e cient adaptive covariate modelling for extremes

26
Efficient adaptive covariate modelling for extremes Slides at www.lancs.ac.uk/jonathan Matthew Jones, David Randell, Emma Ross, Elena Zanini, Philip Jonathan Copyright of Shell December 2018 1 / 23

Upload: others

Post on 29-Dec-2021

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: E cient adaptive covariate modelling for extremes

Efficient adaptive covariate modelling for extremes

Slides at www.lancs.ac.uk/∼jonathan

Matthew Jones, David Randell, Emma Ross, Elena Zanini, Philip Jonathan

Copyright of Shell December 2018 1 / 23

Page 2: E cient adaptive covariate modelling for extremes

Structural damage

Ike, Gulf of Mexico, 2008 (Joe Richard) North Sea, Winter 2015-16 (The Inertia)

Copyright of Shell December 2018 2 / 23

Page 3: E cient adaptive covariate modelling for extremes

Motivation

Rational and consistent design and assessment of marine structures

Reduce bias and uncertainty in estimation of structural integrityQuantify uncertainty as well as possible

Non-stationary marginal, conditional, spatial and temporal extremes

Multiple locations, multiple variables, time-seriesMultidimensional covariates

Improved understanding and communication of risk

Incorporation within established engineering design practicesKnock-on effects of improved inference

The ocean environment is an amazing thing to study ... especially if you like tocombine beautiful physics, measurement and statistical modelling!

Copyright of Shell December 2018 3 / 23

Page 4: E cient adaptive covariate modelling for extremes

Fundamentals

Environmental extremes vary smoothly with multidimensional covariates

Model parameters are non-stationary

Environmental extremes exhibit spatial and temporal dependence

Characterise these appropriately

Uncertainty quantification for whole inference

Data acquisition (simulator or measurement)Data pre-processing (storm peak identification)Hyper-parameters (extreme value threshold)Model form (marginal measurement scale effect, spatial extremal dependence)

Statistical and computational efficiency

Slick algorithmsParallel computationBayesian inference

Copyright of Shell December 2018 4 / 23

Page 5: E cient adaptive covariate modelling for extremes

A typical sampleTypical data for South China Sea location. Sea state (grey) and storm peak (black) HS on season and direction

Copyright of Shell December 2018 5 / 23

Page 6: E cient adaptive covariate modelling for extremes

Outline

Directional-seasonal covariate models for HspS

Introductory example using P-splines

Adaptive splines

Partition models

South China Sea example as “connecting theme”

Focus on the generalised Pareto (GP) inference

Copyright of Shell December 2018 6 / 23

Page 7: E cient adaptive covariate modelling for extremes

Simple gamma-GP model

Copyright of Shell December 2018 7 / 23

Page 8: E cient adaptive covariate modelling for extremes

Simple gamma-GP model

Sample of peaks over threshold y , with covariates θθ is 1D in motivating example : directionalθ is nD later : e.g. 4D spatio-directional-seasonal

Below threshold ψy follows truncated gamma with shape α, scale 1/βHessian for gamma better behaved than Weibull

Above ψy follows generalised Pareto with shape ξ, scale σ

ξ, σ, α, β, ψ all functions of θψ for pre-specified threshold probability τ

Generalise later to estimation of τ

Frigessi et al. [2002], Behrens et al. [2004], MacDonald et al. [2011]

Randell et al. [2016]

Copyright of Shell December 2018 8 / 23

Page 9: E cient adaptive covariate modelling for extremes

Simple gamma-GP model

Density is f (y |ξ, σ, α, β, ψ, τ)

=

τ × fTG (y |α, β, ψ) for y ≤ ψ(1− τ)× fGP(y |ξ, σ, ψ) for y > ψ

Likelihood is L(ξ, σ, α, β, ψ, τ |yini=1)

=∏

i :yi≤ψfTG (yi |α, β, ψ)

∏i :yi>ψ

fGP(yi |ξ, σ, ψ)

× τnB (1− τ)(1−nB) where nB =∑

i :yi≤ψ1.

