dispersion estimates for third order equations in two...

32
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS Vol. 28, Nos. 11 & 12, pp. 1943–1974, 2003 Dispersion Estimates for Third Order Equations in Two Dimensions Matania Ben-Artzi, 1, * Herbert Koch, 2 and Jean-Claude Saut 3 1 Institute of Mathematics, Hebrew University, Jerusalem, Israel 2 Fachbereich Mathematik, Universita¨t Dortmund, Dortmund, Germany 3 UMR de Mathe´matiques, Baˆt, Universite´ de Paris-Sud, Orsay, France ABSTRACT Two-dimensional deep water waves and some problems in nonlinear optics can be described by various third order dispersive equations, modifying and generalizing the KdV as well as nonlinear Schro¨dinger equations. We classify all third order polynomials up to certain transformations and study the pointwise decay for the fundamental solutions, Z R 2 e itpð$Þþix$ d $ for all third order polynomials p in two variables. We deduce the corresponding Strichartz estimates. These estimates imply global existence and uniqueness for the Shrira system. *Correspondence: Matania Ben-Artzi, Institute of Mathematics, Hebrew University, Jerusalem 91904, Israel; E-mail: [email protected]. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 120025491_PDE28_11-12_R1_082903 1943 DOI: 10.1081/PDE-120025491 0360-5302 (Print); 1532-4133 (Online) Copyright & 2003 by Marcel Dekker, Inc. www.dekker.com + [29.8.2003–10:16am] [1943–1974] [Page No. 1943] F:/MDI/Pde/28(11&12)/120025491_PDE_028_011-012_R1.3d Communications in Partial Differential Equations (PDE)

Upload: others

Post on 27-Jan-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Dispersion Estimates for Third Order Equations in Two Dimensionsmath.huji.ac.il/~mbartzi/recent-publications/120025491... · 2007-11-11 · (1.3), see Ghidaglia and Saut (1993). The

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS

Vol. 28, Nos. 11 & 12, pp. 1943–1974, 2003

Dispersion Estimates for Third Order Equations

in Two Dimensions

Matania Ben-Artzi,1,* Herbert Koch,2 and Jean-Claude Saut3

1Institute of Mathematics, Hebrew University, Jerusalem, Israel2Fachbereich Mathematik, Universitat Dortmund,

Dortmund, Germany3UMR de Mathematiques, Bat, Universite de Paris-Sud,

Orsay, France

ABSTRACT

Two-dimensional deep water waves and some problems in nonlinear optics can be

described by various third order dispersive equations, modifying and generalizing

the KdV as well as nonlinear Schrodinger equations. We classify all third order

polynomials up to certain transformations and study the pointwise decay for the

fundamental solutions,ZR

2eitpð�Þþix�� d�

for all third order polynomials p in two variables. We deduce the corresponding

Strichartz estimates. These estimates imply global existence and uniqueness for

the Shrira system.

*Correspondence: Matania Ben-Artzi, Institute of Mathematics, Hebrew University,

Jerusalem 91904, Israel; E-mail: [email protected].

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

120025491_PDE28_11-12_R1_082903

1943

DOI: 10.1081/PDE-120025491 0360-5302 (Print); 1532-4133 (Online)

Copyright & 2003 by Marcel Dekker, Inc. www.dekker.com

+ [29.8.2003–10:16am] [1943–1974] [Page No. 1943] F:/MDI/Pde/28(11&12)/120025491_PDE_028_011-012_R1.3d Communications in Partial Differential Equations (PDE)

Page 2: Dispersion Estimates for Third Order Equations in Two Dimensionsmath.huji.ac.il/~mbartzi/recent-publications/120025491... · 2007-11-11 · (1.3), see Ghidaglia and Saut (1993). The

1. INTRODUCTION

In has been known since 1968 (Zakhrov, 1968) that the stability of finite ampli-tude gravity waves of deep water is governed by a nonlinear Schrodinger equation(NLS). This is found by a perturbation analysis to O("3) in the wave-steepness"¼ ka� 1, where a is a typical wave amplitude and k the modulus of the meanwave number.

Taking perturbation analysis one step further to O("4), Dysthe (1979) hasderived a system which improves significantly the results relating the stability offinite amplitude waves. One of the dominant new effects is the wave-induced meanflow with potential �. Solving the equation for � in terms of the complex amplitudeof the wave packet allows to put the Dysthe system (in dimensionless variables) inthe following form, see Ghidaglia and Saut (1993):

2i@A

@tþ1

2

@A

@x

� �þ1

2

@2A

@y2�1

4

@2A

@x2� AjAj2

¼i

8

@3

@x3� 6

@3

@x@y2

!Aþ

i

2A A

@ �AA

@x� �AA

@A

@x

� ��5i

2jAj2

@A

@xþ AR1

@

@xjAj2 ð1:1Þ

where R1 is the Riesz transform in R2, that is

FðR1 Þ ¼ i�1j�j :

Here F denotes the Fourier transform.The usual NLS is obtained by neglecting the right hand side of Eq. (1.1), which

is of order "4 in the dimensional variables.A similar derivation of the fourth order (in ") evolution equations for the

amplitude of a train of nonlinear gravity-capillary waves on the surface of an idealfluid of infinite depth was performed by Hogan (1985). The equation reads

2i@A

@tþ cg

@A

@x

� �þ p

@2A

@x2þ q

@2A

@y2� �jAj2A

¼ �is@3A

@x@y2� ir

@3A

@x3� iujAj2

@ �AA

@xþ ivjAj2

@A

@xþ AR1

@

@xjAj2 ð1:2Þ

where cg is the group velocity and �, p, q, s, r, u, and v are real parameters dependingon the surface tension parameter. Note that q and s are strictly positive, while p canachieve both signs (in particular it is negative for purely gravity waves as in theDysthe system and positive for purely capillary waves).

A similar system has been obtained by Lo and Mei (1985) and Hara and Mei(1994) for finite depth gravity waves. Another example of a nonlinear Schrodingertype equation involving third order derivatives has been proposed by Shrira (1981)to describe the evolution of a three dimensional packet of weakly nonlinear internalgravity waves propagating obliquely at an arbitrary angle � to the vertical. If thedependence of the wave packet amplitude A on the transversal coordinate y is much

1944 Ben-Artzi, Koch, and Saut

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

+ [29.8.2003–10:16am] [1943–1974] [Page No. 1944] F:/MDI/Pde/28(11&12)/120025491_PDE_028_011-012_R1.3d Communications in Partial Differential Equations (PDE)

120025491_PDE28_11-12_R1_082903

Page 3: Dispersion Estimates for Third Order Equations in Two Dimensionsmath.huji.ac.il/~mbartzi/recent-publications/120025491... · 2007-11-11 · (1.3), see Ghidaglia and Saut (1993). The

slower than that on the x and z directions, one obtains the equation

i@A

@tþ!k

2

@2A

@x2þ!nn

2

@A

@z2þ !nk

@2A

@x@z

� i!kkk

6

@3A

@x3þ!kkn

2

@3A

@x2@zþ!knn

2

@3A

@x@z2þ!nnn

6

@3A

@z3

" #

þ i�A A@ �AA

@s� �AA

@A

@s

� �¼ 0 ð1:3Þ

Here @=@s ¼ cðsin�ð@=@xÞ � cos �ð@=@zÞÞ. The coefficients of the linear terms inEq. (1.3) can be computed explicitly as function of �. For nonzero constants �and � we have

!kkn ¼ � sin� cos�ð3� 5 cos2 �Þ

!nnn ¼ � sin� cos�ð3� 5 sin2 �Þ

!nnk ¼ ��ð5 sin2 � cos2 �� 2=3Þ

!kkk ¼ � sin2 �ð4� 5 sin2 �Þ

!kk ¼ �3� sin2 �

!kn ¼ � tan�ð2� 3 sin2 �Þ

!nn ¼ ��ð3 sin2 �� 1Þ

see Shrira (1981) and Ghidaglia and Saut (1993, Chap. 3). In particular !kkn and !knn

cannot vanish simultaneously.Similar problems occur in nonlinear optics (see for instance Zozulya (1999)), in

particular in the modeling of the dynamics of femtosecond laser pulses in a nonlinearmedia with normal dispersion. The evolution of the complex envelope E(x, y, z, t) ofthe field is described by the third order NLS

i@

@zE þ ð1� i"1@tÞ�?E �

@2E

@t2� i"2

@3E

@t3þ ð1þ i"1@tÞgðjEj

2ÞE ¼ 0 ð1:4Þ

where �? ¼ @2=@x2 þ @2=@y2 is the transverse Laplacian and "2 2 R, "1>0. As usualin nonlinear optics the evolution variable (which plays mathematically the role oftime) is z. The transverse Laplacian accounts for diffraction, while the second andthird time derivatives describe group velocity and third over dispersion.

Very little is known concerning the Cauchy problem for Eqs. (1.1)–(1.4). Theonly results available are local existence for analytic Cauchy data for Eqs. (1.1) and(1.2) by de Bouard (1993) and global existence for a very special case of Eq. (1.3), seeGhidaglia and Saut (1993).

The aim of the present article, as a first step towards solving the Cauchy problemin Sobolev classes, is to derive dispersion estimates for the linear group associated tothe linearized equation at 0. Those estimates have an independent interest and seem

Dispersion Estimates for Third Order Equations 1945

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

+ [29.8.2003–10:16am] [1943–1974] [Page No. 1945] F:/MDI/Pde/28(11&12)/120025491_PDE_028_011-012_R1.3d Communications in Partial Differential Equations (PDE)

120025491_PDE28_11-12_R1_082903

Page 4: Dispersion Estimates for Third Order Equations in Two Dimensionsmath.huji.ac.il/~mbartzi/recent-publications/120025491... · 2007-11-11 · (1.3), see Ghidaglia and Saut (1993). The

to be new for this class of third order symbols in 2 dimensions. On the other hand itis well known that Strichartz estimates are an important tool to solve the Cauchyproblem by a fixed point argument.

Thus we study linear third order equations, more precisely the decay ofthe fundamental solutions in x and t. This requires first a classification, second acalculation of several Fourier transforms, and third several applications of themethod of stationary phases.

The short time behavior is dominated by the homogeneous part (unlessit is strongly nongeneric) whereas the long time behavior is determined by thedegeneracy at the strongest singularity. For generic two-dimensional third-orderpolynomials the long time decay is t�3/4 and the generic short time bound is ct�2/3.

Stationary phase relates the map �! rpð�Þ with the decay of the fundamentalsolution. As side product we analyze the pointwise decay of the unique singularity(up to transformations) of codimension two (the singularity of codimension one hasnormal form �31, where the counting of the codimension is different from the one insingularity theory since linear terms do not change the decay). The decay estimatesimply Strichartz estimates, which in turn allow to prove global well-posedness for theCauchy problem for the Shrira system (1.3).

