ee415 vlsi design. read 4.1, 4.2 combinational logic

24
EE415 VLSI Design

Upload: gervase-james

Post on 18-Jan-2018

228 views

Category:

Documents


0 download

DESCRIPTION

EE415 VLSI Design Example Gate: COMPLEX CMOS GATE

TRANSCRIPT

Page 1: EE415 VLSI Design. Read 4.1, 4.2 COMBINATIONAL LOGIC

EE415 VLSI Design

Page 2: EE415 VLSI Design. Read 4.1, 4.2 COMBINATIONAL LOGIC

EE415 VLSI Design

Read 4.1, 4.2

COMBINATIONAL LOGIC

Page 3: EE415 VLSI Design. Read 4.1, 4.2 COMBINATIONAL LOGIC

EE415 VLSI Design

Example Gate: COMPLEX CMOS GATE

VDD

AB

C

D

DA

B C

OUT = D + A• (B+C)

Page 4: EE415 VLSI Design. Read 4.1, 4.2 COMBINATIONAL LOGIC

EE415 VLSI Design

Propagation Delay Analysis - The Switch Model

VDDVDDVDD

CL

F CL

CL

F

F

RpRp Rp Rp

Rp

Rn

Rn

Rn Rn Rn

AA

A

AA

A

B B

B

B

(a) Inverter (b) 2-input NAND (c) 2-input NOR

tp = 0.69 Ron CL

(assuming that CL dominates!)

= RON

Page 5: EE415 VLSI Design. Read 4.1, 4.2 COMBINATIONAL LOGIC

EE415 VLSI Design

Analysis of Propagation DelayVDD

CL

F

Rp Rp

Rn

Rn

A

A B

B

2-input NAND

1. Assume Rn=Rp= resistance of minimum sized NMOS inverter

2. Determine “Worst Case Input” transition(Delay depends on input values)

3. Example: tpLH for 2input NAND- Worst case when only ONE PMOS Pulls

up the output node- For 2 PMOS devices in parallel, the

resistance is lower

4. Example: tpHL for 2input NAND- Worst case : TWO NMOS in series

tpLH = 0.69RpCL

tpHL = 0.69(2Rn)CL

Page 6: EE415 VLSI Design. Read 4.1, 4.2 COMBINATIONAL LOGIC

EE415 VLSI Design

What is the Value of Ron?

Computing Ron for tPHL , for an inverter

2/21

DDoutNMOSDDoutNMOSon VVRVVRR

2/21

DDoutDDout VVD

DS

VVD

DSon I

VI

VR

Page 7: EE415 VLSI Design. Read 4.1, 4.2 COMBINATIONAL LOGIC

EE415 VLSI Design

Numerical Examples of Resistances for 1.2m CMOS

See Example 4.2, table 3.3

Page 8: EE415 VLSI Design. Read 4.1, 4.2 COMBINATIONAL LOGIC

EE415 VLSI Design

Transistor Sizing

VDD

AB

C

D

DA

B C

12

22

6

612

12

F

• for symmetrical response (dc, ac)• for performance

Focus on worst-case

Input Dependent

Numbers indicate transistor sizingwith minimum sizeequal to 1

Page 9: EE415 VLSI Design. Read 4.1, 4.2 COMBINATIONAL LOGIC

EE415 VLSI Design

Design for Worst CaseVVDD

CL

F

A

A B

B

2

2

1 1

DD

AB

C

D

DA

B C

12

22

2

24

4

F

Here it is assumed that Rp = Rn

Additional geometry changeswhich compensate for the worstcase path

Page 10: EE415 VLSI Design. Read 4.1, 4.2 COMBINATIONAL LOGIC

EE415 VLSI Design

Problems with Complementary CMOS

•Gate with N inputs requires 2N transistors•other circuit styles use N+1 transistors

•tp deteriorates with high fan-in•increases total capacitance•series connected transistors slows down gate

•fan-out loads down gate•1 fan-out = 2 gate capacitors (PMOS and NMOS)

FOaFIaFIat p 32

21

Page 11: EE415 VLSI Design. Read 4.1, 4.2 COMBINATIONAL LOGIC

EE415 VLSI Design

Influence of Fan-In and Fan-Out on Delay

VDD

A B

A

B

C

D

C D

tp a1FI a2FI2 a3FO+ +=

Fan-Out: Number of Gates Connected2 Gate Capacitances per Fan-Out

FanIn: Quadratic Term due to:

1. Resistance Increasing2. Capacitance Increasing(tpHL )

Page 12: EE415 VLSI Design. Read 4.1, 4.2 COMBINATIONAL LOGIC

EE415 VLSI Design

tp as a Function of Fan-In

1 3 5 7 9fan-in

0.0

1.0

2.0

3.0

4.0

t p (nsec)

tpHL

tp

tpLHlinear

quadratic

AVOID LARGE FAN-IN GATES! (Typically than FI < 4)

Gate: NANDfan-out = 1

Page 13: EE415 VLSI Design. Read 4.1, 4.2 COMBINATIONAL LOGIC

EE415 VLSI Design

As long as Fan-out Capacitance dominates• Progressive Sizing:

CL

In1

InN

In3

In 2

Out

C1

C2

C3

M1 > M2 > M3 > MN

M1

M2

M3

MN

Distributed RC-line

Can Reduce Delay by more than 30%!

