LaNi5, LaNi4.6Al0.4, LaNi2Co3, LaNi3Co2, CaNi5, Application, Heat Engine, Water Pump, System Design, Efficiency, Solar

Solar Energy, Hydrogen Sponge, Keys to Water Pump Operation

Application, Heat Engine, Water Pump, System Design, Container Design, AB5, LaNi5, LaNi4.6Al0.4, LaNi2Co3, LaNi3Co2, CaNi5, Application, Heat Engine, Water Pump, System Design, Efficiency, SolarAB5, CaNi5, Application, Actuator, System Design

Thermally Activated Metal Hydride Sensor/Actuator

AB5, CaNi5, Application, Actuator, System DesignPd, Application, Actuator, System Design

Thermostatisches Expansionsventil mit Hydridfulling

AB5, LaNi5, AB, TiFe, PCT, van’t Hoff, Application, Actuator, System Design, Performance

Active Control Devices based on Metal-Hydrogen Systems

Nb, AB5, LaNi5, PCT, van’t Hoff, Application, Actuator, Electrothermal Resistor, Electrical Restivity, PerformanceAB5, AB2, PCT, Application, Actuator, Temperature Sensor

Hydride Operated Reversible Temperature Responsive Actuator and Device

AB5, LaNi5, Application, Actuator, Fire Sprinkler, Container Design, System DesignApplication, Heat Engine, Water Pump, System Design

Separation of Hydrogen isotopes by Single-Column Pressure Swing Adsorption

V, PCT, Tritium, Application, Isotope separation, Flow-thru Reactor, Separation Factor, Isotopic Exchange, ModelHydrogen Isotope Exchange and Separation in

Gas-Solid Phase SystemsPd, AB2 TiMn1.5, PCT, Isotopic Exchange, Tritium, Separation Factor, Dynamics, Surface, AES, Application, Isotope SeparationPd, Nb, V, PTC, Deuterium, Tritium, 3He, Swelling, StorageLu, Nb, V, Tritium, 3He, Swelling,

English

English

English

English

English

English

Method of making ammonia English

Method of Producing Ammonia English

English

English

English

English

English

English

English

English

Fuel Cell Including a Metal Hydride Electrode English

Capture of Liquid Hydrogen Boil-Off with Metal Hydride Absorbers

AB5, LaNi4.6Al0.4, van’t Hoff, Dynamic van’t Hoff, Liquid H2, Boiloff Capture, Container Design, Performance, Economics

Rare Earth Intermetallics as Synthetic Ammonia Catalysts

AB2, CeFe2, CeRu2, CeCo2, PrCo2, A2B17, Ce2Fe17, A2B7, Ce2Co7, AB3, GdFe3, TbFe3, DyFe3, HoFe3, ErFe3, ThFe3, CeCo3, PrCo3, AB5, CeCo5, PrCo5, Application, Catalysis, Ammonia, Structure, Nitride

Rare Earth Intermetallics as Catalysts for the Production of Hydrocarbons from Carbon Monoxide and Hydrogen

AB5, LaNi5, ErNi5, A2B17, Gd2Ni17, Er2Fe17, AB2, ErFe2, AB3, ErFe3, Application, Catalysis, CO, CH4, Hydrocarbon

Intermetallic Compounds of the Type MNi5 as Methanation Catalysts

AB5, ThNi5, UNi5, ZrNi5, Application, Catalysis, CO, CH4, Hydrocarbon, Methanation

Mischmetal Nickel Alloys as Methanation Catalysts

AB5, MmNi5, Mm-Ni, Application, Catalysis, CO, CH4, Hydrocarbon, Methanation

Preparation and Use of High Surface Area Transition Metal Catalysts

AB5, MmNi5, Mm-Ni, Application, Catalysis, CO, CH4, Hydrocarbon, MethanationTi, AB, TiFe, Two-Phase, Application, Catalysis, Ammonia SynthesisAB5, CaNi5, A2B, Mg2Ni, Mg2Cu, Application, Catalysis, Ammonia

Hydrogen Transfer by Metal Hydride between Aqueous Medium and Organic Compound

AB, TiNi, Application, Catalysis, Electrocatalysis, Hydrogenation

A New Mechanism for Lengthening the Lifetime of Hydrogenation Catalysts

AB5, LaNi5, AB, TiFe, Application, Catalysis, Surface, XPS, AES, Surface Segregation, Clusters

Surface Segregation in FeTi and its Catalytic Effect on the Hydrogenation

AB5, LaNi5, AB, TiFe, Application, Catalysis, Surface, AES, Surface Segregation, Clusters, Magnetism

Surface Segregation in FeTi and its Catalytic Effect on the Hydrogenation II: AES and XPS Studies

AB5, LaNi5, AB, TiFe, Application, Catalysis, Surface, AES, XPS, Surface Segregation, Clusters, Magnetism

Synthesis of Hydrocarbons by the Reaction of CO with H2 on FeTi1.14O0.03

MIC, TiFe1.14O0.03, O-Stabilized, Application, Catalysis, CO, Hydrocarbon Synthesis

Rare Earth and Actinide Intermetallics as Hydrogenation Catalysts

AB3, CeCo3, NdCo3, GdCo3, TbCo3, PrCo3, ErFe3, TbFe3, ThFe3, DyFe3, HoFe3, A2B7, Ce2Co7, A2B17, Ce2Fe17, AB2, CeRu2, CeFe2, PrCo2, AB5, LaNi5, CeNi5, GdNi5, TbNi5, HoNi5, YbNi5, ThNi5, UNi5, ZrNi5, CeCo5, Application, Catalysis, Ammonia Synthesis, Methanation, Surface, SEM, AES, Surface Area, Clusters

Intermetallic Compounds as Catalysts for Reactions of Heterogeneous Catalysis

AB5, LaNi5, Application, Catalysis, CO, Hydrocarbon Synthesis, Hydrogenation, Ethane

Olefin hydrogenation over some LaNi5-xMx intermetallic compounds

AB5, La(Ni,M)5, Application, Catalysis, Hydrogenation, OlefinsTi, Zr, Hf, Two-Phase, Application, Catalysis, Electrocatalysis, Fuel Cell

English

English

English

Applications for Rechargeable Metal Hydrides English

English

English

AB5-Catalyzed Hydrogen Evolution Electrodes English

English

Solar Batteries Planned for New Homes English

English

Hydrogen Storage within the Infrastructure English

English

English

English

English

On the road to dirty metallic atomic hydrogen English

Fuel Cell and Fuel Cell Electrode Containing Nicke--Rare Earth Intermetallic Catalyst

AB5, MmNi5, PrNi5, Application, Catalysis, Electrocatalysis, Fuel Cell

Formation of Metallic Hydrides and Nitrides and their Significance in the Synthesis of Ammonia

Ca, Li, Application, Catalysis, Ammonia Synthesis, Nitride

Sensor for Heat or Temperature Detection and Fire Detection

Ti, Zr, Pd, V, Application, Temperature Sensor, ActuatorReview, PCT, van’t Hoff, Applications, Stationary Storage, Container Design, Separation, Purification, Compression, Heat Pumping, Refrigeration, Performance

Solar conversion by concentration cells with hydrides

AB5, LaNi5, CaNi5, Application, Compression, Solar Electric Generator, Electrochemical

Photoelectrochemical Cell with In-Situ Storage using Hydrogen Storage Electrodes

AB5, LaNi5, LaNi4.7Al0.3, LaNi3Co2, Application, Photoelectrolysis, Stationary Storage, Electrode, ElectrochemicalAB5, LaNi4.7Al0.3, Application, Electrode, Water Electrolysis, Electrocatalysis, Overpotential

The Texas Instruments Solar EnergySystem Development

AB5, CaNi5, Application, Stationary Storage, Solar Electric Storage, Photoelectrolysis, Si Semiconductor, HBr Electrolysis, Fuel Cell, System AB5, CaNi5, Application, Stationary Storage, Solar Electric Storage, Photoelectrolysis, Si Semiconductor, HBr Electrolysis, Fuel Cell

Chemical Compression of Hydrogen up to 40 GPa: Problems of Materials and Design

AB5, Ce0.7La0.3Ni4.98Al0.02, Ce0.7La0.3Ni5, Ce0.5La0.5Ni5, Application,Compressor, Container Design, DisproportionationNi-Coated Mg, PCT, Application, Stationary Storage, Container Design, Reaction Heat Storage, Phase Change Heat Storage, Cost

Development of an F-Class Refrigeration System using Hydrogen-Absorbing Alloys

AB5, La0.6Y0.4Ni4.8Mn0.2, LaNi4.6Al0.3Mn0.1, PCT, Dynamic PCT, Application, Refrigeration, System Design, Performance

Progress Toward the Development of Hydrogen Sorption Cryocoolers for Space Application

AB5, LaNi4.8Sn0.2, AB, ZrNi, van’t Hoff, Application, Compression, Refrigeration, Cryocooling, System Design, LH2, Solid H2, J-T Refrigerator

Brilliant Eyes Ten-Kelvin Sorption Cyocooler Experiment (BETSEC)

AB5, LaNi4.8Sn0.2, AB, ZrNi, Application, Compression, Refrigeration, Cryocooling, Container Design, System Design, LH2, Solid H2,

Yttrium and lanthanum hydride films with switchable optical properties

Y, La, Film, Optical Properties, Electrical Properties, Application, Switchable Mirror, Metal-Semiconductor TransitionY, La, Film, Optical Properties, Electrical Properties, Application, Experimental Apparatus, High Pressure, Switchable Mirror, Metal-

English

English

Portable Fuel cell Power System English

English

The Chemical Hydride Hydrogen Generator English

English

English

English

English

English

English

English

English

Hydrogen Heat Pump English

Yttrium and lanthanum hydride films with switchable optical properties

Y, La, Film, PTC, Optical Properties, Electrical Properties, Application, Switchable Mirror, Metal-Semiconductor Transition, Band Structure

Hydrogen Separation and Purification Using Metal Hydrides

Application, Separation, Purification, Review, Container Design, System Design Impurity Effects, Surface EngineeringApplication, Stationary Storage, Portable Storage, Fuel Cell, Rechargeable Hydride, Chemical Hydride, PerformanceDemand responsive hydrogen generator based

on hydride water reactionCaH2, LiH, LiAlH4, LiBH4, Chemical Hydride, Application, Stationary Storage, Portable Storage, Container DesignCaH2, Chemical Hydride, Application, Stationary Storage, Portable Storage, Container Design

Hydrogen Storage and Generation using Light Metal Hydrides

LiAlH4, Li3AlH6, Chemical Hydride, Application, Stationary Storage, Portable Storage, Container Design, NH3, Performance

An investigation of hydrogen storage methods for fuel cell operation with man-portable equipment

Review, AB5, LaNi5, CaNi5, Mm(Ni,X)5, AB, TiFe, van’t Hoff, Chemical Hydrides, Complex Hydrides, LiH, LiAlH4, NaBH4, Alterenate Storage, Organic Hydrogenation/Dehydrogenation, Zeolites, Glass Microspheres, Carbon Cryoadsorbents, LH2, High Pressure GH2, Application, Portable Storage,

Use of Metal Hydrides in Systems for Supplying Vacuum Physical-Energy Installations

A, Ti, Zr, Mg, A2B17, La2Mg17, AB5, LaNi5, MmNi5, Mm(Ni,Al)5, La(Ni,Al)5, AB, TiFe, Ti(Fe,V), ZrNi, AB2, TiMn2, (Ti,Zr)(Cr,Mn)2, Zr(V,Fe)2, A2B, Ti2Ni, Mg2Ni, MIC, Zr3V3(B,O), Zr5Al3, Zr3Al2, Review, Application. Stationary Storage, Purification, Gettering, Fusion, Accelerator, Maser

Negative hydrogen emission from heated metal hydride powder

CaH2, LiH, NaH, ZrH2, Application, Hydrogen Ion Source, Self-Surface Negative Ionization (SSNI)

Preparation and characterization of Pd/Ni thin films for hydrogen sensing

Solis Solution, Pd-Ni, Electrical Properties, Structure, EPMA, SEM, Application, H2 Sensor

Role of hydride phases in the catalytic activity of Zr2Ni for the dehydrogenation of methanol

A2B, Zr2Ni, Application, Catalysis, Methanol Dehydrogenation, Structure, AES, XPS, HF/NaOH Surface Treatment, Ni Clusters

Amorphous Ni-Ti and Ni-Zr Alloys for Water Electrolysis Cathode Materials

Amorphous, Ni-Ti, Zr-Ti, Surface HF Treatment, Electrode, Electrochemical Properties, Electrocatalysis, H2O Electrolysis, Ni Clusters

Heat Transportation system Using Metal Hydrides

AB5, Mm(Ni,Y)5, van’t Hoff, Application, Heat Transport, Container Design, System Design, PerformanceAB5, CFMm0.7-0.9Mm0.1-0.3Ni5, CFMm1-1.4La0-0.3Ni4.75Al0.05-0.2Mn0.05-0.2Fe0.05-0.85, Application, Refrigerator, Container Design

Hydrogen Heat Pump Alloy Combination English

English

English

English

English

Hydrogen Separation using LaNi5 Films English

English

English

English

English

English

Isotope Effects in Metal-Hydrogen Systems English

English

English

English

AB5, CFMm0.7-0.9Mm0.1-0.3Ni5, CFMm1-1.4La0-0.3Ni4.75Al0.05-0.2Mn0.05-0.2Fe0.05-0.85, Application, Refrigerator, Container Design

Prediction of Metal Hydride Heat Transformer Performance Based on Heat Transfer and Reaction Kinetics

AB5, LaNi5, AB2, ZrCrFe1.4, Application, Heat Pump, Model, Heat Transfer, Kinetics, Performance, COP

Performance Characteristics of a Compressor-Driven Metal Hydride Refrigerator

AB5, MmNi4.15Fe0.85, Application, Mechanically Driven Refrigerator, Model, Heat Transfer, Performance, COPEvaluation of metal hydride machines for heat

pumping and cooling applicationsAB5, LaNi5, LaNi4.95Al0.05, LaNi4.85Al0.15, LaNi4.75Al0.25, LaNi4.3Al0.4Mn0.3, LaNi4.4Al0.34Mn0.26, LaNi4.5Al0.29Mn0.21, LaNi4.7Sn0.3, La0.555Pr0.12Nd0.295Ni5Co0.03, AB2, Ti0.98Zr0.02V0.43Fe0.09Cr0.05Mn1.5, Application, Heat Pump, Refrigerator, Container Design, Multistage,

Thermodynamic based comparison of sorption systems for cooling and heat pumping

Application, Heat Pump, Refrigerator, Alternate Comparisons, Performance, COPAB5, LaNi5, Application, Separation, Composite, Film, Membrane,

Separation of hydrogen from H2-CO gas mixtures using amorphous Ca-Ni films

Amorphous Ca-Ni, LaNi5, Application, Separation, Composite, Film, Membrane, Permeability

Hydrogen Isotope Separation using Rare Earth Alloy Films Deposited on Polymer Membranes

AB5, LaNi5, Film, Permeation, Isotope Effects, Deuterium, Application, Isotope Separation, Separation Factor

Selective Absorption of Hydrogen Isotopes in an Inert Gas in a Zirconium Particle Bed

Zr, Flow-thru Reactor, Application, Separation, Isotope Separation, Breakthrough

Helium Dynamics in Metal Tritides I. The Effect of Helium from Tritium Decay on the Desorption Plateau Pressure from La-Ni-Al Tritides

AB5, LaNi4.25Al0.75, Tritium, PCT, Experimental Apparatus, Structure, Lattice Strain, 3He Aging Effects, Cyclic Effects, Application, Tritium Storage

Helium dynamics in metal tritides I. The effect of microstructure in the observed helium behavior from La-Ni-Al tritides

AB5, LaNi4.25Al0.75, Tritium, PCT, Experimental Apparatus, Structure, SEM, Lattice Strain, 3He Aging Effects, Cyclic Effects, Application, Tritium Pd, V, Nb, Ta, AB2, TiMn1.5, AB, TiFe, Tritium, Model, Mobility, Diffusion, Isotope Exchange, Separation factor, Tracer Techniques, Application, Isotope Separation

Modeling of hydrogen isotopes separation in a metal hydride bed

Pd, Application, Isotope Separation, Model

Post-Flight Analysis of a 10 K Sorption Cryocooler

AB5, LaNi4.8Sn0.2, AB, ZrNi, Application, Compression, Refrigeration, Cryocooling, System Design, LH2, Solid H2, Performance, J-

Hydrogen Sorption Cryocoolers for the Planck Mission

AB5, La1.01Ni4.78Sn0.22, Application, Compression, Refrigeration, Cryocooling, System Design, LH2, J-T Refrigerator, Gas-Gap Heat Switch, European Space Agency, PLANCK Mission

English

English

English

English

Fast Gas-Gap Heat Switch for a Microcooler English

English

Interaction of ZrMoCr with Hydrogen Russian AB2, ZrMoCr, PCT, Enthalpy

Russian

Russian

Russian

Russian

Russian

Russian

Interaction of CeMg2 with Hydrogen Russian

Russian

Russian

Russian

German

German

The FIRST and Planck ‘Carrier’ missions. Description of the cryogenic systems

Application, Compression, Refrigeration, Cryocooling, System Design, LH2, J-T Refrigerator, European Space Agency, PLANCK

Design of a Variable-Conductance Vacuum Insulation

70Zr-24.6V-5.4Fe, Application, H2 Dispensor, Gas-Gap Heat Switch, Model, Performance

Gas-controlled dynamic vacuum insulation with gas gate

Application, H2 Dispensor, Gas-Gap Heat Switch, Vacuum Insulation, Zr-V-

Reducing Cold-Start Emissions by Catalytic Converter Thermal Management

Application, H2 Dispensor, Gas-Gap Heat Switch, Automotive Catalytic Converter, Heat StorageAB, ZrNi, Application, Gas-Gap Heat Switch, Compressor, Cryocooler, H2 Dispenser, Model

Development of a Gas Gap Heat Switch Actuator for the Planck Sorption Cryocooler

AB, ZrNi, U, Application, Gas-Gap Heat Switch, Compressor, Cryocooler, H2 Dispenser, Model, European Space Agency PLANCK

Interaction of Hydrogen with Beta-phase Alloys of Ti-V-Al System

Solid Solution, Ti-V-Al, Capacity, Phase Diagram, DTA, Structure

Interaction of LaNi5 with Hydrogen at Low Temperature

AB5, LaNi5, Capacity, Kinetics, Low temperature, Experimental Apparatus

Interaction of Intermetallic Compounds of Rare-Earth Metals and Aluminum with Hydrogen

A3B, Ce3Al, A2B, Y2Al, Pr2Al, Ho2Al, Er2Al, A3B2, Y3Al2, Ho3Al2, Er3Al2, AB, YAl, CeAl, PrAl, ScAl, Capacity, Disproportionation, Amorphous, DTA

Electroconductivity of Composite Materials of PTFE with LaNi5

AB5, LaNi5, Composite, Electrical Conductivity, Application, H2 Sensor

Interaction of Alloys of Ti-V-Co System with Hydrogen

Solid Solution, Ti-V-Co, AB, Ti(Co,V), A2B, Ti2Co, Multiphase, Capacity, Structure, Phase Diagram, DTA

Interaction of ZrMo2 with Hydrogen at Low Temperature

AB2, ZrMo2, PCT, Enthalpy, Structure, Volume ChangeAB2, Mg Alloy, CeMg2, PCT, Enthalpy, DTA, Hysteresis

Interaction with Hydrogen of Binary La, Ce, Er Compounds with Nickel

AB, LaNi, CeNi, ErNi, PCT, Structure, Disproportionation

Calorimetric Study of the Hydriding Reaction of Ce3Al

A3B, Ce3Al, Capacity, Enthalpy, Calorimetry, Disproportionation

Study of Interaction of Ti0.2V0.8 Alloy with Hydrogen by Calorimetric Method

Solid Solution, V-Ti, PCT, Enthalpy, Calorimetry

Untersuchung der Systeme Mg/MgH2 und Mg-Fe/Mg2FeH6 als Warmespeichermaterialien

Mg, Complex, Mg2Fe, PCT, Enthalpy, Entropy, Structure, Disproportionation, Microstructure, SEM, Cyclic Capacity, Particle Size, TEM, Application, Heat Storage, Review, Experimental ApparatusTi- oder Ti- und Fe-dotierte Natriumalanate als

nue reversible WasserstoffspeichermaterialienComplex, NaAlH4, Na3AlH6, Ti-Doping, Fe-Doping, Synthesis, review, PCT, Enthalpy, Entropy, Cyclic Stability, Microstructure, SEM, Catalysis, Particle Size Effects, Mossbauer, Kinetics, Structure, IR Spectroscopy, Disproportionation

English

English

Hydrogen Storage in Ti-V-Ni Alloys English

English

English AB2, ErFe2, PCT, Structure

English

Thermal Aging of LaNi5-xMnx Hydrides English

English

English

Hydrogen Storage Materials English

English

English

English

English

English

English

Factors affecting the characteristics of the negative electrodes for nickel-hydrogen batteries

AB5, MmNi3.31Co0.64Mn0.37Al0.28, Nonstoichiometric, PCT, Electrode, Electrochemical, Ni Foam, Manufacture, Cyclic Effects, Rate Effects, SEM, Impedance Spectroscopy

Hydrogen for Energy Storage: A Progress Report of Technical Developments and Possible Applications

AB, TiFe, Application, Electric Peak Shaving, Electrolyzer, Fuel Cell, Plant Design, Economics, ModelAB2, Vi(V,Ni)2, PTC, Enthalpy, Entropy, Multiphase, Structure, Electrochemical, SEM, EDAX

Hydrogen-induced amorphization in the Ce(Fe1-xAlx)2 system

AB2, Ce(Fe,Al)2, Capacity, Structure, Volume Change, Mossbauer,

ErFe2-H System: A New Plateau and the Structure of the New Hydride PhasePerformance of LaNi4.7Sn0.3 Metal Hydride Electrodes in Sealed Cells

AB5, LaNi4.7Sn0.3, PCT, Electrode, Electrochemical, Cyclic Life, Self Discharge, Sealed Cell

AB5, LaNi4.6Mn0.4, LaNi3.5Mn1.5, PCT, Disproportionation Aging, Structure, Hysteresis, Microstructure, SEM

Hydrogen Storage Materials of Hyperstoichiometric Alloys

AB2, Nonstoichiometric, ZrCrFeMn0.8, ZrCrFe1.6, ZrCrFe1.8, ZrCrFeCo0.8, ZrCrFeNi0.8, ZrCrFeCu0.8, PCT, Enthalpy, Structure, Kinetics

Hydrogen Storage Materials of Zirconium-Chromium-Iron and Titanium Alloys Characterized by ZrCr2 Stoichiometry

AB2, ZrCr0.6Fe1.4, Zr0.8Ti0.2Cr0.6Fe1.4, Zr0.7Ti0.3Cr0.6Fe1.4, PCT, Enthalpy, Structure, KineticsA6B14, La2.4Er3.8Co11Ga3, La2.4Er3.8Co4Ni7Ga3, La2.4Er3.8Co2Ni9Ga3, PCT, Electrode, Electrochemical

Dynamic Behavior of Paired Metal Hydrodes: I. Experimental Method and Results

AB5, MmNi4.0Fe1.0, LaNi4.65Al0.3, Dynamic PCT, Coupled Beds, Application, Heat Pump, Refrigerator, Experimental, Performance

Thermodynamics of Hydride Chemical Heat Pump-I. Model

AB5, Review, Enthalpy, Entropy, van’t Hoff, Thermodynamics, Model, Application, Heat Pump

Pd/PVDF thin film hydrogen sensor based on laser-amplitude-modulated optical-transmittance: dependence on H2 concentration and device physics

Pd, Optical Properties, Application, H2 Sensor

Hydrogen isotope separation using LaNi3Al2 hydride

AB5, LaNi3Al2, Deuterium, Application, Isotope Separation, Breakthru, Model, Performance

Absorption Breakthrough of Hydrogen Isotopes in Inert Gas Mixture and Desorption Characteristics with a Zr-Ni Alloy Particle Bed

AB, ZrNi, Deuterium, Application, Isotope Separation, Breakthru, Performance

Comparison of Uranium and Zirconium Cobalt for Tritium Storage

U, AB, ZrCo, Tritium, Kinetics, Application, Stationary Storage, Experimental Procedure, Performance

