for control of and systems - uta 03...he who exerts his mind to the utmost knows nature’s pattern....

80

Upload: others

Post on 31-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Moncrief-O’Donnell Chair, UTA Research Institute (UTARI)The University of Texas at Arlington, USA

    and

    F.L. Lewis, NAI

    Talk available online at http://www.UTA.edu/UTARI/acs

    Neural Networks for Control of Nonlinear Processes and Systems

    Supported by :China Qian Ren Program, NEUChina Education Ministry Project 111 (No.B08015)NSF, ONR

    Qian Ren Consulting Professor, State Key Laboratory of Synthetical Automation for Process Industries,

    Northeastern University, Shenyang, China

  • Y.D. Song

    Bringing Together Control Theory and Computational Intelligence

  • He who exerts his mind to the utmost knows nature’s pattern.

    The way of learning is none other than finding the lost mind.

    Meng Tz500 BC

    Man’s task is to understand patterns innature and society.

    Mencius

  • Importance of Feedback Control

    Darwin 1850- FB and natural selectionVito Volterra 1890- FB and fish population balanceAdam Smith 1760- FB and international economyJames Watt 1780- FB and the steam engineFB and cell homeostasis

    The resources available to most species for their survival are meager and limited

    Nature uses Optimal control

  • Feedback Control Systems

    Aircraft autopilotsCar engine controlsShip controllersCompute Hard disk drive controllersIndustry process control – chemical, manufacturingRobot control

    Industrial Revolution –Windmill control, British millwrights - 1600sSteam engine and prime movers

    James Watt 1769SteamshipSteam Locomotive boiler control

    Sputnik 1957Aerospace systems

  • Relevance- Machine Feedback Control

    qd

    qr1 qr2

    AzEl

    barrel flexiblemodes qf

    compliant coupling

    moving tank platform

    turret with backlashand compliant drive train

    terrain andvehicle vibrationdisturbances d(t)

    Barrel tipposition

    qd

    qr1 qr2

    AzEl

    barrel flexiblemodes qf

    compliant coupling

    moving tank platform

    turret with backlashand compliant drive train

    terrain andvehicle vibrationdisturbances d(t)

    Barrel tipposition

    Vehicle mass m

    ParallelDamper

    mc

    activedamping

    uc(if used)

    kc cc

    vibratory modesqf(t)

    forward speedy(t)

    vertical motionz(t)

    surface roughness(t)

    k c

    w(t)

    Series Damper+

    suspension+

    wheel

    Single-Wheel/Terrain System with Nonlinearities

    High-Speed Precision Motion Control with unmodeled dynamics, vibration suppression, disturbance rejection, friction compensation, deadzone/backlash control

    VehicleSuspension

    IndustrialMachines

    Satellite pointing Land Systems

    Aerospace

  • Relevance- Industrial Process ControlPrecision Process Control with unmodeled dynamics, disturbance rejection, time-varying parameters, deadzone/backlash control

    ChemicalVaporDeposition

    IndustrialMachines

    XY Table

    Autoclave

  • Newton’s Law

    v(t)

    x(t)

    F(t)m

    )()( tum

    tFx

    xmmaF

    Industrial Process and Motion Systems (Vehicles, Robots)

    τqB)+τq+G(q)+F(q)q(q,+Vq)qM( dm )(

    Coriolis/centripetalforce

    gravity frictiondisturbances

    Actuatorproblems

    inertia

    Control Input

    Lagrange’s Eqs. Of Motion

    Lagrange Dynamical systems

  • Dynamical System Models

    )()()(

    xhyuxgxfx

    Nonlinear system

    Continuous-Time Systems Discrete-Time Systems

    )()()(1

    kk

    kkkk

    xhyuxgxfx

    Linear system

    CxyBuAxx

    kk

    kkk

    CxyBAxx

    1

    1/s

    f(x)

    h(x)g(x)

    z-1

    xx yuControl Inputs Internal States Measured Outputs

  • Issues in Feedback Control

    system

    Feedbackcontroller

    Feedforwardcontroller

    Measured outputs

    Control inputs

    Desired trajectories

    Sensornoise

    Disturbances

    StabilityTracking BoundednessRobustness

    to disturbancesto unknown dynamics

    Unknown Process dynamicsProcess NonlinearitiesUnknown Disturbances

  • plant

    controlu(t)

