fpga interconnect planning

26
FPGA Interconnect Planning FPGA Interconnect Planning FPGA Interconnect Planning Amit Singh Xilinx Inc. San Jose, CA [email protected] Malgorzata Marek-Sadowska University of California, Santa Barbara Santa Barbara, CA [email protected]

Upload: mossaied2

Post on 16-Jan-2016

234 views

Category:

Documents


0 download

DESCRIPTION

dfdf

TRANSCRIPT

Page 1: FPGA Interconnect Planning

FPGA Interconnect PlanningFPGA Interconnect PlanningFPGA Interconnect Planning

Amit Singh

Xilinx Inc.San Jose, CA

[email protected]

Malgorzata Marek-Sadowska

University of California, Santa BarbaraSanta Barbara, [email protected]

Page 2: FPGA Interconnect Planning

OutlineOutline

IntroductionPrevious WorkArchitecture Model

• Architecture & Design Rent’s exponentClustering

• Spatial regularity

Fanout distribution• Area minimization• Area-delay minimization• Performance

Conclusions

Page 3: FPGA Interconnect Planning

Introduction

Clustered FPGAs• System-on-Chip (SOC)

Performance, Power, Area• Matching design and architecture complexities• Circuit packing/clustering

Fanout distribution (Zarkesh-Ha et al. 2000)• Rent’s rule

Segment length planning in FPGAs• Area reduction• Area-Delay product minimization

Page 4: FPGA Interconnect Planning

Previous Work

Rent’s rule• Landman, Russo (1974), Donath (1979)

Interconnect distribution model• Davis et al. (1998), Zarkesh-Ha et al. (2000)• Local, semi-global, global wiring requirement

Homogeneous, heterogeneous systems

FPGA segment length distribution• Betz et al. (1999)• Type of routing switches• Impact – segment length distribution on area-delay

productBest area-delay product: Mix of length 4 and 8 segments

Page 5: FPGA Interconnect Planning

Clustered FPGAs

Clusters of LEs, connection boxes and switch-boxes

Regular 2-D mesh array

Example: Xilinx Virtex series, Altera APEX & Stratix

Cluster of LEsCluster of LEs

A Logic ElementA Logic Element

Page 6: FPGA Interconnect Planning

Routing Model

Cluster

WSe

gmen

t Le

ngth

Cluster

S-Box

C-Box

Cluster

Page 7: FPGA Interconnect Planning

Routing Model

Buffered routing switches

Buffer chain delay

Pass-transistor chain delay

Page 8: FPGA Interconnect Planning

How much interconnect?How much interconnect?

~80% of FPGA area = interconnects

Routing resource utilization (RRU) is low • 100% logic utilization

Depopulating logic clusters• Regularity

Interconnect complexity guided fanout distribution-Rent’s rule

• Average fanoutSegment lengths (shorter segments or longer segments?)Switch type (tri-state buffers or pass-transistor?)

Page 9: FPGA Interconnect Planning

Rent’s Rule

(simple) 0 ≤ p ≤ 1 (complex)

Typical values: 0.5 ≤ p ≤ 0.75

Measure for the complexity

of the interconnection topology.

Rent’s rule: Landman and Russo in 1971.

Average number of terminals and blocks per module in a

partitioned design:

T = t B p

p = Rent exponent

t ≅ average # term./block

11

100010

10

100

100

T

B

averageRent’s rule

Page 10: FPGA Interconnect Planning

Rent’s Rule

Definitions

• Pd – Rent’s parameter for Design

• Pa – Rent’s parameter for Architecture R

outi

ng

reso

urc

e u

tiliz

atio

n

Rent’s parameter

Pa = 0.64

Page 11: FPGA Interconnect Planning

Logic Clustering

• Separation : Sum of all terminals of nets incident to LE

• Degree : Number of nets incident to LE

Examplet

CY

Xxz

y

)]1()(2[)( α+•= xnwXG k

aPnkIO )1( +≤

2dseparationc =

•Net weight: r

xw 2)( =

Page 12: FPGA Interconnect Planning

Clustering: Seed selection

degree = 4; separation = 18, c = 1.25

AB

degree = 4; separation = 8, c = 0.5

B

Nets absorbed = 4

A

Nets absorbed = 1

Page 13: FPGA Interconnect Planning

Rent’s Rule: Depopulation

Case 1: Pd <= Pa

• Achieve spatial uniformity.