The article is organized as follows. In Sec. 2 we introduce notation. Section 3 isdevoted to a classification of third degree polynomials up to affine transformationsof coordinates and the addition of affine terms. This extends the work of Dzhuraevand Popelek, (Dzhuraev and Popelek, 1989 and 1991).

In Sec. 4 we give the inverse Fourier transform of eitp(�) for those polynomials forwhich the inverse Fourier transform can be computed in terms of exponentials,trigonometric functions and the Airy functions. The next section, Sec. 5, introducesthe Pearcey integral, which occurs for one of the phase functions, and studies onemore oscillatory integral, where a change of the contour of integration allows toobtain good estimates.

All this relies on the fact that we deal with very specific phase functions.The last two oscillatory integrals require natural but much deeper tools: We

have to study the contribution from general singularities of fold type and cusp type.In Sec. 6 we study local changes of coordinates and local normal forms for

nondegenerate points, folds, and cusps. Here Mather’s theory of stable mapsenters crucially. The reduction to normal forms allows to establish decay estimatesfor compactly supported amplitudes, which is done in Sec. 7. The next section, Sec. 8applies these results to obtain decay estimates for the inverse Fourier transforms ofeitp(�) for the remaining two polynomials.

Section 9 is standard: the decay estimates imply Strichartz estimates, some ofthem with smoothing. Well-posedness for the Shrira system is an easy consequence.We plan to return to the study of the other systems.

It should be noted that there are at least two motivations for the problems athand. First we establish sharp estimates for cusps—here the Pearcey integral plays asimilar role as the Airy function for holds. This is a natural step in the study ofoscillatory integrals. Even though the tools are available we are not aware of similarestimates in the literature, despite their importance for degenerate dispersive inte-grals. Secondly systems like the Shrira system have a strong motivation from physics,which makes a good analytical understanding highly desirable.

1946 Ben-Artzi, Koch, and Saut

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

+ [29.8.2003–10:16am] [1943–1974] [Page No. 1946] F:/MDI/Pde/28(11&12)/120025491_PDE_028_011-012_R1.3d Communications in Partial Differential Equations (PDE)

120025491_PDE28_11-12_R1_082903

Page 5: Dispersion Estimates for Third Order Equations in Two Dimensionsmath.huji.ac.il/~mbartzi/recent-publications/120025491... · 2007-11-11 · (1.3), see Ghidaglia and Saut (1993). The

2. NOTATION

We denote the Fourier transform by F and its inverse by F�1:

Ff ð�Þ ¼ ff ð�Þ ¼ ð2�Þ�n=2

Ze�ix�f ðxÞ dx

and

F�1ð�Þx ¼ ���ðxÞ ¼ 2ð�Þ�n=2

Zein��ð�Þ dx:

For x in Rn we set ~xx ¼ ðx1, . . . , xn�1Þ. If A � R

n is measurable we denote its volumeby |A|. The Lebesgue spaces are denoted by Lp.

We define Lpw by the quasinorm

k f kLpw¼ sup

�>0�jfx : j f ðxÞj > �gj1=p:

These spaces are Banach spaces if 1 < p <1. They occur in the context of theweak Young inequality (see Stein and Weiss (1971)):

Lemma 2.1. We have

k f � gkLr � ck f kLpkgkLqw

provided 1 < p, q, r <1 and

1

pþ1

q¼ 1þ

1

r:

In what follows, we shall derive space-time estimates for the oscillatory integral

Iðx, tÞ ¼

Zeitpð�Þþix��d�:

The real polynomial p (in � 2 R2) is a general cubic polynomial. However, for

the estimates the constants clearly play no role while the linear terms can bedispensed with by a suitable shift x to xþ at. Thus, we shall assume that p containsonly third and second order homogeneous parts. In the following section we shallreduce it to one of a class of normal forms (modulo linear terms), by suitable lineartransformations of �.

3. NORMAL FORMS

Homogeneous second degree polynomials are quadratic forms. There are onlytwo invariants: rank and signature. There are three equivalence classes, representedby �21, �

21 þ �

22, and �1�2.

Dispersion Estimates for Third Order Equations 1947

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

+ [29.8.2003–10:16am] [1943–1974] [Page No. 1947] F:/MDI/Pde/28(11&12)/120025491_PDE_028_011-012_R1.3d Communications in Partial Differential Equations (PDE)

120025491_PDE28_11-12_R1_082903

Page 6: Dispersion Estimates for Third Order Equations in Two Dimensionsmath.huji.ac.il/~mbartzi/recent-publications/120025491... · 2007-11-11 · (1.3), see Ghidaglia and Saut (1993). The

Note let p be homogeneous of degree three. Assuming p(1, 0) 6¼ 0 (otherwise werotate our coordinates) we can scale the �1 direction to obtain

pð�1, �2Þ ¼ �31 þ C�21�2 þ A�1�22 þ B�32:

We will keep this normalization for some time. We change coordinates to~��1 ¼ �1 þ ðC=3Þ�2 so that

pð�1, �2Þ ¼ ~�� 31 þ ~AA ~��1�22 þ ~BB�32 ð3:1Þ

with

~AA ¼ A�C2

3and ~BB ¼ B�

AC

3þ2C3

27:

We drop the tilde in the sequel and suppose that p is a polynomial of the form (3.1).Given a regular matrix D ¼ d11 d12

d21 d22

� �we consider

pDð�Þ ¼ pðD�Þ ¼ �1�31 þ �2�1�

22 þ �3�

21�2 þ �4�

32

where �i¼ �i(D). This defines a smooth map from the space of regular matrices toð�iÞ1�i�4 2 R

4. An immediate computation gives

pDð�Þ ¼ ðd311 þ Ad11d

221 þ Bd3

21Þ�31 þ ð3d2

11d12 þ Aðd12d221 þ 2d11d21d22Þ

þ 3Bd221d22Þ�

21�2 þ ð3d11d

212 þ Aðd11d

222 þ 2d12d21d22Þ þ 3Bd21d

222Þ�1�

22

� ðd312 þ Ad12d

222 þ Bd3

22Þ�32: ð3:2Þ

The derivative at the identity is gives by the matrix

3 0 0 00 3 2A 0A 0 3B 2A0 A 0 3B

0BB@

1CCA ð3:3Þ

which has determinant �ðA,BÞ :¼ 3ð27B2þ 4A3

Þ. This is zero if and only ifA/3¼�(B/2)2/3. Suppose that �(A,B) 6¼ 0. Using the implicit function theorem wecan find a nonsingular matrix if ð �AA, �BBÞ is close to (A,B) such that

pDð�Þ ¼ �31 þ �AA�1�22 þ

�BB�32:

A simple covering argument shows that the same is true for each ð �AA, �BBÞ in thepathcomponent of �(A,B) 6¼ 0. Obviously there are two path connected opencomponents ��(A,B)>0.

We choose two representative polynomials one for each component, therebychanging coefficient of �31 : ð1=6Þ�

31 � ð1=2Þ�1�

22 and ð1=6Þð�31 þ �

32Þ.

Now we consider the case A/3¼�(B/2)2/3. If A¼ 0 then the polynomial is �31.If not we may scale �2 so that A¼ 3. Then B¼�2 and changing �2 to ��2 if necessarywe arrive at

pð�Þ ¼ �31 � 3�1�22 þ 2�32: ð3:4Þ

1948 Ben-Artzi, Koch, and Saut

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

+ [29.8.2003–10:16am] [1943–1974] [Page No. 1948] F:/MDI/Pde/28(11&12)/120025491_PDE_028_011-012_R1.3d Communications in Partial Differential Equations (PDE)

120025491_PDE28_11-12_R1_082903

Page 7: Dispersion Estimates for Third Order Equations in Two Dimensionsmath.huji.ac.il/~mbartzi/recent-publications/120025491... · 2007-11-11 · (1.3), see Ghidaglia and Saut (1993). The

In summary, we have four representatives for the homogeneous third degreepolynomial. A short check shows that they are classified by the shape of the zero setof the determinant of the Hessian �! detD2pð�Þ, which is either the whole space, aline, the union of two transversal lines or a point. The shape is invariant under theoperations we used above. This consideration allows us to use the following set ofrepresentatives:

1

6�31,

1

2�1�

22,

1

6ð�31 þ �

32Þ and

1

6�31 �

1

2�1�

22: ð3:5Þ

Note that the second of those four representatives is replacing the one in Eq. (3.4).For notational simplicity we introduced coefficients different from 1. In what followswe refer to the four cases in Eq. (3.5) by Cases I–IV.

We now want to classify all polynomials with cubic and quadratic terms and tofind normal forms for each class. We shall use affine changes and the addition oflinear and constant terms, as long as they leave the cubic terms in Eq. (3.5) invariant.As has been observed earlier, the transformed polynomials are considered moduloaffine terms.

Thus, let p be a polynomial with cubic and quadratic terms. We set

d ¼ degree detðD2pÞ and S ¼ f� : detðD2pð�ÞÞ ¼ 0g

and consider the four cases separately.

Case I. If the coefficient of �22 is nonzero we may suppose that it is one. Then we havethe polynomial

1

6�31 þ b�21 þ a�1�2 þ �

22 ¼

1

6�31 þ ða�1=2þ �2Þ

2þ ðb� a2=4Þ�21: ð3:6Þ

We set �¼ �2þ a�1/2, plug it into the formula and rename � to �2. Then

pð�Þ ¼1

6�31 þ �

22 þ c�21 ð3:7Þ

and we may assume that c¼ 0 since the term can be eliminated by a shift in �1.This creates affine terms, which we neglect in our classification. It is easily seenthat d¼ 1.

Now we consider the case that the coefficient of �22 is zero and that of �1�2 is not.Then we may assume that it is one and we are left with ð1=6Þ�31 þ �1�2. Then d¼ 0 anddet(D2p) is constant but not zero. If both coefficients are zero then det(D2p)¼ 0.We conclude that Case I leads to three normal forms:

1

6�31,

1

6�31 þ

1

2�22, and

1

6�31 þ �1�2:

Case II. We shift �1 so that the coefficient of �22 is zero. Shifting �2 we achieve thesame for the coefficient of �1�2. We can normalize the coefficient of �21 and henceobtain the two representative polynomials ð1=2Þ�1�

22 and ð1=2Þ�1�

22 þ ð1=2Þ�21.

