geophysical survey report - ontario

89
Geophysical Survey Report covering Surface Pulse EM Surveys over the Semple-Hulbert Property for MacDonald Mines Exploration Ltd. during June - July 2011 by CRONE GEOPHYSICS & EXPLORATION LTD. Survey Area: Semple-Hulbert Property north-west of Webequie, Ontario Survey Type: Surface Pulse EM Surveys Survey Operator: Serge Timoshenko, Evan Barley Surface Surveys: Loop A, Line 0E, 100E, 200E, 300E, 400E, 500E, 600E, 700E, 800E, 900E, 1000E, 1100E, 1200E, 1300E, 1400E Survey Period: June – July 2011 Report By: A.M.Khan Report Date: November 2011

Upload: others

Post on 18-Oct-2021

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Geophysical Survey Report - Ontario

Geophysical Survey Report

covering

Surface Pulse EM Surveys over the

Semple-Hulbert Property for

MacDonald Mines Exploration Ltd. during

June - July 2011

by

CRONE GEOPHYSICS & EXPLORATION LTD.

Survey Area: Semple-Hulbert Property north-west of Webequie, Ontario

Survey Type: Surface Pulse EM Surveys

Survey Operator: Serge Timoshenko, Evan Barley

Surface Surveys: Loop A, Line 0E, 100E, 200E, 300E, 400E, 500E, 600E, 700E, 800E, 900E, 1000E, 1100E, 1200E, 1300E, 1400E

Survey Period: June – July 2011

Report By: A.M.Khan Report Date: November 2011

Page 2: Geophysical Survey Report - Ontario

Crone Geophysics & Exploration Ltd.

Geophysical Survey Report

TABLE OF CONTENTS

PULSE ELECTROMAGNETIC SURVEY

1.0 INTRODUCTION

2.0 PROPERTY LOCATION 3.0 PERSONNEL 4.0 SURVEY METHODS

5.0 SURVEY PARAMETERS 6.0 PRODUCTION SUMMARY

APPENDICES

APPENDIX I: PROFILE PLAN MAPS

APPENDIX II: LINEAR (5-AXIS) PULSE EM DATA PROFILES

APPENDIX III: PULSE EM DATA PROFILES (LIN-LOG SCALE)

APPENDIX IV: CRONE INSTRUMENT SPECIFICATIONS

Page 3: Geophysical Survey Report - Ontario

Crone Geophysics & Exploration Ltd.

Geophysical Survey Report

LIST OF FIGURES FIGURE 1: SEMPLE-HULBERT PROJECT GENERAL LOCATION GOOGLE MAP

FIGURE 2: PROPERTY CLAIM MAP FIGURE 3: SEMPLE-HULBERT PROPERTY LEASE MAP

FIGURE 4: CRONE DHEM LOOP A, LOOP B, LOOP C PLAN MAP FIGURE 5: TX LOOP A, MAP SHOWING DETAILS OF TDEM LINE COVERAGE

LIST OF TABLES TABLE I: TRANSMITTER LOOP COVERAGE

TABLE II: SURFACE SURVEY COVERAGE

TABLE III: CHANNEL CONFIGURATION TABLE IV: PRODUCTION SUMMARY

Page 4: Geophysical Survey Report - Ontario

Crone Geophysics & Exploration Ltd.

Geophysical Survey Report

1.0 INTRODUCTION Crone Geophysics & Exploration Limited was contracted by MacDonald Mines Exploration Ltd. to conduct Surface Pulse Electromagnetic Surveys on its Semple-Hulbert Property located north-west of Webequie, Ontario. This report summarizes the geophysical work carried out in June - July, 2011.

Fifteen (15) surface lines covering about 15.70 km of TDEM data was acquired utilizing one (1) surface loop during the survey period June, 01st – July 06th 2011. The appendices to this report contain page size profile maps, PEM profiles (linear 5-axis and logarithmic scale), and Crone Instrument Specifications.

