epigenetic: a missing paradigm in cellular and molecular pathways

14
Iranian Journal of Basic Medical Sciences ijbms.mums.ac.ir Epigenetic: A missing paradigm in cellular and molecular pathways of sulfur mustard lung: a prospective and comparative study Saber Imani 1 , Yunes Panahi 1 *, Jafar Salimian 1 , Junjiang Fu 2 , Mostafa Ghanei 1 1 Systems Biology Institute, Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran 2 Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Sichuan Medical University, Luzhou, Sichuan, China ARTICLE INFO ABSTRACT Article type: Review article Sulfur mustard (SM, bis‐ (2‐chloroethyl) sulphide) is a chemical warfare agent that causes DNA alkylation, protein modification and membrane damage. SM can trigger several molecular pathways involved in inflammation and oxidative stress, which cause cell necrosis and apoptosis, and loss of cells integrity and function. Epigenetic regulation of gene expression is a growing research topic and is addressed by DNA methylation, histone modification, chromatin remodeling, and noncoding RNAs expression. It seems SM can induce the epigenetic modifications that are translated into change in gene expression. Classification of epigenetic modifications long after exposure to SM would clarify its mechanism and paves a better strategy for the treatment of SM‐affected patients. In this study, we review the key aberrant epigenetic modifications that have important roles in chronic obstructive pulmonary disease (COPD) and compared with mustard lung. Article history: Received: Dec 9, 2014 Accepted: Apr 20, 2015 Keywords: Cellular and molecular ‐ modification Epigenetic modification Inflammation Sulfur mustard Please cite this article as: Imani S, Panahi Y, Salimian J, Fu J, Ghanei M. Epigenetic: A missing paradigm in cellular and molecular pathways of sulfur mustard lung: a prospective and comparative study. Iran J Basic Med Sci 2015; 18:723‐736. Introduction Cellular and molecular mechanisms of sulfur mustard Sulfur mustard, bis (2‐chloroethyl) sulfide, (SM), is a lethal chemical warfare agent (CWA), with high absorbance and alkylating potential that can affect tissues such as the lungs, eyes and skin. Also, it can be distributed through blood and systemically affect other tissues and organs, especially liver, brain, spleen, platelets, kidney, and white and red blood cells, (1). SM can directly interact with DNA bases including 7‐ (2‐hydroxyethylthioethyl) guanine (7‐HETE‐G) (2), position 3 of adenine and O 6 position of guanine (3) (Figure 1). Several repair pathways including poly (ADP‐ribose) polymerase (PARP) pathway, base excision repair, nucleotide excision repair, non‐homologous and joining are activated following SM exposure (4). SM exposure activates PARP pathway indicating its direct/indirect genotoxic effect, and also activates the intracellular repair system. Simultaneously, accumulation of p53 could block cell cycle and provide a time for up‐regulation of repair proteins such as DNA polymerase b, stimulating of base excision repair (BER). After binding to DNA, PARP‐1 synthesizes a poly (ADP‐ribose)chain that is recruitment signals for other repair enzymes (5). Currently, it is proposed that PARP may be a switcher between apoptosis and necrosis (6), and may have regulatory function over apoptosis (7). If damage is not repairable, apoptosis will be followed and PARP will be cleaved. But if cell misses its energy Figure 1. DNA cross‐linking by sulfur mustard *Corresponding authors: Yunes Panahi. Systems Biology Institute, Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Molla‐ Sadra Ave., Vanak Sq., Tehran, Iran. Tel: +98‐21‐88211524; Fax: +98‐21‐88211524; email: [email protected]

Upload: hoangquynh

Post on 13-Jan-2017

219 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Epigenetic: A missing paradigm in cellular and molecular pathways

Iranian Journal of Basic Medical Sciences

ijbms.mums.ac.ir 

Epigenetic: A missing paradigm in cellular and molecularpathwaysofsulfurmustardlung:aprospectiveandcomparativestudy

SaberImani1,YunesPanahi1*,JafarSalimian1,JunjiangFu2,MostafaGhanei1

1 SystemsBiologyInstitute,ChemicalInjuriesResearchCenter,BaqiyatallahUniversityofMedicalSciences,Tehran,Iran2 KeyLaboratoryofEpigeneticsandOncology,theResearchCenterforPreclinicalMedicine,SichuanMedicalUniversity,Luzhou,Sichuan,China

ARTICLEINFO A BSTRACT

Articletype:Reviewarticle

Sulfur mustard (SM, bis‐ (2‐chloroethyl) sulphide) is a chemical warfare agent that causes DNAalkylation, proteinmodification andmembrane damage. SM can trigger severalmolecular pathwaysinvolvedininflammationandoxidativestress,whichcausecellnecrosisandapoptosis,andlossofcellsintegrity and function. Epigenetic regulation of gene expression is a growing research topic and isaddressed by DNA methylation, histone modification, chromatin remodeling, and noncoding RNAsexpression.ItseemsSMcaninducetheepigeneticmodificationsthataretranslatedintochangeingeneexpression. Classification of epigenetic modifications long after exposure to SM would clarify itsmechanism and paves a better strategy for the treatment of SM‐affected patients. In this study, wereview the key aberrant epigenetic modifications that have important roles in chronic obstructivepulmonarydisease(COPD)andcomparedwithmustardlung.

Articlehistory:Received:Dec9,2014Accepted:Apr20,2015

Keywords:Cellularandmolecular‐modificationEpigeneticmodificationInflammationSulfurmustard

►Pleasecitethisarticleas:Imani S,PanahiY, Salimian J, Fu J,GhaneiM.Epigenetic:Amissingparadigmincellularandmolecularpathwaysofsulfurmustard lung:aprospectiveandcomparativestudy. IranJBasicMedSci2015;18:723‐736.

IntroductionCellular and molecular mechanisms of sulfurmustard

Sulfurmustard,bis(2‐chloroethyl)sulfide,(SM),isa lethal chemical warfare agent (CWA), with highabsorbance and alkylating potential that can affecttissuessuchasthelungs,eyesandskin.Also,itcanbedistributedthroughbloodandsystemicallyaffectothertissues and organs, especially liver, brain, spleen,platelets,kidney,andwhiteandredbloodcells,(1).SMcan directly interact with DNA bases including7‐ (2‐hydroxyethylthioethyl) guanine (7‐HETE‐G) (2),position 3 of adenine and O6 position of guanine (3)(Figure 1). Several repair pathways includingpoly (ADP‐ribose) polymerase (PARP) pathway,base excision repair, nucleotide excision repair,non‐homologous and joining are activated followingSMexposure(4).SMexposureactivatesPARPpathwayindicating its direct/indirect genotoxic effect,and also activates the intracellular repair system.Simultaneously, accumulation of p53 could blockcell cycle and provide a time for up‐regulationof repair proteins such as DNA polymerase b,stimulatingofbaseexcisionrepair(BER).Afterbinding

toDNA,PARP‐1synthesizesapoly(ADP‐ribose)chainthat isrecruitmentsignals forotherrepairenzymes(5). Currently, it is proposed that PARP may be aswitcher between apoptosis and necrosis (6), andmay have regulatory function over apoptosis (7). Ifdamageisnotrepairable,apoptosiswillbefollowedandPARPwillbecleaved.Butifcellmissesitsenergy

Figure1.DNAcross‐linkingbysulfurmustard

*Corresponding authors: YunesPanahi. SystemsBiology Institute,Chemical InjuriesResearchCenter,BaqiyatallahUniversityofMedical Sciences,Molla‐

SadraAve.,VanakSq.,Tehran,Iran.Tel:+98‐21‐88211524;Fax:+98‐21‐88211524;email:[email protected]

Page 2: Epigenetic: A missing paradigm in cellular and molecular pathways

Imanietal Epigeneticmodificationinmustardlung

Iran J Basic Med Sci, Vol. 18, No. 8, Aug 2015

724

Figure2.OverviewofthemolecularandcellulareffectsofsulfurmustardSM (SulfurMustard);GADD45 (GrowthArrest andDNADamage‐inducible45); PCNA (proliferating cell nuclear antigen);XRCC1 (X‐rayrepaircross‐complementingprotein1);PARP(Poly(ADP‐ribose)polymerase); IL(Interleukin);TNF‐α(Tumornecrosis factor);TNFR‐1(tumor necrosis factor receptor‐1); MCP1 (monocyte chemotactic protein 1); CCL2 (C‐C motif chemokine 2); MMP9 (Matrixmetalloproteinase9)HAT (histone acetyltransferase); CBP (CREB‐binding protein); PcG (Polycomb Group protein); PRC1 and PRC2 (Polycomb RepressiveComplexes1and2);HMT(histonemethyltransferase);HUL(histoneubiquitinligases);MBD(Methyl‐CpG‐bindingdomain);RAT(removeracetyletages);HDAC(Histonedeacetylase);HDM(histonedemethylases)sources due to high ATP consumption of repairingsystem,necrosiswilloccur(8).SevereATPdepletionblocks cleavage of PARP by caspase‐3 that leads tocontinuousactivityofPARP(9).