English

English

English

English

English

English

English

English

English

English

English

English

English

English

English

English

Effects of Substitutions with Foreign Metals on the Crystallographic, Thermodynamic and Electrochemical Properties of AB5-Type Hydrogen Storage Alloys

AB5, Mm(Ni,Al)5, MmN4.2Al0.4Cr0.4, MmN4.2Al0.4Mn0.4, MmN4.2Al0.4Fe0.4, MmN4.2Al0.4Co0.4, PCT, Enthalpy, Electrode, Electrochemical, Rate Effect, Cyclic Life, StructureCrystal Structure of

NonstoichiometricLa(Ni,Sn)5+x Alloys and Their Properties as Metal Hydride Electrodes

AB5, LaNi5, LaNi4.7Al0.3, LaNi4.84Sn0.32, Nonstoichiometric, PCT, Structure, Volume Change, Electrode, Cyclic Life

Effect of adding chromium to Ti-Zr-Ni-V-Mn alloy on its cycle life as an Ni/metal-hydride battery material

AB2, (Ti,Zr)(Ni,V,Mn,Cr)2+, Nonstoichiometric, Multiphase, PCT, Electrode, Cyclic Life, Microstructure

Electrochemical Properties of Zr-V-Ni System Hydrogen Storage Alloys

AB2, Zr(V,Mn,T,Ni)2 (T=Ni,Co,Fe,Al), PCT, Enthalpy, Structure, Electrode, Electrochemical, SEM, Cyclic Life

Relationship Beyween Equilibrium Hydrogen Pressure and Exchange Current for the Hydrogen Electrode Reaction at MmNi3.9-xMn0.4AlxCo0.7 Alloy Electrodes

AB5, Mm(Ni,Mn,Al,Co)5, PCT, Electrode, Electrochemical, Impedance Sprctroscopy, Exchange Current

Microstructure and electrochemical properties of rapidly solidified alloy Ml(NiCoMnTi)5

AB5, MlNi3.7Co0.75Mn0.5Ti0.05, PCT, Structure, Microstructure, Rapid Solidification, Electrode, ElectrochemicalEffects of particle size on the electrochemical

properties of Mm(NiCoMnAl)5 alloyAB5, La0.65Nd0.2Pr0.15Ni3.55Co0.75Mn0.4Al0.3, PCT, Electrode, Electrochemical, Cyclic Life

Effect of annealing treatment on electrochemical properties of Mm-based hydrogen storage alloys for Ni/MH batteries

AB5, Mm(Ni,Co,Mn,Al,Cu,Si)5, PCT, Structure SEM, Electrode, Electrochemical, Cyclic Life, Impedance SpectroscopyStabilization of high dissociation pressure

hydrides of formula La1-xCexNi5 (x=0-0.3) with carbon monoxide

AB5, (La,Ce)Ni5, PCT, Hysteresis, Plateau Slope, Structure, CO, Poisoning, Impurity Effects

Thermodynamic and structural comparison between two potential metal-hydride battery materials LaNi3.55Mn0.4Al0.3Co0.75 and CeNi3.55Mn0.4Al0.3Co0.75

AB5, LaNi3.55Mn0.4Al0.3Co0.75, CeNi3.55Mn0.4Al0.3Co0.75, PCT, Structure, Electrode

The hydriding kinetics of LaNi4.5Al0.5 with hydrogen

AB5, LaNi4.5Al0.5, PCT, Enthalpy, Kinetics, Experimental Technique,

Influence of surface treatment by HCl aqueous solution on electrochemical characteristics of a Mm(Ni-Co-Al-Mn)4.76 alloy for nickel-metal hydride batteries

AB5, Mm(Ni0.64Co0.20Al0.04Mn0.12)4.76, PCT, Nonstoichiometric, Surface Treatment, SEM, EDX, XPS, TEM, Electrode, Electrochemical

The thermodynamic parameters for the LaNi5-xAlx-H2 and MmNi5-xAlx systems

AB5, La(Ni,Al)5, Mm(Ni,Al)5, PCT, Enthalpy, Entropy, Structure

Studies on cobalt-free AB5-type hydrogen storage alloys

AB5, (La,Ce)(Ni,Co,Mn,Al,Cu,Fe,Cr)5, PCT, Structure, Electrode, Electrochemical, Cyclic Life, Impedance Spectroscopy, Electrical Properties

Effect of substitution on hysteresis in some high-pressure AB2 and AB5 metal hydrides

AB2, (Ti,Zr)(Cr,Mn,V)5, (Ti,Zr)(Cr,Mn,Co)5, AB5, (CeLa)(Ni,Co)5, PCT, Hysteresis, Structure, Calorimetry

The improvement of the hydrogenation properties of nickel-metal hydride battery alloy by surface modification with platinum groupe metal (PGMs)

AB5, La0.9Nd0.05Pr0.05Ni3.5Co0.65Al0.3Mn0.4, PCT, Structure, Microstructure, SEM, Electrode, Decrepitation, Surface Treatment, Pd-coating, Ru-coating, Impurity Effects

English

English

English

English

English

English

English

English

English

English

English

Hydrogen Absorption Kinetics of MmNi4.7Al0.3 English AB5, MmNi4.7Al0.3, PCT, Kinetics

English

English

English

Hydrogen absorption in Al doped MmNi5 English

English

English

Influence of cobalt content in MmNi4.3-xMn0.3Al0.4Cox alloy (x=0.36 and 0.69) on its electrochemical behavior studied by in situ neutron diffraction

AB5, MmNi4.3-xMn0.3Al0.4Cox, PCT, Structure, Decrepitation, Neutron Diffraction, In-situ Diffraction, Electrode, Electrochemical

Effect of Mo additive on hydrogen absorption of rare-earth based hydrogen storage alloy

AB5, Lm(Ni,Al,Mn,Co,Mo)5, PCT, Structure, Microstructure

A panoramic overview of hydrogen storage alloys from a gas reaction point of view

AB5, AB2, AB, A2B, Complex, Carbon, PCT, Enthalpy, Entropy, Plateau Slope, Hysteresis, Volumetric Density, Cost

Hydriding-dehydriding characteristics of NdNi5 and effects of Sn-substitution

AB5, NdNi5, Nd(Ni,Sn)5, Enthalpy, Entropy, Hysteresis, Kinetics

Improvement in capacity of cobalt-free Mm-based hydrogen storage alloys with good cycling stability

AB5, (Mm,Ti,Zr)(Ni,Mn,Al,Cu,Cr,M)5, Mm(Ni,Co,Mn,Al)5, Mm(Ni,Co,Mn,Al,Cr,Cu,Si)5, PCT, Structure, Microstructure, Electrode, Electrochemical, Cyclic Life

Hydrogenation equilibria characteristics of LaNi5-xZnx intermetallics

AB5, La(Ni,Zn)5, PCT, Enthalpy, Entropy, Structure

Study of the multicomposition AB5 alloys including Li, made by the diffusion method, and their electrodes

AB5, Ml(Ni,Co,Mn,Al,Li)5, PCT, Enthalpy, Entropy, Structure, Electrode, Electrochemical

Structure and related properties of (La,Ce,Nd,Pr)Ni5 alloys

AB5, (La,Ce,Nd,Pr)Ni5, PCT, Enthalpy, Entropy, Hysteresis, Structure, Volume Change, Factorial Experiment, Statistical Model

Effect of Ni content on the structure, thermodynamic and electrochemical properties of the non-stoichiometric hydrogen storage alloys

AB5, MmNiyCo0.75Mn0.4Al0.3, PCT, Enthalpy, Entropy, Nonstoichiometric, Structure, Electrode, Electrochemical, Cyclic Life, Rate Effects, Impedance Spectroscopy

Effect of Zn on the hydrogen storage characteristics of multi-component AB5-type alloys

AB5, MlNi3.8Co0.5Mn0.4Al0.3Lix, PCT, Enthalpy, Entropy, Structure, Electrode, Electrochemical, Electrical Resistance, Impedance Spectroscopy

Mechanical alloying and hydrogen storage properties of CaNi5-based alloys

AB5, CaNi5, (Ca,Ce)Ni5, (Ca,Mm)Ni5, Ca(Ni,Zn)5, Ca(Ni,Sn)5, (CA,Mm)(Ni,Zn)5, PCT, Enthalpy, Entropy, Structure, Kinetics

Correlation between microstructure and hydrogen storage capacity in MmNi5 alloys with Al, Mn and Sn substitutions

AB5, Mm(Ni,Al)5, Mm(Ni,Mn)5, Mm(Ni,Sn)5, PCT, Microstructure

Effect of hydrogen cycling on the hydrogen storage properties of MmNi4.2Al0.8

AB5, MmNi4.2Al0.8, PCT, Hysteresis, SEM, Decrepitation, Cycling Effect, Particle Size

X-ray diffraction peak broadening and degradation in LaNi5-based alloys

AB5, LaNi5, LaNi4.5Mn0.5, LaNi4.75Al0.25, PCT, Cyclic Effects, Structure, Line Broadening, DisproportionationAB5, MmNi4.5Al0.5, PCT, Kinetics, Activation

Electrochemical characterization of a MmNi5-xMx electrode for rechargeable Ni/MH battery

AB5, Mm(Ni,Co,Al,Mn)5, PCT, SEM, BET, Structure, Electrode, Electrochemical, Impedance SpectroscopyOn the mechanically pulverized MmNi4.6Fe0.4

as a viable hydrogen storage materialAB5, MmNi4.6Fe0.4, PCT, Structure, SEM, Ball Milling, Kinetics

English

English

English

English

English

English

English AB, (Ti,Zr)Fe, PTC, Structure, Model

English

English

English AB, ZrNi, Capacity, Kinetics, Structure

English

English

English

English

English

English

English

New approach for synthesizing Mg-based alloys English

English

Correlation of substitutional solid solution with hydrogenation properties of TiFe1-xMx (M=Ni, Co, Al) alloys

AB, Ti(Fe,Ni), Ti(Fe,Al), TiFe0.9Co0.1, PCT, Enthalpy, Hysteresis, Structure

Hydrogen absorption properties of amorphous and crystalline alloys in the pseudobinary ZrCo-TiNi system

AB, (Zr,Ti)(Co,Ni), PCT, Structure, Amorphous, Phase Relationships

Crystal structure and hydride formation of the DyNi5-xGax alloys

AB5, Dy(Ni,Ga)5, PCT, Enthalpy, Structure

Influence of the boron additive on the structure, thermodynamics and electrochemical properties of the MmNi3.55Co0.75Mn0.4Al0.3 hydrogen storage alloy

AB5, MmNi3.55Co0.75Mn0.4Al0.3By, PCT, Enthalpy, Entropy, Structure, SEM, Electrode, Electrochemical

Preparation and electrochemical properties of some (Sc1-xTix)Ni alloys

AB, (Sc,Ti)Ni, PCT, Structure, Electrode, Electrochemical

Hydrogen-induced phase transitions of GdZn1-xMgx compounds

AB, GdZn, GdMg, GdZn0.9Mg0.1, Capacity, Structure, Microstructure, Magnetic Properties

Hydriding characteristics of zirconium-substituted FeTiEffects of cooling rate during casting on performance of metal hydride electrodes and nickel-metal hydride batteries

AB5, MmNi3.6Co0.7Mn0.3Al0.4, PCT, Structure, Cooling Effects, SEM, Microstructure, Electrode, Electrochemical, Battery, EC Activation, Cyclic Life, Cell Pressure

Metal Hydrides: Properties and Practical Applications. Review of the Works in CIS-Countries

AB, AB2, AB5, Solid Solutions, Mg-alloys, Ti0.48Fe0.47V0.025Mn0.025, Ti0.9Zr0.1Mn1.4Cr0.45Fe0.15, Mm0.6Ce0.4Ni5, Mg-Mm-Ni, Mg-Ce-Ni, La2Mg17, Catalysis, Applications, Storage, Heat Pumps, Decrepitation, H2 Purification, Fuel Cells, Batteries, Nuclear Safety

Multiple hydriding/dehydriding of Zr1.02Ni0.98 alloyHydrogen solubility properties of Ti0.2Zr0.08Fe0.50 alloy

AB, Ti0.2Zr0.08Fe0.50, PCT, Enthalpy, Entropy, SEM

Hydrogen storage properties of FeTi1.3 + x wt.%Mm (X = 0.0, 1.5, 3.0, 4.5, 6.0) hydrogen

AB, Ti1.3Fe, Mm, PCT, Activation, Structure

Effects of boron and carbon on the hydrogenation properties of TiFe and Ti1.1Fe

AB, TiFe, Ti1.1Fe, TiFeB0.001, TiFeC0.001, PCT, Hysteresis, Activation, Structure

Pressure-composition isotherms in thge Mg2Ni-H2 system

A2B, Mg2Ni, PCT, Enthalpy, Entropy, Sintering

Neutron diffraction studies of Zr-containing intermetallic hydrides with ordered hydrogen sublattice. I. Crystal structure of Zr2FeD5

A2B, Zr2Fe, Capacity, Deuterium, Structure, Neutron Diffraction

Hydrogen storage properties of nanocrystalline Mg1.9Ti0.1Ni made by mechanical alloying

A2B, Mg1.9Ti0.1Ni, PCT, Enthalpy, Structure, Kinetics, Nanocrystalline, Mechanical Alloying

Hyperfine spectroscopic study of Hf2Fe hydrides and their thermal stability

A2B, Hf2Fe, PAC Spectroscopy, Structure, Magnetic Order, StabilityA2B, Mg2Ni, PCT, Enthalpy, Entropy, Structure, Ball Milling, Sintering

Characteristica of Mg2-xTixNi1-yCuy-H2 (0<x<2, 0<y<1) alloys

A2B, Mg1.75Ti0.25Ni0.75Cu0.25, PCT, Diffusion Synthesis, F-treatment, Surface Treatment, Corrosion, Electrochemical

English

English

English

English

English

Cyystal structure of Th2Al deuterides English

English

English

English

English

English AB2, HfTi2, Capacity, Structure

English

English

English

English

English

English

Hydrogen absorption and desorption properties of Hf-based intermetallic compounds

AB, HfB, HfNi, HfCo, HfPd, AB2, HfCr2, HfV2, HfMn2, HfMo2, A2B, Hf2Fe, Hf2Co, Hf2Ni, Hf2Cu, Hf2Pd, PCT, Structure, SEM, Decrepitation

Pseudobinary intermetallic compounds in Hf2M’-Hf2M” (M’, M” = Mn, Fe, Ni, Cu) systems and their interaction with hydrogen at high pressure

A2B, Hf2Ni0.5Mn0.5, Hf2Ni0.5Fe0.5, Hf2Ni0.5Ni0.5, Capacity, Structure, Volume Change

The correlation between composition and electrochemical properties of metal hydride electrodes

AB5, MmNi3.55Co0.75Mn0.4, Al0.3, La(Ni,Co,Mn,Al)5, Mm(Ni,Co,Mn,Al)5, (La,Ce)(Ni,Co,Mn,Al)5, PCT, Structure, Electrode, Electrochemical, Cyclic Life, Corrosion

Characteristics of Mg2Ni0.75Co0.25 alloy after surface treatment

A2B, Mg2Ni0.75Co0.25, PCT, Structure, F-Treatment, pH, XPS, SEM, Surface Structure

A high pressure observation of the Mg2NiH4-H system

A2B, Mg2NiH4, Capacity, Structure, TGA, DTA, High Pressure

A2B, Th2Al, Capacity, Deuterium, Structure

Activity and capacity of hydrogen storage alloy Mg2NiH4 produced by hydriding combustion synthesis

A2B, Mg2Ni, PCT, Enthalpy, Entropy, Structure, DSC, Combustion Synthesis

Study on the Electrode Characteristics of Hypostoichiometric Zr-Ti-V-Mn-Ni Hydrogen Storage Alloys

AB2, (Zr,Ti)(Mn0.2V0.2Ni0.6)1.8, PCT, Structure, Nonstoichiometric, Electrode, Electrochemical, Impedance Spectroscopy, Cyclic Life, Microstructure, SEM, Auger Spectroscopy, Corrosion, Surgace Area, ICPDevelopment of AB2-Type Zr-Ti-Mn-V-Ni-M

Electrode for Ni-MH BatteryAB2, Zr0.5Ti0.5Mn0.4V0.6Ni0.85M0.15 (M=Fe, Co, Cu, Mo, Al), PCT, Structure, Electrode, Electrochemical, SEM, Surface, Corrosion

Crystallographic and hydrogen sorption properties of TiMn2 based alloys

AB2, Ti0.95Zr0.05Mn1.5M0.5 (M=V, Ct, Mn, Co, Ni, Al), PTC, Structure, EPMA, Phase Analysis, Nonstoichiometry

Hydrogen in HfTi2 alloy: a formation of the hydrogen-stabilized HfTi2Hx phase with the C-15-type host latticeDeuterium absorption properties and crystal structure of UNiAl

AB2, UNiAl, Capacity, Structure, Deuterium, Neutron Diffraction

AB2 metal hydrides for high-pressure and narrow temperature interval applications

AB2, Ti(Cr,Mn,Fe,V)2, (Ti,Zr)(Cr,Mn)2, GfE Hydralloy C0, C2, PCT, Hysteresis, DSC, Applications

Temperature dependence study of YMn2H4.5 by means of neutron powder difraction

AB2, YMn2, Capacity, structure, Neutron Diffraction, Magnetic

The effect of heat treatment on the electrode characteristics of the ball-milled Zr-Cr-Ni

AB2, Zr(Cr0.5Ni0.5)2, PCT, Ball-Milling, Nanocrystalline, Structure, Microstructure, TEM, DTA, Electrode, ElectrochemicalThe effects of partial substitution of Mn by Cr on

the electrochemical cycle life of Ti-Zr-V-Mn-Ni alloy electrodes of a Ni/MH battery

AB2, Ti0.8Zr0.2V0.5Mn0.5-yCryNi0.8, Ti0.5Zr0.5Mn0.2Cr0.5V0.2Ni0.8+y, PCT, Structure, Microstructure, SEM, Augere Spectroscopy, Electrode, Electrochemical. Cyclic Life

Hydrogen sorption properties of intermetallic TbNiAl and crystal structure of TbNiAlD1.1

AB2, TbNiAl, Capacity, Structure, Neutron Diffraction, Deuterium, DTA

English

English

English

English

English

English

Hydrogen order in monoclinic ZrCr2H3.8 English

English

Hydrogen isotope absorption in Zr(Mn0.5Fe0.5)2 English

English

English

English

English

Study on the hydrogen solubility in UNiAl English

English

English

English

English

A study of the development of high capacity and high performance Zr-Ti-Mn-V-Ni hydrogen storage alloy for Ni-MH rechargeable batteries

AB2, (Zr,Ti)(Mn,V,Ni)y, PCT, Structure, Electrode, Electrochemical

Improvment of the thermodynamical and electrochemical properties of multicomponent Laves phase hydrides by thermal annealing

AB2, (Zr,Ti)(Ni,Mn,Cr,V)2, PCT, EPMA, Electrode, Electrochemical

The investigation of the Zr1-yTiy(Cr1-xNix)2-H2 system 0.0≤y≤1.0 and 0.0≤x≤1.0 Phase composition analysis and thermodynamic properties

AB2, (Zr,Ti)(Cr,Ni)2, PCT, Structure, Phase Relations, Enthalpy

Effect of Cu powder as an additive material on the inner pressure of a sealed-type Ni-MH rechargeable battery using a Zr-based alloy as an anode

AB5, Zr0.9Ti0.1(Mn0.7V0.5Ni1.2)0.92, PCT, Electrode Manufacture, Cu-Additive, Electrochamical, Battery, Internal Pressure, SEM, Surface Structure, Auger Spectroscopy, Impedance SpectroscopyThe normalized pressure dependence method for

the evaluation of kinetic rates of metal hydride formation/decomposition

AB, TiFe0.8Ni0.2, AB5, LaNi5, AB2, Ti0.95Zr0.05Mn1.48V0.43Fe0.08Al0.01, GfE Hydralloy C5, PCT, Particle size, Decrepitation, Kinetics, Model

Magnetic and structural properties of DyMn2Hx (0≤x≤4.2)

AB2, DyMn2, Capacity, Structure, Mossbauer, Magnetic PropertiesAB2, CrZr2, Capacity, Structure, Neutron Diffraction, Deuterium, Phase Transformations

Effect of annealing treatment on an atomized AB2 hydrogen storage alloy

AB2, Ti0.52Zr0.48Ni1.01V0.39, Cr0.22Mn0.21Fe0.19Al0.19, PCT, Structure, SEM, TEM, DTA, Electrode, ElectrochemicalAB2, Zr(Mn0.5Fe0.5)2, PTC, Enthalpy, Kinetics, Deuterium, Sieverts’ Law

Hydrogen absorption and hydride electrode behavior of the Laves phase Zr1.5-xCrxNi1.5

AB2, Zr1.5-xCrxNi1.5, PCT, Enthalpy, Entropy, Volume Change, Structure, Electrode, Electrochemical

Magnetic properties of crystalline and amorphous GdCo2Hx hydrides

AB2, GdCo2, Capacity, Structure, Magnetic Propeties, Amorphous

High-pressure studies of Laves phase intermetallic hydrides - Adaptation of statistical thermodynamic models

AB2, TiCr1.8, TiCrMn, PCT, Enthalpy, Entropy, PCT Model, Statistical Thermodynamic Model, H-H InteractionsCalorimetric investigation of the hydrogen

interaction with ZrCrFe1.2AB2, ZrCrFe1.2, PCT, Enthalpy, CalorimetryAB2, UNiAl, PCT, Enyhalpy, TGA, DTA, Structure, Physical Properties, Elastic Moduli

Structural studies of Laves phases ZrCo(V1-xCrx) with 0≤x≤1 and their hydrides

AB2, Zr(Co,V,Cr)2, PCT, Structure, Volume Change, Deuterium

Evaluation of kinetics by using the normalized pressure dependence method for the alloy Ti0.95Zr0.05Mn1.48V0.43Fe0.08Al0.01

AB2, Ti0.95Zr0.05Mn1.48V0.43Fe0.08Al0.01, AB5, LaNi5, PCT, Enthalpy, Entropy, Kinetics, Kinetic Model

Dynamic P-c-T relations of the La-incorporated/fluorinated AB2 hydriding alloys

AB2, Zr0.9Ti0.1V0.2Mn0.6Co0.1Ni1.1, PCT, Dynamic PCT, Kinetics, Surface Treatment, F-Treatment, La-Doping

A review of the development of AB2-type Zr-based Laves phase hydrogen storage alloys for Ni-MH rechargeable batteries in the Korea Advanced Institute of Science and Technology

AB2, ZrMn0.5Ni1.4, (Zr,Ti)(Mn,V,Ni)y, PCT, (Zr,Ti)(Cr,Mn,V,Ni)y Nonstoichiometric, Electrode, Electrochemical, Heat Treatment, Cyclic

English

English

English

English

English

English

English

English

English

English

English

English

English

English

English

English

English

English

The effect of annealing on the discharge characteristics of ZrV0.7Mn0.5Ni1.2 alloy

AB2, ZrV0.7Mn0.5Ni1.2, PCT, Nonstoichiometric, Electrode, Electrochemical, Microstructure, SEM, AES, Heat Treatment, Cyclic Life, Impedance Spectroscopy

Corrossion and degradation behavior of Zr-based AB2 alloy electrodes during electrochemical cycling

AB2, Zr0.9Ti0.1Mn0.6V0.2Co0.1Ni1.1, PCT, Electrode, Electrochemical, Cyclic Life, Corrosion, Microstructure, SEM, Structure, Surface Area, XPS, Impedance Spectroscopy

Development of AB2 type Zr-Ti-Mn-V-Ni-Fe hydride electrodes for Ni-MH batteries

AB2, Zr0.5Ti0.5Mn0.4V0.6Ni1-yFey, PCT, Structure, SEM, Electrode, Electrochemical, Surface Composition, Corrosion

Order-disorder phase transition in the deuterated hexagonal (C14-type) Laves phase ZrCr2D3.8

AB2, ZrCr2, Deuterium, Structure, Neutron Diffraction

Thermodynamic characterization and statistical thermodynamics of the TiCrMn-H2(D2) system

AB2, TiCrMn, PCT, Enthalpy, Entropy, PCT Model, Statistical Thermodynamic Model, H-H Interactions

