ece 330 power circuits and electromechanics lecture …

18
Copyright © 2017 Hassan Sowidan ECE 330 POWER CIRCUITS AND ELECTROMECHANICS LECTURE 20 STABILITY OF ELECTROMECHANICAL SYSTEMS Acknowledgment-These handouts and lecture notes given in class are based on material from Prof. Peter Sauer’s ECE 330 lecture notes. Some slides are taken from Ali Bazi’s presentations Disclaimer- These handouts only provide highlights and should not be used to replace the course textbook. 11/6/2017

Upload: others

Post on 03-Apr-2022

12 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ECE 330 POWER CIRCUITS AND ELECTROMECHANICS LECTURE …

Copyright © 2017 Hassan Sowidan

ECE 330

POWER CIRCUITS AND ELECTROMECHANICS

LECTURE 20

STABILITY OF ELECTROMECHANICAL

SYSTEMS

Acknowledgment-These handouts and lecture notes given in class are based on material from Prof. Peter

Sauer’s ECE 330 lecture notes. Some slides are taken from Ali Bazi’s presentations

Disclaimer- These handouts only provide highlights and should not be used to replace the course textbook.

11/6/2017

Page 2: ECE 330 POWER CIRCUITS AND ELECTROMECHANICS LECTURE …

Copyright © 2017 Hassan Sowidan

LINEARIZATION

• When we write the equations on the electrical and

mechanical side, we have complete dynamic

description of the system.

• Then we put them in the state space form as a set of

first-order equations for analysis

• Setting , we get the algebraic equations

, which may have several solutions

called static equilibrium solutions.

( , )x f x u

11/6/2017 2

0x

ˆ0 ( , )f x u

1 2, ,....e ex x

Page 3: ECE 330 POWER CIRCUITS AND ELECTROMECHANICS LECTURE …

Copyright © 2017 Hassan Sowidan

LINEARIZATION

• By integrating , we can obtain

the time domain response.

• a linearized analysis is helpful to determine if the

equilibrium point is stable or not by merely

computing the eigenvalues of a matrix.

• For large disturbances, a direct method using energy

functions can in some cases be used to assess

stability without time-domain simulations

( , )x f x u

11/6/2017 3

0(0)x x

Page 4: ECE 330 POWER CIRCUITS AND ELECTROMECHANICS LECTURE …

Copyright © 2017 Hassan Sowidan

LINEAR CIRCUIT MODELING

FIRST-ORDER EXAMPLE

• The circuit differential equation is:

• State space form

Solution:

11/6/2017 4

R

EL

t=0 +

V

-

i

1di Ri v

dt L L

( ) t

ssi t ae i

div i R L

dt

(0) 0, (0) 0 0, 0i v for t v E for t

Page 5: ECE 330 POWER CIRCUITS AND ELECTROMECHANICS LECTURE …

Copyright © 2017 Hassan Sowidan

FIRST-ORDER EXAMPLE

• DC steady state (equilibrium):

,

• How to solve for λ (eigenvalue)?

• How do we solve for a ? By using initial condition.

11/6/2017 5

10

Ri E

L L

| | | | | |R R R

A I I AL L L

ss

Ei

R

(0) 0

( )R

tL

E Ei a a

R R

E Ei t e

R R

Page 6: ECE 330 POWER CIRCUITS AND ELECTROMECHANICS LECTURE …

Copyright © 2017 Hassan Sowidan

SECOND-ORDER EXAMPLE

• The circuit differential equations are:

,

11/6/2017 6

R

EL

t=0 + v -i

C

1 1

1

di Ri v E

dt L L L

dvi

dt C

0

(0) 0

(0)

i

v V

diE i R L v

dt

dvi

dt

Page 7: ECE 330 POWER CIRCUITS AND ELECTROMECHANICS LECTURE …

Copyright © 2017 Hassan Sowidan

SECOND-ORDER EXAMPLE

Then,

The solutions become:

The system is stable if Re{λ1, λ2}<0

11/6/2017 7

11

100

di R

idt L LEL

dv v

Cdt

1 2

1 2

( )

( )

t t

ss

t t

ss

i t ae be i

v t ce be v

Page 8: ECE 330 POWER CIRCUITS AND ELECTROMECHANICS LECTURE …

Copyright © 2017 Hassan Sowidan

SECOND-ORDER EXAMPLE

At equilibrium:

Finding the eigenvalues:

The eigenvalues are stable since the real part is <0.