2.0 PROPERTY LOCATION

The Semple-Hulbert Project is located 68 kilometers north-west of Webequie, Ontario. Topographically, this survey area also exhibits a shallow relief, with an elevation ranging from 146 to 198 meters above sea level. This survey area is a very remote location, with many lakes and wetlands also covering the survey block. There are two large lakes running north-south through the western portion of the block. The Semple-Hulbert block is covered by NTS (National Topographic Survey) of Canada sheets 03E12. Webequie is approximately 500 km north of Thunder Bay within NTS sheets 43 D/10 and 43 D/15. The property comprises 44 claims located in Townships BMA 527863, BMA 527864, BMA 526864 and BMA 526863. Webequie, is the closest fly in native community located on the northern peninsula of Eastwood Island in Winisk Lake, around 550 kilometers north of Thunder Bay, and 450 kilometers north of Sioux Lookout. Local supplies and services are limited, but they do have a Northern grocery and supply store, small hotel, and an airport with gravel landing strip. The local community is typically based on fishing, hunting and trapping. MacDonald Mines hired local workers for exploration work as line cutters and for drill pad construction. Any other supplies and services that were needed were brought in from outside the community from other towns to the south. All access to the Butler property from Webequie is by float/ski plane (from Hearst, Pickle Lake and Nakina) or Eurostar helicopter (Expedition Helicopters).

Webequie is a traditional Ojibway community with a population in excess of six hundred people. Webequie can be accessed by air on a year round basis. Scheduled passenger air service and charter service from Thunder Bay and other surrounding

Page 5: Geophysical Survey Report - Ontario

Crone Geophysics & Exploration Ltd.

Geophysical Survey Report

communities to Webequie are available from Wasaya Airlines. Wasaya provides at least 2 scheduled flights daily with turbo-prop aircraft. A flight to Webequie from Thunder Bay is about 1-2 hours depending on the plane size and type. The runway length is 3500 feet comprising of gravel and is suitable for cargo aircraft with short take off and landing capability. Access by land to Webequie is available for approximately two months of the year by a winter road. Year-round road access is available to Pickle Lake, 250 km to the southwest, or Nakina, 320 km to the southeast. Charter air service to Webequie is available from both of these communities.

Medical facilities are available at the Webequie First Nation Nursing Station, which is usually operated with a few nurses, a Community Health Representative, and two full-time counselors. Nurses are on call for 24 hours a day, and are able to handle most emergencies. A doctor visits the community twice a month. If there is a more serious injury the patient is flown out by a dispatched air ambulance to a hospital in Sioux Lookout, Thunder Bay or Winnipeg. Police services are provided by the Nishnawbe-Aski Police Service, an Aboriginal-based police service.

All facilities that were available for the Butler properties were located in Richard Lake a camp owned at the time by White Pine Exploration. This camp is located approximately 50 kilometers southeast of Webequie with core logging and cutting facilities on site. The camp is operated by Expedition services based out of Cochrane, Ontario with flights servicing the camp from North Star Air based out of Pickle Lake, Ontario and from Hearst Air Service in Hearst, Ontario on a daily basis. The Eurocopter Helicopter was also provided by Expedition services and it assisted in the drill moves, core and equipment transportation. When needed the helicopter was also used to taxi around passengers or supplies that could not be done by plane. The James Bay Lowlands are the large mass of low lying swampland that surrounds James Bay at the south/south eastern end of Hudson Bay in northern Ontario and north-western Quebec. Topographic elevations range from sea level to approximately 180-210 m. Drainage is very poor and the region is essentially characterized by large swamps, peat bogs and muskeg. Diamond drilling and ground geophysics are generally carried out in the winter, when peat swamps and lakes are frozen making drill transport and setup easier. Drilling during the summer requires the construction of drill pads and/or small light drill equipment with limited depth penetration (typically 500m depth penetration). Surface bedrock mapping and prospecting are severely limited due to lack of outcrop, and exploration is almost entirely dependent on geophysical surveying for target selection. The region is characterized by a subarctic climate, with short cool summers and severely cold winters. Mean annual temperatures range from approximately -20°C in the winter to +10°C in the summer. Minimum and

Page 6: Geophysical Survey Report - Ontario

Crone Geophysics & Exploration Ltd.