    outputy(t)

    controller

    systemidentifier estimated

    output

    )(ˆ ty

    identificationerror

    desiredoutput

    )(tyd

    plant

    controlu(t)

    outputy(t)

    controllerdesiredoutput

    )(tyd

    trackingerror

    plant

    controlu(t)

    outputy(t)

    controller #1

    controller #2

    desiredoutput

    )(tyd

    trackingerror

    Indirect Scheme

    Controller Topologies

    Direct Scheme

    Feedback/FeedforwardScheme

  • Feedback LinearizationAdaptive ControlNeural Networks for ControlNeural-adaptive Control

  • 6 US PatentsSponsored by:China Qian RenChina Project 111US NSF, ARO, ONR, AFOSR

  • Definitions of System Stability

    xe

    xe+B

    xe-B

    Const Bound B

    tt0 t0+T

    T

    x(t)

    x(t)

    t

    x(t)

    t

    Asymptotic StabilityMarginal or Bounded Stability- SISL

    Uniform Ultimate Boundedness

    )()(

    1 kk xfxxfx

    d

    B(d)

    For every B there exists a d

    There exists bound B that cannot be prescribed

  • 21 2

    1y us a s a

    Example 1. Linear System

    1 2y a y a y u

    desired to track a reference input ( )dy t

    de y y Tracking error

    1 2de y a y a y u

    r e e Sliding variable1 2dr e e y e a y a y u

    du v y e Auxiliary input

    1 2r a y a y v Error dynamics

    Of the form ( )r f x v

    1 2 1 2( ) ( )Ty

    f x a y a y a a W xy

    Unknown function

    Feedback Linearization

    Unknown parameters

    Known Regression Vector

  • Example 2. Nonlinear Lagrange System( , ) ( )y d y y k y u

    unknown nonlinear damping term unknown nonlinear friction

    ( )r f x v

    ( ) ( , ) ( )f x d y y k y with

    Assume Linear in the Parameters (LIP)

    11

    ( , )( ) ( )

    ( , )Td y yf x D K W x

    k y y

    Known possibly nonlinear regression function

    Unknown parameters

    desired to track a reference input ( )dy t

    de y y Tracking error

    ( , ) ( )de y d y y k y u

    r e e Sliding variable

    Error dynamicsdu v y e Auxiliary input

    Feedback Linearization

    Lagrangian System Appears in:Process controlMechanical systemsRobots

  • plantr(t)

    Feedback Linearization Controller

    du v y e

    u

    yy d

    d

    yy e

    e

    I

    r e e

    e v?

    controller

    The equations give the FB controller structure

    Feedforward terms

    Tracking Loop

  • plantr(t)

    Feedback Linearization Controller

    du v y e

    u

    yy d

    d

    yy

    ee

    I

    r e e

    e

    v

    The equations give the FB controller structure

    ( ) vv f x K r

    vK

    ( )f x

    Tracking Loop

    Feedback terms

    ( )r f x v Error dynamics

    If f(x) is known, use

  • Adaptive Control

    Error Dynamics

    ( )r f x v r(t)= control errorControl input

    Unknown nonlinearities

    ( )Tr W x v

    Error Dynamics

    Assume: f(x) is known to be of the structure

    ( ) ( )Tf x W x

    LINEAR-IN-THE-PARAMETERS (LIP)

    Known basis set= regression vector – DEPENDS ON THE SYSTEM

    Unknown parameter vector

  • Controller

    ˆ ˆ( ) ( ) ( )Tv vv f x K r W t x K r

    ˆ( ) ( )W t W W t Parameter estimation error

    ˆ( ) ( ) ( )T T T vr W x v W x W x K r ( )T vr W x K r

    closed-loop system becomes

    Est. error drives the control error

    ˆ ˆ ( ) TdW W F x rdt

    Parameter estimate is updated (tuned) using the adaptive tuning law

    Adaptive Control

    Pos. def. control gain

    ESTIMATE of unknown parameters

  • plantr(t)

    Feedback Linearization Adaptive ControllerA dynamic controller

    du v y e

    u

    yy d

    d

    yy

    ee

    I

    r e e

    e

    v

    The equations give the FB controller structure

    ˆ ˆ( ) ( ) ( )Tv vv f x K r W t x K r

    vK

    ˆ ( ) TW F x rˆ ( ) ( )TW t x

    ˆ ( )f x

    Tunable inner loop

    Tracking Loop

    Feedback terms

  • Error dynamics

    f(x)

    Kv

    ^

    Adaptive ControlTuning

    Dynamics

    r(t)

    Adaptive Controller

    Adaptive Controller

    ˆ ( ) TW F x r

    A dynamic controller

  • Adaptive ControlPerformance of Adaptive Controller: Using the adaptive controller, the closed-loop

    system is asymptotically stable, i.e. the control error r(t) goes to zero.