Invitro and invivo studies showsomesimilaritiesbetweenSMpathophysiologyandotherdiseasessuchas chronic obstructive pulmonary disease (COPD),idiopathic pulmonary fibrosis (IPF), and brochiolitisobliterans(BO),buttheexactpathophysiologyofSMisnotyetwellunderstood(10).ItwasfirstproposedthatacidliberationandhydrolysisofSMtoHClarethemaincauses of its toxicity. At the next step, glutathione

depletion,protein inactivation, lipidperoxidation,andoxidativestresswerepostulatedasmechanismsofSMtoxicity (11, 12).Todate, it is clear that SMalkylatesnucleotides and causes intermolecular nucleotidecross‐links,whichisfollowedbygenotoxicstressesandproteins or genome modifications. Moreover, SMinterferes with natural function of proteins viamisfolding, protein oxidation, antioxidant depletion,andcross‐linkingsuchashexokinaseinactivation.Also,lipids are peroxidized when exposed to SM (lipidperoxidation).Likewise,freeradicalswillbereleasedasbyproductsoflipidperoxidation.Itissupposedthatthe

Page 3: Epigenetic: A missing paradigm in cellular and molecular pathways

Epigeneticmodificationinmustardlung Imanietal 

Iran J Basic Med Sci, Vol. 18, No. 8, Aug 2015

725

firstanddirecteffectofSMexposureisoxidativestress,which is followedbyarrestofcellsignalingpathwaysandcellmembranecollapse.

Innateimmunityisthefirstdefensivelayeragainsttoxicagents.Epithelial cells andmacrophagesare theprimarylayerofcellsthatcanbeexposedtoSMinthepulmonary system. Following SM exposure, intensecellularandmolecularalterationsoccurinlung.Duringseveral days after exposure, innate immunity inducesadaptive immune system with pro‐inflammatorymediators.If theapoptosisandnecrosisrate increase,cell contents will be released into the extracellularmatrix (ECM), and immune cells will be activated.Epithelial cell detachment, cell death, fibrosis, DNArepair system activation, tissue repair induction andsystemic signaling are reported after SM exposure.Figure 2 shows the effects of SM andmolecular andcellular alterations inducedby SM innormal cell thatdescribed our current knowledge of SM inducedcellularandmolecularmodifications.Oxidativestressandinflammation

Oxidative stress has been detected in cell andtissue damages after misbalancing in physiologicalcondition (13). It is also linked with many chronicinflammatory lung diseases such as asthma, COPD,IPF, OB, and adult respiratory distress syndrome(ARDS)(14).Oxidativestresshasbeenimplicatedinthe pathogenesis of SM exposure via unidentifiedmechanisms(15‐18).Reactiveoxygenspecies(ROS)are created in organisms after stimulation withbiochemical hazardous stimulantsmolecules. Thereare several sources of exogenous and endogenousoxidants,suchassmoking,ozone,pollutants,ionizingradiation,alcohols,peroxisomes, andphagocytes, ofwhichcytochromeP450enzymes,andnicotinamideadenine dinucleotide phosphate‐oxidase (NADPHoxidases) are the most important endogenoussources of ROS production (19, 20). ROSs can bedivided into two groups: free radicals and non‐radicalcompounds.Freeradicalisanatom,moleculeorcompound,whichisunstableandtendstointeractwith non‐radical atoms, or unpaired electrons. ROSmayalter the remodelingofapoptosis, extracellularmatrix, mitochondrial respiration system,maintenanceofsurfactant,cellproliferation,theanti‐protease screen, effective alveolar repair responsesandimmunitymodulationinlung(21,22).

Superoxide anion (O2‐•) is produced underrespiratory burst, high energy requirements andincreased respiration (23). The ROS can betransformed intohighly toxic and stable substancesthroughironmediatingreactions(24).Besides,nitricoxide (NO) is a strong natural oxidant that inhibitsmast cell degranulation and histamine release.DespiteNO isastrongoxidant,butROSreactswithO2‐•andformsastableoxidantknownasproxynitrite(ONOO‐),whichcan interactwithbio‐moleculesand

induce more damages (25‐28). NO competes withenzymatic antioxidants in O2‐• consumption, as well,highNOconcentrationdisruptsenzymaticantioxidantequilibration.Moreover,SMdepletesblood,hepaticandpulmonaryglutathione(GSH)andincreasesitsoxidizedform (GSSG). Decrease in GSH content leads tothe accumulation of naturally produced ROS withincells (17, 29). ROS causesmitochondrial damage anddysfunction that can lead to apoptosis (30).Accordingly,theroleofROSasasecondmessengerisaccepted in four ways: degradation by particularenzymes,regulatedenzymaticproduction,presenceatlow concentrations that can be transiently elevateduponstimulation,andfacilitytoreactatspecificsites,for instance with metals and thiolates (31). SeveralstudieshaveshownthatthesefourcharacteristicscanbeattributedtoROSinducedbySM(18,32,33).

SMexposure triggersseveralsignalingpathwaysthat result in inflammatory cytokine secretion suchasTNF‐αfromalveolarmacrophages,IL‐6,IL‐8,andGM‐CSF(34,35).SMcauseswideningofintercellularspaces and cell‐matrix adhesion loss; therefore,mucus secretion is increased as cilia cannot beatthem up. In patient with high SM doses exposure,rarely cilia on epithelial cells are observed andintracellularvacuolesareenlarged.Mucin(Muc5Ac)isalsoincreasedinthesepatients.Thereisarelationbetweentheregulationofinflammationandalveolarmacrophages, surfactant protein‐1 (SP‐D) andalveolar type II epithelial cell in SP‐D production.After SM exposure, SP‐D is decreased drastically(18). Extracellular proteases (released from injuredcells, dead cells and immune cells) and oxidantscausetissuedestructionandremodelinginSMlung.Normally, there is an imbalance of protease/anti‐protease and oxidant/antioxidant pathways in SMvesicants(36,37).

More exactly, lipid peroxidation, protein andnucleicacidalkylation,mutation,DNAbreakageandrepair, immune system induction and activation,injury sensing by neighboring cells, and systemictissue repair systems are all reported as knownpathways linked with SM acute injury (7, 38, 39).Newly released free radicals, depletion ofantioxidants, cell content release of dead cells,unneutralized cellular ROS and RNS (reactivenitrogen species), along with immune systemactivation and inflammation will intensify the firststep of oxidative stress (40). It is concluded thatoxidativestressandinflammationinducedbySMaretwo key factors that must be controlled for bettertreatmentofSMintoxication.(Figure2).EpigeneticsIntroduction

TheepigeneticswasfirstproposedbyWaddingtonCH in 1940s (14, 41). Epigenetics describes all

Page 4: Epigenetic: A missing paradigm in cellular and molecular pathways

Imanietal Epigeneticmodificationinmustardlung

Iran J Basic Med Sci, Vol. 18, No. 8, Aug 2015

726

Figure3.Thisschematiccarton,showthespecifichistonemodificationBio‐machines.Writer:TheenzymestocreatemodificationsonDNAandhistone.AReaderdecipherscodesandErasereliminatesalterationsHAT (histone acetyltransferase); CBP (CREB‐binding protein); PcG (Polycomb Group protein); PRC1 and PRC2 (Polycomb RepressiveComplexes1and2);HMT(histonemethyltransferase);HUL(histoneubiquitinligases);MBD(Methyl‐CpG‐bindingdomain);RAT(removeracetyletages);HDAC(Histonedeacetylase);HDM(histonedemethylases)meioticallyandmitoticallyheritablechangesingeneexpression states that do not depend on DNAsequence(22,42,43).Theepigeneticprofileofacelloftendictatescellulardifferentiationandfate,aswellasdevelopment,aging,diseaseandcancer(44‐52).Specificepigeneticmodifications

Specificepigeneticmodificationsareclassifiedintofive general categories: DNA methylation (53), post‐translationalhistone(54),noncodingRNAs(47,50,55‐60),chromatinremodeling(ATPdependentchromatinremodeling complexes (CRCs)), histone variants(Histoneswithvaryingstabilitiesorspecificdomains).All of these modifications lead to gene activation orinactivation.

These modifications have been proceeding bythree classes of bio‐machines; a writer to createmodificationsonDNAandhistone.Areaderdecipherscodes and finally an Eraser to eliminate alterations(58, 61, 62) (Figure 3). In this paper, we focused onkey modifications i.e. DNA methylation, histonesmodificationsandnoncodingRNAthathaveimportantroles inCOPDasan inflammatoryrespiratorydiseaseandcomparedwithSMlung.

DNAmethylation

DNAmethylation isthemostpopularmodificationinDNAlevelsthatoccursapproximatelyin3%ofwholegenome of eukaryotic cell. DNA methylation occurslargely on CpG islands that are more found in genesupstream (53, 63). Methylation of CpG islandsinterfereswithbindingoftranscriptionfactorsandthensuppresses all forums of genes expression (63, 64),

especially developmental genes, repetitive sequencesandgerm‐linespecific(imprintedgenes)(65,66).DNAmethylationcatalyzestransferofamethylgroupfromS‐adenosylmethionine(SAM)toacytosineresiduetocreate5‐methylcytosine(5mC).