Estimate all parameters as functions of θCopyright of Shell December 2018 9 / 23

Page 10: E cient adaptive covariate modelling for extremes

Standard P-spline model

Physical considerations suggest α, β, ρ, ξ, σ, ψ and τ vary smoothly withcovariates θ

Values of η ∈ α, β, ρ, ξ, σ, ψ, τ on some index set of covariates take the formη = Bβη

For nD covariates, B takes the form of tensor productBθn ⊗ ...⊗ Bθκ ⊗ ...⊗ Bθ2 ⊗ Bθ1

Spline roughness with respect to each covariate dimension κ given by quadraticform ληκβ

′ηκPηκβηκ

Pηκ is a function of stochastic roughness penalties δηκ

Brezger and Lang [2006]

Copyright of Shell December 2018 10 / 23

Page 11: E cient adaptive covariate modelling for extremes

P-splines

Kronecker productPeriodic P-splines

Copyright of Shell December 2018 11 / 23

Page 12: E cient adaptive covariate modelling for extremes

Priors and conditional structurePriors

density of βηκ ∝ exp

(−1

2ληκβ

′ηκPηκβηκ

)ληκ ∼ gamma

( and τ ∼ beta, when τ estimated )

Conditional structure

f (τ |y ,Ω \ τ) ∝ f (y |τ,Ω \ τ)× f (τ)

f (βη|y ,Ω \ βη) ∝ f (y |βη,Ω \ βη)× f (βη|δη,λη)

f (λη|y ,Ω \ λη) ∝ f (βη|δη,λη)× f (λη)

η ∈ Ω = α, β, ρ, ξ, σ, ψ, τCopyright of Shell December 2018 12 / 23

Page 13: E cient adaptive covariate modelling for extremes

Inference

Elements of βη highly interdependent, correlated proposals essential for goodmixing

“Stochastic analogues” of IRLS and back-fitting algorithms for maximumlikelihood optimisation used previously

Estimation of different penalty coefficients for each covariate dimension

Gibbs sampling when full conditionals available

Otherwise Metropolis-Hastings (MH) within Gibbs, using suitable proposalmechanisms, mMALA where possible

Roberts and Stramer [2002], Girolami and Calderhead [2011], Xifara et al. [2014]

Copyright of Shell December 2018 13 / 23

Page 14: E cient adaptive covariate modelling for extremes

p-splines: GP parameter estimates

0 90 180 270 360

Direction

0

90

180

270

360

Sea

son

Prediction

-0.24

-0.23

-0.22

-0.21

-0.2

-0.19

-0.18

-0.17

-0.16

-0.15

med

ian

post

erio

r

ξ

0 90 180 270 360

Direction

0

90

180

270

360

Sea

son

Prediction

0

0.1

0.2

0.3

0.4

0.5

0.6

med

ian

post

erio

r

σ

Copyright of Shell December 2018 14 / 23

Page 15: E cient adaptive covariate modelling for extremes

Inference with adaptive splines

Advantages

Arbitrary location of knots, andnumber of knots

Estimate number, location, coefficientof knots

Reversible-jump MCMC:

Birth-deathSplit-combine (local birth-death)Detailed balance

Biller [2000], Zhou and Shen [2001], DiMatteo et al. [2001], Wallstrom et al.[2008]

Copyright of Shell December 2018 15 / 23

Page 16: E cient adaptive covariate modelling for extremes

Inference with adaptive splines : e.g. birth-death

Copyright of Shell December 2018 16 / 23

Page 17: E cient adaptive covariate modelling for extremes

Inference with adaptive bases: birth-death

Acceptance probability

α(m′|m) = min

1,

f (m′)

f (m)× f (y |m′)

f (y |m)× q(m|m′)

q(m′|m)×∣∣∣∣∂m′∂m

∣∣∣∣

Dimension-jumping proposals: β1 (p-vector) → β2 ((p + 1)-vector)

η = B1β1 = B2β∗2

⇒ β∗2 =[(B ′2B2)−1B ′2B1

]β1 = Gβ1

β2 =

0

G...01

×[β1

u

]

u ∼ N(0, •)