    If an additional Persistence of Excitation (PE) condition holds, the parameter estimates converge to the actual unknown parameters.

    11 12 2 { }

    T TL r r tr W F W Proof:

    1{ }T TL r r tr W F W

    1 1( ) { } { ( ) }T T T T T Tv vL r W x K r tr W F W r K r tr W F W x r

    ˆ ( ) TW F x r ( ) TW F x r

    ( )T vr W x K r Error dynamics

    Parameter tuning law

    TvL r K r

    Therefore Lyapunov shows that

    0

    0

    ( ), ( )r t W t are bounded( ), ( )r t W t

    or

  • Typical Behavior of Adaptive Controllers

    Control errors go to zero and the parameter estimates converge.

    This assumes that ( ) ( )Tf x W x holds exactly, and that there are no disturbances in the system.

  • ( )r f x Error dynamics

    Control input

    Unknown nonlinearities

    Assume

    know a fixed nominal value or estimate ˆ ( )f x for unknown f(x),

    ˆ( ) ( )f f x f x

    ( ) ( )f x F x

    estimation error is bounded like

    Known bounding function, maybe nonlinear

    ˆ ( ) v rf x K r v Controller

    ( ) ,

    ( ) ,r

    F xr rr

    vF xr r

    Robust Control

  • Error dynamics

    Robust ControlTerm vr(t)

    f(x)

    Kv

    ^

    Robust Controller

    FixedNominal ControlTerm

    r(t)

    Robust Controller

    A NON Dynamic controller

  • Closed-loop Error dynamics

    ˆ( ) ( ) ( ) v rr f x f x f x K r v ( ) v rr f x K r v

    r

    Performance of Robust Controller:With this control, the closed-loop system is bounded stable with

    bounded with a magnitude near

    Proof:12

    TL r r

    TL r r

    ( ) ( )T T Tv r v rL r f x K r v r K r r f x v 2

    min ( ) ( )T

    v rL K r r F x r v

    2 2min

    2min

    ( ) ( ) ( ) /

    ( )

    v

    v

    L K r r F x r F x r

    K r

    r Case 1:

    0

    2 2min

    2min

    ( ) ( ) ( ) /

    ( ) ( ) 1 /

    v

    v

    L K r r F x r F x

    K r r F x r

    Case 2: r

    indefinite

    ( ) ,

    ( ) ,r

    F xr rr

    vF xr r

  • Typical Behavior of Robust Controllers

    Control error does not go to zero but does indeed stay small.

    Robust ControlAdaptive Control

  • Robot System[I]

    Robust ControlTerm

    v(t)

    qd

    Tracking Loop

    f(x)

    rKv

    Nonlinear Inner Loop

    ..

    ^

    Multiloop Nonlinear Controller Structure

    q = qq.e =

    ee.

    qd =qdqd.

    Adaptive ControlTerm

    Adaptive plus robust control

    ( ) ,

    ( ) ,r

    F xr rr

    vF xr r

    ˆ ( ) TW F x r

  • Neural Networks for Control

  • F.L. Lewis, S. Jagannathan, and A.Yesildirek,Neural Network Control of RobotManipulators and Nonlinear Systems,Taylor and Francis, London, 1999.

    NN control in Chapter 4

  • Neural Network Properties

    Learning

    Recall

    Function approximation

    Generalization

    Classification

    Association

    Pattern recognition

    Clustering

    Robustness to single node failure

    Repair and reconfiguration

    Nervous system cell. http://www.sirinet.net/~jgjohnso/index.html

  • Two-layer feedforward static neural network (NN)

    (.)

    (.)

    (.)