A new hexagonal Laves phase deuteride CeMn1.5Al0.5Dx (0<x<4) Investigated by in situ neutron diffraction

AB2, CeMn1.5Al0.5, Deuterium, Structure, Neutron Diffraction

Preparation and hydrogenation of multicomponent AB2-type Zr-Mn-V-Co-Ni amorphous alloy

AB2, ZrMn0.6V0.1Co0.2Ni1.2, Amorphous, PCT, Hysteresis, SEM, Structure, Kinetics, DSC

A study on the development of hypo-stotchiometric Zr-based hydrogen storage alloys with ultra-high capacity for anode material of Ni/MH secondary battery

AB2, (Zr,Ti)(Mn,V,Cr,Ni)2-, Nonstoichiometric, PCT, Hysteresis, Structure, Electrode, Electrochemical, Impedance Spectroscopy, Cyclic Life

Structural and hydriding properties of MgYNi4: A new intermetallic compound with the C15b-type Laves phase structure

AB2, MgYNi4, PCT, Enthalpy, Structure, TGA, van’t Hoff

Neutron diffraction study of deuterium in the deuterium-stabilized ZrTi2D3.83 phase

AB2, ZrTi2, Deuterium, Structure, Neutron Diffraction

Hydrogen absorption and electrode properties of Zr1-xTixV1.2Cr0.3Ni1.5 Laves phases

AB2, Zr1-xTixV1.2Cr0.3Ni1.5, PCT, Enthalpy, Entropy, Structure, Volume Change, Elctrode, Cyclic Life

Electrochemical hydrogenation behavior of C15-type Zr(Mn,Ni)2 alloy electrodes

AB2, (Zr,Ti)(Mn,V,Ni)2, PCT, Microstructure, SEM, Electrode, Surface Analysis, Cyclic Life

Structural and hydriding properties of the intermetallic Y1-xNi2 synthesized by mechanical alloying or submitted to mechanical grinding

AB2, YNi2, Kinetics, H-Capacity, Structure, Disproportionation, SEM

Hydrogen absorption properties of CeNiAl: influence on its crystal structure and magnetic

AB2, CeNiAl, H-capacity, Magnetic Properties, Structure

Structural and magnetic properties of RFe2H5 hydrides (R=Y, Er)

AB2, YFe2, ErFe2, H-capacity, High Pressure, Structure, Magnetic

The thermodynamic properties of Ti-Zr-Cr-Mn Laves phase alloys

AB2, (Ti,Zr)Mn0.8Cr1.2, PCT, Hysteresis, Structure, DTA

Effect of substitution on F.C.C. and B.C.C. hydride phase formation in the TiCr2-H2 system

AB2, TiCr1.8, TiCr1.7Fe0.1, Ti0.9Zr0.1Cr1.8, PCT, Structure, Volume Change, Phase Relations

Electrode materials based on hydrogen-sorbing alloys of AB2 composition (A=Ti, Zr; B=V, Ni, Cr)

AB2, Zr.5Ti.5V.5Ni1.3Cr.2, PCT, Enthalpy, Entropy, Electrode, Electrochemical, Surface Treatment

English

English

Hydrogen absorption studies in ZrMnFe0.7Co0.3 English

English

English

English

English

English

English

English

English

English

English

English

English

English

English

English

English

The application of mathematical models to the calculation of selected hydrogen storage properties (formation enthalpy and hysteresis) of AB2-type alloys

AB2, Zr(FexCr1-x)2, (Zr,Ti)(Fe,Ni,V,Mn,Cr,Cu)2, PCT, Enthalpy, Entropy, Hysteresis, PCT Mathematical Model

Relationship between hydrogen sorption properties and crystallography for TiMn2 based alloys

AB2, TiMn1.95, TiMn1.45M0.5 (M=Ni, Co, Cr, V, Al), PCT, Hysteresis, Structure, Microstructure, Phase RelationshipsAB2, ZrMnFe0.7Co0.3, PCT, Enthalpy, Entropy, Structure, Kinetics

Hydrogen absorption characteristics in Zr0.2Ho0.8Fe0.5Co1.5

AB2, Zr0.2Ho0.8Fe0.5Co1.5, PCT, Enthalpy, Entropy, van’t Hoff, Structure, Volume Change

Phase stability and neutron diffraction studies of the laves phase compounds Zr(1-xMox)2 with 0.0≤x0.5 and their hydrides

AB2, PCT, Zr(1-xMox)2, Structure, Microstructure, Volume Change, Phase Relationships

Studies on the hydrogen absorption/desorption properties of Zr1-xMmxFe1.4Cr0.6 and Zr1-2xMnxTixFe1.4Cr0.6 (x=0, 0.05, 0.1 and 0.2) Laves phase alloys

AB2, Zr1-xMmxFe1.4Cr0.6, Zr1-2xMnxTixFe1.4Cr0.6, PCT, Structure, Kinetics, SEM, TEM

Phase structures and electrochemical properties of the Laves phase hydrogen storage alloys Zr1-xTix(Ni0.6Mn0.3V0.1Cr0.05)2

AB2, Zr1-xTix(Ni0.6Mn0.3V0.1Cr0.05)2, PCT, Enthalpy, Structure, Microstructure, Phase relationships, Electrode,

The hydrogen storage properties of Ti-Mn-based C14 Laves phase intermetallics as hydrogen resource for PEMFC

AB2, (Ti,Zr)(Mn,V,Ni,Cr)2, PCT, Enthalpy, Entropy, Hysteresis, Plateau Slope, Structure, Application, Storage

Hydrogen absorption characteristics and electrochemical properties of Ti substituted Zr-based AB2 alloys

AB2, (Zr,Ti)CrNi, PCT, Structure, Microstructure, Electrode, Electrochemical, Cyclic Life

The operating characteristics of the compressor-driven metal hydride heat pump

AB2, Zr0.9Ti0.1Cr0.55Fe1.45, van’t Hoff, Application, Heat pump,

On the structural characteristics and and hydrogenation behavior of TiMn1.5 hydrogen storage material

AB2, TiMn1.5, PCT, Structure, Microstructure, TEM

Electrochemical properties of ZrMnNi1+x hydrogen storage alloys

AB2, ZrMnNi1+x , PCT, Structure, Nonstoichiometric, Electrode, Electrochemical, Corrosion, Cyclic Life, SEM, Kinetics

Hydrogen Storage Alloys with PuNi3-Type Structure as Metal Hydride Electrodes

AB3, LaCaMgNi9, CaTiMgNi9, LaCaMgNi6Al3, LaCaMgNi6Mn3, PCT, Enthalpy, Entropy, Structure, SEM, Electrode, Electrochemical, Cyclic Life

Hydrogen-Induced Amorphization in Off-Stoichiometric Ti3Al

A3B, Ti3Al, Structure, TEM, DSC, Amorphous, Amorphization

Hydrogen diffusion in Sm2Fe17 and Sm2Fe14Ga3 compounds

A2B17, H-capacity, Structure, H-diffusion, Magnetic, MAE, TDS

Hydrogen effects on the magnetic properties of RFe11Ti compounds

AB12, CeFe11Ti, SmFe11Ti, GdFe11Ti, H-capacity, Structure,

Hydrogenation of Zr6MeX2 intermetallic compounds (Me=Fe, Co, Ni; X=Al. Ga, Sn): Crystallographic and theoretical analysis

A6B3, Zr6FeAl2, Zr6CoAl2, Zr6NiAl2, Zr6FeGa2, Zr6CoGa2, Zr6NiGa2, Zr6FeSn2, Zr6CoSn2, Zr6NiSn2, H-capacity, Structure, Volume Change, TPD, Magnetic Properties, Electronic Properties, Density of States

Hydriding and dehydriding kinetics of Dy2Co17 hydride

A2B7, Dy2Co17, PTC, Enthalpy, van’t Hoff, Kinetics

Structural and magnetic properties of Nd2fe14-xSixB and related hydrides

AB12, Nd2fe14-xSixB, H-capacity, Structure, Magnetic Properties

English

English

English

Hydrogen behavior in the La-Mg-Cu system English

English

English

English

Hydride formation in Ce(La)-Ni-Si compounds English

English

English

English

Hydrogenation characteristics of Ti4Cu2O English

English

English

English

English

English

English

Structure refinement of Rb4Mg3D10 on neutron diffraction data

A4B3, Rb4Mg3, Complex, Structure, Deuterium, Neutron Diffraction

Neutron diffraction studies of Zr-containing intermetallic hydrides with ordered hydrogen sublattice, III Orthorhombic Zr3FeDx (x=1.3, 2.5 and 5.0) with partially filled Re3B-type structure

A3B, Zr3F3, H-capacity, Structure, Deuterium, Neutron Diffraction

Structural investigation and hydrogen capacity of YMg2Ni9 and (Y0.5Ca0.5)(MgCa)Ni9 system isostructural with LaMg2Ni9

AB2C9, YMg2Ni9, (Y0.5Ca0.5)(MgCa)Ni9, PCT, Enthalpy, Entropy, Microstructure, StructureAB2C2, LaMg2Cu2, PCT, Enthalpy, Entropy, DTA, Structure, van’t Hoff

Effect of hydrogenation and nitrogenation on the magnetostriction of LaCo23 compound

AB13, LaCo13, H-capacity, Nitriding, Magnetostriction

Hydrogen ordering and H-induced phase transformations in Zr-bases intermetallic compounds

A2B, Zr2Fe, A3B, Zr3Fe, A4B2O, Zr4Fe2O0.6, H-Capacity, Structure, Volume Change, Deuterium, Neutron Diffraction, TPD, SEM, HDDR

Crystal and magnetic structure of TbNiAl-based deuterides, TbNiAlD0.3 and TbNiAlD1.04, studied by neutron diffraction and synchrotron radiation

ABC, TbNiAl, H-Capacity, Structure, Deuterium, Neutron Diffraction, Synchrotron Radiation

A6B2C3, Ce6Ni2Si3, La6Ni2Si3, Ce2Ni0.8Si1.2, La2Ni0.8Si1.2, Ce2NiSi, La2NiSi, Ce2Ni1.2Si0.8, La2Ni1.2Si0.8, H-Capacity, Structure,

The hydriding behavior of U(Fe1-xNix)Al system (0≤x≤0.75) and magnetic studies of U(Fe1-xNix)AlH0.8

ABC, U(Fe,Ni)Al, H-capacity, Structure, Mossbauer, Magnetic Properties

New compounds R3Fe28Ta (R=Gd, Tb, Y) and their hydrides and carbides

A3B28C, Gd3Fe28Ta, Tb3Fe28Ta, Y3Fe28Ta, H-content, Structure, Magnetic Properties

Neutron diffraction studies of Zr-containing intermetallic hydrides with ordered hydrogen sublattice, V. Orthorhombic Zr3CoD6.9 with filled Re3B-type structure

A3B, Zr3Co, H-content, Structure, Deuterium, Neutron Diffraction, TPD

A2BO, Ti4Cu2O, PCT, Enthalpy, Entropy

Structural investigation and hydrogen storage capacity of LaMg2Ni9 and (La0.65Ca0.35)(Mg1.32Ca0.68)Ni9 of the AB2C9 structure

AB2C9, LaMg2Ni9, (La0.65Ca0.35)(Mg1.32Ca0.68)Ni9, PCT, Enthalpy, Entropy, Structure, Volume Change, Microstructure

Hydrogen absorption-desorption characteristics, kinetics of hydrogen absorption and thermodynamics of dissolved hydrogen in Zr0.1Tb0.9Fe1.5Co1.5

AB3, Zr0.1Tb0.9Fe1.5Co1.5, PCT, Enthalpy, Entropy, Hysteresis, Structure, Volume Change, Kinitics

Hydriding properties of LaNi3 and CaNi3 and their substitutes with PuNi3-type structure

AB3, LaNi3, CaNi3, La0.5Ca0.5Ni3, LaCaMgNi9, La0.5Ca1.5MgNi9, LaTiMgNi9, LaCaMgNi6Al3, LaCaMgNi6Mn3, PCT, Enthalpy, Entropy, Structure, Volume Change, van’t HoffStudy of hydrogenation of Sm2Fe17-yGay by

meand of x-ray diffractionA2B17, Sm2(Fe,Ga)17, H-capacity, Structure, Volume Change

Neutron powder diffraction investigations of Nb3(Al0.84Nb0.16) and

A3B, H-capacity, Structure, Deuterium, Neutron Diffraction

The crystal structure of the oxygen-stabilized n-phase Zr3V3OxD9.6

A3B3O, Zr3V3O0.24, H-capacity, Structure, Deuterium, Neutron Diffraction

English

English

English

English

English

English

English

English

English

English

English

English

English

English

Crystal structure of TbNiSiD1.78 English

English

English

English

Hydrogen sorption in homologous lanthanum and cerium nickel silicides

A15B8C9, La6Ni2Si3, La15Ni8Si9, Ce6Ni2Si3, Ce15Ni8Si9, H-capacity, Structure, Volume Change

Hydrogen storage properties of new ternary system alloys: La2MgNi9, La5Mg2Ni23,

A5B2Ni23, La0.7Mg0.3Ni2.8Co0.5, PCT, Structure, Electrode, Cyclic Life

Hydrogenation characteristics of ternary alloys containing Ti4Ni2X (X=O, N, C)

A2BC, Ti4Ni2O, Ti4Ni2N , Ti4Ni2C, PCT, Structure, Microstructure

Powder neutron diffraction study of Nd6Fe13GaD12.3 with a filled Nd6Fe13Si-type structure

A6B13C, Nd6Fe13Ga, H-capacity, Structure, Deuterium, Neutron Diffraction

X-ray diffraction and differential scanning calorimetry investigations on high-pressure gas charged Ti3Al

A3B, Ti3Al, H-capacity, Structure, DSC, Kinetics, Phase Relations

The preparation of high hydrogen content yttrium silicide carbides with reversible storage potential

A5B3C, Y5Si3C0.3, Y5Si3C0.5, H-capacity, Structure, Enthalpy, van’t Hoff

Metal-semiconductor-insulator transitions in R3Ni compounds induced by hydrogenation

A3B, Gd3Ni, Ho3Ni, Er3Ni, Y3Ni, H-capacity, Structure, Volume Change, Electrical resistivity, Phase Transitions, Metal-Semiconductor-Insulator Transitions

Phase-structural characteristics of (Ti1-xZrx)4Ni2O0.3 alloys and their hydrogen gas and electrochemical absorption-desorption properties

A4B2O, (Ti1-xZrx)4Ni2O0.3, H-capacity, Structure, Volume Change, TPD, Electrode, Electrochemical

Effect of substitutional elements on the hydrogen absorption-desorption properties of Ti3Al compounds

A3B, Ti75-xAl25Mx (M=Zr, Hf, Mn, Ni, Cu, V, Co, Fe, Cr), H-capacity, Structure, TPD, Desorption TemperatureTransformations of magnetic phase diagram as a

result of insertion of hydrogen and nitrogen atoms in crystalline lattice of RFe11Ti compounds

AB11C, RFe11Ti (R=Y, Nd, Sm, Gd, Tb, Dy, Ho, Er, Lu), H-capacity, N-capacity, Structure, Magnetic Properties

Neutron diffraction study on the deuterium site occupancy and magnetic structure of the Nd2(Fe,Ga)14BDy compounds

A2B14C, Nd2(Fe,Ga)14B, H-capacity, Structure, Deuterium, Neutron Diffraction, Magnetic Properties

Hydrogen absorption in vanadium- and niobium-based topologically close-packed structures

A3B, V3Ni, A15-Phase, V80Ni20, Mu-Phase, Nb51.5Ni48.5, Sigma-Phase, V75Nb5Ni20, V75Ti5Ni20, PCT, StructureNeutron diffraction studies of Zr-containing

intermetallic hydrides. Cubic Zr3V3B0.24O0.36D8.0 and Zr3V3B0.40O0.60D6.4 with filled n1-type

A3B3C, Zr3V3B0.24O0.36, Zr3V3B0.40O0.60, H-capacity, Structure, Deuterium, Neutron Diffraction

Hydriding properties of mechanically alloyed icosahedral phase Ti45Zr38Ni17

Quasicrystal, Ti45Zr38Ni17, PCT, Structure, Kinetics, Mechanical Alloying

ABC, TbNiSi, H-capacity, Structure, TPD, Deuterium, Neutron Diffraction

Structural and magnetic properties of equiatomic rare-earth ternaries

ABC, YNiAl, SmNiAl, GdNiAl, TbNiAl, DyNiAl, ErNiAl, TmNiAl, LuNiAl, H-capacity, TPD, Magnetic Properties

Hydrogen in Ce2Ni1-xSi1+x and Ce6Ni2Si3 compounds

A2B2, Ce2(Ni,Si)2, A6B5, Ce6Ni2Si3, H-capacity, Structure,

The structure of hydride phases in the Ti3Al/H system

A3B, Ti3Al, H-capacity, Structure, Deuterium, Neurton Diffraction, Disproportionation

English

English

English

English

English

English

English

Crystal structural properties of Ti3SnD English

English

Dual site occupancy of hydrogen in Sm2Fe17 English

Magnetic behavior of the new hydride CePtAlHx English

English

English

English

English

English

English

English

English

English

English

A note on the synthesis, characterization and dehydriding behavior of La2-xCaxMg17

A2B17, (La,Ca)2Mg17, PCT, Preparation Technique, Structure, EDAX, Disproportionation

New hydrides of ternary intermetallics based on Zr with Fe, Co, Ni and Sn or Sb

A6B3, Zr6NiAl2, Zr5FeSn2, Zr6Co1.5Sn1.5, Zr6Ni1.5Sn1.5, Zr5FeSb2, Zr6CoSb2, Zr6NiSb2, H-capacity, StructureHydrogen solubility studies in

Zr0.2Tb0.8Fe1.5Co1.5AB3, Zr0.2Tb0.8Fe1.5Co1.5, PCT, Enthalpy, Entropy, van’t Hoff, Structure, Kinetics

X-ray spectroscopy investigation of hydrogen-containing phases based on the compounds of tungsten with VI group elements

AB2, WSe2, W-bronze, WO3, H-capacity, Electronic Structure, XANES, EXAFS

Short hydrogen-hydrogen separations in novel intermetllic hydrides, RE3Ni3In3D4 (RE=La, Ce and Nd)

ABC, La3Ni3In3, Ce3Ni3In3, Nd3Ni3In3, H-capacity, Structure, H-H Distance, Deuterium, Neutron DiffractionHexagonal LaNiSnD2 with a filled ZrBeSi-type

structureABC, LaNiSn, H-capacity, Structure, Deuterium, Neutron Diffraction

Crystal structure of novel hydrides in a Mg-Ni-H system prepared under an ultra high pressure

A3B3, Mg2Ni3, H-capacity, High Pressure, Structure, Electron DiffractionA3B, Ti3Sn, H-capacity, Structure, Deuterium, Neutron Diffraction

Structure and magnetic properties of TbNiAl-based deuterides

ABC, TbNiAl, H-capacity, Structure, Deuterium, Neutron Diffraction, Magnetic PropertiesA2B17, Sm2Fe17, PTC, Enthalpy, Entropy, Structure, Magnetic PropertiesABC, CePtAl, PTC, Enthalpy, Entropy, Structure, Magnetic Properties

Comparison of the dynamics of hydrogen and deuterium dissolved in crystalline Pd9Si2 and Pd3P0.8

A9B2, Pd9Si2, Pd3P0.8, H-capacity, Structure, Neutron Energy Loss Spectroscopy

Hydrogen absorption properties of Ti3Al-based ternary alloys

A3B, Ti75-xMxAl25 (M=Nb, Ta, W, Mo, Pd), H-capacity, TPD, Desorption Temperature

Hydrogen absorption and desorption in the ternary Ti-Al system

A3B, Ti75Al25, Ti80Al20, H-capacity, Structure, TPD, DSC

Interaction of RT3 (R=Ce, T=Co, Ni, Fe) intermetallic compoundsunder high pressure

AB3, CeCo3, GdFe3, CeNi2Co, PTC, High Pressure, Structure, Volume

Hydrogen storage properties of amorphous and nanocrystalline Zr-Ni-V alloys

AB3, Zr25Ni37.5V37.5, PCT, Amorphous, Nanocrystalline, Structure,

A Hydride Fuel System for Hydrogen Powered Vehicles

AB5, MmNi4.17Fe0.83, MmNi4.5Al0.5, PCT, Hysteresis, Expansion, Container Design, Application, Vehicular Storage, Performance, Refueling

A Process Steam Generator Based on the High Temperature Magnesium Hydride/Magnesium Heat Storage System

Mg, AB2, Ti0.98Zr0.02V0.43Fe0.09Cr0.05Mn1.2, PCT, Application, Heat Storage, Steam Generation, Container Design, Experimental Apparatus, Performance, Cyclic Effects

Ni-doped versus undoped Mg-MgH2 materials for high temperature heat or hydrogen storage

Mg, Ni-doping, H-Capacity, Cyclic Life, Metallography, Particle Size, Application, Heat Storage, Experimental ApparatusRecent developments in hydrogen storage

applications based on metal hydridesApplications, Vehicular Storage, Stationary Storage, Fuel Cell Storage, Submarine, Fork Lift, Small Electronic DevicesA multi-hydride thermal wave device for

simultaneous heating and coolingAB5, PCT, Application, Heat Pump, Refrigerator, Performance

English

English

English

English

English

English

English

English

English

English

English

English Application, Heat Pump, Model

English

English

English

English

English

English

Metal hydride heat pump for watering systems English

English

Transfer hydrogenation of olefin from alcohol using a hydrogen-absorbing alloy (CaNi5) catalyst

AB5, CaNi5, Application, Catalyst, Hydrogenation, Dehydrogenation, Flow-thru Reactor

Techniques for metal hydride thermal energy conversion and their optimization

AB2, Zr0.9Ti0.1(Cr,Fe)2, PCT, Hysteresis, Enthalpy, Entropy, Application, Heat Pump, Model, PerformanceCatalytic transfer hydrogenation of butene on

hydrogen-absorbing alloys (LaNi5, CaNi5 and LaNi4Al)

AB5, Lani5, CaNi5, LaNi4Al, Application, Catalyst, Hydrgenation, Dehydrogenation, Flow-thru Reactor

Assessment of Zr-V-Fe getter alloy for gas-gap heat switches

Multiphase, Zr-V-Fe, St-707, St-172, PCT, Microstructure, Application, Getter, H2 Dispenser, Heat Switch, Experimental Apparatus, Performance,

An installation for water cooling based on a metal hydride heat pump

AB5, LaNi4.6Al0.4, MmNi4.15Fe0.85, PCT, Hysteresis, Application, Refrigerator. Container Design, Experimental Apparatus, Performance

Operation of hydrogen-air fuel cells based on proton conducting oxides and hydrogen storage metals

Ti, Application, Fuel Cell, Proton Conducting Oxides, Performance

Hydrogen and Deuterium Absorption in LaNixMny

AB5, La(Ni,Mn)z, PCT, Enthalpy, Entropy, Nonstoichiometric, Kinetics, Deuterium, Application, Isotope SeparationThe Rate of an Exchange Reaction of Hydrogen

and Deuterium in a Mg2Ni BedA2B, Mg2Ni, Flow-Thru Reactor, Deuterium, Application, Isotope

Experimental and Computational Study of Hydrogen Isotope Separation with a Vanadium

V, Flow-Thru Reactor, Deuterium, Application, Isotope Separation, Model

Studies of Hydrogen-Deuterium Exchange on Mg2Ni Hydride

A2B, Mg2Ni, Deuterium, Application, Isotope Separation

Comparative Efficiency of using Hydrides in Industrial Processes of Hydrogen Recovery and Compression

AB5, Ce0.5La0.5Ni5, Applications, Separation, Compression, Model Calculations

Metal Hydride Energy Systems Performance Evaluation. Part A: Dynamic Analysis Model of Heat and Mass TransferMetal Hydride Energy Systems Performance Evaluation. Part B: Performance Analysis Model of Dual Metal Hydride Energy Systems

Application, Heat Pump, Refrigerator, Model

Heat-Mass Transfer During Hydrogen Sorption from Gas Mixture by Hydride-Forming Sorbents

Pd+Al, Pd+PTFE, Zr0.7Ti0.3Mn2+Ni, Application, Separaation, Model, Performance

Operating Characteristics of Metal Hydride Heat Pump using Zr-based Laves Phases

AB2, Zr0.9Ti0.1(Cr,Fe)2, Application, Heat Pump, Experimental Apparatus, Performance