Copyright of Shell December 2018 17 / 23

Page 18: E cient adaptive covariate modelling for extremes

Adaptive splines: GP parameter estimates

0 90 180 270 360

Direction

0

90

180

270

360

Sea

son

Prediction

-0.24

-0.23

-0.22

-0.21

-0.2

-0.19

-0.18

-0.17

-0.16

-0.15

med

ian

post

erio

r

ξ

0 90 180 270 360

Direction

0

90

180

270

360

Sea

son

Prediction

0

0.1

0.2

0.3

0.4

0.5

0.6

med

ian

post

erio

r

σ

Copyright of Shell December 2018 18 / 23

Page 19: E cient adaptive covariate modelling for extremes

Partition model

Pros & cons

Naturally local, nDPiecewise constant

Estimate

Number of cellsCentroid locationsCell coefficients

Reversible-jump MCMC

Birth-deathDetailed balance

Green [1995], Heikkinen and Arjas [1998], Denison et al. [2002], Costain [2008],Bodin and Sambridge [2009]

Copyright of Shell December 2018 19 / 23

Page 20: E cient adaptive covariate modelling for extremes

Partition model: GP parameter estimates

0 90 180 270 360

Direction

0

90

180

270

360

Sea

son

Prediction

-0.24

-0.23

-0.22

-0.21

-0.2

-0.19

-0.18

-0.17

-0.16

-0.15

med

ian

post

erio

r

ξ

0 90 180 270 360

Direction

0

90

180

270

360

Sea

son

Prediction

0

0.1

0.2

0.3

0.4

0.5

0.6

med

ian

post

erio

r

σ

Copyright of Shell December 2018 20 / 23

Page 21: E cient adaptive covariate modelling for extremes

Qualitative comparison of different estimatesP-splines: nξ = 6 × 6, nν = 6 × 6 Adaptive splines: nmo

ξ = 3 × 3, nmoν = 4 × 4 Partition: nmo

ξ = 1, nmoν = 7

0 90 180 270 360

Direction

0

90

180

270

360

Sea

son

Prediction

-0.24

-0.23

-0.22

-0.21

-0.2

-0.19

-0.18

-0.17

-0.16

-0.15

med

ian

post

erio

r

0 90 180 270 360

Direction

0

90

180

270

360

Sea

son

Prediction

0

0.1

0.2

0.3

0.4

0.5

0.6

med

ian

post

erio

r

0 90 180 270 360

Direction

0

90

180

270

360

Sea

son

Prediction

-0.24

-0.23

-0.22

-0.21

-0.2

-0.19

-0.18

-0.17

-0.16

-0.15

med

ian

post

erio

r

0 90 180 270 360

Direction

0

90

180

270

360

Sea

son

Prediction

0

0.1

0.2

0.3

0.4

0.5

0.6

med

ian

post

erio

r

0 90 180 270 360

Direction

0

90

180

270

360

Sea

son

Prediction

-0.24

-0.23

-0.22

-0.21

-0.2

-0.19

-0.18

-0.17

-0.16

-0.15

med

ian

post

erio

r

0 90 180 270 360

Direction

0

90

180

270

360

Sea

son

Prediction

0

0.1

0.2

0.3

0.4

0.5

0.6

med

ian

post

erio

r

Copyright of Shell December 2018 21 / 23

Page 22: E cient adaptive covariate modelling for extremes

Summary

Covariate effects important in environmental extremes

Need to tackle big problems ⇒ need efficient models

Need to provide solutions as “end-user” software ⇒ stable inference

P-splines: straightforward, global roughness per dimension

Adaptive splines: optimally-placed knots

All splines: nD basis is tensor product of marginal bases

Partition: piecewise constant, naturally nD

Partition mixture model

Combinations useful

Conditional, spatial and temporal extremes

Copyright of Shell December 2018 22 / 23

Page 23: E cient adaptive covariate modelling for extremes

References

C N Behrens, H F Lopes, and D Gamerman. Bayesian analysis of extreme events with threshold estimation. Stat. Modelling, 4:227–244, 2004.

C. Biller. Adaptive bayesian regression splines in semiparametric generalized linear models. J. Comput. Graph. Statist., 9:122–140, 2000.