Geophysical Survey Report

maximum temperatures range from -35°C in the winter to +25°C in the summer. The frost-free period is short, typically 40 to 60 days. During the year there are two periods of freezing and thawing that inhibit the ability to fly ski and float planes in respectively. The fall and spring “break ups” typically last 3-4 weeks and only access to the camp can be conducted with the use of helicopter.

Figure: 1: Semple-Hulbert Project General Location Google Map

Page 7: Geophysical Survey Report - Ontario

Crone Geophysics & Exploration Ltd.

Geophysical Survey Report

Figure 2: Property Claim Map

Figure 3: Semple-Hulbert Property Lease Map

Page 8: Geophysical Survey Report - Ontario

Crone Geophysics & Exploration Ltd.

Geophysical Survey Report

Figure 4: Crone DHEM Loop A, Loop B, Loop C Plan Map

Page 9: Geophysical Survey Report - Ontario

Crone Geophysics & Exploration Ltd.

Geophysical Survey Report

Figure 5: Tx Loop A, Map Showing Details of TDEM Line Coverage

3.0 PERSONNEL

The personnel involved in this project during the reporting period include: Survey Operator: Serge Timoshenko, Evan Barley Data Processing: Kevin Ralph Report: A.M.Khan

Page 10: Geophysical Survey Report - Ontario

Crone Geophysics & Exploration Ltd.

Geophysical Survey Report

4.0 SURVEY METHODS

Crone Pulse EM is a time domain electromagnetic method in which a precise pulse of current with a controlled linear shut off is transmitted through a large loop of wire on the ground and the rate of decay of the induced secondary field is measured across a series of time windows during the off-time. The EMF created by the shutting-off of the current induces eddy currents in nearby conductive material thus setting-up a secondary magnetic field. When the primary field is terminated, this magnetic field will decay with time. The amplitude of the secondary field and the decay rate are dependent on the quality and size of the conductor.

The surface survey was carried out using a time base of 100.00 ms (2.5Hz), with a 1.5 ms shut-off ramp time. Vertical (Z-component) and in-line (X-component) data was collected at a nominal survey interval of 50 meters.

The equipment used on this project was a Crone Pulse EM Borehole system. This includes a 4.8 kW transmitter with a 220V voltage regulator which is powered by an 11 hp motor generator. The Crone Digital Receiver was used to collect the field data. The synchronization between the Transmitter and the Receiver was maintained by a crystal-clock. Data units are nT/s.

Page 11: Geophysical Survey Report - Ontario

Crone Geophysics & Exploration Ltd.

Geophysical Survey Report

5.0 SURVEY PARAMETERS

Table I: Transmitter Loop Coverage

Loop Property Size Corner Coordinates

( meters ) UTM NAD83 Canada Zone 16N

Tx Loop A Semple-Hulbert 1000 x 1500

448251E, 5933212N 447926E, 5932294N 449358E, 5931784N 449671E, 5932741N

Table II: Surface Survey Coverage

Line TX loop Timebase Ramp Current Station Length

Comp (ms) (ms) (Amps) From To (m)

0E Loop 1 100.00 1.5 18 900N 0N 900 XZ

100E Loop 1 100.00 1.5 19 1000N 0N 1000 XZ

200E Loop 1 100.00 1.5 19 1100N 0N 1100 XZ

300E Loop 1 100.00 1.5 19 1100N 0N 1100 XZ

400E Loop 1 100.00 1.5 19 1100N 0N 1100 XZ

500E Loop 1 100.00 1.5 18 1100N 0N 1100 XZ

600E Loop 1 100.00 1.5 18 1100N 0N 1100 XZ

700E Loop 1 100.00 1.5 18 1100N 0N 1100 XZ

800E Loop 1 100.00 1.5 18 1100N 0N 1100 XZ

900E Loop 1 100.00 1.5 18 1100N 50N 1050 XZ

1000E Loop 1 100.00 1.5 18 1100N 0N 1100 XZ

1100E Loop 1 100.00 1.5 18 1100N 0N 1100 XZ

1200E Loop 1 100.00 1.5 18 1100N 0N 1100 XZ

1300E Loop 1 100.00 1.5 19 950N 0N 950 XZ

1400E Loop 1 100.00 1.5 19 800N 0N 800 XZ Cumulative Total Coverage 15700 meters

Page 12: Geophysical Survey Report - Ontario

Crone Geophysics & Exploration Ltd.