Dispersion Estimates for Third Order Equations 1949

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

+ [29.8.2003–10:16am] [1943–1974] [Page No. 1949] F:/MDI/Pde/28(11&12)/120025491_PDE_028_011-012_R1.3d Communications in Partial Differential Equations (PDE)

120025491_PDE28_11-12_R1_082903

Page 8: Dispersion Estimates for Third Order Equations in Two Dimensionsmath.huji.ac.il/~mbartzi/recent-publications/120025491... · 2007-11-11 · (1.3), see Ghidaglia and Saut (1993). The

Then d¼ 2 and S is a line or a parabola. The second case provides a normal form fora cusp. The notion of a cusp here is motivated by the fact that the image of S underthe map �! rpð�Þ is a geometric cusp. The inverse Fourier transform can beexpressed by the Pearcey integral (5.1).

Case III. The same arguments show that there are only two classes with normalpolynomials

pð�Þ ¼1

6ð�31 þ �

32Þ and pð�Þ ¼

1

6ð�31 þ �

32Þ þ �1�2:

Here d¼ 2 and S consists of a hyperbola or two lines.

Case IV. There are two classes with normal forms

1

6�31 �

1

2�1�

22 þ

1

2ð�21 þ �

22Þ, and

1

6�31 �

1

2�1�

22:

Here d¼ 2 and S is either a circle or a point. There cannot be any further reductionwhich can be seen by checking the zero sets of the determinant of the Hessian.

This completes the classification: The third order polynomials:

1

6�31 �

1

2�1�

22 þ

1

2�21 þ

1

2�22, ðIVÞ

1

6�31 þ

1

6�32 þ �1�2 ðIIIÞ, ð3:8Þ

will be discussed in Sec. 8. Their study is the most demanding and the most impor-tant part of this article. We recall that S is a circle (the first polynomial) resp. ahyperbola. The leading part of the asymptotic expansion of the oscillatory integral

Iðx, tÞ ¼

ZR

2eitpð�Þþix� d�

is expressed through the Airy function near points (x, t) for which there aredegenerate critical �c satisfying

xþ trpð�cÞ ¼ 0

for which the null space of D2p(�c) is transversal to S—this corresponds to values ofx/t lying in the image of S 3! �rpð�Þ, where the image is smooth. There exist,however, three cusps �0, �1 and �2 resp. one cusp �0. The leading part of theTaylorexpansion of tp(�) þ x� at these values is, in suitable coordinates,ðt=2Þð�21�2 þ �

22Þ þ x � �, which is the second polynomial in the list below. The leading

part of the expansion of I(x, t) close to directions

x=t ¼ �rpð�jÞ

is expressed using the Pearcey integral. Proving this fact requires deeper notionsand arguments from singularity theory. Even though the technique for getting theestimates is more or less standard it requires considerable work to carry it throughfor the specific case of the cusp.

1950 Ben-Artzi, Koch, and Saut

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

+ [29.8.2003–10:16am] [1943–1974] [Page No. 1950] F:/MDI/Pde/28(11&12)/120025491_PDE_028_011-012_R1.3d Communications in Partial Differential Equations (PDE)

120025491_PDE28_11-12_R1_082903

Page 9: Dispersion Estimates for Third Order Equations in Two Dimensionsmath.huji.ac.il/~mbartzi/recent-publications/120025491... · 2007-11-11 · (1.3), see Ghidaglia and Saut (1993). The

The polynomials

1

6�31 �

1

2�1�

22, ðIVÞ and

1

2ð�21 þ �1�

22Þ ðIIÞ ð3:9Þ

are discussed in Sec. 5. The oscillatory integral Ix,t with the second polynomial istransformed to the Pearcey integral. It is the model for the cusp singularity.

The inverse Fourier transforms of eitp with p from the lists

1

6�31 þ

1

6�32 ðIIIÞ,

1

2�1�

22 ðIIÞ,

1

6�31 þ �1�2 ðIÞ, ð3:10Þ

1

6�31 þ

1

2�22,

1

6�31 ðIÞ, �1�2

1

2ð�21 þ �

22Þ and

1

2�21 ð3:11Þ

will be given in the next section.

4. SOME FOURIER TRANSFORMS

Here we give the (inverse) Fourier transforms of several functions. For simplicitywe always assume t>0.

(1) Quadratic phase functions: Letffiffi�

pdenote the square root in the slit domain

C=R� and x, � 2 R. Then F�1ðeðit=2Þ�

2

ÞðxÞ ¼ ð1=ffiffiffiit

pÞe�ðx2=2tÞi. We define

KðxÞ ¼1ffiffiffiffiffiffiffi2�i

p eði=2Þx2

:

(2) The Airy function: The Airy function is defined by

AiðxÞ ¼ ð2�Þ�1=2F�1ðei�

3=3ÞðxÞ:

It is the unique bounded solution to

Ai00ðxÞ � xAiðxÞ ¼ 0 Aið0Þ ¼ 3�1=6 �ð1=3Þ

2�:

We have the estimates

jeffiffiffiffiffi�x

p 3

j ð1þ jxj1=4ÞjAiðxÞj þ ð1þ jxjÞ�1=4jAi0ðxÞj

� �� c

which can be seen by the WKB method or standard calculations.(3) Let x, � 2 R

2. Then

F�1ðexpðit�31=6ÞÞðxÞ ¼ ðt=2Þ�1=30ðx2ÞAiðx1=ðt=2Þ

1=3Þ:

(4)

F�1ðexpðitð�31=6þ �

22=2ÞÞÞðxÞ ¼

ffiffiffiffiffiffiffi2�i

pð2tÞ�5=6Aiðx1=ðt=2

1=3ÞÞKðx=

ffiffit

pÞ:

(5) F�1ðexpðitð�31 þ �1�2ÞÞ ¼ t�1eið�xð3=2Þ=t2�x1x2=tÞ, hence

F�1 exp it1

6�31 þ �1�2

� �� �� �¼

ffiffiffiffiffi6t

p �1eið�

ffiffi6

px32=t

2�6x1x2=tÞ:

Dispersion Estimates for Third Order Equations 1951

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

+ [29.8.2003–10:16am] [1943–1974] [Page No. 1951] F:/MDI/Pde/28(11&12)/120025491_PDE_028_011-012_R1.3d Communications in Partial Differential Equations (PDE)

120025491_PDE28_11-12_R1_082903

Page 10: Dispersion Estimates for Third Order Equations in Two Dimensionsmath.huji.ac.il/~mbartzi/recent-publications/120025491... · 2007-11-11 · (1.3), see Ghidaglia and Saut (1993). The

(6) The inverse Fourier transform of expðitð1=2Þ�1�22Þ is

F�1 exp it1

2�1�

22

� �� �¼

0 if x1 01

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�tx1=2

p cosðx2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2x1=tÞ

pif x1 < 0

8<:

See also Fedoryuk (1977).(7) F�1

ðexpðit16ð�31 þ �

32ÞÞÞ ¼ 2�ðt=2Þ�2=3Aiðx1=ðt=2Þ

1=3ÞAiðx2=ðt=2Þ

1=3Þ:

5. TWO OTHER CASES

We recall the lemma of van der Corput in the form of Stein (1993).

Proposition 5.1. Suppose that k 2, f 2 Ck and f (k) 1 on R. Let 2 C10ðRÞ. ThenZ

R

eitf ð�Þ ð�Þ d�

�������� � ct�1=k

k 0kL1 :

This can be extended to noncompactly supported functions. In that case the integralhas to be understood as suitable limit of truncated integrals.

We begin with the prototype of a phase function where we have to contentourselves with estimates for large x. Let

Bð y, zÞ :¼

ZR

eið1=24s4þ1=2ys2þzsÞ ds ð5:1Þ

for y, z 2 R. This integral was introduced by Pearcey (1946). The level lines of itsmodulus are shown in Arnold et al. (1999). In contrast to the previous cases there isan explicit formula for the Fourier transform. We collect estimates for B below:

Lemma 5.2. We have

jBð y, zÞj � cð1þ jzj2 þ j yj3Þ�1=18½1þ ð1þ jzj2 þ j yj3Þ�5=9

jð3zÞ2 þ ð2yÞ3j�1=4:

Proof. Set

pðsÞ ¼1

24s4 þ

1

2ys2 þ zs:

Since p(4)¼ 1 the van der Corput lemma implies |B( y, z)|�C. It suffices there-fore to take

� :¼ ð3zÞ2 þ ð2j yjÞ3 1:

We normalize the integral by

~yy ¼ ��1=3y, ~zz ¼ ��1=2z; and ~ss ¼ ��1=6s,

1952 Ben-Artzi, Koch, and Saut

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

+ [29.8.2003–10:16am] [1943–1974] [Page No. 1952] F:/MDI/Pde/28(11&12)/120025491_PDE_028_011-012_R1.3d Communications in Partial Differential Equations (PDE)

120025491_PDE28_11-12_R1_082903

Page 11: Dispersion Estimates for Third Order Equations in Two Dimensionsmath.huji.ac.il/~mbartzi/recent-publications/120025491... · 2007-11-11 · (1.3), see Ghidaglia and Saut (1993). The

so that, with

~ppð~ssÞ ¼1

24~ss 4 þ

1

2~yy~ss2 þ ~zz ~ss,

Bð y, zÞ ¼ �1=6ZR

ei�2=3 ~ppð ~ss Þ d ~ss

¼ �1=6Z�ð~ssÞei�

2=3 ~ppð~ss Þ d ~ssþ

Zð1� �ð~ss Þei�

2=3 ~ppð~ssÞ d ~ss

¼ �1=6½B1ð ~yy, ~zzÞ þ B2ð ~yy, ~zz Þ

where � 2 C10 is identically 1 for all arguments j~ssj � 10. Then, since the derivative of

~pp is bounded from below outside [�5, 5],

jB2ð ~yy, ~zzÞj � xk��k forall k 2 N uniformly in ~yy, ~zz:

The cubic equation

~pp0ð~ss Þ ¼1

6~ss3 þ ~yy~ssþ ~zz ¼ 0

has (for given ð ~yy, ~zzÞ 6¼ ð0, 0Þ) either one, two or three roots, depending on whetherthe discriminant

D ¼ ð3 ~zzÞ2 þ ð2 ~yyÞ3

is positive, zero, or negative. If D then,

j ~pp0ð~ss Þj þ j ~pp00ð~ss Þj cðÞ

and, by the method of stationary phase

jB1ð ~yy, ~zz Þj � c��1=3:

The third derivative of ~ff is uniformly bounded from below at zeroes of ~pp00. Hence

jB1ð ~yy, ~zzÞj � c��2=9

for all y and z. We need however a more precise estimate if D< . Arguing as forfold singularities (see Hormander (1983) and Sec. 7.5 below) we obtain

jB1ð ~yy, ~zzÞj � c��1=18ð1þ �4=9jDjÞ

�1=4

hence

jBð y, zÞj � ��1=18½1þ ��5=9

ðj3zÞ2 þ ð2yÞ3jÞ�1=4:

Remark 5.3. It is not hard to prove the estimates of Lemma 5.2 by elementarycalculation and the van der Corput lemma. The key is the algebraic estimate

j ~pp0j þ j ~pp00j cjDj1=2, ð5:2Þ

Dispersion Estimates for Third Order Equations 1953

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

+ [29.8.2003–10:16am] [1943–1974] [Page No. 1953] F:/MDI/Pde/28(11&12)/120025491_PDE_028_011-012_R1.3d Communications in Partial Differential Equations (PDE)

120025491_PDE28_11-12_R1_082903

Page 12: Dispersion Estimates for Third Order Equations in Two Dimensionsmath.huji.ac.il/~mbartzi/recent-publications/120025491... · 2007-11-11 · (1.3), see Ghidaglia and Saut (1993). The

which implies the estimate by the van der Corput lemma. It suffices to verify Eq. (5.2)at critical points. There the second derivative of ~pp is of size of the square root of thediscriminant, which implies Eq. (5.2)

The cusp singularity. Here we consider pð�Þ ¼ 1=2ð�1�22 þ �

21Þ. The phase function

tpð�Þ þ x�

has degenerate critical points for x/t in a cusp. Figure 1 (a) shows the setS¼ {�|rkD2p(�)<2} together with the kernel of the Hessian D2

�p and Fig. 1 (b)shows its image and the image of close by level curves of det(D2p) under the map� ! �rpð�Þ.

Let

ItðxÞ ¼ ð2�Þ�1

ZR

2eiðt=2Þð�1�

22þ�

21Þþi�x d�:

Then

Itðx1, x2Þ ¼ t�3=4I1ðx1t�1=2, x2t

�1=4Þ ð5:3Þ

and, by performing the integration with respect to �1,ZR

2ei1=2ð�

21þ�1�

22Þþix� d� ¼ 2��1=2

ZR

ei1=2ð1=2�22þx1Þ

2þix2�2 d�2

¼ ceix21=2Bð3�1=2x1, 3

�1=4x2Þ

where B is the Pearcey integral (5.1). The estimate

kItkL1 � ct�3=4

follows from Lemma 5.2.

The homogeneous integral. pð�Þ ¼1

6�31 �

1

2�1�

22. Let

ItðxÞ ¼

Zeitpð�Þþix� d�: ð5:4Þ

where pð�Þ ¼ 1=6�31 � 1=2�1�22. Then scaling shows

ItðxÞ ¼ t�2=3I1ðxt�1=3

Þ

which motivates the definition

CðxÞ ¼ I1ðxÞ:

Proposition 5.4. The following estimates hold:

jCðxÞj � cð1þ jxjÞ�1=2

jrxCðxÞj � c:

F1

1954 Ben-Artzi, Koch, and Saut

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

+ [29.8.2003–10:16am] [1943–1974] [Page No. 1954] F:/MDI/Pde/28(11&12)/120025491_PDE_028_011-012_R1.3d Communications in Partial Differential Equations (PDE)

120025491_PDE28_11-12_R1_082903

Page 13: Dispersion Estimates for Third Order Equations in Two Dimensionsmath.huji.ac.il/~mbartzi/recent-publications/120025491... · 2007-11-11 · (1.3), see Ghidaglia and Saut (1993). The

−0.5 0 0.5 1 1.5 2 2.5 3−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

xi

XI

Figure 1ðaÞ. The set S and the kernel of D2�p.

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5−3

−2

−1

0

1

2

3

x

y

Figure 1ðbÞ. The image of S 3 �! �rpð�Þ.

Dispersion Estimates for Third Order Equations 1955

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

+ [29.8.2003–10:16am] [1943–1974] [Page No. 1955] F:/MDI/Pde/28(11&12)/120025491_PDE_028_011-012_R1.3d Communications in Partial Differential Equations (PDE)

120025491_PDE28_11-12_R1_082903

Page 14: Dispersion Estimates for Third Order Equations in Two Dimensionsmath.huji.ac.il/~mbartzi/recent-publications/120025491... · 2007-11-11 · (1.3), see Ghidaglia and Saut (1993). The

The following corollary is an immediate consequence.

Corollary 5.5. We have

jItðxÞ � ct�2=3ð1þ jxjt�1=3

Þ�1=2

and

jrxItðxÞj � ct�1

Proof of Proposition 5.4. There are many ways to prove the estimate. We choose achange of the contour of integration, because this argument carries over to theinhomogeneous phase function and large x/t with only minor changes. For thesame reason we do not make use of scaling here. Let

�ð�Þ ¼1

2j�jð�21 � �

22Þ, �

1

j�j�1�2

� �:

Then j�j� ¼ rp and

j�j2 ¼1

j�j21

4ð�21 � �

22Þ

2þ �21�

22

� �¼

1

4j�j2

and

Im pð� þ i�ð�ÞÞ ¼1

j�jjrpj2 � pð�Þ

1

4j�j3 �

1

6j�j3

1

5j�j3:

We change the contour of integration:

CðxÞ ¼

Zexpðipð� þ i�Þ þ ixð� þ i�ÞÞ d�

hence for all x

jCðxÞj

Ze�1=5j�j3þ1=2jxk�jd� <1:

We want to show that C(x) decays when x is large. Let x 6¼ 0. We identify R2 with C

and define

�xð�Þ :¼�1 � i�2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2ðx1 þ ix2Þ

p� ��1 � i�2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2ðx1 þ ix2Þ

p� �2

ffiffiffiffiffiffijxj

pþ j�j

� � ¼r�ð pð�Þ � x�Þffiffiffiffiffiffi

jxjp

þ j�j:

Let �c be one of the two critical points of �! p(�)þ x�. Then we have j�cj ¼ 2ffiffiffiffiffiffijxj

p

and

Im pð� þ i�Þ j�2 � �2c j

2

8ðffiffiffiffiffiffijxj

pþ j�jÞ

ffiffiffiffiffiffijxj

pminfj� � �cj

2, j� þ �cj2g:

Moving the domain of integration as above gives

jCðxÞj � cð1þ jxjÞ�1=2:

1956 Ben-Artzi, Koch, and Saut

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

+ [29.8.2003–10:16am] [1943–1974] [Page No. 1956] F:/MDI/Pde/28(11&12)/120025491_PDE_028_011-012_R1.3d Communications in Partial Differential Equations (PDE)

120025491_PDE28_11-12_R1_082903

Page 15: Dispersion Estimates for Third Order Equations in Two Dimensionsmath.huji.ac.il/~mbartzi/recent-publications/120025491... · 2007-11-11 · (1.3), see Ghidaglia and Saut (1993). The

The estimate for the gradient is straightforward: there is an additional factor 2ffiffiffiffiffiffijxj

p.

We obtain the following result when we combine Lemma 2.1 with the previousestimates to u(t)¼S(t)u0 where S is the group defined by the differential equation(where we plug in i@xj for D)

@tu� ipðDÞu ¼ 0:

Theorem 5.6. Consider the integral (5.4), where p is the polynomial 1=6�31 � 1=2�1�22.

1. Let 1� r� q�1. The following estimates hold:

kuðtÞkLq � ct�2=3ð1=r�1=qÞku0kLr

if

1

r�1

q

3

4:

If the difference is 3=4 we require that 1< r<q<1.2. Moreover

krukL1 � cjtj�1kuð0ÞkL1 :

6. SOME STABLE MAPS

It remains to study the two polynomials p1ð�Þ ¼ 1=6�31 � 1=2�1�22þ 1=2ð�21 þ �

22Þ

and p2ð�Þ ¼ 1=6�31 þ 1=6�32 þ �1�2. Let Jið�Þ ¼ detD2�pið�Þ, i¼ 1.2. Then

J1ð�Þ ¼ 1� j�j2, J2ð�Þ ¼ �1�2 � 1

which vanish respectively on a circle or on a hyperbola. Let Si be the set of pointsx 2 R

2 where thee is a degenerate critical point of �! pið�Þ þ x�. The set Si is onedimensional. It has three cusps if i¼ 1 and it consists of two unbounded curves ifi¼ 2, one of which contains one cusp. The leading part in suitable coordinates isgiven by the cusp singularity discussed above. It will turn out that the asymptoticbehavior of the Pearcey integral (5.1) determines the asymptotic behavior of theFourier cotransforms of eitp(�), t>0, but this requires some singularity theory aswell as general results about oscillatory integrals.

More generally we will be concerned with the problem of bounding oscillatoryintegrals of the type

It, ðxÞ ¼

ZR

n ð�Þeitð f ð�Þþx��Þ d�

where 2 C10 ðR

nÞ and where f is a smooth function. Suppose that

f ð�Þ þ x � � ¼ f0ð y, �Þ þ �ð yÞ ð6:1Þ

Dispersion Estimates for Third Order Equations 1957

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

+ [29.8.2003–10:16am] [1943–1974] [Page No. 1957] F:/MDI/Pde/28(11&12)/120025491_PDE_028_011-012_R1.3d Communications in Partial Differential Equations (PDE)

120025491_PDE28_11-12_R1_082903

Page 16: Dispersion Estimates for Third Order Equations in Two Dimensionsmath.huji.ac.il/~mbartzi/recent-publications/120025491... · 2007-11-11 · (1.3), see Ghidaglia and Saut (1993). The

where x¼ x( y) and �¼ �( y, �) in the support of . Then

It, ðxÞ ¼ eit�ð yÞZR

n ð�ð y, �ÞÞdet

@�

@�

� �eitf0ð y, �Þ d�:

This observation decomposes the study of oscillatory integrals into two parts:a classification of the relevant normal forms for the phase function, and anestimation of oscillatory integrals with these phase functions. In this section weclassify the phase functions which are relevant. We follow the work ofDuistermaat (1974) and Mather (1968, 1969). From the discussion above it isclear that we should (and do) replace f(�)þ x�� by more general functions f(x, �).

Definition 6.1. A function f0(x, �) is called stable at (x0, �0) if there exists ", k, and such that for every smooth function f with

k f � f0kCkðBðx0, �0ÞÞ� "

there exist local diffeomorphisms ( y, n) – (x( y), �( y, �)) (which, together with itslocal inverse, are defined in B(x0)�B(�0) and � 2 C1

ðBðx0ÞÞ satisfying (6.1) in aneighborhood of (x0, �0).