Thermal Modelling and Analysis of a Metal Hydride Chiller for Air Conditioning

AB5, LaNi5, LaNi4.7Al0.3, Application, Refrigerator, Model, COP

The Recovery, Purification, Storage and Transport of Hydrogen Separated from Industrial Purge Gas by Means of Mobile Hydride Containers

AB5, Mm(Ni,Al)5, Applications, Separation, Purification, Storage, Ammonia Purge Gas

Numerical study of hydrogan absorption in an Lm-Ni5 hydride reactor

AB5, LaNi4.8Sn0.2, Application, Storage, ModelAB5, LaNi4.6Al0.4, Application, Heat Engine, Solar Powered Water Pump

Effective heat transfer in a metal-hydride-based hydrogen separation process

Pd, Application, Separation, Heat Transfer Model, Performance

English

Simulation of hydride heat pump operation English

English

English

The two-stage metal hydride heat transformer English

English

Robust Metal Hydride Hydrogen Storage System English Application, Storage, Container Design

English Application, Storage, Container Design

English

English

English

Heat Engine Rod Seal System English

Fuel Cell System English

English

English

Metal Hydride Heat Pump English

Spark Plug for Internal Combustion Engine English

English

English

English

Hydrogen storage for fuel cell systems with stationary applications - I. Transient measurement technique for packed bed evaluation

AB5, Lm1.06Ni4.96Al0.04, Enthalpy, Application, Storage, Container Design, Performance, Fuel CellAB5, LaNi4.5Al0.25, AB, TiFe0.8Mn0.2, Application, Heat Pump, Model

Combined hydrogen compressing and heat transforming through metal hydrides

AB2, Hydralloy C0, Hydralloy C2, Enthalpy, Entropy, H-Capacity, Plateau Slope, Hysteresis, Applications, Compressor, Heat Pump, Performance

A recover of carbon oxides by methanation reaction through a pressure-temperature swing process by applying active protium in the fluorinated metal hydride

AB5, LaNi4.7Al0.3, Application, Catalysis, Methane Synthesis, Surface Treatment,. Fluorination

AB5, LmNi4.85Sn0.15, LmNi4.49Co0.1Mn0.205Al0.205, LmNi4.08Co0.2Mn0.62Al0.1, Application, Heat Pump, Two-Stage Heat Pump, Container Design, Heat Transfer, Experimental Apparatus, PerformanceSrgmented Hydride Battery Including an

Improved Hydrogen Storage MeansAB5, LaNi4.7Al0.3, La0.8Nd0.8Ni3.5Co1.3Al0.2, Application, Segmented Hydride Battery, Storage, Purification, Dessicant

Metal Hydride Hydrogen Storage Container with Valved PortsFluorescent Lamp with End of Life Arc Quenching Structure

Ti, Zr, Hf, Ti-Zr, Ti-Hf, Zr-Hf, Application, H2 Dispenser, Fluorescent

Method for Inducing Hydrogen Desorption from a Metal Hydride

Mg, A2B, Mg2Ni, Structure, Kinetics, Application, Storage, Mechanical Energy Input, Ball Milling

Method and System for the Destruction of Hetero-atom Organics using Transition-Alkaline-Rare Earth Alloys

AB5, CaNi5, A2B, Mg2Ni, AB, TiFe0.9Mn0.1, Application, Catalysis, Organic Compound DestructionApplication, Compressor, Heat Engine Rod SealsAB2, van’t Hoff, Application, Stationary Storage, Fuel Cell, Heat Transfer

Composition for Absorbing Hydrogen Gas Mixtures

AB5, LaNi4.25Al0.75, Composite, Porous Glass, Sol Gel, Application,

Apparatus and Methods for Storing and Releasing Hydrogen

Application, Stationary Storage, Vehicular Storage, Container DesignApplication, Heat Pump, Moving Hydride BedTi, Ni, Cu-Mn, Cu-Ni, Ti-Zr, or Pd, Application, H2 Dispenser, Spark Plug

Hydrogen Stirage and Electrode Properties of V-Based Solid Solution Type Alloys Prepared by a Thermic Process

Solid Solution, V-Ti-Ni-Co-Nb-Ta, PCT, O-Contaminatiom, Structure, Microstructure, TEM, Electrode, Electrochemical, Aluminothermic Reduction, Mm deoxidation

A Study on the Electrode Characteristics of V-Ti alloy Surface-Modified by Ballmilling Process

Solid Solution, V-Ti, PCT, Ball Milling, Electrode, Electrochemical, SEM, Auger, Structure

The hydrogen storage characteristics of Ti-Cr-V alloys

Solid Solution, Ti-Cr-V, PCT, Hysteresis, Structure, Phase Relations, Atomic Size Effects

English

Hydrogen solution in homogeneous Pd-Fe alloys English

English

English

English

English

English

Absorption og hydrogen isotopes by Pd-Pt alloys English

English

English

English

English

English

English

English

Ti-V-Cr b.c.c. alloys with high protium content English

English

English

English

English

Hydrogen storage characteristics of Ti-Zr-Cr-V alloys

Solid Solution, Ti-Zr-Cr-V, PCT, Hysteresis, Structure, Phase Relations, Atomic size EffectsSolid Solution, Pd-Fe, PCT, Hysteresis, Enthalpy, Entropy

The intrinsic degradation behavior of (V0.53Ti0.47)0.925Fe0.075 alloy during temperature-induced hydrogen absorption-desorption cycling

Solid Solution, V-Ti-Fe, PCT, Hysteresis, Structure, Cyclic Effects, Disproportionation, Microstructure, TPD, TEM, Phase Relations

Phase composition and the effect of thermal cycling for VHx, V0.995C0.005Hx, and V0.975Zr0.020C0.005Hx

Solid Solution, V-C, PCT, Hysteresis, Structure, Cyclic Effects, TEM, Particle Morphology, Phase Relations

Hydrogen-induced rearrangements in Pd-rich alloys

Solid Solution, Pd-Ag, Pd-Rh, Pd-Pt, PCT, Hysteresis, Disproportionation, Hydrogen Induced Migration, DPA

Synthesis and properties of multicomponent hydrides with high density

Solid Solution, Ti-V-Fe, Ti-V-Co, Ti-V-Ni, Ta-Ti, H-Capacity, Density, H-Density, Structure, DTA, Phase relationsNew V-based alloys with high protium absorption

and desorption capacitySolid solution, V-Zr-Ti-Fe, V-Zr-Ti-Mn, V-Zr-Ti-Ni, PCT, Hysteresis, Structure, MicrostructureSolid solution, Pd-Pt, PCT, Enthalpy, Entropy, Deuterium, Isotope Effects, Application, Isotope Separation

Hydrogen Isotope effects in Ti1.0n0.9V1.1 and Ti1.0Cr1.5V1.7 alloys

Solid solution, Ti-Mn-V, Ti-Cr-V, PCT, van’t Hoff, Structure, Microstructure, SEM, EDX, Phase Analysis, Deuterium, Isotope EffectsHydrogen solubility in ternary Pd0.90Rh0.1-xNix

and Pd0.90Rh0.1-xCoxSolid solution, Pd-Rh-Ni, Pd-Rh-Co, PCT, Hysteresis, van’t Hoff, Enthalpy,

New hydride phase with a deformed FCC structure in the Ti-V-Mn solid solution-hydrogen

Solid solution, Ti-V-Mn, PCT, Structure, Phase Relationships

Crystal structure of two hydrides formed from a Ti-V-Mn BCC solid asolution alloy studied by time-of-flight neutron powder diffraction - a NaCl structure and a CaF2 structure

Solid solution, Ti-V-Mn, PCT, Structure, Time-of-Flight Neutron Diffraction, Deuterium, Phase Relationships

Alloying effects on the stability of vanadium hydrides

Solid Solution, V0.99M0.01 (M=Ti, Cr,Fe, Co, Ni, Cu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Al, Si, Ga, In, Sn), PCT, DSC, Structure, Periodic Chart Correlations

The influence of microstructure on hydrogen absorption properties of Ti-Cr-V alloys

Solid Solution, Ti-Cr-V, PCT, Structure, Microstructure, Melting Techniques, Segregation, Heat Treatment

Correlation between electronic structure and phase stability of metal hydrides

Solid Solution, V-Ti-Ni, PCT, Structure, Ionicity, Electronic StructureSolid Solution, Ti-V-Cr, PCT, Structure, Microstructure, Heat Treatment

Protium absorption properties of Ti-V-Cr-Mn alloys with a b.c.c. structure

Solid Solution, Ti-V-Cr-Mn, PCT, Structure, Microstructure, Heat Treatment

Hysteresis of pressure-composition and electrical resistance-composition isotherms of palladium-silver alloys-deuterium system

Solid Solution, Pd-Ag, PCT, Hysteresis, Deuterium, Electrical Resistance

Measurement of hydrogen solubility and electrical resistance of some palladium-rhodium alloys by a gas pulse technique

Solid Solution, Pd-Rh, PCT, Hysteresis, Electrical Resistance, Exprtimental Procedure

Absorption of hydrogen by Nb1-xCrx solid solution alloy

Solid Solution, Nb-Cr, PCT, Hysteresis, Structure, Strain Energy

English

English

English

German

English

English

English

English

English

English

English

Sodium alanates for reversible hydrogen storage English

English

English

English

English

Hysteresis and thermodynamic characterization of Nb1-xCrx (X=0.03, 0.05, 0.10)

Solid Solution, Nb-Cr, PCT, Enthalpy, Entropy, Hysteresis, Structure, Strain Energy

Effect of alloying of palladium with silver and rhodium on the hydrogen solubility, miscibility gap and hysteresis

Solid Solution, Pd-Ag, Pd-Rh, PCT, Hysteresis, Structure, Miscibility Gap, Seiverts’ Law

Deuterium solubility and electrical resistance of palladium-rhodium alloys

Solid Solution, Pd-Rh, PCT, Deuterium, Hysteresis, van’t Hoff, Electrical Resistance

Verfahren zur Reversiblen Speicherung von Wasserstoff

Complex, NaAlH4, Na3AlH6, Na2LiAlH6, Catalysts, Doping, H-Capacity, PCT, Kinetics, Cyclic Life

Method of Fabrication of Complex Alkali Metal Hydrides

Complex, NaAlH4, Na3AlH6, LiAlH4, Li3AlH6, Na1.8Li0.6B0.6AlH6, Li1.8Na1.2AlH6, Synthesis, Direct Synthesis, Ball Milling, DSC, Structure, Kinetics, PTC

Synthesis of Na3AlH6 and Na2LiAlH6 by mechanical alloying

Complex, Na3AlH6, Na2LiAlH6, Synthesis, Direct Synthesis, Ball Milling, DSC, Structure

Advanced titanium doping of sodium aluminum hydride: segue to a practical hydrogen storage material?

Complex, NaAlH4, Ti Doping, Ball Milling, H-Capacity, TPD

Hydrogen cycling behavior of zirconium and titanium-zirconium-doped sodium aluminum hydride

Complex, NaAlH4, Ti Doping, Zr Doping, Ball Milling, H-Capacity, TPD, Cyclic Effects

Hydrogenation properties of complex alkali metal hydrides fabricated by mechanico-chemical synthesis

Complex, Li3AlH6, (Li,Na)3AlH6, (Li,Na,B)3AlH6, NaAlH4, Na3AlH6, Synthesis, Ball Milling, H-Capacity, PTC, Kinetics, Structure, DSC

Rapid solid-state transformation of tetrahedral [AlH4]- into octahedral [AlH6]3- in lithium aluminohydride

Complex, LiAlH4, Li3AlH6, Ti Doping, TiCl4, Ball Milling, H-Content, Kinetics, Structure

In-situ X-ray diffraction study of the decomposition of NaAlH4

Complex, NaAlH4, Na3AlH6, Ti Catalyst, Structure, In-Situ XRD, Structure, Phase Analysis, MechanismComplex, NaAlH4, Na3AlH6, Synthesis, Ball Milling, Carbon Milling, H-Capacity, PTC, van’t Hoff, Kinetics, Structure

Metal-doped sodium aluminum hydrides as potential for new hydrogen storage materials

Complex, NaAlH4, Na3AlH6, Synthesis, Doping, Ti-Doping, Fe-Doping, Catalyst, Structure, SEM, ESX, TPD, Kinetics, PTC, van’t Hoff, Enthalpy, Mossbauer,

Development of catalytically enhanced sodium aluminum hydride as a hydrogen-storage material

Complex, NaAlH4, Na3AlH6, Review, Synthesis, Doping, Ti-Doping, Catalyst, Structure, In-situ XRD, TPD, Kinetics, van’t Hoff, Enthalpy, Cyclic Life

Ti-doped NaAlH4 as a hydrogen-storage material - preparation by Ti-catalyzed hydrogenation of aluminum powder in conjunction with sodium hydride

Complex, NaAlH4, Na3AlH6, Synthesis, Direct Synthesis, Doping, Ti-Doping, H-Capacity, Kinetics, Cyclic Life

Structure, catalysis and atomic reactions on the nano-scale: a systematic approach to metal hydrides for hydrogen storage

Complex, NaAlH4, Na3AlH6, Li3BeH7, Mg2Ni, Mg-Alloy, Mg-Al, Mg-Zr, AB5, LaNi5, Synthesis, Direct Synthesis, Ball Milling, Catalyst, Nanocrystalline, Composites, Kinetics, PTC, DSC, TEM, Structure

English

English

English

English

English

English

English

Light-Weight Hydride Development English

English

Hydride Development for Hydrogen Storage English

English

English

English

English

Trigonal SrAl2H2: the first Zintl phase hydride English

English

English

Engineering considerations in the use of catalyzed sodium alanates for hydrogen storage

Complex, NaAlH4, Na3AlH6, Ball Milling, Catalyst, Ti-Doping, TiCl3, Kinetics, H-Capacity, Arrhenius Analysis, Activation Energy, Thermal Effects, Gaseous Impurities, Engineering Properties, Cyclic Effects

Solid state phase transformations in LiAlH4 during high-energy ball milling

Complex, LiAlH4, Li3AlH6, Ball Milling, Fe Catalyst, Transformation, DTA,

Titanium catalized solid state transformations in LiAlH4 during high-energy ball milling

Complex, LiAlH4, Li3AlH6, Ball Milling, Ti Catalyst, Al3Ti, TiCl4,Transformation, DTA, Structure

X-ray diffraction studies of titanium and zirconium doped NaAlH4: euclidation of doping induced structural changes and their relationship to enhanced hydrogen storage properties

Complex, NaAlH4, Ti Doping, Ti Valence State, Structure, Lattice Parameters, Substitution, Mechanism

Effect of Ti-catalyst content on the reversible hydrogen storage properties of the sodium alanates

Complex, NaAlH4, Na3AlH6, Ball Milling, Catalyst, Ti-Doping, TiCl3, Kinetics, H-Capacity, Arrhenius Analysis, Activation Energy, Room

Enhancing low pressure hydrogen storage in sodium alanates

Complex, NaAlH4, Na3AlH6, Catalyst, Ti-Doping, Diamond Milling, H-Capacity, TGA, SEM

Catalytically Enhanced Systems for Hydrogen storage

Complex, NaAlH4, Na3AlH6, Catalyst, Ti-Doping, Zr-Doping, H-Capacity, Kinetics, NMR, Cyclic LifeComplex, NaAlH4, Na3AlH6, Direct Synthesis, Catalyst, Ti-Doping, TiCl3, H-Capacity, Kinetics, Arrhenius Analysis, Activation Energy, Engineering Test Bed, Gaseous ImpuritiesCatalytically Enhanced Systems for Hydrogen

storageComplex, NaAlH4, Na3AlH6, Catalyst, Ti-Doping, Zr-Doping, Activation Energy, NMR, Doping Mechanism, H-H Bond StrengthComplex, NaAlH4, Na3AlH6, Direct Synthesis, Catalyst, Ti-Doping, TiCl3, TiCl2, TiF3, H-Capacity, van’t Hoff, Kinetics, Arrhenius Analysis, Activation Energy, Cyclic Life, Materials compatability, Container Embrittlement, Engineering Test Bed, Reaction Temperature ProfilesDirect synthesis of Mg2FeH6 by mechanical

alloyingComplex, Mg Alloy, Mg2NiH6, Synthesis, Ball Milling, Structure, DSC, PTC, Phase Analysis

Cubic CsCaH3 and hexagonal RbMgH3: new examples of fluoride-related perovskite-type

Complex, CsCaH3, RbMgH3, Deuterium, Neutron, Structure

High-pressure synthesis and crystal structure of Sr2MgH6

Complex, Sr2MgH6, Deutteriun, Synthesis, Neutron, Structure

Investigation of the perovskite related structures of NaMgH3, NaMgF3, and Ni3AlH6

Complex, NaMgH3, NaMgF3, Ni3AlH6, StructureComplex, SrAl2, Deuterium, Neutron, Structure, In-situ XRD, Zintl Phase

Lithium-beryllium hydrides: the lightest reversible metal hydrides

Complex, LiBeH3, Li2BeH4,Li3Be2H5, Synthesis, Direct Synthesis, Ball Milling, Kinetics, PTC, Structure

High-pressure synthesis of novel europium magnesium hydrides

Complex, Eu2MgH6, Eu6Mg7H23, Eu2Mg3H10, Synthesis, Deuterium, Neutron, Structure

English

English

English

English

Catalyzed alanates for hydrogen storage English

English

English

English

English

English

English

English

English

English

English

English

English

English

English

Structure data fao K2MgH4 and Rb2CaH4 and comparison with hydride and fluoride analogs

Complex, K2MgH4, Rb2CaH4, Deuteriun, Synthesis, Neutron,

High-pressure synthesis and crystal structures of new ternary caesium magnesium hydrides CsMgH3, Cs4Mg3H10 and Cs2MgH4

Complex, CsMgH3, Cs4Mg3H10, Cs2MgH4, Deuteriun, Synthesis, Neutron, Structure

Raman spectroscopy on M2RuH6, where M=Ca, Sr, and Eu

Complex, Ca2RuH6, Sr2RuH6, Eu2RuH6, Structure, Raman

New alkali metal osmium- and ruthenium complexes

Complex, Na3OsH7, Na3RuH7, Cs3OsH9, Rb3OsH9, Structure

Complex, NaAlH4, Na3AlH6, Review, van’t Hoff, Kinetics, Catalysis, PCT, Ti-Doped, Zr-Doped, SEM, In-situ XRD, Thermal EffectsDynamic in situ X-ray diffraction of catalyzed

alanatesComplex, NaAlH4, Na3AlH6, Kinetics, Catalysis, Ti-Doped, In-situ XRD

Microstructural characterization of catalyzed NaAlH4

Complex, NaAlH4, Na3AlH6, Kinetics, Catalysis, Ti-Doped, SEM, EDX

Phase relations and hydrogenation behavior of Sr1-xBaxAl2 (0<x<0.5)

Complex, Sr1-xBaxAl2 , Structure, Phase Relations

Synthesis of Mg2FeH6 by reactive mechanical alloying: formation and decomposition properties

Complex, Mg2FeH6, Synthesis, Ball Milling, Reactive Milling, SEM, Structure, DSC, Phase Relations

Mg6Ir2H11, a new metal hydride containing saddle-like [IrH4]5- and square-pyramidal [[IrH3]4- hydrido complexes

Complex, Mg6Ir2H11, Structure, Deuterium, Neutron, Thermal Decomposition

Thermodynamics and dynamics of the Mg-Fe-H system and its potential for thermal enegy storage

Complex, Mg2FeH6, MgH2, Two-Phase, Composites, Synthesis, TPD, PCT, Hysteresis, van’ Hoff, Structure, TEM, Hydriding Mechanism, Cyclic Life, Application, Heat Storage

The application of Mg-based metal hydrides as heat energy storage systems

Complex, Mg2FeH6, MgH2, Mg2NiH4, Mg2CoH5, Mg6Co2H11, Synthesis, SEM, PCT, van’ Hoff, Cyclic Life, Application, Heat Storage

An electrochemical investigation of mechanical alloying of MgNi-based hydrogen storage alloys

Mg-alloy, MgNi, Amorphous, Ball Milling, PCT, Hysteresis, Structure, SEM, Kinetics, Electrochemical, Electrode, Rate Effects, Cyclic Life

Dehydriding properties of ternary Mg2Ni1-xZrx hydrides synthesized by ball milling and annealing

A2B, Mg-alloys, Mg2(Ni,Zr), Ball Milling, PCT, Enthalpy, Kinetics, Structure, Surface Area

Cobalt- and copper-substitution effects on thermal stabilities and hydriding properties of amorphous MgNi

Mg-alloys, MgNi, Mg(Ni,Co), Mg(Ni,Cu), Ball Milling, Amorphous, PCT, Enthalpy, Rule of Reverse Stability, Structure, DTA, Crystallization

Hydrogenation properties of MgNi0.86M10.03 (M1=Cr, Fe, Co, Mn)

Mg-alloys, MgNi0.86Cr0.03, MgNi0.86Fe0.03, MgNi0.86Co0.03, MgNi0.86Mn0.03, Ball Milling, PCT, Enthalpy, Structure, Site Energetics

Dehydriding Kinetics of a mechanically alloyed mixture Mg-10wt.%Ni

Mg-alloy, Mg-10Ni, Ball Milling, H-capacity, Kinetics, Rate-controlling

Phase components and hydriding properties of the sintered Mg-xwt.% LaNi5 (x=20-50) composites

Mg-alloys, Mg-LaNi5, Composites, PCT, Hysteresis, Structure, Microstructure, Phase Relations

The electrochemical evaluation of ball milled MgNi-based hydrogen storage alloys

Mg-alloys, MgNi, Amorphous, Coating, Ti, Al, Zr, PCT, Hysteresis, SEM, Electrode, Electrochemical, Cyclic Life

English

English

Ca19Mg8H54, a new salt-like ternary hydride English

English

English

English

English

English

English

English

English

English

English

English

English

English

English

English

Hydrogenation of amorphous and nanocrystalline Mg-based alloys

Mg-alloys, Mg(Ni,Mm), Mg(Ni,Y), Amorphous, Melt Spinning, Nanocrystalline, H-capacity, Kinetics, DSC, TEM, Crystallization, Structure

Preparation and hydrogen storage properties of Mg1-xNix (x=0-45 wt.%) composites

Mg-alloys, Mg-Ni, Ball milling, Composites, Structure, H-content, Mg-alloy, Ca-Alloy, Ca19Mg8H54, Structure, Deuterium, Neutron

Hydrogen storage properties of the mechanically milled Mg2H2-V nanocomposite

Mg-alloy, Mg-V, Ball Milled, PTC, Hysteresis, van’t Hoff, Enthalpy, Kinetics, Structure, SEM

Preparation, structural, thermal, and hydriding characteristics of melt-spun Mg-Ni alloys

Mg-alloys, Mg-Ni, Melt spun, Amorphous, Nanocrystalline, PCT, Hysteresis, Structure, TEM, DSC, CrystallizationInvestigation on the synthesis, characterizatuon,

and hydrogenation behavior of new Mg-based composite materials Mg-x wt.% MmNi4.6Fe0.4 prepared through mechanical alloying

Mg-alloys, Composites, Mg- MmNi4.6Fe0.4, Ball Milling, PCT, Kinetics, Structure, SEM

On the synthesis, characterizatuon, and hydrogenation behavior of Mg-based composite materials Mg-x wt.% CFMMNi5 prepared through mechanical alloying

Mg-alloys, Composites, Mg- CFMmNi5, Ball Milling, PCT, Kinetics, Structure, SEM

Catalytic effect of transition metals on hydrogen sorption in microcrystalline ball milled Mg-Tm (Tm=Ti, V, Mn, Fe, and Ni)

Mg-alloys, Composites, Mg-Ti, Mg-V, Mg-Mn, Mg-Fe, Mg-Ni, Ball Milling, Nanocrystalline, PCT, van’t Hoff, Kinetics, Structure, SEM

Improvement of hydrogen storage properties of melt-spun Mg-Ni-RE alloys by nanocrystallization

Mg-alloys, Composites, Mg-Ni, Mg-Ni-La, Mg-Ni-Nd, Melt Spinning, Nanocrystalline, PCT, Kinetics, Structure, TEMHydriding properties of mechanically milled Mg-