Geophysical Survey Report

The following table shows the various time gates that constitute the channel configurations set up in the Crone PEM Receiver used in the surveys discussed in this report. The 100.00 ms (2.5Hz) timebase uses off-time channels 1 – 29.

Table VI: Channel Configuration Channel  Start  Finish  Channel Start  Finish 

PP  ‐2.000e‐04  ‐1.000e‐04               

1            4.800e‐05  6.400e‐05  2  6.400e‐05 8.400e‐05

3  8.400e‐05  1.120e‐04  4  1.120e‐04 1.520e‐04

5  1.520e‐04  2.040e‐04  6  2.040e‐04 2.680e‐04

7  2.680e‐04  3.600e‐04  8  3.600e‐04 4.800e‐04

9  4.800e‐04  6.400e‐04  10  6.400e‐04 8.480e‐04

11  8.480e‐04  1.128e‐03  12  1.128e‐03 1.496e‐03

13  1.496e‐03  1.992e‐03  14  1.992e‐03 2.644e‐03

15  2.644e‐03  3.512e‐03  16  3.512e‐03 4.664e‐03

17  4.664e‐03  6.192e‐03  18  6.192e‐03 8.220e‐03

19  8.220e‐03  1.092e‐02  20  1.092e‐02 1.440e‐02

21  1.440e‐02  1.770e‐02  22  1.770e‐02 2.770e‐02

23  2.770e‐02  3.770e‐02  24  3.770e‐02 4.770e‐02

25  4.770e‐02  5.770e‐02  26  5.770e‐02 6.770e‐02

27  6.770e‐02  7.770e‐02  28  7.770e‐02 8.770e‐02

29  8.770e‐02  9.770e‐02 

6.0 PRODUCTION SUMMARY

Table IV: Production Summary

01‐Jun‐2011  MOB. 

02‐Jun‐2011  Sling gear to grid and prepare for surface survey for tomorrow.  

03‐Jun‐2011  Walk loop to find disconnection and set up TX gear for tomorrow's survey. 

04‐Jun‐2011  Surveyed  line L0E from 0N to 700N on Semple Loop A.  

07‐Jun‐2011 Survey d L0E from 700N to 900N on Semple Surface Grid Loop A. Survey L100E from 1000N to 200N on same grid.  

08‐Jun‐2011 Surveyed L100E from 200N to 0N and L200E from 0N to 150N on Semple Surface Grid Loop A. Lay borehole Loop for SH11‐02B. Survey ZXY on same hole from 20m to 220m.  

09‐Jun‐2011  Surveyed L200E from 150N to 1100N on Semple Surface Grid Loop A.    

10‐Jun‐2011  Surveyed L300E on Semple Surface Grid Loop A from 0N to 800N.    

Page 13: Geophysical Survey Report - Ontario

Crone Geophysics & Exploration Ltd.

Geophysical Survey Report

11‐Jun‐2011 Surveyed  Semple Surface Grid Loop A on L300E from 800N to 1100N and L400E from 1100N to 500N.  

 

12‐Jun‐2011 Pick up 300x300 Loop SH11‐02B. Lay 300x400m loop for SH11‐09. Survey L400E on Semple Surface Grid Loop A from 500N to 0N.   

13‐Jun‐2011 Surveyed  L1400E from 0N to 800N and L1300E from 950N to 700N on Semple Surface Grid Loop A. 

16‐Jun‐2011 Packed tx gear in the heli net; set up tx. Read line 1300e.  950m completed. 1.5km walk from tx to line 1300e 

17‐Jun‐2011 Started reading line 1200e. 1.3km walk from tx to line 1200e.  Laid out loop for the upcoming borehole survey.  

 

18‐Jun‐2011 

Moved borehole gear to the grid. Picked up mg from surface grid and moved it to bh site. Read hole sh11‐07. Acquired gps coordinates for the loop. Picked up loop. Drill move in progress/helicopter not available . Assisted drill move. 