Definition 6.2. We call f0 infinitesimally stable at (x0, �0) if for every functionf 2 C1

ðRn� R

nÞ there exist smooth functions gj, hj, and � with

f ðx, �Þ ¼Xnj¼1

gjðx, �Þ@�j f0 þXnj¼1

hjðxÞ@xj f0 þ �ðxÞ

for x and � in a neighborhood of (x0, �0).Given a function f we define the set

Sf0 ¼ fðx, �Þj@�j f ðx, �Þ ¼ 0 for 1 � j � ng

Proposition 6.3. (Theorem 2.1.5 of Duistermaat (1974)). Suppose f0 is smooth near(x0, �0) and that the projection S� 3 ðx, �Þ ! x is proper. Then f0 is stable at (x0, �0) ifand only if it is infinitesimally stable at (x0, �0).

Proof. The implication stable implies infinitesimally stable is obvious. The otherdirection has been proven (in much greter generality) by Mather (1968 and 1969),and closer in the form needed here, by Duistermaat (1974). œ

It is instructive to look at examples. Let A be a symmetric nondegenerate realmatrix. Then

f0ðx, �Þ ¼1

2�tA� þ x � �

is stable for every point (x, �). To see this we assume that f is close to f0 and we haveto find g¼ (g1, . . . , gn), h¼ (h1, . . . ,hn) and �

f ðx, �Þ ¼ gtðx, �ÞðA� þ xÞ þ ht� þ �ðxÞ

1958 Ben-Artzi, Koch, and Saut

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

+ [29.8.2003–10:16am] [1943–1974] [Page No. 1958] F:/MDI/Pde/28(11&12)/120025491_PDE_028_011-012_R1.3d Communications in Partial Differential Equations (PDE)

120025491_PDE28_11-12_R1_082903

Page 17: Dispersion Estimates for Third Order Equations in Two Dimensionsmath.huji.ac.il/~mbartzi/recent-publications/120025491... · 2007-11-11 · (1.3), see Ghidaglia and Saut (1993). The

in a neighborhood of (x0, �0). This is trivial if

A�0 þ x0 6¼ 0

and we restrict ourselves to A�0¼�x0 in the sequel. Let �¼ �� �0 and y¼ x� x0.Then the problem reduces to the same problem near (0, 0). For simplicity we assumethat A is the identity (otherwise we first change coordinates so that A is a diagonalwith entries � 1 in the diagonal). Let

~ff ðx, �Þ ¼ f ðx, �� xÞ:

Then it suffices to fine ~ggðx, �Þ and � such that

~ff ðx, �Þ ¼ ~ggtðx, �Þ � �þ �ðxÞ:

We set

�ðxÞ ¼ ~ff ðx, 0Þ

and

~ggðx, �Þ ¼

Z 1

0

r� f ðx, t�Þ dt:

The same arguments show that f ð�Þ þ x � � is stable at (x0, �0) if D2f(�0))ij isnondegenerate.

Now let A be a symmetric nonsingular real (n� 1)� (n � 1) matrix. Let ~�� ¼ð�1, . . . , �n�1Þ. We claim that the normal form for a fold

f0ðx, �Þ ¼1

6�3n þ

1

2~��tA ~�� þ x � �

is stable at (0, 0). We again restrict ourselves to the case A ¼ idR

n�1 .We want to verify infinitesimal stability which amounts to finding g, h, and � so

that (with f a given function)

f ðx, �Þ ¼Xn�1

j¼1

gjðx, �Þð�j þ xjÞ þ gnðx, �Þ1

2�2n þ xn

� �þ htðxÞ � � þ �ðxÞ:

We begin with the one-dimensional case. Given ~ff we want to find ~gg, ~hh, and ~�� with

~ff ðs, tÞ ¼ ~ggðs, tÞ1

2t2 þ s

� �þ ~hhðsÞtþ ~��ðsÞ

near (0, 0). This cane be done by the Malgrange preparation theorem, which is theappropriate tool in general. Here we may also use a more elementary construction.It is not hard to see that

~ff �1

2t2, t

� �¼ ~hh �

1

2t2

� �tþ ~�� �

1

2t2

� �

hence

~�� �1

2t2

� �¼

1

2~ff �

1

2t2, t

� �þ ~ff �

1

2t2, � t

� �� �

Dispersion Estimates for Third Order Equations 1959

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

+ [29.8.2003–10:16am] [1943–1974] [Page No. 1959] F:/MDI/Pde/28(11&12)/120025491_PDE_028_011-012_R1.3d Communications in Partial Differential Equations (PDE)

120025491_PDE28_11-12_R1_082903

Page 18: Dispersion Estimates for Third Order Equations in Two Dimensionsmath.huji.ac.il/~mbartzi/recent-publications/120025491... · 2007-11-11 · (1.3), see Ghidaglia and Saut (1993). The

and

~hh �1

2t2

� �¼

1

2t~ff �

1

2t2, t

� �� ~ff �

1

2t2, � t

� �� �:

We extend both functions smoothly to positive arguments. The definition of ~gg isstraight forward.

We can do the same construction in the higher dimensional case as long aswe restrict ourselves to the subspace where �1. . . �n�1¼ 0. Then we repeat theconstruction for quadratic phase functions above to obtain the remaining functions.

It is clear that the same arguments imply stability for (with 3< k� nþ 1)

f0ðx, �Þ ¼1

2~��tA ~�� þ �kn þ x � � þ

Xk�3

j¼1

xj�jþ1n :

This is a normal form for a cusp if k¼ 4.Moreover, if f is stable at (x0, �0) and we add a nondegenerate phase function in

additional variables, then we obtain a stable singularity.Finally we consider

f0ðx, �Þ ¼1

2�1�

22 þ

1

2�21 þ x�:

We claim that f0 is stable at (0, 0). To see this we change variables: let

�1 ¼ �1 þ1

2�22 and �2 ¼ �2:

Then

f0ðx, �Þ ¼ ~ff ðx, �Þ ¼1

2�21 �

1

8�42 þ x1�1 �

1

2x1�

22 þ x2�2:

This function is infinitesimally stable near (0, 0). The properness assumption isclearly satisfied. Hence f0 is stable.

We collect the results:

Lemma 6.4. The following phase functions are stable at (0, 0):

(1) f ðx, �Þ ¼ �ta� þ x � � (if A is symmetric and invertible),(2) f ðx, �Þ ¼ 1=6�31 þ ���tA� þ x � � (where A is a(n� 1)� (n� 1) matrix,

symmetric and invertible),(3) f ðx, �Þ ¼ �41 � �

22 þ x2�

21 þ x � � and

(4) f ðx, �Þ ¼ 1=2�21�2 þ 1=2�22 þ x � �.

7. ESTIMATES FOR OSCILLATORY INTEGRALS

In this section we prove estimates for oscillatory integrals with degenerate phasefunctions (not necessarily polynomials).

1960 Ben-Artzi, Koch, and Saut

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

+ [29.8.2003–10:16am] [1943–1974] [Page No. 1960] F:/MDI/Pde/28(11&12)/120025491_PDE_028_011-012_R1.3d Communications in Partial Differential Equations (PDE)

120025491_PDE28_11-12_R1_082903

Page 19: Dispersion Estimates for Third Order Equations in Two Dimensionsmath.huji.ac.il/~mbartzi/recent-publications/120025491... · 2007-11-11 · (1.3), see Ghidaglia and Saut (1993). The

We introduce some notation. Let U � Rn be open and f 2 C1

ðUÞ.

Definition 7.1. A (Nondegenerate). We say that f is nondegenerate at �0 if D2f isnondegenerate at �0, or, equivalently, if the map

� ! rf ð�Þ

is nondegenerate near �0. Let

J ¼ detðD2f ð�ÞÞ:

Then f is nondegenerate at �0 iff J(�0) 6¼ 0.At a degenerate point �0 we assume that J has a simple zero. As a consequence,

its zero level-set is a smooth hypersurface S, and the null-space of D2f is one-dimen-sional at all points � 2 S. Let X 2 kerðD2f Þ be a nontrivial vectorfield, defined alongS i.e., at every point in S, but not necessarily in TS.

B (Fold). We say that f has a fold at the degenerate point �0 if X is transversal to S at�0., i.e., if X � rJ 6¼ 0 at �0.

C (Cusp). We say that f has a cusp at the degenerate point �0 if

(1) X � rJ has a simple zero at �0 (as a function on S ) and:(2) Let S1 be the zero level-set of X � rJ in S. Then X is transversal to S1.

D (Global). We say that f is nondegenerate if it nondegenerate at every point. It hasat most folds if at every point it is either nondegenerate or it has a fold. It has at mostcusps if at every point it is either nondegenerate, or it has a fold or a cusp.

Remark 7.2. Nondegeneracy at �0 is a condition on the Taylor expansion up tosecond order, existence of a fold at �0 is decided by the Taylor expansion up toorder 3 and the conditions for a cusp require a Taylor expansions up to order 4.Nondegeneracy implies that the map

� ! rf ð�Þ

is invertible in a neighborhood of �0. If �0 is a fold then

S 3 �! rf ð�Þ

parameterizes a smooth hypersurface (since the derivative of (rf )|S has full rank)and the image of

� ! rf ð�Þ

lies locally on one side of S—which is a consequence of the results below. If �0 is acusp then

S1 3 � ! rf ð�Þ

parameterizes a smooth submanifold of codimension two and the image ofS 3 � ! rf ð�Þ is a geometric cusp near rf(�0), which is again a consequence ofthe considerations below.

A fold corresponds to the singularity A2 and a cusp to A3 in the notation ofArnol’d et al. (1985), Sec. 11.1.

Dispersion Estimates for Third Order Equations 1961

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

+ [29.8.2003–10:16am] [1943–1974] [Page No. 1961] F:/MDI/Pde/28(11&12)/120025491_PDE_028_011-012_R1.3d Communications in Partial Differential Equations (PDE)

120025491_PDE28_11-12_R1_082903

Page 20: Dispersion Estimates for Third Order Equations in Two Dimensionsmath.huji.ac.il/~mbartzi/recent-publications/120025491... · 2007-11-11 · (1.3), see Ghidaglia and Saut (1993). The

Remark 7.3. We will apply the estimates below only to functions with two dimen-sional � variable. In that case S1 will consist of isolated point.

Remark 7.4. We shall see that the functions above are closely related to the onesdiscussed in the last section.