11/6/2017 8

1 1 10 , 0

Ri v E i

L L L C

0,ss ssi v E

2

1

1| | 0

1

R

RL LI A

L LC

C

2

1,2

1 4

2 2

R R

L L LC

Page 9: ECE 330 POWER CIRCUITS AND ELECTROMECHANICS LECTURE …

Copyright © 2017 Hassan Sowidan

SECOND-ORDER EXAMPLE

Solve the following equations to find a, b, c, and d

,

11/6/2017 9

1 2

0

1 2

0

1 1(0) (0)

1(0)

di Ri v E a b

dt L L L

dvi c d

dt C

01 2

01 1 a

VEb

L L

0

1 2

1 1

0

c V E

d

00 : (0),At t a b i c d E

Page 10: ECE 330 POWER CIRCUITS AND ELECTROMECHANICS LECTURE …

Copyright © 2017 Hassan Sowidan

LINEARIZATION

A nonlinear system can be expressed as:

The power system may be subjected to small

disturbances which may lead to oscillations of power

in transmission lines. If not properly damped it may

lead to cascading outages and major disturbances

(faults).

( , )x f x u

11/6/2017 10

Page 11: ECE 330 POWER CIRCUITS AND ELECTROMECHANICS LECTURE …

Copyright © 2017 Hassan Sowidan

LINEARIZATION

• Linearization is applied around an equilibrium point

x e and an input .

• For a scalar x and u , the Taylor series expansion is:

ˆ

ex x x

u u u

u

ˆ ˆ( , ) ( , ) ( ) ( ) . . .e e

e e

x x

f ff x u f x u x x u u h o t

x u

ˆ. ., ,ei e x x x and u u u

11/6/2017 11

Page 12: ECE 330 POWER CIRCUITS AND ELECTROMECHANICS LECTURE …

Copyright © 2017 Hassan Sowidan

LINEARIZATION

• Then,

• For a second-order system:

e ex x

f fx x u

x u

1 1 1 2( , , )x f x x u

2 2 1 2( , , )x f x x u

1 1 1 2 2 2ˆ, , .e eLet x x x x x x u u u

11/6/2017 12

Page 13: ECE 330 POWER CIRCUITS AND ELECTROMECHANICS LECTURE …

Copyright © 2017 Hassan Sowidan

LINEARIZATION

• Linearizing around the equilibrium point, we get:

• For an n th- order system, a similar approach is

followed.

1 1 1

1 21 1

2 2 22 2

1 2

e e e

ee e

x x x

xx x

f f f

x x ux xu

x x ff f

ux x

11/6/2017 13

Page 14: ECE 330 POWER CIRCUITS AND ELECTROMECHANICS LECTURE …

Copyright © 2017 Hassan Sowidan

LINEARIZATION

• The eigenvalues of A determine the stability for

small disturbances around the equilibrium point, and

obtained by solving for .

• If all the eigenvalues lie in the left-half plane (i.e.,

real parts < 0 ), we say the system is stable. If an

eigenvalue lies in right-half plane, then the system is

unstable. If a pair of complex eigenvalues lies on the

imaginary axis, the system is marginally stable.

[ ] =| |= 0det A I A I

11/6/2017 14

Page 15: ECE 330 POWER CIRCUITS AND ELECTROMECHANICS LECTURE …

Copyright © 2017 Hassan Sowidan

EXAMPLE 1

• Linearize the following nonlinear system:

• X2e = 0, x1

e = sin-1(0.866) = 60o, 120o, etc. ; and:

• Eq. pt. 1: Unstable Eq. pt. 2: Stable

1 2

2 1 2sin( ) 0.866

x x

x x x

1 1

2 1 2

0 1

cos( ) 1

x x

x x x

1

1 2

10 1

, 1cos( ) 1 1

2

0.366 0, 1.366 0

A A Ix

1 2

1

11

2

0.5 0.5 , 0.5 0.5

A I

j j

11/6/2017 15

Page 16: ECE 330 POWER CIRCUITS AND ELECTROMECHANICS LECTURE …

Copyright © 2017 Hassan Sowidan

EXAMPLE 2

• Linearize the following nonlinear system:

• Equilibrium points

Linearization

1 2

2 1 26sin 4 3

x x

x x x

2

1

0

0 6sin 3

e

e

x

x

2

1

1

0

sin 0.5

5,

6 6

e

e

x

x

1 2

2 1 2( 6sin ) 4e

x x

x x x x

11/6/2017 16

Page 17: ECE 330 POWER CIRCUITS AND ELECTROMECHANICS LECTURE …

Copyright © 2017 Hassan Sowidan

EXAMPLE 2

Compute eigenvalues

Characteristic equation

0 1

6cos( ) 4eA

x

21

4 6cos6cos 4

e

eA I x

x

2 4 6cos 0ex

11/6/2017 17

Page 18: ECE 330 POWER CIRCUITS AND ELECTROMECHANICS LECTURE …

Copyright © 2017 Hassan Sowidan

EXAMPLE 2

Check stability of two equilibrium points:

1- 2-

24 14 24cos

2 2

ex

1 2, 06

e ex x

12 16 24cos

2 6

52

2j stable

1 2

5, 0

6

e ex x

1 52 16 24cos

2 6

382

2j unstable

11/6/2017 18