ThisprocessoccursbyfamilyofcloselyrelatedDNAmethyl transferases (DNMTs) as a writer (DNMT1,DNMT3a, and DNMT3b) (67). The readers ofmethylated DNA are methyl‐CpG‐binding domainproteins includingKaiso,MeCP2,andmembersof themethyl CpG‐binding domain (MBD) family (66, 68).DNAdemethylation couldbepassiveor active.ActiveDNA demethylation occurs via direct removal of amethyl group. Active DNA demethylations such asMBD2b(methylCpG‐bindingdomainprotein2b)(69),ten–eleventranslocation(Tet)enzymesTet1,Tet2,andTet3 (70, 71), and AID/APOBEC (activation‐inducedcytidine deaminase/ apolipoprotein B mRNA‐editingenzyme complex) are themost important eraser bio‐machines in DNA modifications (72‐74). The passiveprocess takes place during replication of newlysynthesized DNA strands by DNMT1. Base excisionrepairmachinery(BER),andnucleotideexcisionrepair(NER) are important passive DNA demethylation;however, there are many questions about themechanismsofthisbio‐machines(75‐77).Post‐translationalhistonemodifications

The smallest unit of chromatin, the nucleosome,consists of 146 bp DNA sequencewrapped around ahistoneoctamer(twocopiesofH2A,H2B,H3andH4)linked by exterior histone H1. This organizationguaranteedacloseortightstructuretochromatin(78).

Page 5: Epigenetic: A missing paradigm in cellular and molecular pathways

Epigeneticmodificationinmustardlung Imanietal 

Iran J Basic Med Sci, Vol. 18, No. 8, Aug 2015

727

Figure4.FunctionalpathwaysthatHAT/HDACratioisinvolvedincellularandmolecularmechanismofinflammations.GR (glucocorticoid receptor);ER (estrogen receptor);AR (androgen receptor);PGC‐1 (PPARgammaco‐activator‐1);Rb (retinoblastomaprotein);GATA3(GATA‐bindingprotein3);HIF1(hypoxia‐induciblefactor‐1);IRFs(Interferonregulatoryfactors);Nf‐kb(nuclearfactorkappa‐light‐chain‐enhancerofactivatedBcells);AP‐1(activatingprotein‐1);HIV‐Tat(HIVtrans‐activatorprotein);HSP90((heatshockprotein90);p53MAPK(p53Mitogen‐activatedproteinkinasekinase3)

Differenthistonemodificationsarecorrelatedwith

differentfunctionsonthelysines(K)andarginines(R)‐rich tail region of histones. The H3 and H4 have acriticalregulatoryroleinmanydiseases(79‐81).Therearemanypost‐transcription or histonemodifications,including acetylation (K), phosphorylating (P),methylation (M), citrullination, ubiquitination (Ubi),butyrylation,simulation,ADP‐ribosylation,propionyla‐tion, and glycosylation of residues in the N‐terminaltailsofhistones(Table1)(82,83).

Histones are acetylated by histone acetyltrans‐ferases (HAT). The acetylated histonemarks H3K4acandH3K39ac(as importantmarksofacetylation)areassociated with transcriptional activation (84). Theacetyl groups are removed by histone deacetylases(HDACs)thatrepressesthegeneactivationbycreatingatightlyclosedchromatinstructure(78,85,86).

In contrast toacetylation,histonemethylationcancorrelate either with transcriptional activity orinactivity.Thehistonemethylationexistsinthreeformsof mono, di and tri‐methylation (87). By contrast,histonemethylations on lysines 9 and 27 (H3K9me3

and H3K27me3) transcriptionally inactivate regions,broadly the whole gene, but more commonly atfacultative heterochromatin (54, 88). The lysines (K)and arginines (R)‐rich regions are methylated byhistone methyl transferase enzyme (HMTs) and areremoved by histone demethylases (HDMs) such asmembersoftheJumonjiproteinfamily(66,67).NoncodingRNAs

Noncoding RNAs are a class of small, mid‐sizedand long RNAs, which include the microRNAs(miRNAs),piwi‐interactingRNAs(piRNAs),andlongnoncoding RNAs (lncRNAs). Noncoding RNAs arehereditary involved in regulating the genesexpression (89‐91). miRNAs (19‐24bp) play role incontrolling transposable elements and direct DNAmethylation at transposable elements. EachmaturemiRNA may target many genes and involve indevelopment, differentiation, and cancer (92). Piwi‐interactingRNAsare~24‐35ntinlengththatinvolvein silencing transposable elements in the germ lineandstemcell.TheseRNAsareinvolvedindirecting

Table1.Histonemodificationpost‐transcriptionmodification

Modificationtypes Residue(s)modified Readerdomain(s)Unmodifiedlysine Lysine PHDAcetylation Lysine BRDMethylation Lysine/Arginine Ankyrin,Chromo,MBT,PHD,Tudor,PWWP,WD40Phosphorylation Serine/Threnine 14‐3‐3,BIR,BRCTUbiquitylation Lysine BRDSumoylation Lysine ?ADP‐Ribosylation Lysine TudorGlycosylation Serine/Threonine ?Butyrylation Lysine ?Propionylation

Lysine ?

PHD(PlantHomeodomain);BRD(bromodomain);MBT(malignantbrain tumor);BIR(InhibitorofApoptosis (IAP) familyofproteins);BRCT(BRCA1CTerminus(BRCT)domain)

Page 6: Epigenetic: A missing paradigm in cellular and molecular pathways

Imanietal Epigeneticmodificationinmustardlung

Iran J Basic Med Sci, Vol. 18, No. 8, Aug 2015

728

DNAmethylationatmorelocithanjusttransposableelementsandmutationsinhuman.PIWIproteinsareassociated with infertility. Different PIWI proteinshave non‐redundant roles (93, 94). lncRNAs (>200nt) are expressed in a controlled manner and areable to regulate epigenetic processes such as Xinactivation, genomic imprinting, and DNA damageresponse. It was recently shown that rRNAs andpiRNAs provide a dynamic balance between geneactivationandsilencing(95,96).Epigenetic modification caused by inflammationinCOPD

Chronic inflammation is a main characteristic ofCOPDpatientswithGOLDstagesI‐IIIthatrelatedwithactivationoftheNF‐kBsignalingpathway(97).Severalstudies have been conducted on aberrant epigeneticmodifications and respiratory diseases (44, 45, 55).Intra‐andextracellularROSandNOSleadtoavariousrange of pathophysiological conditions, as well asinflammation and oxidative stress (79). On the otherhand, the fundamentalroleof inflammationandearlyaging in the development of COPD has remainedunknown (98, 99).Recent articles have reported thatinflammatory genes are regulated by transcriptionfactors of the NF‐κB, FOXP3, IRF, and STAT families,DNAmethylation,andhistonemodifications(98,100).Gene expression regulation is not only restricted topost‐translational modification (PTM) of histone, butalso is regulated by acetylation, methylation,phosphorylation,andubiquitylation.Morestudieshaveinvestigated enzymes involved in this process. Forexample,therelationofHAT/HDACenzymeshasbeenevaluated in many respiratory diseases, especially incorticosteroidresistances(101‐103).InFigure4,someimportant functions of HAT/HDAC ratio are shown.Study of HAT/HDAC ratio in induction of pro‐inflammatoryproteinssuchasNf‐κbandAp‐1isveryimportant and necessary that can control manyinflammatory processes and signaling in the cell.Acetylating is an important modification inautoimmuneandinflammatorydiseasessuchasTh17‐Threg balancing (104‐106). So, thewriter (HAT) anderaser of acetylating (HDAC) are studied in diseases,suchasasthma,COPD,cancer,autoimmunedisease,etc(107,108).

In Table 2, some important epigenetic changesare listed that involved in the process ofinflammatory diseases. Several reports have alsodemonstrated alterations in histone proteins inCOPD.Asaresult,itmustbeconsideredinoxidativestress and inflammation induced by SM as well asdiseases suchasasthmaandCOPD (102,108,109).HDACactivationduetotheeffectofSMmayleadtoanti‐inflammatory proteins and antioxidant enzymessilencing(109).HDAC‐2isthemostimportantproteinfromHDACfamilies,whichplaysaroleininflammationandoxidativestressoflungdisease.Inastudy,Barnes

etal(86)proposedthatstimulantssuchasnitricoxideand superoxide dismutase reduced HDAC‐2 levels inCOPD and asthma patients who eventually causecorticosteroids resistance (108, 110‐112). Dependingonthecause,thepathwayisdifferentandeachpathwayofHDAC‐2 is reducedeventually (113,114).Blockingthe inflammatory gene expression pathway byinhibitingDNMTisthelogicaltherapeuticapproachininflammatorydiseases(85,109).SMandpossibleepigeneticmodificationsinlung

Several pathophysiological studies on SM exposedpatient have shown significant imbalances andalterations in inflammatorymediators. This variationreflects the inflammatory roles of SM in the chronicphase(18,115‐117).Pro‐inflammatorycytokinessuchas IL‐1α, ‐8, ‐6, ‐13(34),TNF‐α(35), IFN‐α(34,118),GM‐CSF(119)andstressinducedproteinsi.e.HSP27,‐70, ‐90 (120), SWI/SNF, iNOS, and MIP‐1 (121) aretrace in serum and tissue samples of SM patients.RegardingtheinflammatoryroleofSM,itseems,nearlyallepigeneticcodsforexpressionofpro‐inflammationproteinscanbealteredinepithelialandimmunecells.These alterations consist of hypo and hypermethylationofCpGislands,histonemodifications,longnoncoding RNA expression, and chromosomeremodeling.