Theorem 7.5. Let 2 C10 ðUÞ and

It, ðxÞ ¼

ZU

ð�Þeitf ð�Þþix� d�:

1. Suppose that f is non-degenerate in the support of . Then

kIt, kL1ðRnÞ � ct�n=2 and kIt, kL1ðRnÞ � ctn=2:

2. Suppose that f has at most folds in the support of . Then

kIt, kL1ðRnÞ � ct�n=2þ1=6, kIt, kL4wðR

nÞ � ct�n=4, and kIt, kL1ðRnÞ � ctn=2:

3. Suppose that f has at most cusps in the support of . Then

kIt, kL1ðRnÞ � ct�n=2þ1=4, kIt, kL4wðR

nÞ � ct�n=4, and kIt, kL1ðRnÞ � ctn=2:

Remark 7.6. Estimates for other values of p follow by interpolation. Then for p<4the estimate for kIt, kLp are the same in all cases.

Proof. We begin with the observation that we have for every integer

jIt, ðxÞj � cNð1þ jtj þ jxjÞ�Nð7:1Þ

for x with dist(�x/t,D) 1 where D ¼ frf ð�Þ : � 2 supp g.A standard application of stationary phase shows that for the nondegenerate

phase function

jIt, ðxÞj � ct�n=2:

This implies the first statement.Using a suitable partition of unity it suffices to prove the statements for ampli-

tudes supported in a small neighbourhood of a given point. The proof of the secondstatement will be achieved by a (\,finite) sequence of lemmas.

Step 2 folds. Let �0 be a point where f has a fold. We change coordinates so that�0¼ 0, S¼ {� : J(�)¼ 0} is tangential to R

n�1 and ð0R

n�1 , 1Þ is in the null space ofD2f(0). We may and do assume that is supported in B"(0) for a small number "and f(0)¼�f(0)¼ 0. Then, as above,

jIt, ðxÞj � cN, "ð1þ jtj þ jxjÞ�N

if |x| 2"|t|.

1962 Ben-Artzi, Koch, and Saut

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

+ [29.8.2003–10:16am] [1943–1974] [Page No. 1962] F:/MDI/Pde/28(11&12)/120025491_PDE_028_011-012_R1.3d Communications in Partial Differential Equations (PDE)

120025491_PDE28_11-12_R1_082903

Page 21: Dispersion Estimates for Third Order Equations in Two Dimensionsmath.huji.ac.il/~mbartzi/recent-publications/120025491... · 2007-11-11 · (1.3), see Ghidaglia and Saut (1993). The

After a linear change of coordinates there exists a symmetric nondegenerate(n� 1)� (n� 1) matrix A such that

f ð�Þ ¼1

2~��tA ~�� þ

1

6�3n þOðj ~��j2j�j þ j�nj

4Þ:

Here ~�� denotes that first n� 1 components of the vector. Now we define�� ¼ ð�1=2 ~��, �1=3�nÞ and f�(�)¼ �

�1f�(��). Then

k f�ð�Þ �1

2~��tA ~�� �

1

6�3nkCN ðB1ð0ÞÞ

� c�1=3:

for all N 2 N. The function f0 ¼ 1=2 ~��tA ~�� þ 1=6�3n þ x� is stable. Thus, if � is small wecan change coordinates according to the last section so that we have the phasefunction f0 and an amplitude depending on x/t and �. Then estimate follows fromLemma 7.7 below.

Lemma 7.7. Let A be a nondegenerate symmetric (n� 1)� (n� 1) matrix and let 2 C1

0 ðB1ð0Þ � B"ð0ÞÞ be a smooth compactly supported function. Then

It, ðxÞ : ¼

ZR

n ðx=t, �Þeitð1=2

~��tA ~��þ1=6�3nÞþix� d�

¼ t�n=2þ1=6 ðx=t, � ½A�1 ~xx=t, 0Þeð ~xxtA�1 ~xxÞ=2ti

ffiffiffiffiffiffiffiffiffiffiffiffidet iA

p �1Aiðxn=ð2tÞ

1=3Þ

þOðt�n=2Þ:

where ½A�1 ~xx=t, 0 denotes the obvious vector in Rn.

Proof. We may assume that x/t is small. We haveZR

n�1 ðx=t, �Þeitð1=2Þ

~��tA ~��þi ~xx� ~�� d ~��

¼ ð4�tÞð1�nÞ=2ðdetðiAÞÞ�1=2 ðx=t, � ~xx=t, �nÞe

ið ~xxtA�1 ~xxÞ=2t

þ

Z½ ðx=t, �Þ � ðx=t, � ~xx=t, �nÞe

it=ð1=2Þ ~��tA ~��þi ~xx ~��d ~��:

The second term in the right hand side is O(t�n/2). This calculation reduces theproblem to the one dimensional one:

Lemma 7.8.ZR

ðs, Þeitð1=6s3þsÞ ds ¼ ð0, 0Þt�1=3Aiðt2=3Þ þOðt�2=3

Þ

if 0 and, for <0,

ZR

ðs, Þeitð1=6s3þsÞ ds ¼

ðffiffiffiffiffiffiffiffiffiffiffiffi�=3

p, 0þ ð�

ffiffiffiffiffiffiffiffiffiffiffiffi�=3

p, 0Þ

2t�1=3Aiðt2=3Þ þOðt�2=3

Þ:

Dispersion Estimates for Third Order Equations 1963

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

+ [29.8.2003–10:16am] [1943–1974] [Page No. 1963] F:/MDI/Pde/28(11&12)/120025491_PDE_028_011-012_R1.3d Communications in Partial Differential Equations (PDE)

120025491_PDE28_11-12_R1_082903

Page 22: Dispersion Estimates for Third Order Equations in Two Dimensionsmath.huji.ac.il/~mbartzi/recent-publications/120025491... · 2007-11-11 · (1.3), see Ghidaglia and Saut (1993). The

The proof of this estimate is straight forward. See also Theorem 7.7.18(Hormander, 1983) for related estimates. œ

Now, if ct�n/2� �� ct�n/2þ1/6

fx : jIt, ðxÞj > �g � fx : jxj � ct, jxnj � c��4t1�2ng

hence, since |It, (x)|� ct�n/2þ1/6 and since the estimate is obvious for smaller �,

jfx : jIt, ðxÞj > �gj � c��4t�n

and

kIt, k4L4w¼ sup �4jfx : jIt, ðxÞj > �gj � ct�n:

This is the L4w estimate. The L1 estimate is much simpler and we omit it.

Step 3, cusps. We suppose that f has a cusp at �0. We shift �0 to zero. Without loss ofgenerality we assume that f ð0Þ ¼ rf ð0Þ ¼ 0. By assumption J has a simple zero at 0.We make a linear change of coordinates so that X¼ en at �¼ 0 and rJð0Þ is amultiple of e1. Thus the tangent space of S at �¼ 0 is orthogonal to e1. LetA¼D2f(0) with components aij and ~AA ¼ ðaijÞ1�i, j�n�1. The Taylor expansion is

f ð�Þ ¼1

2aij�i�j þ

1

6cijk�i�j�k þ

1

24dijkl�i�j�k�l þOðj�j5Þ

where cijk and d i jkl are symmetric in all coefficients, the summation convention isused, and, by assumption, ain¼ ani¼ 0 for 1� i� n and ~AA is invertible. Then

J ¼ cnni�i det ~AAþ oðj�jÞ

and hence cnni¼ 0 for 2� i� n and cnni 6¼ 0. After scaling �1 we may and do assumethat cnn1¼ 1. Then

ðD2f Þij ¼ aij þ cijk�k þ1

2dijkl�k�l þOðj�j3Þ

and, since by definition on S

0 ¼ ðD2f ÞijXj ¼ aijXj þ cijk�kXj þOðj�j2Þ

and since we may set Xn¼ 1 we have (on S) for 1� i� n� 1

Xi ¼ � ~AA�1ij cnjk�k þOðj�j2Þ:

We compute

J ¼ detð ~AAÞ �1 þ1

2d mnij�i�j � ~AA�1

ij cnik�kcnjm�m þ ~AA�1

ij �k�1

� �þOðj�j3Þ

where the sum runs from 1 to n� 1 if ~AA is involved. Thus

rJ � X ¼ detð ~AAÞðd nnni�i � 3 ~AA�11j c

njk�kÞ þOðj�j2Þ:

1964 Ben-Artzi, Koch, and Saut

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

+ [29.8.2003–10:16am] [1943–1974] [Page No. 1964] F:/MDI/Pde/28(11&12)/120025491_PDE_028_011-012_R1.3d Communications in Partial Differential Equations (PDE)

120025491_PDE28_11-12_R1_082903

Page 23: Dispersion Estimates for Third Order Equations in Two Dimensionsmath.huji.ac.il/~mbartzi/recent-publications/120025491... · 2007-11-11 · (1.3), see Ghidaglia and Saut (1993). The

The singularity is a cusp provided

d nnnn6¼ 3 ~AA�1

11 :

We set

�i ¼ �i þ1

2~AA�11i �

2n, �n ¼ �n

which gives

f ð�Þ ¼1

2aij�i�j þ

1

24ðd nnnn

� 3 ~AA�111 Þ�

4n þOðj�j5 þ j ~��j2j�jÞ

and

f ð�Þ þx

t� � ¼

1

2aij�i�j þ

1

24ðd nnnn

� 3 ~AA�111 Þ�

4n þ

x

t� ��

1

4�2n ~AA�1

1i

xitþOðj�j5 þ j ~��j2j�jÞ:

For notational simplicity we restrict to ~AA ¼ 1R

n�1 and ðd nnnn� 3A�1

11 Þ ¼ 1. The lead-ing part is stable by Lemma 6.4. Scaling ~��i ¼ �1=2�i for 1� i� n� 1 and ~��n ¼ �1=4�nwe see as above that, at the expense of having an amplitude � dependingon y ¼ �ðx=tÞ as well, we may suppose that we have the phase function

f ð�Þ þ x=t � � ¼1

2j ~��j2 þ

1

24�4n þ

1

2y1�

2n þ y � �:

We integrate over ~�� and obtain for a suitable function �

It, ðxÞ ¼ ðitÞ�ðn�1Þ=2eitj ~yyj2=2

ZR

�ð y, ½ � ~yy, sÞeitð1=24s4þ1=2y1s

2þynsÞ dsþOðt�n=2

Þ:

We continue with the proof of Theorem 7.5, Step 3. Let

Mt, � ¼ fx : jIt, j > �g:

By Eq. (7.1) we have for n 2, 1� p� 8, and some c>0

Z ðctÞ�1

�p�1jMt, � \ ðR

nnBctð0Þjc� � cNt

�N :

where |.| denotes the volume. Clearly Mt,� is empty if �>> t�n/2þ1/4.The L4

w estimate follows from

jMt, � \ Btð0Þj � ct�n��4: ð7:2Þ

This estimate is trivial for �� t�n/2 and it remains verify Eq. (7.2) for

c�1t�n=2� � � ct�n=2þ1=4: ð7:3Þ

According to Duistermaat (1974) there exists a smooth function � with compactsupport and new coordinates y ¼ �ðx=tÞ with

det@y

@x

� �� t�n

Dispersion Estimates for Third Order Equations 1965

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

+ [29.8.2003–10:16am] [1943–1974] [Page No. 1965] F:/MDI/Pde/28(11&12)/120025491_PDE_028_011-012_R1.3d Communications in Partial Differential Equations (PDE)