    (.)

    x1

    x2

    y1

    y2

    VT WT

    Inputs

    Hidden layer

    Outputs

    xn ym

    1

    2

    3

    L

    (.)

    (.)

    (.)

    Summation eqs Matrix eqs( )( )

    T T

    T

    y W V xW x

    K

    ki

    n

    jkjkjiki wvxvwy

    10

    10

    Extra freedom to select basis set by tuning first-layer weights V.

  • Neural Network Universal Approximation Property

    Let f(x) be any smooth nonlinear function

    Then f(x) can be approximated by

    1

    ( ) ( ) ( )L

    i ii

    f x w x x

    For appropriate choice of the basis functions ( ), 1,i x i L

    Moreover, the approximation error goes uniformly to zero as ( )x L

    This was shown by Weierstrass for polynomial bases functions (Taylor series)

    Hornik and Stinchcomb, Sandberg showed that is bounded on a compact set For a large class of approximating functions

    ( )x

    Need to find the unknown weights

    Do this by NN learning – tuning the NN weights

    iw

  • Common activation functions (.)

  • Nonlinear System[I]

    Unity-Gain Tracking Loop

    rKv

    Industry Standard- PD Controller

    )()()( tetetr Desiredtrajectory

    Actualtrajectory

    Easy to implement with COTS controllersFastCan be implemented with a few lines of code- e.g. MATLAB

    But -- Cannot handle-High-order unmodeled dynamics Unknown disturbancesHigh performance specifications for nonlinear systemsActuator problems such as friction, deadzones, backlash

    Controlinpute

    e

    d

    d

    yy y

    y

    u

  • plantr(t)

    Feedback Linearization Adaptive ControllerA dynamic controller

    du v y e

    u

    yy d

    d

    yy

    ee

    I

    r e e

    e

    v

    The equations give the FB controller structure

    ˆ ˆ( ) ( ) ( )Tv vv f x K r W t x K r

    vK

    ˆ ( ) TW F x rˆ ( ) ( )TW t x

    ˆ ( )f x

  • Control System Design Approach

    ( ) ( , ) ( ) ( )m dM q q V q q q F q G q

    ( ) ( ) ( )de t q t q t

    r e e

    dm xfrVrM )(

    Robot dynamics

    Tracking Error definition

    Error dynamics

    Siding variable

    ( ) M( ( ) ( ) )dMr M e e q t q t e

    ( ) ( )( ) ( , )( ) ( ) ( )d m df x M q q e V q q q e F q G q

    Where the unknown function is

  • qdRobot System[I]

    qe

    PD Tracking Loop

    r

    dm qFqGqqqVqqM )()(),()( Robot dynamics

    ?controller

    )()()( tqtqte d Tracking error

    eer Sliding variable

    The equations give the FB controller structure

  • qdRobot System[I]

    qe

    PD Tracking Loop

    r

    dm xfrVrM )(

    ( ) ( )( ) ( , )( ) ( ) ( )d m df x M q q e V q q q e F q G q Where

    Error dynamics is

    If f(x) is known use the control ( ) vf x K r Then ( )m v dMr V K r

    vK

    ( )compute f x

    Computed Torque Control

  • Control System Design Approach

    dm qFqGqqqVqqM )()(),()(

    )()()( tqtqte d eer

    dm xfrVrM )(

    Robot dynamics

    Tracking Error definition

    Error dynamics

    vrKxVW vTT )ˆ(ˆ Define control input

    )()( xVWxf TTApprox. unknown function by NN

    Universal Approximation Property UNKNOWN FN.

    )()ˆ(ˆ)( tvxVWxVWrKrVrM dTTTT

    vm

    Closed-loop dynamics

    )(~ tvfrKrVrM dvm

  • qdRobot System[I]

    Robust ControlTerm

    q

    v(t)

    e

    PD Tracking Loop

    rKv

    Neural Network Robot Controller

    ^

    qd

    f(x)

    Nonlinear Inner Loop

    ..