Moreover,someclinicalmanifestationsanddiseasesforexample,COPD(33),lungcancer(1,122,123),andchronicbronchitis(124,125)havebeenreportedpostexposure to toxic inhalators such as SM. This datapropose that SM could induce epigenetic changes incells and tissues (126). The pathophysiologicalsimilarities between pulmonary fibrosis and SM‐induced lung toxicity , aswell asbronchiectasis (125,127) has been determined by previous studies (119,127,128).Thepathogenesisoffibrosisisinfluencedbyaberrant epigenetic modifications. Most of thedemethyltions occur in promoter regions of differentgenes encoding autocrine growth and differentiationfactors of fibroblast cells (129). Therefore, it isspeculated that SM‐induced toxicitymaybemediatedby epigenetic perturbations at least in lung tissue,demonstrating a need to investigate protease/anti‐proteaseimbalanceinmustardlung(109).Methylationof tumor suppressor genes leads to activation ofoncogenes that promotes growth factor–independentproliferationoffibroblasts.ExpressionofmiR‐21isanexample of this type of aberrant modifications thatleadstothedegradationoftumorsuppressorgenesinfibroblasts (129). So, it is necessary to measure theexpression of micro‐RNA and DNA methylation ofpromoterinbronchoalveolarlavage(BAL)andtissueofmustard lung (130). Futuremolecular studieswill berecognized the pathophysiological mechanism of thisdisease.IncreasedacutephasereactantproteinsinSMexposed patients, for instance amyloid A1 andhaptoglobinhavebeenreportedinstudiesofMehrani

Page 7: Epigenetic: A missing paradigm in cellular and molecular pathways

Epigeneticmodificationinmustardlung Imanietal 

Iran J Basic Med Sci, Vol. 18, No. 8, Aug 2015

729

Table2.Importantepigeneticeventsininflammation

 

etal(33).Inanotherstudy,Shahriayetalshowedthatin addition to inflammation, a protease/anti‐proteaseimbalance exists as well. In this way, endoplasmicreticulum (ER)‐60 protease, S100 CBP A9, serpin B1,andglutathione‐S‐transferaseweresignificantlyaltered(33).

Severalkeyepigeneticmodificationsarerecognizedin repair and remodeling pathways of airwayinflammatory lung diseases. Some of these importantchanges are selective inhibition of iNOS, cyclooxy‐genase‐2, and MMPs, especially the MMP‐9 (147).MMP‐9isepigeneticcross‐talkandinterferingproteinin suppression of NF‐κB cascade pathways or p300‐HAT expression within the nucleus (148). Similarly, Norani etal have shown thatmetallothioneins (MTs)(149)andSODs(150)arehigherinthecontrolgroupcompared to SM‐exposed groups. This can be due to

oxidative stress pathways as a result of mustard gastoxicity in airway wall of SM exposed patients.Hypermucosalsecretionisanotherpathophysiologicalproblemofmustardlungpatients(18,126,149).Asaprospective investigation, the study of epigeneticmodificationsliketheDNAhypomethayltionofSMDorMMPs(32)canbeanovelmolecularexplanationandtherapeuticguidelineformustardlung(151).

ItseemsthecomplexityofpostSMexposuresuchasinflammation,oxidative stress,protease/anti‐proteaseimbalancing,shouldberesolvedepigeneticallyview;inparticular, DNA methylation and tissue‐specificpatterns. Despite, a few data are currently availableregardingthepossibilityofanepigeneticbasisfortheeffectsofSM,someevidenceshaveshownthepotentialrole of downregulation of pro‐inflammatory genes,alterations in histone modifications, and gene

DNAMethylation

Typeofmodification Function Ref

Promoterhypomethylation

IncreaseinTLR2geneexpressionandincreasedpro‐inflammatoryresponse. (131)

Histonedeacetylation+DNAmethylation

IncreaseinTLR4genemaintenanceofhomeostasisintheintestinalimmunecommensalsystem (132)

DNAdemethylates ImportantroleintheestablishmentoftheepigeneticlandscapeacrosstheTNFαlocus (133)

DNAmethylation DecreaseexpressionofRunx3ingastricepithelialcells (134)

DNAmethylationPcGproteins(asMBPs)bindtotheregulatoryregionsoftar‐getgenesandrecruitDNMTsformoreefficientrepressioninchronicinflammations

(135)

Histonemodifications

DemethylationofH3K27me3

Jmjd3asaHDMsproteinis inducedinmacrophagesandinflammatorycytokines,whereitbindsthePcGtargetgenesandregulatestheirH3K27me3levelsandtranscriptionalactivity

(136)

DemethylationofH3K27me3

ActivationofSTAT6byremovalofH3K27methylationmarksbyJmjd3triggersexpressionofspecificinflammatorygenes

(137)

trimethylationH3K9me3H3K9me3 recruitment of heterochromatin protein 1 (HP1), that HP1 and G9a form a repressivecomplex at the promoters of RelB‐dependent genes and silenced the severe systemic inflammation(SSI)

(138)

Acetylationofpro‐inflammatorycytokines

Promoter’sacetylationsofseveralpro‐inflammatorycytokines(IL‐1,IL‐2,IL‐8,andIL‐12)arerapidlyacetylatedbyCBP/p300, leading to transcriptional activation and display reducedHDACactivity inchronicinflammation

(139)

AcetylateshistoneH3atLys9

IKK‐α(responsetocytokinetreatment)bindstotheNF‐κB‐dependentpromoterswiththeassistanceofthepolymeraseIIcomplexandCBP,whereitacetylateshistoneH3atLys9

(140)

phosphorylateshistoneH3atSer10

IKK‐αbindstotheNF‐κB‐dependentpromoterswiththeassistanceofthepolymeraseIIcomplexandCBP,whereitphosphorylateshistoneH3atSer10

(70)

MicroRNAsmodification

miR‐146a miR‐146alimitsToll‐likereceptorsignalingbyblockingthesignalingmoleculeTRAF6 (141)

miR‐155 miR‐155targetsthelipidphosphataseSHIP1;animportantsignalformacrophageactivation (142)

miR‐147 TLRstimulationinducesmiR‐147andrequiresactivationofbothNF‐κBandIRF3 (143)

miR‐105 miR‐105wasshowntomodulateTLR‐2translationinhumangingivalkeratinocytes (72)

miR‐29 miR‐29canreverseaberrantmethylationinlungcancerbytargetingDNMT3aandDNMT3b (144)

miR‐29 miR‐29promotesosteogenesisbytargetingHDAC4 (145)

miR‐2861 miR‐2861controlsosteoblastdifferentiationbyrepressingHDAC5 (139)

miR‐140 Thecartilage‐specificmiR‐140regulatesHDAC (146)

Page 8: Epigenetic: A missing paradigm in cellular and molecular pathways

Imanietal Epigeneticmodificationinmustardlung

Iran J Basic Med Sci, Vol. 18, No. 8, Aug 2015

730

expression changes in chromatin regulatory enzymesas potentially epigenetics modifications in chronicphaseofSM(40,81).

TheFigure5listedthepossibleepigeneticschangeinNF‐kBsignalingpathway.Forinstance,increasingofATP remodeling, increasing the HAT activity (forinduction of pro‐inflammatory proteins), andincreasingH4k9andH4k16acetylation(for secretionof pro‐inflammation factors) can be importantepigeneticmodification.Hypomethylationofrepetitivegenes,andCpGpoorpromotersandlocusspecificDNA

hypomethylation inp52‐RelBproteinbinding site aresome of the DNA modification. Finally, all thismodificationcantriggerpro‐inflammationfactorssuchasIL‐1β,‐8,‐6,‐13,TNF‐αandiNOS(152).FuturedirectionsinresearchareaofSM

Overall, our previous study highlights thatSMgenerally stimulates inflammationandoxidativestress pathways in chronic phase (153). OurfindingssuggestthatmolecularmechanismsofSMintoxicationingeneexpressionoccurindependently

Figure5.Sulfurmustardandpossibleepigeneticmodificationsinchronicphase.p53MAPK(p53Mitogen‐activatedproteinkinasekinase3);Nf‐kb(nuclearfactorkappa‐light‐chain‐enhancerofactivatedBcells);Ap‐1(Activatorprotein1);HAT(histoneacetyltransferase);IL(interleukin); TNFα (tumor necrosis factor alpha); Inf‐α (Interferon alpha); HSP 27 (heat shock protein 27); p53MAPK (p53Mitogen‐activated protein kinase kinase 3); iNOS(Inducible nitric oxide synthase); MIP‐1 (Macrophage Inflammatory Proteins 1); GM‐CSF(Granulocyte‐macrophagecolony‐stimulatingfactor)