120025491_PDE28_11-12_R1_082903

Page 24: Dispersion Estimates for Third Order Equations in Two Dimensionsmath.huji.ac.il/~mbartzi/recent-publications/120025491... · 2007-11-11 · (1.3), see Ghidaglia and Saut (1993). The

such that locally

It, ðxÞ ¼ t�n=2þ1=4�ð ~xx=tÞeit ~yyt ~AA ~yyBðt1=2y1, t

3=4ynÞ þOðt�n=2Þ:

where B is the Pearcey integral (5.1). The O(t�n/2) term is easily dominated.After localization and a change of coordinates it suffices to show for

~MMt, � ¼ f y 2 R2k yj � 1, jBðt1=2y1, t

3=4y2jÞ > t2n�1=4�g:

with

t�n=2� � � t�n=2þ1=4

the estimate

j ~MMt, �j � ct�2n��4: ð7:4Þ

We set R¼ z2þ |y|3 and T¼ z2þ y3. By Lemma 5.2 it suffices to prove

kfð y, zÞ 2 B1ð0ÞjR�1=18

½t�2=3þ R�5=9

jT j�1=4 > �gj � c��4:

for

1 << � � t1=4:

This set is contained in

A1 ¼ fð y, zÞkz2 þ y3j � ��4R1=3g, and in A2 ¼ fð y, zÞjðz2 þ j yj3Þ < ��24=5

g:

The second set has size

jA2j � ��4

and, if ð y, zÞ 2 A1, for fixed |z| 1/2��2, then y lies in an interval of size

�y � ��4z�2=3:

This implies Eq. (7.4), and hence the L4w estimate. The L1 and L8 estimate are simple

consequences. œ

8. THE REMAINING CASES

The classification of third order polynomials has led to the list (3.8)–(3.11). Wehave seen that there are explicit formulas for the oscillatory integrals of Sec. 2 for pas in Eqs. (3.10) and (3.11). The polynomial in list (3.9) have been studied above.It remains to study the oscillatory integrals with p in the list (3.8).

A. The case pð�Þ ¼ 1=6�31 � 1=2�1�22 þ 1=2ð�21 þ �

22Þ: This is a second order

perturbation of Eq. (5.4). The second order term changes the long term asymptotics.

1966 Ben-Artzi, Koch, and Saut

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

+ [29.8.2003–10:16am] [1943–1974] [Page No. 1966] F:/MDI/Pde/28(11&12)/120025491_PDE_028_011-012_R1.3d Communications in Partial Differential Equations (PDE)

120025491_PDE28_11-12_R1_082903

Page 25: Dispersion Estimates for Third Order Equations in Two Dimensionsmath.huji.ac.il/~mbartzi/recent-publications/120025491... · 2007-11-11 · (1.3), see Ghidaglia and Saut (1993). The

The degenerate singularity of the previous example is broke up into three cusps,see Fig. 1 (c) for S and the null space D2

�p and (d) for the image of �rp|s andcloseby lines.

We begin with a discussion of the mapping properties of � ! rp and of degen-erate points. We have detðD2

�pÞ ¼ 1� j�j2, which vanishes on the circle of radius 1.There are three points where the kernal of D2

�p is tangent to that curve. Those are themost degenerate sets. They are mapped to three points (�1, 0), ð1=2,

ffiffiffi3

p=2Þ, and

ð1=2, �ffiffiffi3

p=2Þby � ! �rp in the x space, which are connected through the image

of the arcs of the circle. Every point outside has two preimages (by mapping degreearguments) and every point inside has four preimages. The map of the circle to thatcurve is a homeomorphism. This is discussed in detail in Arnol’d et al. (1985).

Suppose that |x|/t� 3. Let � 2 C10 ðR

2Þ, �ð�Þ ¼ 1 for |�|� 10 and

It,�ðxÞ ¼

Z�ð�Þeitpð�Þþx�� d�:

Then by Theorem 7.5

kIt,�kL1 � cð1þ tÞ�3=4

and

kIt,�kL4!� cð1þ tÞ�1=2:

−1.5 −1 −0.5 0 0.5 1 1.5−1.5

−1

−0.5

0

0.5

1

1.5

xi

XI

Figure 1ðcÞ. The set S and the kernel of D2�p:

Dispersion Estimates for Third Order Equations 1967

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

+ [29.8.2003–10:16am] [1943–1974] [Page No. 1967] F:/MDI/Pde/28(11&12)/120025491_PDE_028_011-012_R1.3d Communications in Partial Differential Equations (PDE)

120025491_PDE28_11-12_R1_082903

Page 26: Dispersion Estimates for Third Order Equations in Two Dimensionsmath.huji.ac.il/~mbartzi/recent-publications/120025491... · 2007-11-11 · (1.3), see Ghidaglia and Saut (1993). The

We claim that for the points x under considerationZð1� �ð�ÞÞeitpð�Þþx�� d�

�������� � ct�N :

Indeed, let (�) be supported in B(0, 20) and (�)¼ 1 for |�|� 10. We define

� ¼ ð1� ð�ÞÞrpð�Þ

1þ j�j

and deform the contour of integration. We decompose the integral into one where wemultiply the integrand by (./2) and one where we multiply it with 1� (./2). Thereis no critical point of the phase function in the support of the amplitude. Hence thisintegral decays fast. The other integrand is bounded by

ce�tðj�jþ1Þ

which decays exponentially in t.If |x|/ 3 we use the same arguments as in the previous section, replacing

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffix1 þ ix2

pby the roots of rp(�)¼�x/t. Here we mix real and complex notation.

We collect all estimates:

Proposition 8.1. The following estimates hold:

jItðxÞj � cminft�3=4, t�2=3g,

jrxItðxÞj � cmax½t�1, t�3=4g:

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5

−2

−1.5

1

−0.5

0

0.5

1

1.5

2

x

y

Figure 1ðd Þ. The image under S 3 �! �rpð�Þ:

1968 Ben-Artzi, Koch, and Saut

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

+ [29.8.2003–10:16am] [1943–1974] [Page No. 1968] F:/MDI/Pde/28(11&12)/120025491_PDE_028_011-012_R1.3d Communications in Partial Differential Equations (PDE)

120025491_PDE28_11-12_R1_082903

Page 27: Dispersion Estimates for Third Order Equations in Two Dimensionsmath.huji.ac.il/~mbartzi/recent-publications/120025491... · 2007-11-11 · (1.3), see Ghidaglia and Saut (1993). The

If |x|/t 3 then

jItðxÞj � ct�1=2jxj�1=2:

We have

kItkL4w� ct�ð1=2Þ:

Theorem 8.2. Part 1 of Theorem 5.6 holds here. Moreover

kruðtÞkL1 � cðjtj�1þ jtj�3=4

Þkuð0ÞkL1 :

B. The polynomial ð1=6Þð�31 þ �32Þ þ �1�2. This is a second order perturbation of

ð1=6Þ�31 þ ð1=6Þ�22. The second order terms lead to a cusp, see Fig. 1(e) and 1(f ).

ItðxÞ ¼1

2�

Zeitðð1=6Þ�

31þð1=6Þ�32þ�1�2Þþix� d�:

The map � ! rpð�Þ is degenerate at the hyperbola, �1�2¼ 1. The kernel of D2�p is

tangential to the hyperbola only at (1, 1). The hyperbola is mapped to two curves inthe x space with a singularity at (�1.5,�1.5). We denote these curves by ��.

−5 −4 −3 −2 −1 0 1 2 3 4 5−5

−4

−3

−2

−1

0

1

2

3

4

5

xi

XI

Figure 1ðeÞ. The set S and the kernel of D2�p.

Dispersion Estimates for Third Order Equations 1969

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

+ [29.8.2003–10:16am] [1943–1974] [Page No. 1969] F:/MDI/Pde/28(11&12)/120025491_PDE_028_011-012_R1.3d Communications in Partial Differential Equations (PDE)

120025491_PDE28_11-12_R1_082903

Page 28: Dispersion Estimates for Third Order Equations in Two Dimensionsmath.huji.ac.il/~mbartzi/recent-publications/120025491... · 2007-11-11 · (1.3), see Ghidaglia and Saut (1993). The

Proposition 8.3. The following estimates hold:

kItkL1 � cminft�2=3, t�3=4g:

Moreover, for all p>4

kItkLp � ct�ð2=3Þþ2=3p:

Proof. We consider first the case |x|/t� 5. Then

It,�ðxÞ ¼1

2�

Z�ð�Þeitðð1=6Þ�

31þð1=6Þ�32þ�1�2Þþix� d�

is controlled by Theorem 7.5. Now

1

2�

Zð1� �ð�ÞÞeitðð1=6Þ�

31þð1=6Þ�32þ�1�2Þþix�d�

¼ �1

2�t

Zeitðð1=6Þ�

31þð1=6Þ�32þ�1�2Þþix�

r �ð1� �ð�ÞÞð�21, �

22Þ

12�41 þ

12�42 þ �1�

22 ¼ �2�

21 þ x1�

11 þ x2�

22

d�:

It is not hard to see that the integrand is integrable, which yields the decay t�1.The argument could be iterated to yield cNt

�N. For t� 1 we apply a similarargument, but with cutoff function

�ð�Þ ¼ �ð�t1=3Þ:

−6 −4 −2 0 2 4

−6

−4

−2

0

2

4

x

y

Figure 1ðf Þ. The image under S 3 �! �rpð�Þ.

1970 Ben-Artzi, Koch, and Saut

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

+ [29.8.2003–10:16am] [1943–1974] [Page No. 1970] F:/MDI/Pde/28(11&12)/120025491_PDE_028_011-012_R1.3d Communications in Partial Differential Equations (PDE)

120025491_PDE28_11-12_R1_082903

Page 29: Dispersion Estimates for Third Order Equations in Two Dimensionsmath.huji.ac.il/~mbartzi/recent-publications/120025491... · 2007-11-11 · (1.3), see Ghidaglia and Saut (1993). The

Then the argument gives

jI j � ct�2=3:

It remains to study the decay if |x| 5t. We may assume that |x1| |x2|.Let R¼ |x|/t, y¼ x/R, � ¼ �=

ffiffiffiffiR

p. Then it suffices to consider

It,�ðxÞ ¼ R

Z�ð�ÞeitR

3=2ð�31þ�

22þR�1=2�1�2þy��Þ d�

since the integral with amplitude 1� �ð�Þ can be estimated by cjxj�1=2t�1=2 by thesame arguments as above. The estimate follows now from Theorem 7.5 by a tediouscomputation. œ

Theorem 8.4. The estimate

kuðtÞkLq � ct�ð2=3Þð1=p�1=qÞkuð0ÞkLp

holds for p and q satisfying the strict inequalities of Theorem 5.6.