    Feedforward Loop

    Universal Approximation Property

    Problem- Nonlinear in the NN weights sothat standard proof techniques do not work

    Feedback linearization

    Easy to implement with a few more lines of codeLearning feature allows for on-line updates to NN memory as dynamics changeHandles unmodelled dynamics, disturbances, actuator problems such as frictionNN universal basis property means no regression matrix is neededNonlinear controller allows faster & more precise motion

  • Theorem 1 (NN Weight Tuning for Stability)

    Let the desired trajectory )(tqd and its derivatives be bounded. Let the initial tracking error bewithin a certain allowable set U . Let MZ be a known upper bound on the Frobenius norm of theunknown ideal weights Z . Take the control input as

    vrKxVW vTT )ˆ(ˆ with rZZKtv MFZ )()( .

    Let weight tuning be provided by

    WrFxrVFrFW TTT ˆˆ'ˆˆˆ

    , VrGrWGxVTT ˆ)ˆ'ˆ(ˆ

    with any constant matrices 0,0 TT GGFF , and scalar tuning parameter 0 . Initialize the weight estimates as randomVW ˆ,0ˆ .

    Then the filtered tracking error )(tr and NN weight estimates VW ˆ,ˆ are uniformly ultimately bounded. Moreover, arbitrarily small tracking error may be achieved by selecting large controlgains vK . Backprop terms-

    WerbosExtra robustifying terms-Narendra’s e-mod extended to NLIP systems

    Adaptive part Robust part

  • Stability Proof based on Lyapunov Extension

    Define a Lyapunov Energy Function

    )~~()~~( 212121 VVtrWWtrMrrLTTT

    Differentiate

    )()'ˆˆ~(~)ˆ'ˆˆ~(~

    )2(21

    vwrWxrVVtr

    xrVrWWtr

    rVMrrKrL

    TTTT

    TTTT

    mT

    vT

    Using certain special tuning rules, one can show that the energy derivative is negative outside a compact set.

    Lnegative

    )(tr

    )(~ tW This proves that all signals are bounded

    Problems—1. How to characterize the NN weight errors as ‘small’?- use Frobenius Norm2. Nonlinearity in the parameters requires extra care in the proof

    UUB- uniform ultimate boundednes

  • 010

    2030

    4050

    0

    12

    3

    4

    5

    6

    -20

    -15

    -10

    -5

    0

    5

    10

    15

    weights

    W2 weights, x

    d=[0.5sin(t) 0.5cos(t)]T

    time

    W2 w

    eigh

    ts

    NN weights converge to the best learned values for the given system

  • τqB)+τq+G(q)+F(q)q(q,+Vq)qM( dm )(Structured Control NN

    x

    q,

    2,, qq

    q

    q

    1ˆ M

    2ˆ mV

    +)(ˆ xf

    Partitioned neural network

    Non

    linea

    r pre

    proc

    essi

    ng

    sin( ), cos( )i iq q

    i jq q

    2iq

    coriolis

    centripetal

    sgn( )iqiqe

  • 1s C

    A

    xx.Bu2

    H(s)

    u1

    1s C

    A

    xx.Bu2

    H(s)

    u1

    kkTT

    kk uxVWAxx )(1

    Chaos in Dynamic Neural Networks

    c.f. Ron Chen

    Recurrent or Dynamic NN

  • %MATLAB file for chaotic NN from Jun Wang's paper

    function [ki,x,y,z]=tcnn(N);y(1)= rand; ki(1)=1; z(1)= 0.08;a=0.9; e= 1/250; Io=0.65;g= 0.0001; b=0.001;

    for k=1: N-1;ki(k+1)= k+1;x(k)= 1/(1+exp(-y(k)/e));y(k+1)= a*y(k) + g -

    z(k)*(x(k) - Io);z(k+1)= (1-b)*z(k);

    endx(N)= 1/(1+exp(-y(N)/e));

    Ie

    zgyy

    zz

    kykkk

    kk

    /1

    1

    11

    Jun Wang

  • Kung Tz 500 BCConfucius

    ArcheryChariot driving

    MusicRites and Rituals

    PoetryMathematics

    孔子Man’s relations to

    FamilyFriendsSocietyNationEmperorAncestors

    Tian xia da tongHarmony under heaven

    124 BC - Han Imperial University in Chang-an

  • Actuator Dynamics

  • =D(u)

    ud+

    -d-

    m+

    m-

    .

    ud+

    d-

    mu

    BacklashDeadzone

    System

    Feedbackcontroller

    Outputs

    ActualControl inputsActuator

    nonlinearity

    AppliedControl inputs

    Actuator Nonlinearities

    Friction

  • Friction Compensation

    dm qFqGqqqVqqM )()(),()(

    Lagrangian System Dynamics – e.g. Robot

    FrictionUse the standard NN from Lecture 1

    qdRobot System[I]

    Robust ControlTerm

    q

    v(t)

    e

    PD Tracking Loop

    rKv

    ^

    qd

    f(x)

    Nonlinear Inner Loop

    .