Page 9: Epigenetic: A missing paradigm in cellular and molecular pathways

Epigeneticmodificationinmustardlung Imanietal 

Iran J Basic Med Sci, Vol. 18, No. 8, Aug 2015

731

of changes in the DNA sequence (32, 33). Theseepigenetic mechanisms include PTM of nucleosomalhistone,DNAmethylation,andregulationbynoncodingRNAs (154,155).Here,wediscussed the relationshipbetween the latest achievements in this area withepigenetics through biology systems approach.Thereversible epigenetic modifications are prospecttherapeutickeyof inflammatoryairwaydiseasessuchas COPD. Evidently, to hypothesize that epigeneticchangesplayaroleininflammationofCOPD (88), oxidative stress (113, 121), and otherinflammatory disorders (10, 156), it is necessary toclarifywhatcausestheepigeneticchanges.Ontheotherhand, it has beenproved that thepatterns of cellularandmolecularchangesofSMpoisoningaresimilartosuch diseases (157). Data presented here suggestprecise mechanism of SM poisoning to achieve thecorrectperspectiveindiagnosticsortherapeutics(157,158).Attheclinicallevel,molecularstudieswillhelpusto find out the pathogenesis of SM lung and effectivemolecular treatment. The HDACi or cyclooxygenaseinhibitors canbe themain treatment options for SM‐lung patients (158). The study ofwhole genome andepigenetics modification, as well as next generationassays may give an integrated view of the uniqueintegrative framework for the complexity andpathologicdiversityofSM.Concludingremarks

In summary, several epigenetics modificationsoccur in lung inflammatory diseases such as COPD,asthma,IPF,andeveninSManimalmodelsthatthesechangestriggerthecomplexmolecularpathwayssuchas NF‐kB, PARP, Jack‐Stat, inflammation, proteinssignaling pathway, mitochondrial metabolism, andoxidative stress. To achieve themissing link betweenclinicalandmolecularfindingsandeffectivemoleculartherapies, these epigenetics modifications should bereviewedmoreindepthasabiologicalsystem.

Acknowledgment

Theauthorswouldliketoexpresstheirappreciationof Dr Sadegh azimzadeh jal kandi and Mr HojatBorna for their assistance in the articles. The resultsdescribedinthisstudywerepartofPhDthesisthatwasconducted at Baqiyatallah University of MedicalScience,Tehran,Iran.References

1. Case RA, Lea AJ.Mustard gas poisoning, chronicbronchitis,andlungcancer;aninvestigationintothepossibility that poisoning by mustard gas in the1914‐18warmight be a factor in the productionofneoplasia.BrJPrevSocMed1955;9:62‐72.2. Niu T,Matijasevic Z, Austin‐Ritchie P, Stering A,Ludlum DB. A 32P‐postlabeling method for thedetectionofadductsintheDNAofhumanfibroblastsexposedtosulfurmustard.ChemBiol Interact1996;100:77‐84.

3. Ludlum DB, Kent S, Mehta JR. Formation of O6‐ethylthioethylguanine in DNA by reaction with thesulfurmustard, chloroethyl sulfide, and its apparentlack of repair by O6‐alkylguanine‐DNAalkyltransferase.Carcinogenesis1986;7:1203‐1206.4. Jowsey PA,Williams FM, Blain PG. DNA damageresponses in cells exposed to sulphur mustard.ToxicolLett2012;209:1‐10.5. Green DR, Reed JC.Mitochondria and apoptosis.Science1998;281:1309‐1312.6. Nguewa PA, Fuertes MA, Alonso C, Perez JM.Pharmacological modulation of Poly(ADP‐ribose)polymerase‐mediated cell death: exploitation incancer chemotherapy. Mol Pharmacol 2003; 64:1007‐1014.7. ChiarugiA,MoskowitzMA.Cellbiology.PARP‐1‐‐a perpetrator of apoptotic cell death? Science 2002;297:200‐201.8. KeheK,RaithelK,KreppelH,JochumM,WorekF,Thiermann H. Inhibition of poly(ADP‐ribose)polymerase (PARP) influences the mode of sulfurmustard(SM)‐inducedcelldeathinHaCaTcells.ArchToxicol2008;82:461‐470.9. GP. W. Studies related to the mechanisms ofcytotoxic alkylating agents: a review. Cancer Res1962;22:651‐688.10.Ghanei M. Respiratory Diseases. Rijeka, Croatia:InTech;2012.11.Majid Shohrati IK, Amin Saburi, Hossein Khalili,Mostafa Ghanei. The role of N‐acetylcysteine in themanagement of acute and chronic pulmonarycomplicationsof sulfurmustard:a literaturereview.InhalationToxicology2014;26:507‐523.12.Boskabady MH, Farhadi J. The possibleprophylactic effect of Nigella sativa seed aqueousextract on respiratory symptoms and pulmonaryfunctiontestsonchemicalwarvictims:arandomized,double‐blind, placebo‐controlled trial. J AlternComplementMed2008;14:1137‐1144.13.Hamid Saber AS, Mostafa Ghanei. Clinical andparaclinical guidelines for management of sulfurmustardinducedbronchiolitisobliterans;frombenchtobedside.InhalationToxicology2012;24:900‐906.14.Adcock IM, Ford P, Ito K, Barnes PJ. Epigeneticsandairwaysdisease.RespirRes2006;7:21.15.Pohanka M, Sobotka J, Jilkova M, Stetina R.Oxidativestressaftersulfurmustardintoxicationandits reduction by melatonin: efficacy of antioxidanttherapy during serious intoxication. Drug ChemToxicol2011;34:85‐91.16.NaghiiMR.Sulfurmustardintoxication,oxidativestress,andantioxidants.MilMed2002;167:573‐575.17.Pant SC,VijayaraghavanR,KannanGM,GanesanK. Sulphurmustard induced oxidative stress and itsprevention by sodium 2,3‐dimercapto propanesulphonic acid (DMPS) inmice. Biomed Environ Sci2000;13:225‐232.18.Ghanei M, Harandi AA. Molecular and cellularmechanismoflunginjuriesduetoexposuretosulfurmustard:areview.InhalToxicol2011;23:363‐371.19.Repine JE BA, Lankhorst I. Oxidative stress inchronic obstructive pulmonary disease. Am J RespirCritCareMed1997:341‐357.20.BoskabadyMH,AmeryS,VahediN,KhakzadMR.The effect of vitamin E on tracheal responsiveness

Page 10: Epigenetic: A missing paradigm in cellular and molecular pathways

Imanietal Epigeneticmodificationinmustardlung

Iran J Basic Med Sci, Vol. 18, No. 8, Aug 2015

732

and lung inflammation in sulfur mustard exposedguineapigs.InhalToxicol2011;23:157‐165.21.Rahman I. Oxidative stress in pathogenesis ofchronic obstructive pulmonary disease: cellular andmolecularmechanisms. Cell BiochemBiophys 2005;43:167‐188.22.Rahman I. Oxidative stress, chromatinremodeling and gene transcription in inflammationandchronic lungdiseases. JBiochemMolBiol2003;36:95‐109.23.Carter AB, Monick MM, Hunninghake GW. BothErkandp38kinasesarenecessaryforcytokinegenetranscription. Am J Respir Cell Mol Biol 1999; 20:751‐758.24.Barreiro E, Fermoselle C, Mateu‐Jimenez M,Sanchez‐FontA,PijuanL,GeaJ,etal.Oxidativestressandinflammationinthenormalairwaysandbloodofpatientswith lungcancerandCOPD.FreeRadicBiolMed2013;65:859‐71.25.Radi R, Cassina A, Hodara R. Nitric oxide andperoxynitrite interactions with mitochondria. BiolChem2002;383:401‐409.26.ReiterTA.NO*chemistry:adiversityoftargetsinthecell.RedoxRep2006;11:194‐206.27.SzaboC.Poly(ADP‐ribose)polymeraseactivationby reactive nitrogen species‐‐relevance for thepathogenesisofinflammation.NitricOxide2006;14:169‐179.28.CoppeyLJ,GellettJS,DavidsonEP,DunlapJA,LundDD,YorekMA,etal. Effect of antioxidant treatmentofstreptozotocin‐induced diabetic rats on endoneurialblood flow, motor nerve conduction velocity, andvascularreactivityofepineurialarteriolesofthesciaticnerve.Diabetes2001;50:1927‐1937.29.Paromov V, QuiM, Yang H, SmithM, StoneWL.The influence of N‐acetyl‐L‐cysteine on oxidativestress and nitric oxide synthesis in stimulatedmacrophages treated with a mustard gas analogue.BMCCellBiol2008;9:33.30.Gould NS, White CW, Day BJ. A role formitochondrial oxidative stress in sulfur mustardanalog 2‐chloroethyl ethyl sulfide‐induced lung cellinjury and antioxidant protection. J Pharmacol ExpTher2009;328:732‐739.31.VijayaraghavanR, SugendranK, Pant SC, HusainK, Malhotra RC. Dermal intoxication of mice withbis(2‐chloroethyl)sulphide and the protective effectofflavonoids.Toxicology1991;69:35‐42.32.Mehrani H, Ghanei M, Aslani J, Tabatabaei Z.Plasmaproteomicprofile of sulfurmustard exposedlung diseases patients using 2‐dimensional gelelectrophoresis.ClinProteomics2011;8:2.33.Shahriary A, Mehrani H, Ghanei M, Parvin S.Comparative proteome analysis of peripheralneutrophils from sulfurmustard‐exposed and COPDpatients.JImmunotoxicol2015;12:132‐139.34.Ghazanfari T, Faghihzadeh S, Aragizadeh H,Soroush MR, Yaraee R, Mohammad Hassan Z,Foroutan A, Vaez‐Mahdavi MR, Javadi MA,MoaiedmohseniS,etal.Sardasht‐Irancohortstudyofchemicalwarfarevictims:designandmethods.ArchIranMed2009;12:5‐14.35.GhazanfariT,KariminiaA,YaraeeR,FaghihzadehS,ArdestaniSK,EbtekarM,etal.Longtermimpactofsulfur mustard exposure on peripheral blood