50 wt.% ZrFe1.4Cr0.6 compositeMg-alloy, Composite, Mg-ZrFe1.4Cr0.6, PCT, van’t Hoff, Kinetics, Structure, SEM, EDX, TEM

Hydrogen storage in mechanically milled Mg-LaNi5 and MgH2-LaNi5 composites

Mg-alloys, Composites, Mg-LaNi5 MgH2-LaNi5, Ball Milling, Nanocrystalline, PCT, Hysteresis, van’t Hoff, Kinetics, Structure, SEM

Hydriding behavior of Mg-Al and leached Mg-Al compounds prepared by high-energy ball milling

Mg-alloys, Mg-Al, Ball Milling, NaOH Leaching, PTC, Kinetics, Structure, SEM, Phase Relations

Influence of cycling on the thermodynamic and structural properties of nanocrystalline magnesium based hydride

Mg-alloy, Mg-5V, Ball Milling, Composite, PCT, Hysteresis, Kinetics, Temperature Excursions, Structure, SEM, Specific Heat, Surface Area

Hydrogen storage characteristics of magnesium mechanically alloyed with YNi5-xAlx (x=0, 1, 3) intermetallics

Mg-alloy, Mg-YNi5, Mg-YNi4Al, Mg-YNi2Al3, Composite, Ball Milling, H-Capacity, Kinetics, Microstructure

Direct hydrogenation of Mg and decomposition behavior of the hydride formed

Mg-alloy, Mg-ZrFe1.4Cr0.6, Catalysis, H2 Ball Milling, SEM, TEM, Kinetics, Activation Energy

Hydrogenation characteristics of Mg-TiO2 (rutile) composite

Mg-alloy, Mg-TiO2, Catalysis, H2 Ball Milling, TEM, Kinetics

Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials

Mg-alloy, Mg-CuO, Mg-Mn2O3, Mg-Cr2O3, Mg-Fe3O4, Mg-V2O5, Mg-TiO2, Mg-Al2O3, Mg-SiO2, Mg-Sc2O3, Mg2Ni-Mn2O3, Catalysis, Ball Milling, H-Capacity, Kinetics

Comparison of the catalytic effects of V, V2)5, VN and VC on the hydrogen sorption of

Mg-alloy, Mg-V, Mg-VN, Mg-VC, Mg-V2O5, Catalysis, Ball Milling, H-

English

English

English

English

English

English

English

Hydrogen interaction with CeMg12 alloy Russian

Interaction of magnesium alloys with hydrogen English

Hydrogen interaction with Mg-La alloys Russian

Russian

Russian

Russian

Russian

Hydrogen interaction with LaMg2 Russian

Russian

Characteristic of a new Mg-Ni hydrogen storage system: Mg2-xNi1-yTixMny (0<x<1, 0<y<1) alloys

Mg-alloy, A2B, Mg2-xNi1-yTixMny, MG1.9TI0.1NI0.9MN0.1, Diffusion Synthesis, PTC, H-capacity, Structure, Electrode, Cyclic life

Hydrogen sorption properties of an Mg-Ti-V-Fe nanocomposite obtained by mechanical alloying

Mg-alloy, Mg-Ti-V-Fe, Composite, Ball Milling, H-capacity, Kinetics, Structure, Mossbauer

High pressure experiments on the Mg2Ni and Mg2NiH4-H systems

Mg-alloy, A2B, Mg2Ni, High Pressure, Electrical Resistance, Structure, DSC, TGA, DTA

Hydrogen absorption and electrochemical properties of Mg2-xNi (x=0-0.5) alloys prepared by mechanical alloying

Mg-alloys, A2B, Ball Milling, PCT, Hysteresis, van’ Hoff, Enthalpy, Entropy, Structure, TEM, Kinetics, H-potential, Phase Diagram, Phase Transformation, Electrode, ElectrochemicalCharacteristics of Mg2Ni0.75M0.25 (M=Ti, Cr,

Mn, Fe, Co, Ni, Cu and Zn) alloys after surface treatment

Mg-alloys, Mg2Ni0.75Ti0.25, Mg2Ni0.75Cr0.25, Mg2Ni0.75Mn0.25, Mg2Ni0.75Fe0.25, Mg2Ni0.75Co0.25, Mg2Ni0.75Cu0.25, Mg2Ni0.75Zn0.25, Mg2Ni, PCT, Enthalpy, Entropy, Structure, Surface Area

Fabrication and evaluation of hydriding/dehydriding behaviors of Mg-10 wt.%Ni alloys by rotating-cylinder method

Mg-alloy, Mg-1Ni, Mg-5Ni, Mg-10Ni, Rotating-cylinder Synthesis, PCT, van’t Hoff, Enthalpy, Microstructure, EDS

Improvement in hydrogen sorption properties of Mg by reactive mechanical grinding with Cr2O3, Al2O3 and CeO2

Mg-alloys, Mg-Cr2O3, Mg-Al2O3, Mg-CeO2, H2 Ball Milling, Composite, H-capacity, Kinetics, Structure, Microstructure, EPMA, SEM, Particle Mg-alloy, CeMg12, H-capacity, Disproportionation, Kinetics

Mg-alloys, Mg-Pr, Mg-Nd, Mg-La, Mg-Ca-Al, Mg-Ca-Zn, Mg-Ca-Ce, Mg-Ca-Cu Mg-Ca-Ni, LaMg2, CeMg2, ErMg2, YbMg2, Mg-Ln-Al, Mg-Ln-Ni, H-capacity, Structure, Disproportionation, Kinetics, Activation Energy, Microstructure, Hydriding Model, Cyclic LifeMg-alloys, MgLa, Mg3La, Mg4La, Mg17La2, Mg17La, PCT, Structure, Disproportionation

Hydrogen interaction with magnesium containing intermetallic compounds and alloys

Mg-alloys, Mg, Mg2Cu, Mg2Ni, Mg17Al12, Mg2Ca, LnMg12, H-capacity, PCT, Kinetics, Structure, Reaction Mechanism,

Interaction in magnesium-calcium-aluminium-hydrogen system

Mg-alloys, Mg-Ca-Al, H-capacity, Kinetics, Disproportionation, Reaction Mechanism, Phase Diagram, Phase AnalysisHydrogen interaction with alloys of Mg-Ca-Cu

systemMg-alloys, Mg-Ca-Cu, H-capacity, Kinetics, Phase Analysis

Hydrogen interaction with alloys of Mg-Ca-Ce system

Mg-alloys, Mg-Ca-Ce, H-capacity, Kinetics, Phase Analysis, Mg-alloys, AB2, LaMg2, H-capacity, Kinetics, Structure, Phase Analysis, Disproportionation

Hydrogen interaction with magnesium-mischmetal-nickel alloys

Mg-alloys, Mg-Mm-Ni, H-capacity, PCT, Kinetics, Microstructure, Phase Analysis, Disproportionation

Hydriding of magnesium alloys Russian

Russian

Russian

English

English

English

English

English

English

English

English

English

La1-xPrxCo5-H2 and Ce1-xPrxCo5-H2 systems Russian

Investigation of La1-xCexCo5-H2 system Russian

Russian

Russian

Russian

Russian

Russian

Russian

Russian

Mg-alloys, Mg-Ce, Mg-Y, Mg-Sc, MgCa, H-capacity, Kinetics, Phase Analysis, Disproportionation

Hydrogen interaction with magnesium-praseodymium and magnesium-neodymium alloys

Mg-alloys, Mg-Pr, Mg-Nd, H-capacity, Kinetics, Phase Analysis, Disproportionation

Hydrogen interaction with magnesium-lantanum-aluminium alloys

Mg-alloys, Mg-La-Al, H-capacity, PCT, van’t Hoff, Enthalpy, Entropy, Kinetics, Structure, Phase Diagram, Phase Analysis, Disproportionation

Hydrogen storage properties of amorphous and nanocrystlline MmNi4.2Al0.8 alloys

AB5, MmNo4.2Al0.8, PCT, Nanocrystalline, Amorphous, Structure,

Calorimetric investigation of hydrogen interaction with intermetallic compounds at pressure up to 2000 atm

AB5, Ce0.8La0.2Ni5, AB2, Ti0.9Zr0.1Cr1.0Mn1.0, PCT, Enthalpy, Calorimitry, High Pressure

Change of the heat of reaction by magnetic fields in LaCo5-H2

AB5, LaCo5, PCT, van’t Hoff, Enthalpy, Magnetic Effects, Experimental

Magnetic fireld effect on the equilibrium hydrogen pressure for the PrCo5-H2 system

AB5, PrCo5, H-capacity, PCT, Magnetic Effects

Hydrogen cycling induced degredation in LaNi5-type materials

AB5, La(Ni,Mn)5, La(Ni,Al)5, La(Ni,Co)5, La(Ni,Mn,Al)5, La(Ni,Mn,Co)5, La(Ni,Al,Co)5, La(Ni,Al,Mn,Co)5, PCT, Cyclic Effects, Disproportionation, Structure, Volume Change, Particle Size, Dislocation Density, SEMDegredation behavior of LaNi5-xSnxHz (x=0.20-

0.25) at elevated temperaturesAB5, La(Ni,Sn)5, PCT, Structure, Disproportionation Aging, Degredation

Hydrogen isotherms for LaNi4.6M0.4 alloys where M=group 4A elements

AB5, LaNi5, LaNi4.6Si0.4, LaNi4.6Ge0.4, LaNi4.6Sn0.4, LaNi4.8Sn0.2, PCT, Enthalpy, Entropy, van’t Hoff, Disproportionation Aging,

Properties of pellet- and paste-type electrodes of AB5 hydrogen storage alloy

AB5, LmNi3.6Al0.4Co0.7Mn0.3, PCT, Cu-coating, Electrode, Cyclic Life

MmNi3.55Co0.75Mn0.4Al0.3B0.3 hydrogen storage alloys for high-power nickel/metal hydride batteries

AB5, MmNi3.55Co0.75Mn0.4Al0.3B0.3, PCT, Structure, Electrode, Electrochemical Impedance Spectroscopy, Raw Materials, Ni-B, Fe-AB5, (La,Pr)Co5, (Ce,Pr)Co5, PCT, van’t Hoff, Enthalpy, Structure, Volume AB5, (La,Ce)Co5, PCT, van’t Hoff, Enthalpy, Structure, Volume Change

Neutron diffraction study of LaNi4AlD4.1 deuteride

AB5, LaNi4Al, H-capacity, Structure, Neutron Diffraction, Deuterium

Hydrogen interaction with intermetallic compounds La1-yRyNi5-x(T1,T2)x, where R=Ce,Pr,Mm; Ti=Cu; T2=Al,Ti,SnV,Fe

AB5, (La,Ce,Pr)(Ni,Cu,Ti,Al)5, Mm(Ni,Cu,Ti,Sn,V,Fe)5, PCT, Enthalpy, Entropy, Structure, Kinetics

Calorimetric study of hydrogen interaction with LaNi4.9Mn0.1 and LaNi4.6Cu0.3Mn0.1

AB5, LaNi4.9Mn0.1, LaNi4.6Cu0.3Mn0.1, PCT, Enthalpy, Entropy, Calorimetry, PCT Model

Calorimetric study of interaction in LaNi4.75Al0.25-H2 and LaNi4.8Sn0.2-H2

AB5, LaNi4.75Al0.25, LaNi4.8Sn0.2, PCT, Enthalpy, Entropy, Hysteresis,

Study of hydrogen interaction with intermetallic compounds LaNi5-xCux, where x=2,3

AB5, LaNi3Cu2, LaNi2Cu3, PCT, Enthalpy, Entropy, Hysteresis,

Calorimetric study of hydrogen interaction with LaNi4.5Mn0.3Al0.2 intermetallic compound

AB5, LaNi4.5Mn0.3Al0.2, PCT, Enthalpy, Entropy, Hysteresis,

Influence of cerium and aluminum on phase relations in CexLa1-xNi5-yAly-H2 system

5, (Ce,La)(Ni,Al)5, PCT, Enthalpy, Entropy, Phase Relations

Russian

Russian

Russian

Hydrogen interaction with LaNi5+-xMnyAlz Russian

CeMn5-xNix-H2 system Russian AB5, Ce(Mn,Ni)5, H-capacity, Structure

English

English

English

English

English

Advanced Thermal Hydrogen Compression English

Hydrogen-Powered Lawn Mower English

English

A Photorechargeable Metal Hydrid/Air Battery English

English

English

Cooking Utensil with Improved Heat Retention English

English

Variably Insulating Portable Heater/Cooler English

Hydride Bed and Heat Pump English

English

Miniaturized Fuel Cell Assembly English

Chromatograph having a Gas Storage System English

English

Systems R’1-x-yR”xR”’yCo5-H2, where R=rare earth metal

AB5, (La,Ce,Pr)Co5, PCT, Enthalpy, Entropy, Structure

Calorimetrric study of LaNi4.9Al0.2-H2 and LaNi4.9Sn0.2-H2 systems

AB5, LaNi4.9Al0.2, LaNi4.9Sn0.2, PCT, Enthalpy, Entropy, Calorimetric, Kinetics, Hysteresis

Hydrogen interaction with LaNi5-x(T1T2)x, where T1T2=Al,Ce,Fe,Cu

AB5, La(NiAL,Cr,Fe,Cu)5, PCT, Enthalpy, Entropy, Structure, Volume AB5, La(Ni,Mn,Al)5, PCT, Enthalpy, Entropy, Structure, Nonstoichiometric

Effect of heat treatment on the microstructure and electrochemical properties of AB5-type MlNi3.60Mn0.40Al0.15 hydride alloy: 1.-The microstructure and P-C isotherms

AB5, MlNi3.60Mn0.40Al0.15, PCT, hysteresis, Structure, Microstructure, Heat Treatment

Polytypism of La-Ni phases in multicomponent AB5 type hydride electrode alloys

AB5, MlNi4Co0.6Al0.4, PCT, Structure, Phase relations, High Resolution TEM. Multiphase

Electrical Resistance variations with content of hydrogen in bulk MmNi4.5Al0.5

AB5, MmNi4.5Al0.5, PCT, Electrical Resistance, Cyclic Effects

Hydrogen absorption-desorption isotherms of La(28.9)Ni(67.55)Si(3.55)

AB5, LaNi4.82Si0.25, PCT, Activation, Kinetics, Cyclic Effects

Isotope separation factor and isotope exchange rate between hydrogen and deuterium of palladium

Pd, Deuterium, Application, Isotope Exchange, Separation Factor, Exchange RateAB5, LaNi4.7Al0.4, PCT, Rates, Application, Compression, Cyclic Effects, Passive PurificationAB2, Ti-Zr-Mn-V-Cr-Fe, Application, Storage, Vehicular, Lawn Mower

Hydrogen-powered lawn mower: 14 years of operation

AB2, Ti-Zr-Mn-V-Cr-Fe, Application, Storage, Vehicular, Lawn MowerAB5, LaNi3.76Al1.24, Application, Battery, MH/Air Battery, Photovoltaic

Hydrogen storage materials for mobile applications

Applications, Storage, Vehicular, Review, Gaseous Storage, Liquid Storage, High Surface Area Materials, Carbon, Metal Hydrides, Complex

Method and Composition in which Metal Hydride Particles are Embedded in a Silica Network

AB5, LaNi4.25Al0.75, Application, Storage, Silica Network, Purification, Cyclic Effects, Dimensional StabilityApplication, Gas Gap Heat Switch, Hydride Dispenser, Cooking Utensil,

Combined System of Fuel Cell and Air-Conditioning Apparatus

Application, Vehicular Storage, Refrigeration, Compressor, Fuel Cell, Heat StorageApplication, Gas Gap Heat Switch, Hydride Dispenser, Heat TransferApplication, Storage, Heat Pump, Heat Transfer

Automatic Water Vapor Density Control of Hydrogen Gas

Application, Storage, Passive Purification, Water Vapor, AdsorbantsApplication, Storage, Fuel Cell, Heat TransferApplication, Storage, Purification, Gas Chromatograph

Self-Heating Metal-Hydride Hydrogen Storage System

Application, Storage, Hydrogen Combustion, Self-Heating Container

English

English

Fuel Cell Apparatus English

English

English

English

Hydrogen Cooled Hydrogen Storage Unit English

English

Ultra-Narrow Automobile Stabilized with Ballast English

English

English

English

English

Hydrogen Storage Unit English

English

English

English

English

English

English

English

English

Hydride Thermoelectric Pneumatic Actuation System

Application, Actuator, Thermoelectric, Heat Engine

Process for Filling Hydrogen into a Hydrogen Storage Tank in an Automobile

Application, Storage, Stationary, Vehicular, Heat TransferApplication, Storage, Stationary, Fuel Cell, Heat Transfer

Hydrogen Purification using Metal Hydride Getter Material

Application, Purification, Getter, Cold Trap

Container and Method for Absorbing and Reducing Hydrogen Concentration

Application, Getter, Silica Matrix, Nuclear Waste

Apparatus and Methods for Storing and Releasing Hydrogen

AB5, La(Ni,Al)5, Application, Storage, Vehicular, Stationary, Container Design, Heat ExchangeApplication, Storage, Vehicular, Container Design, Heat Exchange

Hydrogen Cooled Hydrogen Storage Unit having Maximized Cooling Efficiency

Application, Storage, Vehicular, Container Design, Heat ExchangeApplication, Storage, Vehicular, Ultra-narrow vehicle, Stabilization

Fuel Cell Power Generation System and Method for Powering an Electric Vehicle

Application, Storage, Vehicular, Reformer, Membrane Separation

Hydrogen Cooled Hydrogen Storage Unit having a High Packing Density of Storage Alloy and Encapsulation

Application, Storage, Vehicular, Stationary, Encapsulation, Heat Transfer

Apparatus and Methods for Storing and Releasing Hydrogen

AB5, La(Ni,Al)5, Application, Storage, Vehicular, Stationary, Container Design, Heat Exchange

Method for Storing Purged Hydrogen from a Vehicle Fuel Cell System

Application, Storage, Vehicular, Fuel Cell, Hydrogen PurgeApplication, Storage, Vehicular, Stationary, Purification, Adsorbant

Rare-earth-based AB5-type hydrogen storage alloys as hydrogen electrode catalysts in alkaline

AB5, Application, Electrochemical Catalyst, Fuel Cell, Cyclic Effects

Development of metal hydride beds for sorption cyrocoolers in space applications

AB5, LaNi4.8Sn0.2, AB, ZrNi, Application, Compressor, Gas Gap Heat Switch, Bed Design, Review

Gas-based hydride applications: recent progress and future needs

Application, Storage, Vehicular, Stationary, Compression, Separation, Isotope Separation, Electrochemical, Reversible mirrors

Selective hydrogenation of unsaturated aldehyde over hydrogen storage alloy

A2B, Mg2Ni, Co/Mg2Ni, Application, Catalysis, Selective Hydrogenation, Unsaturated Aldehyde

Profiles of hydrogen molar fraction and temperature in ZrV1.9Fe0.1 alloy bed for hydrogen absorption

AB2, ZrV1.9Fe0.1, Bed Design, Performance, Temperature Profiles, Composition Profiles, Application, Storage, Stationary, Heat Pumps

Thermal property characterization of sodium alanates

Complex, NaAlH4, Application, Thermal Testing, Thermal Conductivity

A study on wall stresses induced by LaNi5 alloy absorption-desorption cycles

AB5, LaNi5, Cyclic effects, Expansion, Wall stress, Application, Storage

AB5-type hydrogen storage alloy used as anodic materials in borohydride fuel cell

AB5, LmNi4.78Mn0.22 (Lm=La-rich mischmetal), NaBH4, Electrochemical Catalyst, Borohydride fuel cell

English

Ti-V-Mn alloys for hydrogen compression system English

Thermochromic metal-hydride bilayer devices English

100-200C polymer fuel cells for use with NaAlH4 English

English

English

English

English

English

English

English

Roles of Hydrogen in Space Exploration English

Hydride storage English

English

English

Hydride alloy property investigations for hydrogen sorption compressor

AB5, LaNi4.8Sn0.2, LmNi4.9Sn0.1, MmNi4.7Al0.3, PCT, van’t Hoff, Physical properties,Specific heat, DSC, Thermal conductivity, Application, AB2, Ti-V-Mn, Ti-Zr-V-Mn, PCT, Rates, Application, CompressorA2B, Mg2Ni, PCT, Optical properties, Applications, Reversible hydride mirrors, Thermochromic deviceComplex, NaAlH4, Electrochemical, High temperature fuel cell, Application,

Electrocatalytic abilities of hydrogen storage alloy as anode electrocatalyst of alkaline fuel cell

AB5, MlNi3.65Co0.85Al0.3Mn0.3, Application, Electrochemical catalyst, Alkaline fuel cell, Surface modification

Hydrogen storage alloys for high-pressure suprapure hydrogen compressor

AB5, (Ml,Mm,Ca)Ni5, AB2, (Ti,Zr)Cr1.6Mn0.4, PCT, van’t Hoff, Hysteresis, Enthalpy, Application, Compressor, Purifier

Hydrogen storage properties of TixFe+ y wt.% La and its use in metal hydride hydrogen compressor

AB, TixFe + La, PCT, van’t Hoff, Rate, XRD, Enthalpy, Application, Compressor, Purifier

A Review of Heat Transfer Issues in Hydrogen Storage Technologies

Application, Storage, Vehicular, Stationary, Heat transfer, Liquid hydrogen, Compressed hydrogen, Metal hydrides, Complex, Chemical

Heat transfer characteristics of the metal hydride vessel based on the plate-fin type heat exchanger

AB2, Ti0.42Zr0.58Cr0.78Fe0.57Ni0.2Mn0.39Cu0.03, PCT, Application, Storage, Stationary, Energy storage, Heat exchange, Container design, Rates, Thermal conductivity, Heat transfer modelSimulation of a thermally coupled metal-hydride

hydrogen storage and fuel cell systemApplication, Storage, Vehicular, Stationary, Fuel cell, Heat transfer, Container design, Model

Operation of a PEM fuel cell with LaSn4.8Sn0.2 hydride beds

AB5, LaSn4.8Sn0.2, Application, Storage, Stationary, PEM fuel cell, Performance measurementsApplication, Space, Review, Liquid hydrogen, Metal Hydrides, Sorption cryocoolers, Gas gap heat switches, Storage, Instrumentation, Compression, Ni-H batteries AB5, AB2, AB, A2B, AB, Solid solution alloys, Complex, NaAlH4, Carbon, Review, Hydride Classification, PTC properties, van’t Hoff, Enthalpy, Entropy, Hysteresis, Plateau slope, Materials cost, Application, Storage, Fuel cell, Heat transferSimulation of the metal hydride heat pump

system with the single and double reactorsAB2, Zr0.9Ti0.15Cr0.6Fe1.45, Zr0.9Ti0.1Cr0.9Fe1.1, PCT, Application, Heat Pump, Container design, Heat transfer, Model,

Parametric studies on a metal hydride based single stage hydrogen compressor

AB2, Ti0.98Zr0.02V0.43Fe0.09Cr0.o5Mn1.5, Application, Compressor, Model, Performance calculations

English

English

English

English

English

English

English

English

English

English

English

English

English

English

Net energy analysis of hydrogen storage options English

English

Metal hydride beds and hydrogen supply tanks as minitype PEMFC hydrogen sources

AB5, Ml0.85Ca0.15Ni5, AB2, Ti0.9Zr0.15Mn1.6Cr0.2V0.2, PTC, SEM, Pellets, Container design, Ni foam, Application, Storage, Stationary, PEM Fuel Cell, Performance

Expanded graphite as heat transfer matrix in metal hydride beds

AB2, PTC, Pellets, Graphite, Al foam, Container design, Application, Storage, Heat pumps, Thermal conductivity, Experimental results, Performance calculations

“Hybrid hydrogen storage vessel”, a novel high-pressure hydrogen storage vessel combined with hydrogen storage material

Application, Storage, Vehicular, Hybrid container design, Composite high-pressure tank, Model, Performance calculations

High-pressure Metal hydride Tank for Fuel Cell Vehicles

AB2, Ti(Cr,Mn)2, PCT, Application, Storage, Vehicular, Prototype, Hybrid Container design, Composite high-pressure tank, Model, Performance, Hydride property targets

Studies on a metal hydride based solar water pump

Application, Heat engine, Solar-powered water pump, Model, Performanc calculations