    .Feedforward Loop

    Friction compensation

  • 0 2 4 6 8 10 12 14 16-0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    Time(second)

    (a)

    0 2 4 6 8 10 12 14 16-0.04

    -0.03

    -0.02

    -0.01

    0

    0.01

    0.02

    0.03

    0.04

    Time(second)

    Leng

    th(m

    eter

    )

    (a)

    0 2 4 6 8 10 12 14 16-0.2

    -0.15

    -0.1

    -0.05

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    Time(second)

    Leng

    th(m

    eter

    )

    (b)

    NN Friction Compensator

    Desired trajectory

    Tracking errors- solid = fixed gain controller, dashed= NN controller

    Trajectory Tracking Controller

    Position Velocity

    position

    velocity

    Fixed gain

    NN

  • Deadzone

    =D(u)

    ud+

    -d-

    m+

    m-

    u

    u

    Sat(u)

    d+-d-

    u

    =

    -

    Key fact

  • NN Approximation of Functions with Jumps

    -3 -2 -1 0 1 2 3 4 50

    0.2

    0.4

    0.6

    0.8

    1

    -3 -2 -1 0 1 2 3 4 50

    0.2

    0.4

    0.6

    0.8

    1

    0(x) 1(x)

    -3 -2 -1 0 1 2 3 4 50

    0.2

    0.4

    0.6

    0.8

    1

    -3 -2 -1 0 1 2 3 4 50

    0.2

    0.4

    0.6

    0.8

    1

    2(x) 3(x)

    Jump Function Basis Set

    1 1

    x y

    1

    2

    L

    V1T

    V2T

    1cc

    c

    W1T

    W2T

    ....

    ...

    2

    1

    N

    Augmented NN

    Standard NN

    Extra Nodes withJump Activation Functions

  • MechanicalSystem

    Kv[

    v

    reqd

    Estimateof NonlinearFunction

    w

    --

    D(u)u

    NN DeadzonePrecompensator

    I

    II

    ( )f x

    q

    dq

    NN in Feedforward Loop- Deadzone Compensation

    iiiTTTTT

    iii WWrTkWrTkUuUWrwUTW ˆˆˆ)('ˆ)(ˆ 21

    WrSkrwUWUuUSW TTiiiTT ˆ)(ˆ)('ˆ 1

    Acts like a 2-layer NNWith enhanced backprop tuning !

    little critic network

  • 0 5 10 15-1

    -0.5

    0

    0.5

    1

    x2(k)

    time

    0 5 10 15-1

    -0.5

    0

    0.5

    e2(k)

    time

    0 5 10 15-2

    -1

    0

    1

    2

    x2(k)

    time

    0 5 10 15-1

    -0.5

    0

    0.5

    e2(k)

    time

    Performance Results

    PD control-deadzone chops out the middle

    NN control fixes the problem

  • ud+

    d-

    mu

    Backlash

    ( , , )B u u

    A dynamic nonlinearity

    u

    w

    d+

    d-

    u

    w

    1/m

    +=

    Nominal feedforward path + Unknown dynamic nonlinearity

    ( , , )B u u

  • Nonlinear

    SystemK

    v[

    v1

    rexd

    Estimate

    of Nonlinear

    Function

    --

    x

    ( )f x

    des

    [0

    --

    yd

    (n)

    -

    Backlash

    -

    1/s

    Filter v2

    Backstepping loop

    des

    NN Compensator

    -

    dx r

    Kb

    û̂

    nny

    FẐ

    Dynamic Inversion NN compensator for system with Backlash

    U.S. patent- Selmic, Lewis, Calise, McFarland

  • Performance Results

    PD control-backlash chops off tops & bottoms

    NN control fixes the problem

    0 1 2 3 4 5 6 7 8 9 10-1.5

    -1

    -0.5

    0

    0.5

    1

    time

    x 1(t)