mononuclear subpopulations ‐ Sardasht‐Iran CohortStudy (SICS). Int Immunopharmacol 2013; 17:931‐935.36.Mostafa Ghanei AAH. Molecular and cellularmechanismoflunginjuriesduetoexposuretosulfurmustard:areview.InhalToxicol2011;23:363‐371.37.BoskabadyMH,VahediN,AmeryS,KhakzadMR.TheeffectofNigellasativaalone,andincombinationwith dexamethasone, on tracheal muscleresponsiveness and lung inflammation in sulfurmustard exposed guinea pigs. J Ethnopharmacol2011;137:1028‐1034.38.Boskabady MH, Attaran D, Shaffei MN. Airwayresponses to salbutamol after exposure to chemicalwarfare.Respirology.2008;13:288‐293.39.BoskabadyMH,TabatabayeeA,AmiriS,VahediN.The effect of vitamin E on pathological changes inkidneyand liverofsulphurmustard‐exposedguineapigs.ToxicolIndHealth2012;28:216‐221.40.Brigati C, Banelli B, di Vinci A, Casciano I,AllemanniG,ForlaniA,etal.Inflammation,HIF‐1,andthe epigenetics that follows. Mediators Inflamm2010;2010:263914.41.Mechali M. DNA replication origins: fromsequence specificity to epigenetics. Nat Rev Genet2001;2:640‐5.42.Cheung P LP. Epigenetic regulation by histonemethylation and histone variants. Mol Endocrinol2005;19:563‐573.43.LeeKKWJ.Histoneacetyltransferasecomplexes:onesizedoesn’tfitall.NatRevMolCellBiol2007;8:284‐295.44.Wright RJ. Epidemiology of stress and asthma:fromconstrictingcommunitiesandfragilefamiliestoepigenetics. Immunol Allergy Clin North Am 2011;31:19‐39.45.Durham A, Chou PC, Kirkham P, Adcock IM.Epigenetics in asthma and other inflammatory lungdiseases.Epigenomics2010;2:523‐537.46.LiCY,GuoXJ,GanLX.[Theepigeneticsinasthma].ZhonghuaJieHeHeHuXiZaZhi2009;32:759‐761.47.Lovinsky‐Desir S,MillerRL.Epigenetics, asthma,and allergic diseases: a review of the latestadvancements. Curr Allergy Asthma Rep 2012; 12:211‐220.48.LangevinSM,KratzkeRA,KelseyKT.Epigeneticsoflungcancer.TranslRes2014;165:74‐90.49.Sundar IK, Mullapudi N, Yao H, Spivack SD,Rahman I. Lung cancer and its association withchronic obstructive pulmonary disease: update onnexusofepigenetics.CurrOpinPulmMed2011;17:279‐285.50.HoSM.Environmental epigeneticsof asthma:anupdate.JAllergyClinImmunol.2010;126:453‐65.51.Martino D, Prescott S. Epigenetics and prenatalinfluences on asthma and allergic airways disease.Chest2011;139:640‐647.52.Shaheen SO, Adcock IM. The developmentaloriginsofasthma:doesepigeneticsholdthekey?AmJRespirCritCareMed2009;180:690‐691.53.Stower H. Epigenetics: Dynamic DNAmethylation.NatRevGenet2011;13:75.54.LanF,ShiY.Epigeneticregulation:methylationofhistoneandnon‐histoneproteins.SciChinaCLifeSci2009;52:311‐322.

Page 11: Epigenetic: A missing paradigm in cellular and molecular pathways

Epigeneticmodificationinmustardlung Imanietal 

Iran J Basic Med Sci, Vol. 18, No. 8, Aug 2015

733

55.DurhamAL,Wiegman C, Adcock IM. Epigeneticsof asthma.BiochimBiophysActa2011;1810:1103‐1109.56.KabeschM,AdcockIM.EpigeneticsinasthmaandCOPD.Biochimie2012;94:2231‐2241.57.Koppelman GH, Nawijn MC. Recent advances inthe epigenetics and genomics of asthma. Curr OpinAllergyClinImmunol2011;11:414‐419.58.Lee SH, Park JS, Park CS. The search for geneticvariants and epigenetics related to asthma. AllergyAsthmaImmunolRes2011;3:236‐244.59.Bartova E, Krejci J, Hajek R, Harnicarova A,Kozubek S. Chromatin structure and epigenetics oftumour cells: a review. Cardiovasc Hematol DisordDrugTargets2009;9:51‐61.60.DiawL,WoodsonK,GillespieJW.Prostatecancerepigenetics:areviewongeneregulation.GeneRegulSystBio2007;1:313‐325.61.Katoh M. Therapeutics targeting angiogenesis:Genetics and epigenetics, extracellular miRNAs andsignaling networks (Review). Int J Mol Med 2013;32:763‐767.62.Mungall AJ. Meeting review: Epigenetics inDevelopment and Disease. Comp Funct Genomics2002;3:277‐281.63.WeberM,SchubelerD.GenomicpatternsofDNAmethylation: targets and function of an epigeneticmark.CurrOpinCellBiol2007;19:273‐280.64.HermanJG,BaylinSB.Genesilencingincancerinassociationwithpromoterhypermethylation.NEnglJMed2003;349:2042‐2054.65. Illingworth RSB, A. P. CpG islands‐‐'a roughguide'.FEBSLett2009;583:1713‐1720.66.Maric NP, Svrakic DM. Why schizophreniagenetics needs epigenetics: a review. PsychiatrDanub2012;24:2‐18.67.ChengX,BlumenthalRM.Coordinatedchromatincontrol:structuralandfunctionallinkageofDNAandhistone methylation. Biochemistry 2010; 49:2999‐3008.68.McCabeMT,BrandesJC,VertinoPM.CancerDNAmethylation: molecular mechanisms and clinicalimplications.ClinCancerRes2009;15:3927‐3937.69.BhattacharyaSK,RamchandaniS,CervoniN,SzyfM. A mammalian protein with specific demethylaseactivityformCpGDNA.Nature1999;397:579‐583.70.AnestVHJ,CogswellPC, SteinbrecherKA, StrahlBD,BaldwinASAnucleosomal function for IkappaBkinase‐alpha in NF‐kappaB‐dependent geneexpression.Nature2003;423:659‐663.71. ItoS,ShenL,DaiQ,WuSC,CollinsLB,SwenbergJA,etal.Tetproteinscanconvert5‐methylcytosineto5‐formylcytosine and 5‐carboxylcytosine. Science2011;333:1300‐1303.72.BenakanakereMRLQ,EskanMA,SinghAV,ZhaoJ, Galicia JC, et al. Modulation of TLR2 proteinexpressionbymiR‐105inhumanoralkeratinocytes.JBiolChem2009;284:23107‐23115.73.Zhang H, Zhu JK. Active DNA demethylation inplants and animals. Cold Spring Harb Symp QuantBiol2012;77:161‐173.74.Zhu JK. Active DNA demethylation mediated byDNAglycosylases.AnnuRevGenet.2009;43:143‐66.75.HackettJA,SenguptaR,ZyliczJJ,MurakamiK,LeeC, Down TA, et al. Germline DNA demethylation