Prediction of transient heat and mass transfer in a closed metal-hydrogen reactor

Application, Storage, Heat transfer, Mass transfer, Model , Performance

Homogenization method for effective thermal conductivity of metal hydride bed

AB5, LaNi4.7Al0.7, Application, Storage, Model, Thermal conductivity, Homogenization method, Conductivity calculations

Metal hydride water pumping system low head-high discharge applications

AB5, LaNi5, Application, Heat engine, Water pump, Model, Performance calculations

Exergetic life cycle analysis of hydrogen production and storage systems for automotive applications

AB, TiFE, Application, Storage, Vehicular, Model, Compressed H2. Cryogenic H2, Wheel-to-wheel energy analysis, H2 production

Dynamic behavior of metal-hydrogen reactor during hydriding process

Application, Storage, Heat transfer, Mass transfer, Model , Performance

Profiles of hydrogen molar fraction and temperature in ZrV1.9Fe0.1 alloy bed for hydrogen absorption

AB2, ZrV1.9Fe0.1, Application, Heat pump, Separation, Reactor design, Flow-thru, Composition profile, Temperature profileHeat transfer characteristics of expanded

graphite matrices in metal hydride bedsPellets, Graphite, Container design, Application, Storage, Heat pumps, Thermal conductivity, Experimental results, Decrepitation, Performance

Kinetics of hydrogen desorption from a metal to a closed reservoir

Application, Storage, Desorption rates, Model, Model calculations

Thermodynamic analysis and optimization of compressor-driven metal hydride cooling systems

AB5, MmNi4.5Al0.5, LaNi5, AB, TiFe0.85Mn0.15, AB2, Zr0.9Ti0.1Cr0.55Fe1.45, Application, Refrigeration, Compressor-driven, Reactor design, Performance calculationsMg, AB, TiFe, Application, Storage, Vehicular, Compressed H2, Cryogenic H2, Net cost analysis

Experiments on a metal hydride based hydrogen compressor

AB5, MmNi4.6Al0.4, Application, Compressor, Reactor design, Model, Performance calculations

English

English

English

English

English

English

Smart hydrogen/metal hydride actuator English

English

English

Electric toy vehicle powered by a PEMFC stack English

Hydrogen-based uninterruptable power supply English

English

English

English

Experimentsl and theoretical analysis of hydrogen absorption in LaNi5-H2 reactors

AB5, LaNi5, Application, Storage, Model. Heat transfer, Temperature profiles, Performance calculations

Experiments on a metal hydride-based hydrogen storage device

AB5, MmNi4.6Al0.4, MmNi4.6Fe0.4, PCT, Application, Storage, Reactor design, Experimental performance

On the optimization of hydrogen storage in metal hydride beds

Application, Storage, Container design, Model, Performance optimization

Integrated electrolyzer - metal hydride compression system

AB5, LaNi4.8Sn0.2, LmNi4.9Sn0.1, MmNi4.7Al0.4, PTC, Application, Compressor, Three-stage, Reactor design, Al foam, Thermal cycling,

Impacts of external heat transfer enhancements on metal hydride storage tanks

Application,Storage, Heat transfer, External heat transfer enhancement, Fins, Model, Performance calculations

Study of Mg-based materials to be used in a functional solid state hydrogen reservoir for vehicular applications

Mg alloys, AB5, LaNi5, PCT, Application, Storage, Vehicular, Rates, XRD, Two-alloy reactor design, H2 catalytic burnerAB5, LaNi4.3Al0.7, Application, Actuator, Model, Performance

Influence of intrinsic hydrogenation/dehydrogenation kinetics on the dynamic behavior of metal hydrides: A semi-empirical model and its verification

AB5, La0.83, Ce0.10Pr0.04Nd0.03Ni4.4Al0.6, PTC, Kinetics, van’t Hoff, Model, Rate calculations, Experimental apparatus, Experimental results, Model verification

Sodium alanate hydrogen storage system for automotive fuel cells

Complex, NaAlH4, Application, Storage, Vehicular, Container Design, Model. Rate analysis, Discharge, Refuelling, Fuel cellAB, TiFe, PTC, Application, Storage, Vehicular, Toy Car, Fuel cell, AB5, LaMm1-xCeXNi5, PCT, Storage, Stationary, Electrolyzer, Fuel cell, Backup power, System design, PerformanceAir-independent propulsion system for

submarinesTi-Mn, Application, Storage, Mobile, Submarine, Fuel cell power

Advanced Underground Vehicle Power and Control Fuelcell Mine Locomotive

AB2, (Ti,Zr)(V,Mn,Fe)2, Application, Storage, Vehicular, Mine Locomotive, Fuel cell power, Performance data

Recent Advances of Metal Hydride Hydrogen ICE Vehicles and Dispensing Systems

Application, Storage, Vehicular, Stationary, Compressor, Hydrogen fueled Toyota Prius, Performance

Type No. of References OrganizationPaper 27 Philips

Paper 5 Reading Univ.

Article 19 NRC-Negev, Ben-Gurion Univ.

Article 23 Ergenics

Article 25 Ergenics, Inco

Article 14 Inco, Ergenics

Article 4 Inco

Article 10 Inco

Article 17 Inco

Article 11 Inco, Ergenics, APCI

Article 5

Article 14 Westinghouse

Article 14 Westinghouse

Article 15 Hebrew U. of Jerusalem

Paper 16 Hebrew University of Jerusalem

Article 18 Hebrew U. of Jerusalem

Article 9

Article 17 Univ. Pittsburgh

Article 33 Univ. Pittsburgh

Article 8 University of Pittsburgh

Article 13 Argonne Nat. Lab.

Article 18 University of Pittsburgh

Inco, Ergenics, Air Products and Chemicals

Philips Research Lab -Eindhoven

Article 20 University of Pittsburgh

Article 28 University of Pittsburgh

Article 21 University of Pittsburgh

Article 4

Article 5

Article 15 University of Pittsburgh

Paper 11 University of Winsor

Article 9

Paper 26 Matsushita Electric

Article 11 Matsushita Electric

Patent Matsushita Electric

Patent Matsushita Electric

Patent Matsushita Electric

Patent Matsushita Electric

Patent Matsushita Electric

Patent 4 Matsushita Electric

Article 6

Article 6 Gov. Indus. Res. Inst., Osaka

Article 12 Brookhaven Nat. Lab.

Article 28 Brookhaven Nat. Lab.

Article 9 U. of Konstanz

Article 2 BNL, Inco

National Chememical Lab for Industry, TsukubaNational Chememical Lab for Industry, Tsukuba

National Chememical Lab for Industry, Tsukuba

Kogakuin U. Japan, National Chememical Lab for Industry, Tsukuba

Report U. of Denver

Report 113 Lawrence Livermore

Paper Hebrew U.

Article 31 Allied Corp.

Paper U. of Virginia

Article 4 University of Pittsburgh

Patent Hebrew University of Jerusalem

Article 19 Bell Labs.

Article 12 Tokyo Institute of Technology

Article 9 Phillips Res. Lab. Eindhoven

Article 26 Soreq Res. Cent., Hebrew U.

Article 12 Philips Res. Lab. - Eindhoven

Article 9

Article 17 U. of Windsor - Canada

Article 8 Hiroshima U. - Japan

Article 3 Argonne Nat. Lab.

Article 8 Argonne Nat. Lab.Paper 24

Article 19 University of Pittsburgh

Article 17 Acad. of Sci. of the USSR

Article 13 Hebrew U.

University of California - San Diego

Monsanto Research Corp., Brookhaven N.L.

Article 36 Hebrew U.

Paper Hebrew U.

Article 17 Tufts universityPaper 8 AEE - Cairo Egypt

Paper 12 U. of Birmingham U. K.

Article 11 Battelle Geneva, Daimler-Benz

Article 5 Battelle Geneva, Daimler-Benz

Article 19 Hitachi, Tokyo Inst. Tech.

Article 15 Nagaoka Technical College

Report Brookhaven N.L.

Paper 16 Inco, Brookhaven N.L.

Article 15 Ergenics, Inco

Article 6

Article 4

Article 14

Article 3 Gov. Ind. Res. Inst. - Osaka

Article 9 Gov. Ind. Res. Inst. - Osaka

Article 5 Gov. Ind. Res. Inst. - Osaka

Article 30 Brookhaven N.L.

Paper 14 Allied Corp.

Article Res. Inst. for Iron and Steel

Article 7 Brookhaven N.L.

Article 3 Brookhaven N.L.

Gov. Ind. Res. Inst. - Osaka, Toyobo Co.Japan Metals and Chemicals, Ulvac Co., Vacuum MetallurgicalGov. Ind. Res. Inst - Osaka, Iwatani & Co.

Paper 8 University of California - L. A.

Report 13 Solar Turbines International

Article 11

Article 20 Tokyo Inst. Tech.Article 7 Philips

Article 6 Philips Res. Labs

Article 5 Philips Res. Labs

Article 9 Philips Res. Labs

Article 4 Philips Res. Labs

Article 15 Philips Res. Labs

Report 5 Los Alamos N.L.

Article 6 University of Pittsburgh

Article 5 U. of Pitt.

Article 16

Thesis 89 Philips

Paper 15 Hebrew University

Article 17 U. S. Bureau of Mines

Paper 19 Inco

National Chemical Lab for Industry - Tskuba,Toyobo Co.

University of Calififornia - San Diego

Paper 24 Inco

Article 13 Argonne Nat. Lab.

Paper Argonne Nat. Lab.

Article Hitachi Ltd.

Article Hitachi Ltd.

Article 8 University of Pittsburgh

Paper 24 Inco

Article 19 Hebrew University

Article 4 Argonne Nat. Lab.

Article 9 Argonne Nat. Lab.

Article 16 Gov. Indus. Res. Inst. - Osaka

Article 19 Muroran Inst. Tech., Muroran

Article 13 Gov. Indust. Res. Inst. - Osaka

Article 9 Gov. Indust. Res. Inst. - Osaka

Article 5 Gov. Indust. Res. Inst. - Osaka

Article 20 Gov. Indust. Res. Inst. - Osaka

Paper 15 Gov. Indust. Res. Inst. - Osaka

Article 39 Gov. Indust. Res. Inst. - Osaka

Article 9 Gov. Indust. Res. Inst. - Osaka

Article 13 Gov. Indust. Res. Inst., Osaka

Article 13 Gov. Indust. Res. Inst., Osaka

Article 10 Ames Lab., Lawrence Livermore

Paper 5

Article 9 University of Pittsburgh

Article 17 Tokai University

Article 14 INCO, Ergenics

Article 13 Gov. Indust. Res. Inst. - Osaka

Article 13 Nuc. Res. Center, Negev

Article 6 University of Pittsburgh

Article 10 Domaine University, CNRS

Article 15 Ames Lab.

Article 13

Article 16 University of Pittsburgh

Paper 1 Oak Ridge N.L.

Article 19 Ames Lab.

Article 21 Nat. Res. Council of Canada

Article 17 Nat. Res. Council of Canada

Article 3 Osaka University

Article 21 Monsanto Research Corp.

Article 40 Lawrence Livermore

Article 8 U. of KonstanzArticle 3 Philips Res. Labs.

Report 8 U. of Denver

Report 41 Argonne Nat. Lab.

Gen. Res. Inst. Nonferrous Met. - Beijing

Nat. Res. Inst. for Metals - Tokyo

Report 9 University of Denver

Patent General Electric

Patent Brookhaven N.L.

Article 23 Argonne N.L.

Article 4 Texas Instruments

Article 7 Yokohama National U.

Article 6 Philips Res. Labs.

Paper 14 U. of Denver

Article 6 Philips Res. Labs.Article 19 Philips Res. Labs.

Article U. of Calif.

Article 11 Argonne Nat. Lab.

Paper 36 U. of Vermont

Article 9 University of PittsburghReport 37 Lawrence Livermore

Report 9 Lawrence Livermore

Article 10 U. of Birmingham - U.K.

Paper 10 Argonne Nat. Lab.

Paper 34 University of Denver

Report 27 Lawrence Livermore

Article 46 Argonne Nat. Lab.

Article 13 UNiversity of Vermont

Article 32 University of Vermont

Paper 7

Article 15 University of Vermont

Article 22 University of Vermont

Article 20 Brookhaven N.L.

Article 9

Article 17 Yokohama National University

Article 12

Paper 4 Brookhaven N.L.

Article 19

Article 114 Inco

Paper 30 Inco, Ergenics

Paper 18 Indian Inst. of Tech., Kanpur,

Thesis 45 University of Pittsburgh

Article 22 Philips Res. Labs.

Article 5

Article 17 ETH, Zurich

Article 6 Los Alamos N.L.

Article 10 Technion, Brookhaven N.L.

Report 7 University of California - L.A.

National Research Council of Canada

University of Pittsburgh, Argonne Nat. Lab.

University of California - San Diego

University of Wisconsin, Ames Lab

Res. Inst. for Iron, Steel and Other Metals, Japan

Article 5 Technion, Brookhaven N.L.

Article 24 Tufts University

Report 2 Brookhaven N.L.

Article 8 University of Pittsburgh

Paper 8 Inst. of Gas Technology

Article 13 ETH Zurich, IBM San Jose

Article 39 ETH Zurich, University of Basel

Paper 3

Article 5

Article 77 ETH Zurich

Article 6 Inco

Article 20

Article 14 ETH Zurich

Paper 9 CNRS

Article 13 University of Pittsburgh

Article 6

Article 10 Technische Hochschule Aachen

Paper

National Chemical Laboratory for Industry, Chiba Inst. of Tech.

Acad. Sciences of the Ukrainian SSR

University of Wisconsin, University of Pittsburgh

Air Products and Chemicals, Inco

Paper

Article 14 Technical University of Aachen

Article 9 CNRS - Bordeaux

Article 31

Paper 116 ETH Zurich

Article 23 University of Bonn

Article 15 Brookhaven National Lab

Article

Article 4 University of Pittsburgh

Article 24

Article 18

Article 7

Abstract

Abstract University of Muenster

Paper 4 Brown University

Article 30 Sandia - Livermore

Article 15 Brigham Young University

Article 13 ETH Zurich

Article 24 University of Cincinnati

Article

Paper 21 ETH Zurich

Exxon Research and Engineering

Max-Planck-Institut fur Metallforschung

Max-Planck-Institut fur MetallforschungMax-Planck-Institut fur MetallforschungBrookhaven N.L., Ben Gurion University

Article 24

Article 47 Los Alamos N.L.

Article

Article 2 ETH Zurich

Article

Article 11 ETH Zurich

Article 10 Tokyo Inst. of Tech.

Abstract Showa Denko

Patent Shell Oil

Patent 2 Brookhaven N,L.

Patent Deutsche Automobilgesellschaft

Patent Shin-Etsu Chemical

Article 10 Inco Ltd.

Article 13 Dravo Engineers

Article 13 Inst. of Gas Technology

Article

Patent Air Products

Patent Billings Energy Corp.

Paper

Article

Article 17 Seoul Natl. Univ.Report 17 Univ. of Denver, ARPA

Article 20 Carnegie-Mellon Univ.

Max-Planck-Institut fur Metallforschung

Article 25

Report 14 Sandia N. L., Inco

Article 14 Indian Inst. Tech.

Article 18 Indian Inst. Tech.

Article 20 Indian Inst. Tech.

Report 31 ARPA, Univ. of Denver

Article 21 Nat'l Res. Council of Canada

Article 2 Nankai Univ.

Article 16 Tex. A&M Univ., Hughes, NASA

Article 12 BNL, DOE. Tex. A&M Univ.

Article 30 Argonne N.L., DOE

Article 6 IKE der U. Stuttgart, DFG

Article 35 Zhejiang Univ.

Article 11 ENSET, CNRS, CEN

Paper 37 CNRS, Univ. J. Fourier, Alcatel

Article 25 CNRS

Paper 8 CNRS

Paper 6 Univ. of Denver

Article 14 CNRS, ILL

Paper 12 Aerojet Electrosystems et al

Kodak, Aerospace Corp., Miami U.

Article 19 Aerojet Electrosyst., U. Vermont

Article 16 Technion

Article 15 Korea AIST

Article 35 GIRIO

Abstract 2 Sumitomo Metal Mining

Article 17 NRC Canada

Chapter 62 Brookhaven N. L.

Chapter 156 Allied Chemical

Article 350+ Philips

Chapter 105 Philips

Article 69 Univ. of Winsor

Article 40 Univ. of WinsorChapter 100+ Allied Chemical

Paper 8 Kogakuin University

Article 12 Yamaguchi University

Article 7 GIRI Osaka

Article 12 GIRI Osaka

Article 9 Suzuki Shokan Co.

Article 11 Bulgarian Acad. Sci.

Article 28 Philips Research Lab

Article 7 Univ. of Osaka Prefecture

Article 14 Banares Hindu Univ.

Article 27 Hiroshima Univ.

Article 6 Osaka NRI

Article 13 Los Alamos NLArticle 20 Max-Planck-Institute

Article 8 IKE der Stuttgart Univ.

Chapter 202 U. Munster

Book 500+ Queen's University of Belfast

Article 126 Univ. of Vermont

Article 11 Westinghouse Savannah River

Chapter 96 Univ. of Denver

Chapter 66 IBM

Chapter 35 Univ. of Denver

Report USAEC - Univ. of Denver

Article 0 Systron Donner

Chapter 98 Kennecott Copper

Article 3 IN/US Systems

Article 13 BNLReport 6 BNL

Article 3 BNL

Report 40+ NASA JSC and HCI

Article 8 Aerojet Electrosystems

Article 46 BNL

Article 11 BNL

Chapter 200 Univ. Geneva

Article 20 Inco

Chapter 403 SunaTech

Chapter 442 Univ. Fribourg

Article 65 Kogakuin Univ.

Article 22 Technion

Article Inco

Article 22 Argonne NL

Article 6 Technion

Article 8 Technion

Article 10 BNL

Article 8 Stockholm Univ.

Article 3 NRC Negev

Article Stockholm Univ.

Chapter 193 Univ. Dijon

Article 16 BNL

Patent Ergenics

Patent Exxon

Article 6

Article 9 Kogakuin Univ.

Article Philips

Article 7 Daimler Benz

Report GfE

Article 6 Daimler-Benz

Article 15 GfE

Paper 43 GIRI Osaka

Article 5 Westinghouse SRL

Article 8 Savannah River Lab

Article 32 Univ. Nevada

Article 24 Aerojet Electrosystems

Paper 22 Aerojet Electrosystems

Article 8 Allied

Article 17 Allied

Article 57 Allied Signal

Article 83 Philips

Article 10 Philips

Article 10 Argonne NL

Article 14 Univ. Pittsburgh

Article 20 Univ. Vermont

Nat. Research Inst. Metals, Japan

Article 14 Argonne NL

Article 5 Philips

Article 21 Hebrew Univ.

Article 14 Allied

Article 17 Indian Inst. Tech.

Article 11 Univ. CaliforniaArticle 4 Peking Univ.

Article 8 Matsushita

Article 12 Matsushita

Article 20 Sanyo

Article 13 Hiroshima Univ.

Article 16 Kogakuin Univ.

Article 9 Matsushita

Article 21 GIRI Osaka

Article 3 Peking Univ.

Article 8 Argonne NLArticle 8 Univ. Burgundy

Article 10 Univ. Winsor

Article 15 Univ. Winsor

Article 20 KAIST

Article 9 Univ. Birmingham

Article 7 Argonne NL, Inco

Article 4 Tokyo Inst. Tech.

Article 4 NRC Negev

Article 15 BNL

Article 17 Tech. Hochschule Darmstadt

Article 25 Univ. Konstanz

Article 12 Philips

Article 10 IAE Kjeller

Article 5 RWTH AachenArticle 24 Allied

Article 17 Ben-Gurion Univ.

Article 14

Article 12 Osaka Univ.

Article 34 BNL

Article 8 Nat. Res. Inst. for Metals

Article 14 Technion

Article 3 Lomonosov Moscow State Univ.

Article 22 KIST

Article 7 Tohoku Univ.

Article 8

Article 23 Univ. Birmingham

Chapter 171 DOE, Ergenics, PAR Ent.

Article 13

Article 11 Nankai Univ.

Article 9 Nankai Univ.

Article 5 Univ. of Salford

National Tsing Hua Univ., Taiwan

Kernforschungszentrum Karlsruhe

National Tsing-Hua Univ., Taiwan

Article 15 Univ. of Vermont

Article 5 Lomonosov Moscow State Univ.

Article 13 GIAP INstitute

Article 20 Miami Univ., Aerojet ES

Article 4 Daido Steel

Article 6 Nagasaki Univ.

Article 16 Philips

Article 8 Tokai Univ.

Article 7 Sanyo

Article 4 Kogakuin Univ.

Article 6 ONRI

Article 7 CNRS

Article 7 CNRS

Article 13 Inst. Isotopic and Molecular TecArticle 9 Battelle Geneva

Article 8 Univ. Genoa

Article 5 Univ. Genoa

Article 25 Univ. Pittsburgh

Article 15 Kodak

Article 14 Univ. Saarlandes

Article 8 Univ. Geneva

Article 20 Natl. Res Inst. for Metals

Article 14 Allied

Article 36 Tech. Hoch. Darmstadt

Article 48 Univ. of York

Article 10 Univ. Genoa

Article 8 Kurchatov Institute

Article 12 CNRS

Article 9 Polish Acacemy of Sciences

Article 16 Nissin Steel

Article 17 Bulgarian Academy of Sciences

Article 23 ETH Zurich

Article 7 UC San DiegoChapter 87 Univ. Pittsburgh

Article 25+ Argonne N. L.

Article 12 Nuclear Res. Center Negev

Article 11 Banaras Hindu University

9 Florida Solar Energy Center

Article 7 Argonne N. L.

Chapter 75 Argonne N. L.

Thesis 50+ Univ. Utrecht

Article 9 Argonne N.L.

Article 6 University of Pittsburgh

Article 3 Argonne N. L.Article 10 Sanyo

Article 16 KAIST

Article 7 NCLI

Article 12 Allied Chemical

Article 15 MPI Metal. Stuttgart

Article 13 Lomonosov Moscow State Univ.

Article 9 Lomonosov Moscow State U.

Article 22 BNL

Article 8 Argonne NL

Article 11 Hebrew University

Article 31 U. Vermont

Article 25 U. Birmingham

Article 9 U. Birmingham

Article 18 Univ. Pittsburgh

Article 33 Polish Acad. of Sciences

Article 38 KFA Juelich

Article 29 Queens Univ. of Belfast

Article 7 Univ. of Reading

Article 39 Univ. of Vermont

Article 43 Univ. of Vermont

Article 12 Queens Univ. of Belfast

Report Allied Corp., Brookhaven N.L.

Article 21 Indian Inst. of Tech.

Article 7 Nat. Inst. of Foundry and Forge

Article 28 Indian Inst. of Tech.

Article 24

Article 18 Polish Acad. Sciences

Article 10 Queens Univ. of Belfast

Article 16 Polish Acad. Sciences

Article 9 Japan Steel Works

Article 12 Nat. Inst. of Metals and Chem.

Article 24 Univ. of Vermont

Article 17 CNRS

Article 12 Battelle

Article 12 Nagasaki Univ.

Article 31 Univ. of Vermont

Article 14 Argonne N.L.

Article 14 Argonne N.L.

Article 28 Argonne N.L.

Report Brookhaven N.L.

Report 2 Brookhaven N.L.

Report Brookhaven N.L.

Article 30 Philips

Article 16 CNRS

Article 19 CNRS

Article 13 Tokyo Inst. of Tech.

Article 5 Acad. Sciences Armenian SSR

Article 11 Lab de Chimie minerale Indust.

Article 16 Acad. Sciences USSR

Patent Univ. Denver

Article 27 Reading Univ.

Article 36 Reading Univ.

Article 11 Reading Univ.

Article 5 Ames Lab

Article 8 Acad. Sciences USSR

Article 9 Lomonosov Moscow Inst.

Article 5 Argonne N.L.

Article 1 Monash Univ.Article 21 Mendeleev Moscow Chem. Inst.