    PD controller with backlash

    0 1 2 3 4 5 6 7 8 9 10-0.1

    -0.05

    0

    0.05

    0.1

    0.15

    time

    e 1(t)

    0 1 2 3 4 5 6 7 8 9 10-2

    -1

    0

    1

    2

    time

    x 2(t)

    PD controller with backlash

    0 1 2 3 4 5 6 7 8 9 10-1

    -0.5

    0

    0.5

    1

    time

    e 2(t)

    position

    velocity

    error

    0 1 2 3 4 5 6 7 8 9 10-1.5

    -1

    -0.5

    0

    0.5

    1

    time

    x 1(t)

    PD controller with NN backlash compensation

    0 1 2 3 4 5 6 7 8 9 10-0.04

    -0.03

    -0.02

    -0.01

    0

    0.01

    timee 1

    (t)

    position

    Tracking error

  • ~x 1

    ( , )h x xo 1 2

    ( , )h x xc 1 2

    ROBOT

    Kv

    [vc

    kD

    KvkpM-1(.)

    qxx

    1

    2

    eee

    qqqdd

    d

    x1

    x2

    z2

    1x)(t)(ˆ tr

    Neural Network Observer

    Neural Network Controller

    1~x

    111

    212

    121

    ~)()()ˆ,ˆ(ˆˆ

    ~ˆˆ

    xKxMxxWz

    xxz

    t

    k

    oTo

    D

    NN Observers Needed when all states are not measuredi.e. Output feedback

    TooDo k 1

    ~)ˆ(ˆ xxFW

    oooooo WFWxF ˆˆ~1

    Tccc rxxFW ˆ)ˆ,ˆ(ˆ 21

    ccc WrF ˆˆ

    Tune NN observer -

    Tune Action NN -

    Recurrent NN Observer

  • Fuzzy-Neural Control

  • Neural Network Properties

    Learning

    Recall

    Function approximation

    Generalization

    Classification

    Association

    Pattern recognition

    Clustering

    Robustness to single node failure

    Repair and reconfiguration

    Nervous system cell. http://www.sirinet.net/~jgjohnso/index.html

    USED

    ???

  • Input Membership Fns. Output Membership Fns.

    Fuzzy Logic Rule Base

    NN

    Input

    NN

    Output

    Fuzzy Associative Memory (FAM) Neural Network (NN)

    INTELLIGENT CONTROL TOOLS

    Input x Output u

    Input x Output u

    Both FAM and NN define a function u= f(x) from inputs to outputs

    FAM and NN can both be used for: 1. Classification and Decision-Making2. Control

    (Includes Adaptive Control)

    NN Includes Adaptive Control (Adaptive control is a 1-layer NN)

  • x 2

    x1

    FL Membership Functions for 2-D Input Vector x

    1

    0

    1 0

    X1i X1i+1

    X2j

    X2j

    +1x1i x1i+1

    x 2j

    x 2j+

    1

    Relation Between Fuzzy Systems and Neural Networks

  • Separable Gaussian activation functions for RBF NN

    Separable triangular activation functions for CMAC NN

  • Two-layer NN as FL System

    (.)

    (.)

    (.)

    (.)

    x1

    x2

    y1

    y2

    VT WT

    inputs

    hidden layer

    outputs

    xn ym

    1

    2

    3

    L

    (.)

    (.)

    (.)

    Standard thresholds

    n

    FL system = NN with VECTOR thresholds

  • .e)b,a,z(2l

    ii2l

    i

    li

    )bz(ali

    liiA

    rŴKkr)b̂BâAˆ(KŴ WWT

    W

    râKkrŴAKâ aaT

    a

    rb̂KkrŴBKb̂ bbT

    b

    Gaussian membership function

    Tuning laws

    ControlledPlantKv[ I]

    r(t)

    -

    Input MembershipFunctions

    Fuzzy Rule Base

    Output MembershipFunctions

    xd(t)

    e(t)

    -

    -)x,x(ĝ d

    x(t)

    Fuzzy Logic Controllers

  • Dynamic Focusing of Awareness

    Initial MFs

    Final MFs

    Depend on desired reference trajectory

  • Effect of change of membership function spread "a"

    Effect of change of membership function elasticities "c"