dynamics and imprint erasure through 5‐hydroxymethylcytosine.Science2013;339:448‐452.76. MaDK, JangMH, Guo JU, Kitabatake Y, ChangML,Pow‐Anpongkul N, et al. Neuronal activity‐inducedGadd45bpromotesepigeneticDNAdemethylationandadultneurogenesis.Science2009;323:1074‐1077.77.Guo JU, Su Y, Zhong C, Ming GL, Song H.Hydroxylation of 5‐methylcytosine by TET1promotes active DNA demethylation in the adultbrain.Cell2011;145:423‐434.78.Campos EI, Reinberg D. Histones: annotatingchromatin.AnnuRevGenet2009;43:559‐599.79.RajendrasozhanS,YangSR,Edirisinghe I,YaoH,Adenuga D, Rahman I. Deacetylases and NF‐kappaBin redox regulationof cigarette smoke‐induced lunginflammation: epigenetics in pathogenesis of COPD.AntioxidRedoxSignal2008;10:799‐811.80.Wierda RJ, Geutskens SB, Jukema JW, Quax PH,vandenElsenPJ. Epigenetics in atherosclerosis andinflammation.JCellMolMed2010;14:1225‐1240.81.Shanmugam MK, Sethi G. Role of epigenetics ininflammation‐associated diseases. Subcell Biochem2012;61:627‐657.82.CruickshankMN,BesantP,UlgiatiD.The impactof histone post‐translational modifications ondevelopmental gene regulation. Amino Acids 2010;39:1087‐1105.83.Yla‐Herttuala S, Glass CK. Review focus onepigeneticsandthehistonecodeinvascularbiology.CardiovascRes2011;90:402‐403.84.Timmermann S, Lehrmann H, Polesskaya A,Harel‐BellanA.Histone acetylation anddisease. CellMolLifeSci.2001;58:728‐736.85.Adamopoulou E, Naumann U. HDAC inhibitorsand their potential applications to glioblastomatherapy.Oncoimmunology2013;2:e25219.86.BarnesPJ.ReducedhistonedeacetylaseinCOPD:clinicalimplications.Chest2006;129:151‐155.87.BarskiA,CuddapahS,CuiK,RohTY,SchonesDE,Wang Z, et al. High‐resolution profiling of histonemethylations in the human genome. Cell 2007; 129:823‐837.88.CheungP,LauP.Epigeneticregulationbyhistonemethylation and histone variants. Mol Endocrinol2005;19:563‐573.89.BhanA,MandalSS.LongNoncodingRNAs:EmergingStars in Gene Regulation, Epigenetics and HumanDisease.Chem Med Chem2014;9:1932‐1956.90.Blelloch R, Gutkind JS. Epigenetics, noncodingRNAs,andcellsignaling‐‐crossroadsintheregulationof cell fate decisions. Curr Opin Cell Biol 2013; 25:149‐151.91.Friedman JM, Jones PA, Liang G. The tumorsuppressor microRNA‐101 becomes an epigeneticplayerbytargetingthepolycombgroupproteinEZH2incancer.CellCycle2009;8:2313‐2314.92.ShakedI,MeersonA,WolfY,AvniR,GreenbergD,Gilboa‐GeffenA,SoreqH.MicroRNA‐132potentiatescholinergic anti‐inflammatory signaling by targetingacetylcholinesterase.Immunity2009;31:965‐973.93.Tili E, Michaille JJ. Resveratrol, MicroRNAs,Inflammation, and Cancer. J Nucleic Acids 2011;2011:102431.94.Sonkoly E, Pivarcsi A. microRNAs ininflammation.IntRevImmunol2009;28:535‐561.

Page 12: Epigenetic: A missing paradigm in cellular and molecular pathways

Imanietal Epigeneticmodificationinmustardlung

Iran J Basic Med Sci, Vol. 18, No. 8, Aug 2015

734

95. Cao J.The functionalroleof longnon‐codingRNAsandepigenetics.BiolProcedOnline2014;16:11.96. Beckedorff FC, Amaral MS, Deocesano‐Pereira C,Verjovski‐Almeida S. Long non‐coding RNAs and theirimplicationsincancerepigenetics.BiosciRep2013;33.97.Najafi A, Masoudi‐Nejad A, Imani Fooladi AA,GhaneiM, NouraniMR.Microarray gene expressionanalysisof thehumanairway inpatientsexposed tosulfurmustard. JReceptSignalTransductRes2014;34:283‐289.98.MedzhitovR,HorngT.Transcriptionalcontrolofthe inflammatory response.NatRev Immunol2009;9:692‐703.99.Piantadosi CA, Suliman HB. Transcriptionalcontrolofmitochondrialbiogenesisand its interfacewith inflammatory processes. BiochimBiophys Acta2012;1820:532‐541.100. Medzhitov R. Origin and physiological roles ofinflammation.Nature2008;454:428‐35.101. McKeever T LS, Smith C, Hubbard R. Theimportance of prenatal exposures on thedevelopmentofallergicdisease:abirthcohortstudyusing theWestMidlands General PracticeDatabase.AmJRespirCritCareMed2002;166:827‐832.102. Chowdhury S, Ammanamanchi S, Howell GM.EpigeneticTargetingofTransformingGrowthFactorbetaReceptorIIandImplicationsforCancerTherapy.MolCellPharmacol2009;1:57‐70.103. Allfrey VG, Faulkner R, Mirsky AE. AcetylationandMethylationofHistonesandTheirPossibleRoleintheRegulationofRnaSynthesis.ProcNatlAcadSciUSA1964;51:786‐794.104. Kipnis E, Dessein R. Bacterial modulation ofTregs/Th17 in intestinal disease: a balancing act?InflammBowelDis2012;18:1389‐1390.105. Ballestar E. Epigenetics lessons from twins:prospects for autoimmune disease. Clin Rev AllergyImmunol2010;39:30‐41.106. Krupanidhi S, Sedimbi SK, Sanjeevi CB.Epigenetics and epigenetic mechanisms in diseasewith emphasis on autoimmune diseases. J AssocPhysiciansIndia2008;56:875‐880.107. Callinan PA FA. The emerging science ofepigenomics.HumMolGenet2006;15:95–101.108. Marwick JA, Ito K, Adcock IM, Kirkham PA.OxidativestressandsteroidresistanceinasthmaandCOPD:pharmacologicalmanipulationofHDAC‐2asatherapeuticstrategy.ExpertOpinTherTargets2007;11:745‐55.109. Korkmaz A, Yaren H, Kunak Zl, Uysal B, Kurt B,Topal T, et al. Epigenetic perturbations in thepathogenesis of mustard toxicity; hypothesis andpreliminaryresults.InterdiscToxicol2008;1:236–241.110. Mielcarek M, Benn CL, Franklin SA, Smith DL,Woodman B, Marks PA, Bates GP. SAHA decreasesHDAC2and4 levels invivoandimprovesmolecularphenotypesintheR6/2mousemodelofHuntington'sdisease.PLoSOne2011;6:e27746.111. Mosley AL, Ozcan S. The pancreatic duodenalhomeobox‐1 protein (Pdx‐1) interacts with histonedeacetylases Hdac‐1 and Hdac‐2 on low levels ofglucose.JBiolChem2004;279:54241‐54247.112. WagnerM,BroschG,ZwerschkeW,SetoE,LoidlP, Jansen‐DurrP.Histonedeacetylases in replicative

senescence: evidence for a senescence‐specific formofHDAC‐2.FEBSLett.2001;499:101‐6.113. ItoK,HanazawaT,TomitaK,BarnesPJ,AdcockIM. Oxidative stress reduces histone deacetylase 2activity and enhances IL‐8 gene expression: role oftyrosine nitration. Biochem Biophys Res Commun2004;315:240‐245.114. EggerGLG,AparicioA,JonesPA.Epigeneticsinhumandiseaseandprospectsforepigenetictherapy.Nature2004;429:457‐463.115. GhaneiM,HarandiAA.Longtermconsequencesfrom exposure to sulfur mustard: a review. InhalToxicol2007;19:451‐456.116. PourfarzamS,GhazanfariT,YaraeeR,GhasemiH, Hassan ZM, Faghihzadeh S, Ardestani SK,KariminiaA,FallahiF,SoroushMR,etal.Serumlevelsof IL‐8 and IL‐6 in the long term pulmonarycomplications induced by sulfurmustard: Sardasht‐Iran Cohort Study. Int Immunopharmacol 2009; 9:1482‐1488.117. Panahi Y, Ghanei M, Ghabili K, Ansarin K,Aslanabadi S, Poursaleh Z, Eslam Jamal Golzari S,Etemadi J, Khalili M, Mohajel Shoja M. Acute andchronic pathological effects of sulfur mustard ongenitourinarysystemandmale fertility.Urol J2013;10:837‐846.118. GhaneiM,VosoghiAA.An epidemiologic studyto screen for chronic myelocytic leukemia in warvictims exposed to mustard gas. Environ HealthPerspect2002;110:519‐521.119. EmadA,EmadY. Increasedgranulocyte‐colonystimulating factor (G‐CSF) and granulocyte‐macrophage colony stimulating factor (GM‐CSF)levelsinBALfluidfrompatientswithsulfurmustardgas‐inducedpulmonaryfibrosis.JAerosolMed2007;20:352‐360.120. Mostafa Ghanei HF, Mohammad MirMohammad, Jafar Aslani, Fariborz Nematizadeh.Long‐Term Respiratory Disorders of Claimers withSubclinical Exposure to Chemical Warfare Agents.InhalationToxicology2004;16:491‐495.121. GereckeDR,ChenM,IsukapalliSS,GordonMK,ChangYC,TongW,AndroulakisIP,GeorgopoulosPG.Differential gene expression profiling ofmouse skinafter sulfur mustard exposure: Extended timeresponseandinhibitoreffect.ToxicolApplPharmacol2009;234:156‐165.122. NishimotoY,YamakidoM,IshiokaS,ShigenobuT,YukutakeM.Epidemiologicalstudiesoflungcancerin Japanese mustard gas workers. PrincessTakamatsuSymp1987;18:95‐101.123. Norman JE, Jr. Lung cancermortality inWorldWarIveteranswithmustard‐gasinjury:1919‐1965.JNatlCancerInst1975;54:311‐317.124. Emad A, Rezaian GR. Characteristics ofbronchoalveolar lavage fluid in patients with sulfurmustard gas‐induced asthma or chronic bronchitis.AmJMed1999;106:625‐628.125. TangFR,LokeWK.Sulfurmustardandrespiratorydiseases.CritRevToxicol.2012;42:688‐702.126. Paromov V, Suntres Z, Smith M, Stone WL.Sulfur mustard toxicity following dermal exposure:role of oxidative stress, and antioxidant therapy. JBurnsWounds.2007;7:e7.