Example 4.3:no sizing: tpHL = 1.1 nsecwith sizing: tpHL = 0.81 nsec

Fast Complex Gate - Design Techniques

Page 14: EE415 VLSI Design. Read 4.1, 4.2 COMBINATIONAL LOGIC

EE415 VLSI Design

Fast Complex Gate - Design Techniques

•Transistor Ordering

In1

In3

In2

C1

C2

CL

M1

M2

M3

In3

In1

In2

C3

C2

CL

M3

M2

M1

(a) (b)

critical pathcritical path

Page 15: EE415 VLSI Design. Read 4.1, 4.2 COMBINATIONAL LOGIC

EE415 VLSI Design

Fast Complex Gate - Design Techniques

•Improved Logic Design

Page 16: EE415 VLSI Design. Read 4.1, 4.2 COMBINATIONAL LOGIC

EE415 VLSI Design

Fast Complex Gate - Design Techniques

•Buffering:• Isolate Fan-in from Fan-out

CLCL

Read Example 4.5

Page 17: EE415 VLSI Design. Read 4.1, 4.2 COMBINATIONAL LOGIC

EE415 VLSI Design

Example: Full Adder

VDD

VDD

VDD

VDD

A B

Ci

S

Co

X

B

A

Ci A

BBA

Ci

A B Ci

Ci

B

A

Ci

A

B

BA

Co = AB + Ci(A+B)

28 transistors

Page 18: EE415 VLSI Design. Read 4.1, 4.2 COMBINATIONAL LOGIC

EE415 VLSI Design

A Revised Adder Circuit

VDD

Ci

A

BBA

B

A

A BKill

Generate"1"-Propagate

"0"-Propagate

VDD

Ci

A B Ci

Ci

B

A

Ci

A

BBA

VDD

SCo

24 transistors

Page 19: EE415 VLSI Design. Read 4.1, 4.2 COMBINATIONAL LOGIC

EE415 VLSI Design

Ratioed Logic

VDD

VSS

PDNIn1In2In3

F

RLLoad

VDD

VSS

In1In2In3

F

VDD

VSS

PDNIn1In2In3

F

VSS

PDN

Resistive DepletionLoad

PMOSLoad

(a) resistive load (b) depletion load NMOS (c) pseudo-NMOS

VT < 0

Goal: to reduce the number of devices over complementary CMOS

Page 20: EE415 VLSI Design. Read 4.1, 4.2 COMBINATIONAL LOGIC

EE415 VLSI Design

Ratioed LogicVDD

VSS

PDNIn1

In2

In3

F

RLLoadResistive

N transistors + Load

• VOH = VDD

• VOL = RDN

RDN + RL

• Asymmetrical response

• Static power consumption

• tpLH= 0.69 RL CL

VDD

LPDNLpHL CRRt ||69.0

Page 21: EE415 VLSI Design. Read 4.1, 4.2 COMBINATIONAL LOGIC

EE415 VLSI Design

Active LoadsVDD

VSS

In1In2In3

F

VDD

VSS

PDNIn1In2In3

F

VSS

PDN

DepletionLoad

PMOSLoad

depletion load NMOS pseudo-NMOS

VT < 0

Page 22: EE415 VLSI Design. Read 4.1, 4.2 COMBINATIONAL LOGIC

EE415 VLSI Design

Load Lines of Ratioed Gates

0.0 1.0 2.0 3.0 4.0 5.0Vout (V)

0

0.25

0.5

0.75

1

I L(Normalized)

Resistive load

Pseudo-NMOS

Depletion load

Current source

Page 23: EE415 VLSI Design. Read 4.1, 4.2 COMBINATIONAL LOGIC

EE415 VLSI Design

Pseudo-NMOS

VDD

A B C D

FCL

VOH = VDD (similar to complementary CMOS)

kn VDD VTn– VOLVOL

2

2-------------–

kp

2------ VDD VTp– 2=

VOL VDD VT– 1 1kpkn------–– (assuming that VT VTn VTp )= = =

SMALLER AREA & LOAD BUT STATIC POWER DISSIPATION!!!

Page 24: EE415 VLSI Design. Read 4.1, 4.2 COMBINATIONAL LOGIC

EE415 VLSI Design

Pseudo-NMOS NAND Gate

VDD

GND

Out