    2cB )b,a,z()c,b,a,z( 2

    22

    2

    1

    c

    )bz(a))bz(a(cos)c,b,a,z(

    Elastic Fuzzy Logic- c.f. P. WerbosWeights importance of factors in the rules

  • ControlledPlantKv[ I]

    r(t)

    -

    Input MembershipFunctions

    Fuzzy Rule Base

    Output MembershipFunctions

    xd(t)

    e(t)

    -

    -)x,x(ĝ d

    x(t)

    )x,x(ĝrK)t(u dv râKkrŴAKâ aa

    Ta

    rb̂KkrŴBKb̂ bbT

    b

    rŴKkr)ĉCb̂BâAˆ(KŴ WWT

    W rĉKkrŴCKĉ cc

    Tc

    Elastic Fuzzy Logic ControlControl Tune Membership Functions

    Tune Control Rep. Values

  • Better Performance

    Initial MFs

    Final MFs

  • UnknownPlant

    PerformanceEvaluator

    InstantaneousUtility

    r(t)

    DesiredTrajectory

    Action Generating NN

    x(t)u(t)

    tuning

    d(t)

    R(t)

    )(ˆ xfUnknown

    Plant

    PerformanceEvaluator

    InstantaneousUtility

    r(t)

    DesiredTrajectory

    Action Generating NN

    x(t)u(t)

    FL Critic

    tuning

    d(t)

    R(t)

    )(ˆ xf

    Fuzzy Logic Critic NN controller

  • UnknownPlant

    PerformanceEvaluator

    d(t)

    )(^ xg u(t) x(t)

    .

    R

    r

    +

    v(t)

    Action Generating NN

    xd(t)Kv

    Kv

    ( 6-15 )

    ( 6-14 )

    +

    +

    11ˆ;ˆ VW

    -(.)

    (.)

    (.)

    (.)

    x1

    x2

    y1

    y2

    VT WT

    inputs

    hidden layer

    outputs

    xn ym

    1

    2

    3

    L

    REFERENCE

    input membershipfunctions

    fuzzy rulle base

    output membershipfunctions

    +

    R

    Learning FL Critic Controller

    ,ˆ)ˆ('ˆˆ 1111 VrVWrHVTTT

    ,ˆ)ˆ(ˆ 1111 WRrVWTT

    2211122222ˆˆ)ˆ('ˆ)()(ˆ WVrVWRrW TTTTT

    Tune Action generating NN (controller)

    Tune Fuzzy Logic Critic

    FL Critic

    Action generating NN

    Critic requires MEMORY

  • User input:Reference Signal Performance

    MeasurementMechanism

    Reinforcement Signal

    r(t)

    Action Generating Neural Net

    PLANT

    RobustTerm

    Kv

    q(t)u(t)

    qd(t)

    v(t)

    g(x)-

    -+

    Utility

    Critic Element

    R(t)

    d(t)fr(t)

    Control Action

    ( )×

    ( )×

    ( )×

    ( )×

    y1

    ym-1

    ym

    Input Layer Hidden Layer

    Output Layer

    z2

    zN-1

    zN

    Inpu

    t Pre

    -pro

    cess

    ing W

    x1

    xn-1

    xn

    1z1=1q

    d(t)

    Reinforcement Learning NN Controller

  • High-Level NN Controllers Need Exotic Lyapunov Fns.

    1))(sgn()( trtR

    )~~(21)( 1

    1WFWtrrtL T

    n

    ii

    WFRxFW T )(ˆ

    )~~(21)1ln()1ln()( 1)()( WFWtreetL Ttrtr

    ( ) ( ~ ~ )L trT T sgn +r r W F W1

    )~~()(11

    1)()(

    WFW

    T

    trtrtrtr

    eeL

    Reinforcement NN control

    Simplified critic signal

    Lyapunov Fn

    Lyap. Deriv. contains R(t) !!

    Tuning Law only contains R(t)

    Adaptive Reinforcement Learning

    ,)(ˆ 11 TWR

    Critic is output of NN #1

    )(ˆ),(ˆ 22 T

    d Wxxg

    Action is output of second NN

    ,ˆ)(ˆ 111 WRWT

    ,ˆˆ)(')(ˆ 211122 WRWVrW TT

    The tuning algorithm treats this as a SINGLE 2-layer NN

    Energy-based control