Page 13: Epigenetic: A missing paradigm in cellular and molecular pathways

Epigeneticmodificationinmustardlung Imanietal 

Iran J Basic Med Sci, Vol. 18, No. 8, Aug 2015

735

127. EmadA,EmadV.ElevatedlevelsofMCP‐1,MIP‐alpha andMIP‐1 beta in the bronchoalveolar lavage(BAL) fluid of patients with mustard gas‐inducedpulmonaryfibrosis.Toxicology2007;240:60‐69.128. Emad A, Emad Y. Relationship betweeneosinophilia and levels of chemokines (CCL5 andCCL11) and IL‐5 in bronchoalveolar lavage fluid ofpatients with mustard gas‐induced pulmonaryfibrosis.JClinImmunol2007;27:605‐612.129. Sanders YY, Pardo A, Selman M, Nuovo GJ,TollefsbolTO, SiegalGP,Hagood JS.Thy‐1promoterhypermethylation: a novel epigenetic pathogenicmechanism in pulmonary fibrosis. Am J Respir CellMolBiol2008;39:610‐618.130. Korkmaz A, Tan DX, Reiter RJ. Acute anddelayed sulfur mustard toxicity; novel mechanismsandfuturestudies.InterdiscipToxicol.2008;1:22‐6.131. ShutoT,FurutaT,ObaM,XuH,LiJD,CheungJ,GruenertDC,UeharaA,SuicoMA,OkiyonedaT,etal.Promoter hypomethylation of Toll‐like receptor‐2gene is associated with increased proinflammatoryresponse toward bacterial peptidoglycan in cysticfibrosisbronchialepithelialcells.FASEB J.2006;20:782‐784.132. Takahashi K SY, Hosono A, Kaminogawa S.Epigenetic regula‐tion of TLR4 gene expression inintestinal epithelial cells for the main‐tenance ofintestinal homeostasis. J Immunol 2009; 183: 6522‐6529.133. Sullivan KE RA, Dietzmann K, Suriano AR,KociedaVP,StewartM,etal.Epigeneticregulationoftumornecrosis factor alpha.Mol Cell Biol 2007; 27:5147‐5160.134. Katayama Y TM, Kuwayama H. Helicobacterpyloricausesrunx3genemethylationand its lossofexpression in gastric epithelial cells, which ismediatedbynitric oxideproducedbymacrophages.BiochemBiophysResCommun2009;388:496‐500.135. HuJLZB,ZhangRR,ZhangKL,ZhouJQ,XuGL.TheN‐terminusofhistoneH3isrequiredfordenovoDNA methylation in chromatin. Proc Natl Acad SciUSA2009;106:22187‐22192.136. Ishii MWH, Corsa CA, Liu T, Coelho AL, AllenRM, et al. Epigenetic regulation of the alternativelyactivatedmacrophagepheno‐type.Blood2009;114:3244‐3254.137. De Santa F NV, Yap ZH, Tusi BK, Burgold T,Austenaa L, Bucci G, Caganova M, Notarbartolo S,Casola S, TestaG, SungWK,Wei CL,NatoliG. Jmjd3contributestothecontrolofgeneexpressioninLPS‐activatedmacrophage.EMBOJ2009;28:3341‐3352.138. ElGazzarMYB,ChenX,HuJ,HawkinsGA,McCallCEG9aandHP1couplehistoneandDNAmethylationtoTNFαtranscriptionsilencingduringendotoxintolerance.JBiolChem2008;283:32198‐32208.139. Visel A BM, Li Z, Zhang T, Akiyama JA, Holt A,Plajzer‐FrickI,ShoukryM,WrightC,ChenF,AfzalV,RenB,RubinEM,PennacchioLA.ChIP‐seqaccuratelypredictstissue‐specificactivityofenhancers.Nature.2009:854‐858.140. YangJPY,ZhangH,XuX,LaineGA,DellspergerKC, Zhang C. Feed‐forward signaling of TNF‐alphaandNF‐kappaBvia IKK‐betapathwaycontributes toinsulin resistance and coronary arteriolar

dysfunction in type 2 diabeticmice. F Am J PhysiolHeartCircPhysiol.2009;296:1850‐1858.141. Taganov KD BM, Chang KJ, Baltimore D NF‐kappaB‐dependent induction ofmicroRNAmiR‐146,an inhibitor targeted to signaling proteins of innateimmune responses. Proc Natl Acad Sci USA. 2006;103:12481‐12486.142. O’ConnellRMCA,RaoDS,BaltimoreD. Inositolphos‐phatase SHIP1 is a primary target ofmiR‐155.ProcNatlAcadSciUSA2009;106:7113‐7118.143. LiuGFA,YangY,ParkYJ,TsurutaY,AbrahamE.miR‐147, amicroRNA that is induceduponToll‐likereceptor stimulation, regu‐latesmurinemacrophageinflammatory responses. Proc Natl Acad Sci USA2009;160:15819‐15824.144. Fabbri M GR, Cimmino A, Liu Z, Zanesi N,Callegari E, et al. MicroRNA‐29 family revertsaberrantmethylationinlungcancerbytargetingDNAmethyltransferases3Aand3.ProcNatlAcadSciUSA.2007;104:15805‐15810.145. HuJLZB,ZhangRR,ZhangKL,ZhouJQ,XuGL.TheN‐terminusofhistoneH3isrequiredfordenovoDNA methylation in chromatin. Proc Natl Acad SciUSA.2009;106:22187‐22192.146. TuddenhamLWG,Ntounia‐FousaraS,WatersJ,HajihosseiniMK, Clark I,etal. The cartilage specificmicroRNA‐140 targets histone deacetylase 4 inmousecells.FEBSLett.2006;580:4214‐4217.147. Esposito E, Iacono A, Muia C, Crisafulli C,Mattace Raso G, Bramanti P, Meli R, Cuzzocrea S.Signal transduction pathways involved in protectiveeffects ofmelatonin in C6 glioma cells. J Pineal Res.2008;44:78‐87.148. DengWG,TangST,TsengHP,WuKK.Melatoninsuppresses macrophage cyclooxygenase‐2 andinducible nitric oxide synthase expression byinhibitingp52acetylation andbinding.Blood. 2006;108:518‐524.149. NouraniMR,EbrahimiM,RoudkenarMH,VahediE,GhaneiM,ImaniFooladiAA.Sulfurmustardinducesexpression of metallothionein‐1A in human airwayepithelialcells.IntJGenMed.2011;4:413‐419.150. Mirbagheri L, Habibi Roudkenar M, ImaniFooladi AA, GhaneiM,NouraniMR. Downregulationof super oxide dismutase level in protein might beduetosulfurmustardinducedtoxicityinlung.IranJAllergyAsthmaImmunol.2013;12:153‐160.151. Wynn TA. Integrating mechanisms ofpulmonaryfibrosis.JExpMed.2011;208:1339‐50.152. Yunes Panahi RM‐L, Farshid Alaeddini,MohammadMehdiNaghizadeh, JafarAslani,MostafaGhanei. Furosemide Inhalation in Dyspnea ofMustard Gas‐Exposed Patients: A Triple‐BlindRandomized Study. InhalationToxicology. 2008; 20:873‐877.153. Adelipour M, Imani Fooladi AA, Yazdani S,Vahedi E, Ghanei M, Nourani MR. Smad moleculesexpression pattern in human bronchial airwayinduced by sulfur mustard. Iran J Allergy AsthmaImmunol.2011;10:147‐154.154. Mostafa Ghanei AAH. Molecular and cellularmechanismoflunginjuriesduetoexposuretosulfurmustard: a review. Inhalation Toxicology. 2011; 23:363‐371.

Page 14: Epigenetic: A missing paradigm in cellular and molecular pathways

Imanietal Epigeneticmodificationinmustardlung

Iran J Basic Med Sci, Vol. 18, No. 8, Aug 2015

736

155. Mirsadraee M, Attaran D, Boskabady MH,Towhidi M. Airway hyperresponsiveness tomethacholine in chemical warfare victims.Respiration.2005;72:523‐528.156. Ghanei M MN, Ali Morad Kosar, Ali AminiHarandi, Nicholas S. Hopkinson, Zohreh Poursaleh.Long‐term pulmonary complications of chemicalwarfare agent exposure in Iraqi Kurdish civilians.InhalationToxicology.2010;22:719‐724.

157. PanahiY,GhaneiM,VahediE,GhazviniA,ParvinS,Madanchi N, Bagheri M, Sahebkar A. Effect ofrecombinant human IFNgamma in the treatment ofchronicpulmonarycomplicationsduetosulfurmustardintoxication.JImmunotoxicol.2014;11:72‐77.158. Panahi Y, Sarayani A, Beiraghdar F, Amiri M,Davoudi SM, Sahebkar A. Management of sulfurmustard‐induced chronic pruritus: a review ofclinicaltrials.CutanOculToxicol.2012;31:220‐225.