Article 14 Univ. Pittsburgh

Article 12 Acad. Sciences USSR

Article 12 JPL

Article 6 Univ. Pittsburgh

Article 16 Acad. Sciences USSR

Article 11 Univ. Pittsburgh

Article 13 Acad. Sciences USSR

Paper 5 Univ. Pittsburgh

Article 17 Bell Labs

Article 7 Philips

Article 19 Acad. Sciences USSR

Article 17 Acad. Sciences USSR

Patent 7 Daimler-Benz

Article 6

Article 75 Tech. Hochschule Darmstadt

Article 23 U. C. San Diego

Article 21 CNRS

Article 12 Kogakuin Univ.

Article 13 Univ. Muenster

Patent 2 Koppers Co.

Paper 8 U.S. Army ETDL

Article 20 Kurnakov Inst. of Chem.

Article 34 Kurnakov Inst. of Chem.

Article 6

Article 19 Tech. Hochschuele Darmstadt

Article 7 Univ. Pittsburgh

Article 18

Article 11 Univ. Pittsburgh

Article 11 Univ. Pittsburgh

Article 16 Univ. PittsburghArticle 6 Acad. Sciences USSR

Article 46 CNRS

Article 5 NRC Beer-Shiva

Article 13 Acad. Sciences USSR

Article 8 Acad. Sciences USSR

Article 15 Univ. Pittsburgh

Mendeleev Moscow Inst. Chem. E.

Article 19 Univ. Pittsburgh

Article 11 Polish Academy of Sciences

Article 19 KAIST

Article 3 KAIST

Article 12 Univ. Toronto

Article 16 Univ. Vermont

Article 16 Univ. Pittsburgh

Article 20 Univ. Wien

Article 16 Polish Academy of Sciences

Article 20 Univ. Pittsburgh

Article 16 Univ. Pittsburgh

Article 10

Article 21 Mendeleev Institut

Article 10 Nihon Univ.

Article 18 Univ. Winsor

Article 26 KAIST

Article 9 Ruder Boskovic Institute

Article 16 KAIST

Article 11 Sanyo

Article 10 Ruder Boskovic Inst.

Article 13 Indian Inst. of Tech.

Article 78 CNRS

Article 8 Sofia Univ.

EU Joint Research Cen. Karlsruhe

Article 14 Nat. Res. Inst. for Metals

Article 67 CNRS

Article 14 GIRIO

Article 12 Argonne NLArticle 11 Univ. Pittsburgh

Article 12 Yokohama Nat. Univ.

Article 9 Univ. Bradford

Article 14 Univ. Pittsburgh

Article 16 Tech. Hochschule Darmstadt

Article 18 Flinders Univ.

Article 16 Carnegie Mellon Univ.

Article 25 Flinders Univ.

Article 10 Urals State Univ.Article 18 KAIST

Article 25 Univ. Vermont

Article 12 Ruder Baskovic

Article 22 Sumitomo Metal Industries

Article 24 CNRS

Article 16 Nankai Univ.

Article 12 Lomonosov Moscow State Univ.

Article 27 Indian Inst. of Tech.

Article 20 Miami Univ.

Article 18 Sanyo

Article 22 Ruder Boscovic Inst.

Article 10 Zhejiang Univ.

Article 14 Lomonosov Moscow State Univ.

Article 8 Univ. Geneva

Article 6 Lomonosov Moscow State Univ.

Article

Article 4 Acad. Sciences Ukraine

Article Nihon Univ.

Article 5 Advanced Materials Corp.

Article MPI Metallforschung

Article 13 Sanyo

Article 10 Philips

Article 27 Nagasaki Univ.

Article 11 Nagasaki Univ.

Article 2 Mitsubishi Kasei Corp.

Article 30 State Inst. of Nitrogen Industry

Article 26 Mitsubishi Materials Corp.Article 17 Univ. Birmingham

Article 33 Vrije Univ.

Article 5 HWT

Article 5 Univ. Bradford

Article 19 Univ. Pittsburgh

Article 24 Univ. Munster

Article 10 Univ. Birmingham

Article 7 Yokohama National Univ.

Article 37 Univ. Vermont

Article 8 Stockholm Univ.

Bhabha Atomic Research Centre

Article 43 CNRS

Article 9 CNRS

Article 19 CNRS

Article 5 Peking Univ.

Article 20 Hitachi Chemical

Article 22 CNRS

Article 6 Westinghouse SRTC

Article 16 FKE

Article 4 Japan Atomic Energy Res. Inst.

Article 6 GRINM

Article 3 Nuclear Fuel Industries Ltd.

Paper 5 Armenian NAS

Paper 6 Univ. Fribourg

Paper 13 ONRI

Paper 4 Centro Atomico Bariloche

Paper 4 INIFTA, Argentina

Article 5 Moscow State Univ.

Paper 10 Ruder Boskovic Inst.

Article 9 Moscow state Univ.

Article 14 Nahasaki Univ.

Article 9

Article 7

Article 10

Article 11 Caltech

Article 10 Caltech, JPL, Ames Lab

Article 16 Mitsui Mining and Smelting

Article 12 Saft

Article 19 Sanyo Electric

Article 15 IKE - University of Stuttgart

Article 9 Matsushita Electric

Article 5

Article 14 CNRS - Grenoble

Article 14

ArticleArticl 13

Article 13 CNRS - Moudon

Lomonosov Moscow State UniversityUniversity of Vermont, Caltech, Miami University

CNRS - Meudon, Institut fur Experimentalphysik

University of Geneva, Brookhaven N.L., Institut Laue LangevinCharles University, Acadamy of Sciences - Ukraine, Academy of Sciences - Czeck Rep.

Article 5 University of Fribourg

Article 7 Honda R&D

Article 6 Lomonosov Moscow University

Article 33 CNRS, ARELEC SA

Article 15

Article 12 Uppsala University

Article 15 CNRS

Article 5 University of Salford

Article 11 Nagasaki University

Article 16 University of Vermont

Article 106

Article 41 Osaka National Research Inst.

Article 18 Zhejiang University

Article 21

Article 6 Acad. of Sci. of the USSR

Article 8

Article 19

Article 3

Article 13

Article 28

Article 22

National Academy Sciences Ukraine, University of Birmingham - UK

Nuclear Research Center-Negev, Ben-Gurion University

State Institute of Nitrogen Industry, Moscow

Kurnakov Inst., Academy of Sciences, USSR

Interuniversitair Reactorinstitut - Delft, PhilipsMendeleev Moscow Inst. of Chemical EngineeringNational Research Inst. for Metals - Japan

Inst. of General and Inorganic Chemistry, USSR Academy of SciencesKorea Advance Inst. of Science and Technology

Article 26 University of Fribourg

Article 15

Article 15

Article 42 University of Vermont, Philips

Article 12 Osaka Prefecture University

Article 42

Article 15 Indian Institute of Technology

Article 12 Indian Institute of Technology

Article 13 Indian Institute of Technology

Article 10 University of Pittsburgh

Article 11

Article 4 Plilips

Article 28 Mitsubishi Materials

Article 33

Article 4

Article 11 CNRS - Meudon

Article 7

Article

Article 20

Article 6 PhilipsArticle 14

Griffith University, Australian Nuclear Science and Technology OrganizationKorea Advanced Inst. of Science and Technology

Texas A&M University, University of South Carolina

Mendeleev Moscow Chemical Technology Institute

Korea Advanced Institute of Science and Technology

Lomonosov Moscow State University

Korea Advanced Institute of Science and TechnologyInst. for Solid State Physics - Tokyo, Yokahama National UniversityCarnegie-Mellon University, National Bureau of Standards

Technische Hochschule Darmstadt

Article 16

Article

Article 19 Allied-Signal

Article 16

Paper 7 Daimler Benz

Paper 29 Solar Turbines International

Paper 14 CEN Grenoble

Article 11 CNRS - U. Bordeaux

Article 12 CNRS - U. Bordeaux

Article 39 CNRS - Dijon

Article 15

Article 9 Hebrew University

Article 8 Bulgarian Academy of Sciences

Article 14

Article 6

Article 17 Indian Statistical Institute

English 4 Zhejiang University

Article 48 Indian Institute of Technology

CNRS Grenoble, Inst. National Polytechnique, University Zaragoza - Spain, PhilipsMPI fur Metallforschung, Urals Branch of the Academy of Sciences - Russia, Tech. Hochschule Darmstadt

Nuclear Research Center Negev

Nat. Res. Inst. for Matals - Japan

Inst. Solid State Chemistry, Novosibirsk

National Chemical Laboratory for Industry - Japan

Article 17 CNEA - Argentina

Thesis 211 IKE - University Stuttgart

Article 180 Indian Institute of Technology

Article 15

Article 17

Article 27

Article 16 MPI Kohlenforschung - Mülheim

Article 4 N.S. Kurnakov Inst. - Moscow

Article 51 + general Thiokol / Ventron Div.

Article 11 U. GenevaArticle 13 U. Geneva

Article ? U. Geneva

Article 26 U. Geneva

Article ? U. Geneva

Article ? U. Geneva

Article ? U. Geneva

Article 11 U. Geneva

Article ? U. Geneva

Article 16 U. Geneva

Article ? U. Geneva

Article ? U. Geneva

Article ? U. Geneva

Inst. fo Isotopic and Molecular Technology - Romania

Inst. fof Isotopic and Molecular Technology - RomaniaNational Research Council of Canada

Article ? U. Geneva

? U. Geneva

Article ? U. Geneva

Article 14 U. Geneva

Article 14 U. Geneva

Article ? U. Geneva

Article 7 U. Geneva

Article 25 U. Stockholm

Article 6 U. Stockholm

Article 14 U. Stockholm

Article 14 U. Stockholm

Article 8 U. Stockholm

Article 7 U. Stockholm

12 U. Stockholm

Article 11 U. Stockholm

? U. Geneva

34 Tech. Hochschule Aachen

Chapter 41 Trinity College

Article 13 Trinity College

Book 713

Chapter 480 Aerospace Corp.

Article 4 Olin Mathieson

Paper 7

Paper 11

Article 7 Technische Hochschule Aachen

Article 4 Technische Hochschule Aachen

Article 6 Technische Hochschule Aachen

Article 10 Technische Hochschule Aachen

Article 6 Technische Hochschule Aachen

Article 8 Technische Hochschule Aachen

Article 4 Technische Hochschule Aachen

Article 5 Technische Hochschule Aachen

Article 9 Technische Hochschule Aachen

Article 16 Technische Hochschule Aachen

Article 15 Technische Hochschule Aachen

Article 6 Technische Hochschule Aachen

Article 12 Technische Hochschule Aachen

Article 10 Technische Hochschule Aachen

Article 17 Technische Hochschule Aachen

Article 8 Technische Hochschule Aachen

Inst. Isotopic and Molecular Tech. - Romania

Inst. Isotopic and Molecular Tech. - Romania

Article 7 Univ. of Connecticut

Article 18 Univ. of Connecticut

Article 16 Trinity College

Article 12 Univ. of Connecticut

Article 14 Trinity College

Article 15 Trinity College

Article 16 Trinity College

Article 15 Trinity College

Article 4 W.R. Grace

Article 13 Ethyl Corp.

Article 10 U. Munich

Article 0 U. Munich

Article 0 U. Munich

Article 5 U. Chicago

Article 7 Ethyl Corp.

Article 69 Metallgesellschaft

Article 53 U. de Nancy

Article 15

Article

Article 9 Olin Matheson Chemical Corp.

Article 10 Univ. Munich

Article 4

Article 3 Cambridge Univ.Article 5 Univ. Munich

Article 12 U. of Pittsburgh

St. Louis University, U. of Chicago

Res. Inst. Pharmaceutical Industry, Budapest

Article 13 Argonne N.L.

Article 1 St. Louis Univ.

Article 5 U. of Chicago

Article 5 M.I.T.

Article 8 M.I.T.

Article 16 U. of Chicago

Article 5 U. of Chicago

Article 8 U. of ChicagoArticle 26 Zhejiang U.

Article 13 Sanyo Electric

Article 13 Osaka Prefecture U.

Article 12 Kyoto U., Sanyo Electric

Article 25

Article 21

Article 13 Univ. Bordeaux

Article 26 Univ. Vermont

Article 20 RITE, Sanyo Electric, ONRI

Article 13 Banaras Hindu U.

Article 5

Article 16 CNRS Moudon

Article 12 U. of Wollongong

Article 13

Inststitute Ruder Boskovic - CroatiaCNRS Meudon, CEA-CNRS-Saclay

Korea Adv. Inst. of Science and Technology

Korea Adv. Inst. of Science and Technology

Article 16

Article 10 U. Fribourg

Article 18 U. Fribourg

Article 5

Article 18 Indian Inst. of Technology

Article 16

Article 8 Nankai U.

Article 22

Article 18 Mazda, NIMC

Article 8 U. Geneva

Article 9 U. Geneva

Article 13 U. Geneva

Article 23 Technische Hochschule Aachen

Article 30 Mitsubishi Materials

Article 8 CNRS Grenoble, Philips

Article 14 U. Birmingham, TU Vienna

Article 13 CNRS Ggenoble, NIMC

Article 19

Article 11 CNRS Grenoble, U. Paris Sud

Article 17 Nagasaki U., U. Vermont

Article 33 U. Vermont

Article 9

Korea Adv. Inst. of Science and Technology

Charles U., Czech Acad. Sciences, Ukraine Acad. Sciences

Korea Adv. Inst. of Science and Technology

Ukraine Nat. Acad. Sciences, TU Vienna

U. Bordeaux, Bulgarian Acad. Sciences

Hydro Quebec, INRS-Energies et Materiaux

Article 14

Article 28 NIMC

Article 13 U. Toronto, U. Winsor

Article 6

Article 8 Moscow State U.

Article 18 Indian Institute of Tech.

Article 33 U. Stuttgart

Article 10 Nankai U.

Article 25 SPIC Science Foundation

Article 5

Article 13

Article 11 Kogakuin University

Article 2

Article 14 KAIST

Article 16

Article 4

Article 16 Carnegie Mellon Research Inst.

KAIST, Electronic Materials Research Inst.

Moscow Polymetal Works, Moscow State U.

Comision Nacional de Energia Atomica - Argentina

U. Quebec Trois Rivieres, Quebec Hydro

Matsushita Electric, Suzuki Shokan

Japan Atomic Energy Research Inst.Nat. Inst. for Fusion Research, Japan Steel Works, Muroran Research

Paper 3 Kogakuin U.

Paper 9 U. Vermont

Paper 12 Sandia N.L.

Paper 12 Ames laboratory, Caltech

Article 11 Kobe University

Paper 32 J. Bishop & Co.

Article 25 U. Vermont

Article 25 Nagasaki U.

Article 24 U. Vermont

Article 31 U. Vermont

Article 28 U. Vermont

Article 10 DFVLR-Institute

Article 10 AGA

Article 8 JPL

Paper 3 BNL

Paper 15 BNL

Article 2

Paper 1

Paper 0 Daimler-Benz

Paper 6

Brochure Suzuki Shokan Co.

Brochure Hydrogen Components, Inc.

Brochure Baseline Industries

Brochure Baseline Industries

Article Kawasaki Heavy Industries

Article Mannesmann

Report BNL

Report 38 Sandia National Laboratories

Article Milton Roy Co.

Article Ergenics, Inc.

Paper 6 KFE Juelich

Report 100+

Patent U.K. Atomic Energy

Patent BNL

Patent 4 Gell

Centre d’Etudes Nucleaires de Grenoble

National Chemical Lab for Industry, Kawasaki Heavy Industries, Santoku Metals

National Chemical Laboratory for Industry

Eimco Mining Machinery and others

Patent 3 GIRIO

Patent 5 Philips

Paper 14

Paper 19 Ergenics

Patent KFA Juelich

Article 14 U. Vienna

Report 53 Sandia National Labs

Report 13 Sandia National Labs

Paper 25

Paper 9 BNL

Article 18 Battelle Columbus

Article Daimler-Benz

Patent 14 Tietel

Paper 6 Ukrainian Academy of Sciences

Paper 6 BNL

Article 48 Martin Marietta Aerospace

Report 37 Lawrence Livermore Laboratory

Article 11 Battelle Frankfurt

Paper 10 BNL

Loughborough University of Technology

2

Eimco Mining Machinery, HCI, US BOM

Paper Deutsche Aerospace

Brochure Daimler-Benz

Article 65 BNL

Article 135 BNL

Article 161 KFA Juelich

Article 13 Lawrence Livermore N.L.

Chapter 308 U. Paris Sud.

Chapter 115 SunaTech

Article 37 Daimler-Benz

Article 30 Inco

Article 28

Paper 12 Ergenics, Inco

Ergenics, Denver Research Institute

Article 33 Bell Labs

Translated 33 Battelle-Geneva

Report 68+

Article 50 U. of Windsor

Article 22 BNL

Article 7 Billings Energy Corp.

Article Billings Energy Corp.

Paper 11 Billings Energy Research

Paper Electrolyzer Corp.

Paper Billings Energy Research

Paper Billings Energy Research

Paper 5 Billings Energy Corp.

Paper 10 Billings Energy Corp.

Paper 3 Billings Energy Corp.

Navy Civil Engineering Lab, Port Hueneme

Article 18 Billings Energy Corp.

Article 6 Daimler-Benz

Article 5

Paper 15 PSE&G, BNL

Paper 8 Zhejiang University

Paper 4

Paper 15

Article 24 Univ. Freiburg, Germany

Paper 70 Inco R&D Center

Report ca. 415 SunaTech

Patent 11 Inco

Patent 10 Ergenics, Inc.

Paper Institute of Gas Technology

Paper 14

Patent 5 Shell Oil

Patent 19 Ergenics

Article 11 Zhejiang University

Government Industrial Res. Inst. Osaka

Gas Purification Research Inst., China

Inst. of Isotopic and Molecular Tech., Romania

11

Brookhaven National Laboratory

Article 8 TU Aachen, IPA-Gastechnik

Article 17

Patent 4 Daimler-Benz

Article 10 Siemens

Patent Brookhaven N. L.

Article 12 Brookhaven N. L.

Patent 14 Lawrence Livermore Lab

Report 25 Lawrence Livermore Lab

Article 10 Los Alamos N. L.

Article 7

Article 30 KFA Juelich

Article 23 Brookhaven N.L.

Article 23 Brookhaven N.L.

Patent 5 Fluor Corp.

Article 11 Osaka University

Article 18

Patent 71 US DOE

Report 5 Los Alamos N. L.

Article 17 Monsanto Mound Lab

Article 13 Westinghouse Savannah River

Monsanto Mound, Princeton Physics Lab

4

Inst. of Stable Isotopes, Rumania

Mendeleev Moscow Chemical Tech. Inst.

Chapter 14

Article 6 Philips Eindhoven

Report 2

Paper 5 JPL

Paper 14 JPL, Ergenics

Paper 9 Univ. Vienna

Paper 8 Los Alamos NL

Paper 4 Inco

Paper 10 Ergenics

Patent 13 Daimler-Benz

Patent 32 Ergenics

Patent 23 Ergenics

Article 8 Ergenics

Paper 9 Allied Chemical

Paper 26 Allied Chemical

Paper

Patent 2 U.S. Navy

Patent 1 Brookhaven N.L.

Patent 5 Philips

Report Brookhaven N.L.

Japan National Chemical Laboratory for Industry

Hydrogen Consultants, Inc., Ergenics

U.S. Naval Underwater Systems Center

Patent 4 Terry

Patent 5 Terry

Patent 5 Terry

Report 19 Argonne N.L.

Paper 5 Argonne N.L.

Article 10 Argonne N.L.

Article Argonne N.L.

Patent 7 Argonne N.L.

Article 12 Argonne N.L.

Paper 15 Argonne N.L.

Paper 4 Technical University of Munich

Patent 5 Standard Oil

Patent 7 Standard Oil

Patent 13 Sekisui

Patent 6 Retallick

Article 36 U. Paris-Sud

Article 11 U. Paris-Sud

Report Studsvik Energiteknik

Report Studsvik Energiteknik

Report Studsvik Energiteknik

Article 11 Studsvik Energiteknik

Paper 1 Solar Turbines

Report 64 Studsvik Energiteknik

Report 11 TRW Energy System Group

Report 11 TRW Energy System Group

Report Billings Energy Corp.

Paper 5 TRW Energy Systems Group

Paper 5 Argonne N. L.

Article 14

Article Ergenics

Article 9 Kogakuin University

7

Kogakuin University, Japan Metals and Chemicals

Article 2 Sanyo Electric

Article 1

Article 3

Article 5 Sekisui Chemical

Article 3

Article 7 IKE der U. Stuttgart

Article 4 IKE der U. Stuttgart

Article 54 Kogakuin U.

Report 7 Ergenics

Patent 3 Ergenics

Article 15 Technion

Article 8

Article 25 U. Vienna

Paper 5 Daimler-Benz

Tokai U., Japan National Aerospace Lab, Kawasakt Heavy IndustriesNational Chemical Laboratory for Industry (Tskuba), Toyobo Co.

Max-Planck-Institut fur Kohlenforschung

Japan National Chemical Laboratory for Industry

Paper 7 Daimler-Benz

Paper 32 Technion-Israel

Paper 12 Studsvik - Sweden

Paper 19 Kogakuin University

Paper 5 IKE der U. Stuttgart

Paper Zhejiang U.

Article 21 Kogakuin U.

Article 36 U. of Rome

Article Kogakuin U.

Article 18 Kogakuin U.

Report 12 Los Alamos N.L.

Paper 10 Technion - Israel

Patent 3 Philips

Patent 3 Brookhaven N.L.

Paper 10 Brookhaven N.L.

Paper 7 Brookhaven N.L.

Patent 4 Brookhaven N.L.

Patent 3 Individuals

Patents Individuals

Paper Baikov Institute of Metallurgy

Article 10

Report 4 Sandia N.L.

Paper 4 Sandia N.L.

Article Ergenics

Article 4 Sandia N.L.

Patent 8 U.S. Bureau of Mines

Patent 9 U.S. Bureau of Mines

Patent 5 MPD Technology

Article 5 KFA Juelich

Article 4 KFA Juelich

Paper Sekisui Chemicals

Patent 19 Ergenics

Patent 5 Ergenics

Report 10 Brookhaven N.L.

Article 36 U. Munster

Article 37 KFA Juelich

Article 11 KFA Juelich

Japan National Chemical Laboratory for Industry

Article 6 Ergenics

Article 9 U. Pittsburgh

Article 8 U. Pittsburgh

Article 6 U. Pittsburgh

Article 9 U.S. Bureau of Mines

Patent 3 U.S. Bureau of Mines

Patent 3 Ozyagcilar

Patent 11 Lewis

Patent 4 Battelle Geneva

Article 15 ETH Zurich

Article 12 ETH Zurich

Article 7 ETH Zurich

Article 11

Paper 14 U. Pittsburgh

Article 18 CNRS

Abstract 7 CNRS

Patent 3 Allmanna Svenska Elektriska

Japan National Research Institute for Metals

Patent 2 Allis-Chalmers

Article 12

Patent 9 Lindberg

Paper 17

Article 2 Temple U.

Patent MPD Technology

Article 7 Inco

Paper Texas Instruments

Article Texas Instruments

Paper 19

Paper A. D. Little

Paper 9 Sanyo Electric

Paper 22 Aerojet Electronic Systems

Report 35 Jet Propulsion Laboratory

Article 28 Vrije University

Thesis 88 Vrije University

Imperial College of Science and Technology

Ergenics, Air Products and Chemicals

Russian State Institute of Nitrogen Industry

Article 29 Vrije University, Philips

Article 19 SunaTech

Brochure Ball Aerospace

Patent 6 AF Sammer

Brochure AF Sammer

Paper 3

Article 12

Paper 34 Ukrainian Academy of Sciences

Article 6

Article 16 General Motors R&D Center

Article 28

Article 11

Paper 2 Sanyo Electric

Patent 31 Advanced Materials Corp.

Hydrogen Components Inc., US Air Force Academy

Defence Evaluation and Research Agency (DERA) - UK

Ehime U., Doshisha U., Japan National Institute for Fusion Science

Bhabha Atomic Research Center

Research Institute for Catalysis, Hokkaido U.

Patent 12 Advanced Materials Corp.

Article 33 Indian Institute of Technology

Article 24 U. of New Mexico

Article 28 IKE de U. Stuttgart

Article 15

Paper 8 Osaka U.

Article 13 Osaka U.

Paper 17 Osaka U.

Article 4 Kyushu U.