19‐Jun‐2011 Read line 1200e with camp helper. Corbin performed mag survey with camp helper. 

20‐Jun‐2011 Surveyed line 1100e with camp helper. Corbin performed mag survey with camp helper. Spotted helipad for the padbuilders, 1km away from tx. Line 1200 m away from tx. 

21‐Jun‐2011 Surveyed line 1000e with camp helper. Corbin performed mag survey with camp helper. Corbin offsite, Kevin Hynes onsite. 

 

22‐Jun‐2011  Surveyed line 900e. 

23‐Jun‐2011 

Started reading line 800e. Kevin and Ed resumed mag survey. Kevin and Ed were having problems with the mag. Could not read due to memory issues. I headed out to read line 800e. I was by myself; bear sneaked up on me. Heard something/someone breathing heavy, turned around to find a bear less than 10m away. Called camp, had problems getting a hold of the camp. Finally got a hold of the camp;  helicopter chased the bear away. 

24‐Jun‐2011 Surveyed line 800e. Kevin and Ed continued mag survey. I was out with Leon. We had a firearm in case bear problem presisted. line 800e. Kevin and Ed continued mag survey.  

30‐Jun‐2011 Started walking for line 700e. Kevin had some health issues. Started walking for line 700e by myself ran into the bear. Some delay again on response.  

01‐Jul‐2011  Read line 700e. 

02‐Jul‐2011  Read line 600e. 

04‐Jul‐2011  Started base station, Martin continued mag survey/Read line 500E 

05‐Jul‐2011  DMOB. 

06‐Jul‐2011  DMOB. 

Page 14: Geophysical Survey Report - Ontario

Crone Geophysics & Exploration Ltd.

Geophysical Survey Report

Respectfully submitted, A.M.Khan, M.Sc Crone Geophysics & Exploration Ltd.

Page 15: Geophysical Survey Report - Ontario

Crone Geophysics & Exploration Ltd.

Geophysical Survey Report

APPENDIX I

PROFILE PLAN MAPS

Page 16: Geophysical Survey Report - Ontario

5832000",

Page 17: Geophysical Survey Report - Ontario

5832000",

Page 18: Geophysical Survey Report - Ontario

Crone Geophysics & Exploration Ltd.

Geophysical Survey Report

APPENDIX II

LINEAR (5-AXIS) PULSE EM DATA PROFILES

Page 19: Geophysical Survey Report - Ontario
Page 20: Geophysical Survey Report - Ontario
Page 21: Geophysical Survey Report - Ontario

Q) [/]

3r-. p_, u

Q)

~ [/]

h-........ rrJ E--< ss ·c p_,

I'-

,--, r-. u Q)

!:] [/] Q) ..........

>=1 E--< >=1 ~ rrJ~

~ u

~

ClJr-. u Q)

!:] [/] Q) ..........

~ E--< ~ ~ rrl~

~ u

,--, C\l

lD ,--, r-. u Q)

!:] [/] Q) ..........

~ E--< ~ ~ rrJ~

~ u

Ol C\l

C\l C\l() [/] Q) ~ [/]

2000.

0.

-2000.

-4000.

-6000.

8000.

6000.

4000.

2000.

0.

160.

120.

80.

40.

0.

4.

2.

0.

-2.

-4.

2.

~ ~ -1. ~ ~ rrl~

~ u -2.

0

p

200 400 600 800 1000 I

0

s Semple~ Hulbert ect~ Deep EM Grid

lODE X Component s & Ltd.

Page 22: Geophysical Survey Report - Ontario
Page 23: Geophysical Survey Report - Ontario

;:;:, Fd•

~ m [/]

UJ m s ruu

o-[/] ~ 7 R' ::r:

r::; -0-' m '"-j

nr+ 0 s u o m ~ ()

L' m r+ r+ ~ I ~r+t::l

m m u M ::;:: () '"-j Fd•

~

Channels 22 - 29

I [\J 0

d

(I

/'.l'K

Channels 15 - 21

I [\J [\J 0

I)

i(

lie.\," \

Channels 8 - 14

[\J 0

~

"'" 0

I 1

~I I I / /

IIIII I \ \

r:JJ 0

f-"