Case 2: Pd > Pa

• Need more routing resources.

• Solution – Depopulate clusters

A

A

A

Page 14: FPGA Interconnect Planning

Regularity

Better clustering for increased routability

Routing succeeded with a channel width factor of 12Routing succeeded with a channel width factor of 21

Avg. fan-out 2.7

Ours:Avg. fan-out

3.7

Page 15: FPGA Interconnect Planning

Rent’s Rule: Depopulation

Cluster Pin Utilization

01020304050607080

0 5 10 15 20 25 30

# Cluster Pins utilized

# Cl

uste

rs

Ours T-VPack

Page 16: FPGA Interconnect Planning

Segment length Planning

Typical segment distribution

What is the best mix of segments for:i) Area minimization ii) Area-delay minimization?

Page 17: FPGA Interconnect Planning

Fanout Distribution

Inter-cluster wire requirement

Equivalent Rent’s parameter of system

Netlist profile• Low fanout nets – smaller length segments• Global nets – Longer segments (long lines)

Global segments – buffered

Shorter segments – not buffered(pass transistor switches)

Nn

i

Nieq

ikk ∏=

=1

(N

Npp

n

iii

eq

∑== 1

Page 18: FPGA Interconnect Planning

Fanout distribution

Array of clusters

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10

Pins per net

net

sActual Predictedm

mmkNmNetpp ))1(()(

11 −− −−=

( ) 1,)1(1

)1(12

1

−Ω−+−

+−= −

Maxp

Max

pMax

avg FopFoFoFo ( ) ∑

= +=Ω

MaxFo

n

p

Max nnnFop

12 )1(

,

Page 19: FPGA Interconnect Planning

Fanout distribution: Area-Minimization

Good Placement

Example

Page 20: FPGA Interconnect Planning

Fanout distribution: Area-Minimization

0.00E+00

2.00E+06

4.00E+06

6.00E+06

8.00E+06

1.00E+07

1 2 3 4 5 6

Circuit

Area

(Tra

nsis

tors

)

Ours Length 1 Xilinx-like

Page 21: FPGA Interconnect Planning

Fanout distribution: Area-Minimization

0.00E+00

5.00E-08

1.00E-07

1.50E-07

2.00E-07

2.50E-07

3.00E-07

1 2 3 4 5 6

Circuit

Crit

ical

Pat

h (n

s)

Ours Length 1 Xilinx-like

Page 22: FPGA Interconnect Planning

Fanout distribution:Area-Delay Product

Performance!

Average fanout: Critical path model

Page 23: FPGA Interconnect Planning

Fanout distribution:Area-Delay Product

Timing-driven Placer and Router

0

0.2

0.4

0.6

0.8

1

1.2

alu4

apex

2ap

ex4

bigke

yde

sdif

feq dsip

ex5p

misex3

s298 se

qtse

ng

Circuits

Area

-del

ay p

rodu

ct

Ours Xilinx-like

Page 24: FPGA Interconnect Planning

Fanout distribution:Performance

Using a Timing-driven Placer and RouterNormalized Critical Path

0

0.2

0.4

0.6

0.8

1

1.2

1.4

alu4

apex

2ap

ex4

bigke

y

des

diffeq ds

ipex

5pmise

x3s2

98 seq

tseng Avg.

Circuits

Nor

mal

ized

del

ay

Ours Xilinx-like

Page 25: FPGA Interconnect Planning

Conclusions & Future Work

FPGA Clustering for Regularity• Rent’s rule

Fanout distribution based segment length planning• Area minimization

Reduced wire-length• Area-Delay minimization

Reduction of 29% over state-of-art

Fixed FPGA Architecture• 20% better area-delay product

Future work: Metal layer assignment• Applying technique to a pipelined FPGA

Page 26: FPGA Interconnect Planning