Article 13 Savannah River Lab

Article 17 Savannah River Lab

Paper 58 U. Muenster

Article 36

Article 9 Jet Propulsion Laboratory

Article 7

CNRS (France), CNR-TAE (Italy), IKE (Germany), UPC (Spain), TU Munich (Germany)

LSGC-CNRS-ENSIC, CEA, CPE-LGCP (France)

Jet Propulsion Laboratory, CNR-Te.S.R.E. (Italy), Swales Aerospace, Politechnoco di Milano (Italy)

Article 16 ESA/ESTEC

Paper 9

Patent 10

Paper 11

Paper 11 U. of Twente (The Netherlands)

Article 6

Article 3

Article 9

Article 14

Article 8

Article 9

Article 7

Article 11

Article 8

Article 13

Article 10

Article 8

Thesis 91

Thesis 62

National Renewable Energy Lab

National Renewable Energy Lab, Midwest Research Inst.National Renewable Energy Lab, Chrysler Corp.

Politechnico di Milano, Jet Propulsion Lab

Lomonosov Moscow State UniversityLomonosov Moscow State UniversityLomonosov Moscow State UniversityLomonosov Moscow State University

Lomonosov Moscow State UniversityLomonosov Moscow State University

Lomonosov Moscow State UniversityLomonosov Moscow State UniversityLomonosov Moscow State UniversityLomonosov Moscow State UniversityLomonosov Moscow State UniversityMax-Planck-Institut fur Kohlenforschung

Max-Planck-Institut fur Kohlenforschung

Article 10

Report 35 Brookhaven N.L.

Paper 15 National Tsing Hua U., Taiwan

Article 39

Article 14

Paper 11

Paper 16

Patent 2 Koppers Co.

Patent 4 Koppers Co.

Patent 4 Eveready Battery

Article 11 Kogakuin University

Article 23 U. Paris-Sud

Article 23 U. of Toronto

Article 16 Kyushu University

Article 6 Kyushu University

Article 14 Ontario Hydro

Okuno Chemical, Osaka Prefecture University

Bhabha Atomic Research CenterBhabha Atomic Research CenterCaltech, JPL, Energizer Power Systems

University of Nevada Reno, Caltech, Los Alamos N.L., Hydrogen Components

Article 14 Osaka Prefecture University

Article 26 Brookhaven N.L.

Article 14 Tsing-Hua University, Taiwan

Article 18 Zhejiang University

Article 35

Article 13

Article 6 Peking U., ShangDong U.

Article 19

Article 19

Article 12

Article 19

Article 11 Sanyo Electric

Article 18 Sumitomo

Article 21 Stockholm U.

Article 10

Article 17

Osaka Prefectural University, Philips

Shanghai Institute of Metallurgy, Zhejiang U.

Korea Advanced Institute of Science and Technology

Osaka U., CNRS, National Inst. of Material and Chemical ResearchCNRS Meudon, CNRS-CE-Saclay

Chonbuk National U., Korean Institute of Energy Research

Helsinki University of Technology, Lomonosov Moscow State U.Birmingham U., Johnson Matthey

Article 16 CNRS

Article 7 HYTEC Co. (Taiwan)

Review Arti 18 SunaTech

Article 8 Nagoya Institute of Technology

Article 18 Stockholm U.

Article 15

Article 13 Nankai U.

Article 34

Article 15 Shanghai Institute of Metallurgy

Article 16 Nankai U.

Article 10 Hydro-Quebec

Article 5

Article 15 Indian Institute of Technology

Article 31 Indian Institute of Technology

Article 27 RITE, ONRI, NIMC

Article 7 U. of Rajasthan

Article 8 CIE-UNAM, Mexico

Article 17 Banaras Hindu U.

University of Czestochowa, Polish Academy of Sciences

Norwegian U. of Science and Technology, McGill U., Osaka National Research Institute

Comission Nacional de Energia Atomica, Argentina

Article 18 National Tsing Hua U., Taiwan

Article 4

Article 17 Ruder Bosfovic Inst., Croatia

Article 15 Shanghai Inst. of Metallurgy

Article 6 Iowa State U.

Article 15 MPI fur Metallforschung

Article 13 Toyohashi U. of Tech.

Article 4

Review Arti 179

Article 14 Belgrade U.

Article 16 SPIC Science Foundation, India

Article 15 Zhejiang U.

Article 9 National Tsing Hua U., Taiwan

Article 11

Article 18

Article 19 U. Laval, Hydro-Quebec

Article 22

Article 12 NIMC (Japan)

Article 8 Nankai U.

Tohoku U., Kitami Inst. of Tech., Inst. for Electric and Magnetic Materials

Energizer Power Systems, GfE, Academia Sinica

Lomonosov Moscow State U., Inst. for High Temperature RAS, Inst. for Problems of Mechanical Ungineering

Chonbuk National U., Chonnam National U., KoreaIFE (Norway), Karpenko Physico-Mechanical Inst. (Ukraine), U. of Oslo

U. Bonn, U. Nacional de La Plata

Article 2 Kitami Inst. of Tech.

Article 10 Lomonosov Moscow State U.

Review Arti 68 Brookhaven N.L.

Article 15 Nankai U.

Article 21

Article 18

Article 17

Article 13 KAIST, Seoul National U.

Article 17

Article 16 U. Bordeaux

Article 10

Article 16

Article 17 Helsinki U. of Tech.

Article 15

Article 27 Hanyang U. (Korea)

Article 8 KAIST

Article 14

Osaka National Research Inst., Osaka U., Chuo U.

Inst. for Energy Tech., U. of OsloNanjing Inst. of Chem. Tech., Osaka Prefecture U., Tohoku U.

Chonbuk National U., Chonnam U. (Korea)

Urals Branch of the Academy of Sciences (Russia)

Tohoku U., Japan Atomic Energy Research Inst.

CNRS Meudon, CNRS CE-Saclay

Inst. for Energy Tech. (Norway) et al

Article 14 KAIST, Seoul National U.

Article 19

Article 31 NIMC (Japan)

Article 11 KAIST

Article 59 Technion (Israel)

Article 30

Article 14

Article 16

Article 14 Kyushu U.

Article 10

Article 18

Article 16

Article 8 Lomonosov Moscow State U.

Article 10

Article 24 CNRS - Grenoble

Article 10 Technion

Article 11 Kogakuin U.

Article 8 KAIST

U. de Versailles St-Quenten-en Yvelines, Lomonosov Moscow State U.

U. of Mining and Metallurgy (Poland)U. of Geneva, Inst. Laue-Langevin

National Taiwan U., Chung-Shan Inst. of Science and Tech.

Inst. of Isotopic and Molecular Tech. (Romania), Fribourg U.

Inst. of Metal Physics (Russia), U. of TokyoNuclear Research Center-Negev, Ben-Gurion U., Brookhaven N.L.

Osaka U., Mitsubishi Matertals Corp.

Article 10 KAIST

Article 5 Kogakuin U.

Article 16 Chonbuk National U. - Korea

Article 13

Article 31

Article 24

Article 26 National Tsing Hua U. - Taiwan

Article 15 KAIST

Article 22 Hiroshima U.

Article 18

Article 8

Article 13 National Tsung Hua U. - Taiwan

Article 11 CNRS - U. Bordeaux

Article 9 CNRS - U. Bordeaux

Article 9

Article 4 KAIST

Article 4 Moscow State U.

Article 7 Moscow State U.

Kurchatov Institute - Russia, Institut Laue-Langevin - FranceNuclear Research Center-Negev, Ben-Gurion U., Brookhaven N.L.Sandia N.L., Fribourg U., Pau Scherrer Inst.

Academy of Sciences (Ekaterinburg), NISTNational Inst. for Res. and Dev. of Isotopic and Molecular Studies (Romania)

CNRS Thiais, Polish Academy of Sciences

Article 19

Article 15 CNRS - U. Bordeaux

Article 15 Indian Inst. of Tech.

Article 13 Indian Inst. of Tech.

Article 21 CNRS Grenoble

Article 20 Banaras Hindu U.

Article 13 Nanjing U., Zhejiang U.

Article 8 Zhejiang U.

Article 18

Article 10 KAIST

Article 13 Banaras Hindu U.

Article 29

Article 18 Osaka National Research Inst.

Article 14

Article 19

Article 15 CNRS Grenoble

Article 31

Article 13 West Chester University

Article 22 CNRS Grenoble

Shanghai U., U. of Windsor, Ryerson Polytechnic U.

U. Nacional de La Plata, Comision Naional de Energia Atomica (Argentina)

Chonbuk U., Chonnam National U. (Korea)

Kitami Inst. of Tech., U. of New South WalesMax-Planck-Inst. fur Metallforschung

Ukraine Academy of Sciences, Iowa State U., L’viv state U. (Ukraine)

Article 8

Article 9

Article 29 Osaka National Research Inst.

Article 17 Osaka National Research Inst.

Article 5 Moscow State U.

Article 18

Article 10

Article 6 Moscow Lomonosov State U.

Article 15

Article 13

Article 14

Article 9 Osaka National Research Inst.

Article 32 Osaka National Research Inst.

Article 35

Article 27

Article 28

Article 9

Article 19

U. of Geneva, Brookhaven NL, National Inst. of Materials and Chemical Research (Japan)Inst. for Energy tech. (Norway), Ukraine National Academy of Sciences, U. of Oslo

Inst. for Energy Tech. (Norway), Ukraine National Academy of Sciences, U. of Oslo, U. of BirminghamInst. for Energy Tech. (Norway), Ukraine National Academy of Sciences, U. of Oslo, U. of Geneva

Bhabha Atomic Research Centre, Tata Inst. of Fundamental Research (India)Lviv State U. (Ukraine), CNRS Grenoble

Inst. for Energy Tech. (Norway), Ukraine National Academy of Sciences, U. of Oslo

Indian Inst. of Tech., Technische U. Darmstadt

Osaka National Research Inst., Toyama Industrial Technology Centre

Inst. fur Festkorper- und Werkstofforschung DresdenUppsala U., Kanthal AB (Sweden)Ukraine National Academy of Sciences, U. of Missouri, State U. of New York - Binghamton, Iowa State U.

Article 16 Lomonosov Moscow State U.

Article 4 Toshiba

Article 7 Osaka National Research Inst.

Article 23

Article 10

Article 13 U. of Bradford (UK)

Article 18

Article 30

Article 9

Article 14

Article 24 CNRS Grenoble

Article 10 CNRS Thiais

Article 20

Article 26

Article 14 Inst. for Energy Tech. (Norway)

Article 10

Article 5 Lomonsov Moscow State U.

Article 12 Inst. for Energy Tech. (Norway)

Inst. for Energy Tech. (Norway), Ukraine National Academy of Sciences, Studsvik Neutron Research Lab, Uppsala U.Indira Gandhi Centre for Atomic Research, Bhabha Atomic Research Centre, Bangalore U.

Moscow State U., International Laboratory of High Magnetic Fields and Low Temperatures (Poland), Inst. fur Festkorper- und Werkstofforschung DresdenInst. for Energy Tech. (Norway), Ukraine National Academy of Sciences, Central Laboratory of Batteries and Cells (Poland)Kitami Inst. of Tech. (Japan), U. of New South Wales

Moscow state U., International Laboratory of High Magnetic Fields and Low Temperatures (Poland)

Inst. for Energy Tech. (Norway), Ukraine National Academy of Sciences

Siberian Branch of the Russian Academy of Sciences, Tosoh SMD (USA)

Charles U. (Czech Republic), Czech Akademy of Sciences, Ukraine Academy of Sciences, U. of Birmingham (UK)

Article 12 Indian Statistical Inst.

Article 14

Article 10

Article 7

Article 17

Article 6 IFE (Norway), U. of Oslo

Article 10 Tohoku U.

Article 7 Uppsala U.

Article 15 IFE (Norway), U. of Oslo

Article 16

Article 6 U. Bourdeaux I

Article 14

Article 4

Article 11

Article 9 Moscow Lomonosov State U.

Article 8

Paper 8

Article MPI fur Kohlenforschung

Article 44

Article 11 GfE Metalle und Materiallen

Article 7 IKE der U. Stuttgart

Ivan Franko State U. (Ukraine), CNRS Grenoble

Indian Inst. of Tech., Tech. U. Darmstadt

Ukraine Academy of Sciences, Lviv State U. (Ukraine)

IFE (Norway), Karpenko Physico-Mechanical Inst. (Ukraine), U. of Oslo, Lviv State U. (Ukraine)

Mitsui Mining and Smelting, Tokai U.

NIST, U. of Maryland, Uppsala U., U. of Vermont

Kitami Inst. of Tech. (Japan), U. of New South Wales

Kitami Inst. of Tech. (Japan), U. of New South Wales

Nagoya Inst. of Tech, Nagoya U.HCI, US Bureau of Mines, Eimco

13

MPI fur Kohlenforschung, MPI fur Eisenforschung

Article 16 Yamaguchi U.

Article 5 KAIST

Article 17 Yamaguchi U.

Article 20 JPL

Article 10 Lutch (Russia)

Article 7

Article 6 Peking U.

Article 14 Kyushu U.

Article 6 Kyushu U.

Article 14 Vinca (Yugoslavia)

Article 13

Article 30 U. Bologna

Article 42 U. Bologna

Article 4

Article 25 KAIST

Article 18

Article 4 Zhejiang U.

Article 15 Nigde U. (Turkey), U. of Miami

Article 5 SRI SIA Luch (Russia)

Article 24

Chiba Inst. of Tech., Tohoku U., High Energy Accellerator Research Org. (Japan)

State Institute of Nitrogen Industry (Russia)

Mendeleev U. of Chemical Tech. (Russia)

Korea Inst. of Science and Tech., RAS Mech. Eng. Res. Inst. (Russia)

Bechtel Savannah River, U. of South Carolina

Article 8 H-Power Canada, WSRC

Article 8 SIA Lutch (Russia)

Article 12 Helsinki Inst. of Tech.

Article 4 Kogakuin U.

Article 10 IKE der U. Stuttgart

Patent 4 Ergenics

Patent 5 ECD

Patent 4 ECD

Patent 9 Osram Sylvania

Patent 9 Hydro Quebec, McGill U.

Patent 8 Mainstream Engineering

Patent 13 STM

Patent 9 Matsushita Electric

Patent 4 Westinghouse Savannah River

Patent 7 Westinghouse Savannah River

Patent 14 Thermal Corp.

Patent 8 Gorokhovsky

Article 18

Article 11 KAIST

Article 15

IMRA, Taiyo Koko, Osaka Nat. Res. Inst.

Chonnan National U. (Korea), NIMC (Japan)

Article 5

Article 20 U. of Vermont

Article 19 KAIST

Article 18 Miami U., JPL

Article 49 U. of Vermont

Article 8 Moscow State U.

Article 6 Tohoku U.

Article 14 Toyama U.

Article 12 Japan Steel Works, NIMC

Article 32 U. of Vermont

Article 20 NIMC

Article 23 NIMC, KEK

Article 7 Nagoya U.

Article 3 Japan Steel Works

Article 14

Article 8 Tohoku U.

Article 9 Tohoku U.

Article 34 Nagasaki U.

Article 33 Nagasaki U.

Article 21 U. of Toronto

Chonnan National U. (Korea), NIMC (Japan)

Suzuka National College of Tech., Nagoya U.

Article 11 U. of Toronto

Article 34

Article 29

Patent 6 MPI fur Kohlenforschung

Patent 21 McGill University

Article 9 Hydro-Quebec, GfE

Article 6 U. of Hawaii

Article 12 U. of Hawaii

Article 22 McGill University

Article 15 Ames Laboratory

Article Sandia NL

Article 22 McGill University

Article 59 MPI fur Kohlenforschung

Article 42 U. of Hawaii, Sandia NL

Article 14 MPI fur Kohlenforschung

Article 48 McGill University

Atomic Energy Centre (Bangladesh), Nagasaki U.

Atomic Energy Centre (Bangladesh)

29

Article 13

Article 25 Ames Lab

Article 37 Ames Lab

Article 13 U. of Hawaii, NIAIST Osaka

Article 14 Sandia NL, SunaTech

Article 13

Paper 9 U. of Hawaii

Paper 15 Sandia NL

Paper 20 U. of Hawaii

Paper 16 Sandia NL

Article 13 Hydro-Quebec, NIMCR Tskuba

Article 28

Article 18 U. of Geneva

Article 23

Article 19 NIMCR Tskuba, BNL

Article 34 McGill University

Article 25

Sandia NL, U. of Hawaii, SunaTech

GM Research and Development Center

U. of Geneva, BNL, NIMCR Tskuba

Stockholm U., MPI fur Kohlenforschung

U. of Geneva, Inst. Laue-Langevin

Article 10

Article 14

Article 10 U. of Geneva, Trinity College

Article 11

Article 43 Sandia NL, U. of Hawaii

Article 15 Sandia NL, SunaTech

Article 6 Sandia NL, U. of Hawaii

Article 11 NIAIST Tskuba

Article 16 CONICET (Brazil), CNEA, UNC

Article 24

Article 29 MPI fur Kohlenforschung

Article 27 MPI fur Kohlenforschung

Article 21

Article 31 Nankai U.

Article 27 Hiroshima U.

Article 18 Mazda Motor, NIMC

Article 11

Article 13 NIMC

Article 12 KAIST, Ajou U. (South Korea)

U. of Geneva, Paul Scherrer Inst.U. of Geneva, Paul Scherrer Inst., Griffith U.

Technischen Hochschule Aachen, MPI fur Chemische Physik Fester Stoffe

U. of Geneva, CNRS Thiais, U. of Nevada Las Vegas

Huazhong U. of Science and Technology, Helsinki U. of Technology

Chonbuk Nat. U., CNRS U. of Bordeaux

Article 17 U. of Dortmund

Article 11 H Power Enterprises of Canada

Article 15 U. of Geneva

Article 23 U. Leval, Hydro-Quebec

Article 37 NTT, NIMC

Article 12 Barnaras Hindu U.

Article 12 Barnaras Hindu U.

Article 21 U. Laval, Hydro-Quebec

Article 3

Article 16

Article 13 U. Laval, Hydro-Quebec

Article 27

Article 15

Article 28

Article 20

Article 24

Article 29

Article 27

Nagoya Inst. of Tech., Nagoya U.

Chinese Academy of Sciences-Shenyang

INRS-Energie et Materiaux, Hydro-Quebec

U. Quebec Trois-Riviers, Hydro-Quebec

Bulgarian Academy of Sciences, CNRS U. Bordeaux

Inst. of Metals Research, Chinese Academy of Sciences - ShenyangInst. of Metals Research, Chinese Academy of Sciences - GKSS Research Center Geesthacht (Germany)

GKSS Research Center Geesthacht (Germany)

Article 4 Nankai U.

Article 33 Bulgarian Academy of Sciences

Article 15 Osaka National Research Inst.

Article 15

Article 16 Nankai U.

Article 17

Article 25

Article 20

Paper 24 Lomonosov Moscow State U.

Article 13 Lomonosov Moscow State U.

Article 46 Lomonosov Moscow State U.

Article 10 Lomonosov Moscow State U.

Article 6 Lomonosov Moscow State U.

Article 5 Lomonosov Moscow State U.

Article 8 Lomonosov Moscow State U.

Article 9 Lomonosov Moscow State U.

Mitsui Mining and Smelting, Tokai U., U. of Tokyo

SungKyunKwan U. (South Korea)

Chonbuk National U., CNRS U. Bordeaux

Article 9 Lomonosov Moscow State U.

Article 8 Lomonosov Moscow State U.

Paper, Inve 20 Lomonosov Moscow State U.

Article 17 Poznan University of Tech.

Article 7 Moscow State Univ.

Article 6 Yokohama National University

Article 6 Yokohama National University

Article 13 CNRS Thiais, U. Geneva

Article 19 JPL, U. of Vermont, BNL

Article 14 U. of Vermont, JPL

Article 5 Chonnam National U.

Article 15 Shanghai Institute of Metallurgy

Paper, Inve 5 Moscow State U.

Paper, Inve 10 Moscow State U.

Article 20 Moscow State U.

Article 13 Moscow State U.

Article 10 Lomonosov Moscow State U.

Article 16 Lomonosov Moscow State U.

Article 27 Lomonosov Moscow State U.

Article 19 Lomonosov Moscow State U.

Article 27 Russian State Institute of Nitrogen Industry

Article 6 Moscow State U.

Article 21 Moscow State U.

Article 12 Moscow State U.

Article 11 Moscow State U.

Article 9 Moscow State U.

Article 23 Zhejiang University

Article 18

Article 21 U. of Rajasthan (India)

Article 16 U. of Rajasthan (India)

Article 23 Kyushu University

Article 3 Ergenics

Article 6 University of Geneva

Article 5 University of Geneva

Article 13

Review Arti 33 EMPA, U. of Freibourg

Patent 16

Patent 16 Midwest Research Institute

Patent 6 Toyota

Patent 1 Varitech Thermal

Patent 33 Balk

Patent 4 Ergenics

Patent 32 Matsushita Electric

Patent 24 Hewlett-Packard

Patent 6 Energy Conversion Devices

Instituto Superior Tecnico (Portugal), Zhejiang University, U. Wisconsin Madison

NTT Telecummications Energy Lab

Westinghouse Savannah River Company

Patent 6 Rosso

Patent 3 Honda

Patent 22 Matsushita Electric

Patent 5 D.D.I. Limited

Patent 12 Westinghouse Savannah River

Patent 11 Westinghouse Savannah River

Patent 5 Energy Conversion Devices

Patent 7 Energy Conversion Devices

Patent 18 Woodbury

Patent 19 Ford

Patent 9 Energy Conversion Devices

Patent 6 Westinghouse Savannah River

Patent 8 Ford

Patent 7 Denso Corp.

Article 6 Stockholm University

Article 18 NASA JPL

Review Arti 78 SunaTech, NASA JPL

Article 7 Nagoya U. (Japan)

Article 18 Kyhshu U. (Japan)

Article 23 Sandia National Labs

Article 10

Article 12

National Key Laboratory of Surface Physics and Chemistry (China)Zhejiang U. (China), Kogakuin U. (Japan)

Article 9 HRI (Quebec)

Article 13 HRI (Quebec)

Article 13 Vrije U. (The Netherlands)

Article 13

Article 4

Article 7 Zhejiang U. (China)

Article 16 Zhejiang U. (China)

Review Arti 104 Purdue U.

Article 31

Article 20 U. of South Carolina

Article 10 NASA JPL

Review Arti 44 NASA JPL

Review Arti 24 SunaTech

Article 4 KAIST (Korea)

Article 14 Indian Inst. of Tech.

Technical University of DenmarkZhejiang U. (China), Instituto Superio Tecnico (Portugal), U. of Wisconsin (USA)

Shinko Pantec (Japan), Chibu Electric Power (Japan)

Article 9

Article 16 IKE (Germany)

Article 10

Proceedings16 Toyota (Japan)

Article 15 Indian Inst. of Technology

Article 18

Article 20 Tohoku U. (Japan)

Article 10 Indian Inst. of Tech.

Article 32

Article 18

Article 18 Kyushu U. (Japan)

Article 6 IKE (Germany)

Article 9

Article 17 Indian Inst. of Tech.

Article 31 Indian Inst. of Tech.

Article 12 Indian Inst. of Tech.

Zhejiang U. (China), Instiyuto Superior Tecnico (Portugal)

NAIST, NKK, Kansai U., Kokan Doramu (Japan)

Ecole Nationale d’Ingenieurs de Monastir (Tunisia)

Delft U. of Tech., Shell (The Netherlands)

Ecole Nationale d’Ingenieurs de Monastir (Tunisia)

NAS Ukraine, U. Popular Autonoma del Estado de Puebla (Mexico)

Article 17 Nigde U. (Turkey), U. of Miami

Article 11 Indian Inst. of Tech.

Article 20

Article 19 HRI (Quebec)

Article 8 U. of Victoria

Article 13

Article 24 U. of Nevada, Reno

Article 22 orway), Tokai U. (Japan)

Article 10 Argonne National Lab

Article 12

Article 11

Article ThyssenKrupp AG (Germany)

Proceedings5 Vehicle Projcts LLC

Presentation

U. of Western Macedonia, Centre for Research and Technology Hellas, Thermi Business Incubator, DEMOKRITOS (Greece), Imperial College London

U. of Padova, Celco-Profil, Venezia Tecnologie (Italy)

Technological Institute for Toys (Spain)RES & Hydrogen Technologies, (Greece), CReeD (France), Technicatome (France)

Ovonic Hydrogen Systems, Ovonic Vehicle Application Center