9. STRICHARTZ ESTIMATES AND CONSEQUENCES

The (local) Strichartz estimates follow by standard arguments (complex inter-polation, TT * arguments and the Hardy-Littlewood-Sobolev inequality) from thelocal estimate

jItðxÞj � ct�� for x 2 R2, t 2 ð0,T : ð9:1Þ

A pair (q, r) is admissible if (for Rn)

2 � r <1,1

q¼ �

1

2�1

r

� �:

If � denotes the operator

�ð f ÞðtÞ ¼

Z t

0

Sðt� sÞ f ðsÞ ds for 0 < t � T

then for any admissible pairs (q, r) and ð �qq, �rrÞ one has

sup0<t�T

k�f ðtÞkL2 þ k�f kLqð½0,T ;LrðR2ÞÞ � ck f kL �qq0 ð½0,T ;L�rr0 ðR2ÞÞ

where �qq0 and �rr0 are the Holder conjugate exponents of �qq and �rr, and

kSð�Þ�kLqð½0,T ;LrðR2ÞÞÞ � ck�kL2ðR2Þ:

For instance estimate (9.1) holds with �¼ 2/3 if p(�) is one of the followingpolynomials

1

6�31 �

1

2�1�

22,

1

6ð�31 þ �

32Þ,

1

6�31 �

1

2�1�

22 þ

1

2ð�21 þ �

22Þ,

1

6ð�31 þ �

32Þ þ �1�2: ð9:2Þ

Dispersion Estimates for Third Order Equations 1971

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

+ [29.8.2003–10:16am] [1943–1974] [Page No. 1971] F:/MDI/Pde/28(11&12)/120025491_PDE_028_011-012_R1.3d Communications in Partial Differential Equations (PDE)

120025491_PDE28_11-12_R1_082903

Page 30: Dispersion Estimates for Third Order Equations in Two Dimensionsmath.huji.ac.il/~mbartzi/recent-publications/120025491... · 2007-11-11 · (1.3), see Ghidaglia and Saut (1993). The

It holds with �¼ 3/4 if pð�Þ ¼ ð1=2Þð�1�22 þ �

21Þ, with �¼ 5/6 if pð�Þ ¼ �31=6þ �

22 and

with �¼ 1 if pð�Þ ¼ ð1=6Þ�31 þ �1�2. For these polynomials we obtain the admissiblepairs and the corresponding Strichartz estimates by the procedure described above.

We now give a simple application of the Strichartz estimates to the Cauchyproblem for the Shrira system (1.3). A partial result has been obtained in Ghidagliaand Saut (1993). The idea was to use the conservation laws (see Proposition 3.6in Ghidaglia and Saut (1993))

d

dt

ZR

2jAj2 dx dz ¼ 0 and

d

dt

ZR

2jAsj

2 dx dz ¼ 0

together with the Strichartz estimates.In Ghidaglia and Saut (1993) only two very special cases were considered,

corresponding to

pð�Þ ¼ �31 þ �32, and pð�Þ ¼

1

6�31 þ

1

2�22:

We obtain

Theorem 9.1. Let

L ¼!kk

2

@2

@x2þ !nn

@2

@z2þ!nk

2

@2

@x@z

� i!kkk

6

@3

@x3þ!kkn

2

@3

@x2@zþ!knn

2

@3

@x@z2þ!nnn

6

@3

@z3

" #

and assume that the symbol is equivalent to a phase p with � 2/3.Then, if A0 2 L2

ðR2Þ and @sA0 2 L2

ðR2Þ there exists a unique solution of Eq. (1.3)

with initial data A0 linear part L such that

A 2 CðRþ;L2ðR

2ÞÞ \ L�locðR

þ,L6ðR

2ÞÞ;

@A

@s2 CðRþ;L

2ðR

2ÞÞ,

where

� ¼9

2if � ¼

2

3, � ¼

18

5if � ¼

5

6, � ¼ 4 if � ¼

3

4, � ¼ 3 if � ¼ 1: ð9:3Þ

Proof. It results immediately from the proof of Theorem 3.8 in Ghidaglia and Saut(1993) by using the Strichartz estimates explained above. œ

Remark 9.2. A straight forward calculation shows that the second order part of J is

ð!kkk!knn � !2kknÞ�

21 þ ð!kkk!nnn � !kkn!knnÞ�1�2 þ ð!knn!nnn � !

2knn�

22:

1972 Ben-Artzi, Koch, and Saut

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

+ [29.8.2003–10:16am] [1943–1974] [Page No. 1972] F:/MDI/Pde/28(11&12)/120025491_PDE_028_011-012_R1.3d Communications in Partial Differential Equations (PDE)

120025491_PDE28_11-12_R1_082903

Page 31: Dispersion Estimates for Third Order Equations in Two Dimensionsmath.huji.ac.il/~mbartzi/recent-publications/120025491... · 2007-11-11 · (1.3), see Ghidaglia and Saut (1993). The

This is a quadratic form with determinant

D ¼ ð!kkk!knn � !2kknÞð!knn!nnn � !

2knnÞ � ð!kkk!nnn � !kkn!knnÞ:

The number D is a function of �. If D 6¼ 0 then the polynomial is equivalent toone of the four polynomial with �¼ 2/3. Numerically one sees that there are twoangles (<�/2) where D vanishes: � ¼ 0, and � � 7:405. In both cases the normalform for the polynomial is

1

2ð�21 þ �1�

22Þ:

Thus we obtain global existence for all cases of the Shrira system.

ACKNOWLEDGMENT

The work of M. Ben-Artzi was partially supported by a grant from the IsraelScience Foundation – Basic research.

REFERENCES

Arnold, V. I., Afrajmovich, V. S., Il’yashenko, Yu. S., Shil’nikov, L. P. (1999).Bifurcation Theory and Catastrophe Theory. Berlin: Springer-Verlag.

Arnol’d, V. I., Gusejn-Zade, S. M., Varchenko, A. N. (1985). Singularities ofdifferentiable maps. volume I: the classification of critical points, caustics andwave fronts. Arnol’d, V. I., ed. Transl. from the Russian by Ian Porteous, volume82 of Monographs in Mathematics. Boston-Basel-Stuttgart: Birkhaeuser.

de Bouard, A. (1993). Analytic solutions to nonelliptic nonlinear Schroedingerequations. J. Differ. Equations 104(1):196–213.

Duistermaat, J. J. (1974). Oscillatory integrals, Lagrange immersions and unfoldingof singularities. Comm. Pure. Appl. Math 27:207–281.

Dysthe, K. B. (1979). Note on a modification to the nonlinear Schrodinger equationfor applications to deep water waves. Proc. R. Soc. Lond. A 369:105–114.

Dzhuraev, T. D., Popelek, Ya. (1989). Canonical forms of third-order partialdifferential equations. Uspekhi Mat. Nauk 44(4(268)):237–238.

Dzhuraev, T. D., Popelek, Ya. (1991). Classification and reduction to canonicalform of third-order partial differential equations. Differentsial nye Uravneniya27(10):1734–1745, 1836.

Fedoryuk, M.V. (1977). The Saddle-Point Method. (Metod Perevala). Moskva:‘‘Nauka’’. 368 p. R. 1.70.

Ghidaglia, J.-M., Saut, J.-C. (1993). Nonelliptic Schroedinger equations. J.Nonlinear Sci. 3(2):169–195.

Hara, T., Mei, C. C. (1994). Wind effects on the nonlinear evolution of slowlyvarying gravity-capillary waves. J. Fluid Mech. 267:221–250.

Dispersion Estimates for Third Order Equations 1973

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

+ [29.8.2003–10:16am] [1943–1974] [Page No. 1973] F:/MDI/Pde/28(11&12)/120025491_PDE_028_011-012_R1.3d Communications in Partial Differential Equations (PDE)

120025491_PDE28_11-12_R1_082903

Page 32: Dispersion Estimates for Third Order Equations in Two Dimensionsmath.huji.ac.il/~mbartzi/recent-publications/120025491... · 2007-11-11 · (1.3), see Ghidaglia and Saut (1993). The

Hogan, S. J. (1985). The fourth-order evolution equation for deep-water gravity-capillary waves. Proc. R. Soc. Lond. A 405:359–372.

Hormander, L. (1983). The analysis of linear partial differential operators I, volume256 of Grundlehren der mathematischen Wissenschaften. Springer Verlag.

Lo, E., Mei, C. C. (1985). A numerical study of water-wave modulation based onhigher-order nonlinear Schrodinger equations. J. Fluid Mech. 150:395–416.

John N. Mather (1968). Stability of C1 mappings. I. The division theorem. Ann. ofMath. (2), 87:89–104.

John N. Mather (1969). Stability of C1 mappings. II. Infinitesimal stability impliesstability. Ann. of Math. (2), 89:254–291.

Pearcey, T. (1946). The structure of an electromagnetic field in the neighborhood ofa cusp of the caustic. Phil. Mag. 37:311–317.

Shrira, V. I. (1981). On the propagation of three-dimensional packet of weaklynonlinear internal gravity waves. Int. J. Nonlinear Mechanics 16(2):129–138.

Stein, E. M. (1993). Harmonic Analysis. Volume 43 of Princeton MathematicalSeries. Princeton University Press.

Stein, E.M., Weiss, G. (1971). Introduction to Fourier Analysis in Euclidean Spaces.Volume 32 of Princeton Mathematical Series. Princeton University Press.

Zakharov, V. E. (1968). Stability of periodic waves of finite amplitude on the surfaceof a deep fluid. J. Appl. Mech. Tech. Phys. 9:86–94.

Zozulya, A. A., Diddams, S. A., Van Engen, A. G., Clement, T. S. (1999).Propagation dynamics of intense femtosecond pulses: multiple splittings,coalescense and continuum generation. Phys. Rev. Lett. 82(7):1430–1439.

Received July 2002Revised May 2003

1974 Ben-Artzi, Koch, and Saut

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

+ [29.8.2003–10:16am] [1943–1974] [Page No. 1974] F:/MDI/Pde/28(11&12)/120025491_PDE_028_011-012_R1.3d Communications in Partial Differential Equations (PDE)

120025491_PDE28_11-12_R1_082903