Thomas Bodin and Malcolm Sambridge. Seismic tomography with the reversible jump algorithm. Geophysical Journal International, 178:1411–1436, 2009.

A. Brezger and S. Lang. Generalized structured additive regression based on Bayesian P-splines. Comput. Statist. Data Anal., 50:967–991, 2006.

D. A. Costain. Bayesian partitioning for modeling and mapping spatial case?control data. Biometrics, 65:1123–1132, 2008.

D. G. T. Denison, N. M. Adams, C. C. Holmes, and D. J. Hand. Bayesian partition modelling. Comput. Stat. Data Anal., 38:475–485, 2002.

I. DiMatteo, C. R. Genovese, and R. E. Kass. Bayesian curve-fitting with free-knot splines. Biometrika, 88:1055–1071, 2001.

A. Frigessi, O. Haug, and H. Rue. A dynamic mixture model for unsupervised tail estimation without threshold selection. Extremes, 5:219–235, 2002.

M. Girolami and B. Calderhead. Riemann manifold Langevin and Hamiltonian Monte Carlo methods. J. Roy. Statist. Soc. B, 73:123–214, 2011.

P.J. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82:711–732, 1995.

Juha Heikkinen and Elja Arjas. Non-parametric bayesian estimation of a spatial poisson intensity. Scand. J. Stat., 25:435–450, 1998.

A. MacDonald, C. J. Scarrott, D. Lee, B. Darlow, M. Reale, and G. Russell. A flexible extreme value mixture model. Comput. Statist. Data Anal., 55:2137–2157, 2011.

D. Randell, K. Turnbull, K. Ewans, and P. Jonathan. Bayesian inference for non-stationary marginal extremes. Environmetrics, 27:439–450, 2016.

G. O. Roberts and O. Stramer. Langevin diffusions and Metropolis-Hastings algorithms. Methodology and Computing in Applied Probability, 4:337–358, 2002.

G. Wallstrom, J. Liebner, and R. E. Kass. An implementation of Bayesian adaptive regression splines (BARS) in C with S and R wrappers. Journal of Statistical Software, 26, 2008.

T. Xifara, C. Sherlock, S. Livingstone, S. Byrne, and M Girolami. Langevin diffusions and the Metropolis-adjusted Langevin algorithm. Stat. Probabil. Lett., 91(2002):14–19, 2014.

S. Zhou and X. Shen. Spatially adaptive regression splines and accurate knot selection schemes. J. Am. Statist. Soc., 96:247–259, 2001.

Copyright of Shell December 2018 23 / 23

Page 24: E cient adaptive covariate modelling for extremes

Supporting material

Copyright of Shell December 2018 1 / 3

Page 25: E cient adaptive covariate modelling for extremes

Partition model: ψ

0 90 180 270 360

Direction

0

90

180

270

360

Sea

son

Threshold

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Thr

esho

ld

Copyright of Shell December 2018 2 / 3

Page 26: E cient adaptive covariate modelling for extremes

Partition model: ξ and ν traces

0 1000 2000 3000 4000 50000

2

4

6

8

10

k (#

cen

troi

ds)

basis trace plots

0 5 100

0.1

0.2

0.3

0.4

k (#

cen

troi

ds)

basis trace plots

0 1000 2000 3000 4000 50000

100

200

300

400

Loc

(dim

1)

0 100 200 3000

0.2

0.4

0.6

0.8

1

Loc

(dim

1)

10-4

0 1000 2000 3000 4000 50000

100

200

300

400

Loc

(dim

2)

0 100 200 300iteration

0

0.5

1

1.5

Loc

(dim

2)

10-4

0 1000 2000 3000 4000 50005

10

15

k (#

cen

troi

ds)

basis trace plots

5 10 150

0.05

0.1

0.15

0.2

k (#

cen

troi

ds)

basis trace plots

0 1000 2000 3000 4000 50000

100

200

300

400

Loc

(dim

1)

0 100 200 3000

2

4

6

Loc

(dim

1)

10-4

0 1000 2000 3000 4000 50000

100

200

300

400

Loc

(dim

2)

0 100 200 300iteration

0

2

4

6

8

Loc

(dim

2)

10-4

Copyright of Shell December 2018 3 / 3