[\J

0

Channels 1 - 7

f-"

m 0 0

[\J

0 0 0

~Ill I 1

~1!/1

111111

"'" 0 0 0

m 0 0 0

Primary Pulse

r:JJ f-'"

0 0 0 0 0 0

I ()l

0 0 0

~

t

II

()l

0 0

f-'"

0 0 0

u 0

1'0 -0

0

-P -0

0

OJ -0

0

CD -0

0

~

0 0 0

Page 24: Geophysical Survey Report - Ontario

Channels 22 - 29 Channels 15 - 21 Channels 8 - 14 Channels 1 - 7 Primary Pulse

I -I - - """ """ OJ N

CJl CJl 0 CJl 0 0 0 0 - - 0 0 0 0 0 0 0 0 I

""" OJ N Ol 0 0 0 0 0 0 0 0

N - 0 - N - 0 - N w 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

Page 25: Geophysical Survey Report - Ontario
Page 26: Geophysical Survey Report - Ontario

Channels 22 - 29 Channels 15 - 21 Channels 8 - 14 Channels 1 - 7 Primary Pulse

I I I N f-'o f-'o N rn "" "" rn 0 0 0 0 0 0 0 0

f-" f-" 0 0 0 0 0 0 0 0 I "" rn N Ol 0 0 0 0 0 0 0 0

N f-" 0 f--'" N f--'" 0 f--'" N w 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

N lt\J ~ r-! '" "d 0

1'0 -0

0 ;:;:, Fd•

~ m [/]

UJ -P m -0

s 0 wu o-

[/] ~ 7 R' ::r:

r::; -0-'

i ~ II ~ II

m OJ '"-j -0 r+ 0 co '"-j

0

m ()

L' m r+ r+ ~ I ~r+t::l I I I~ ~

CD m -0 m u 0

M ~1 ::;:: () '"-j Fd•

~ I I Ill II

~

0 0 0

Page 27: Geophysical Survey Report - Ontario

0 200 400 600 800 1000 1000. I

500.

Q) [/] 0. 3r-.

p_, u Q)

~ [/]

h-........ -500. rrJ E--< ss ·c p_, -1000.

16000.

12000.

I'-

8000. ,--, r-. u Q)

!:] [/] Q) ..........

>=1 E--< 4000. >=1 >=1 rrJ~

~ u 0.

160.

120. ~

80. ClJr-. u

Q) !:] [/] Q) ..........

>=1 E--< 40. >=1 >=1 rrl~

~ u 0.

6.

4. ,--, C\l

lD 2. ,--, r-. u Q)

!:] [/] Q) ..........

>=1 E--< 0. >=1 >=1 rrJ~

~ u -2.

2.

Ol C\l

C\l 0. C\lr-. u

Q) !:] [/] Q) ..........

>=1 E--< -1. >=1 >=1 rrl~

~ u -2.

s Semple~ Hulbert ect~ Deep EM Grid

X Component

Ltd.

Page 28: Geophysical Survey Report - Ontario

Channels 22 - 29 Channels 15 - 21 Channels 8 - 14 Channels 1 - 7 Primary Pulse

I -I - - """ """ OJ N

CJl CJl 0 CJl 0 0 0 0 - - 0 0 0 0 0 0 0 0 I

""" OJ N Ol 0 0 0 0 0 0 0 0

N - 0 - N - 0 - N w 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

N lt\J I~

""" 1 •• "D 0

1'0 -0

0 ;:;:,

)\ Fd•

~ m [/]

UJ ;r! I -P

m -0

s 0 u -m

I R' ::r:

r::; -0-'

~ ~) IIi t] II

m OJ '"-j -0 r+ 0 co '"-j

0

m ()

L' m r+ r+ ~ I ~r+t::l

~ r})11 ~II II I I 111 ~ CD m -0 m

u 0

M

Ji ~!( ::;:: () '"-j Fd•

~

1111\\\ \\~ t 0

0 0

I

Page 29: Geophysical Survey Report - Ontario

0 200 400 600 800 1000 3000. I

2000.

Q) [/] 1000. 3r-.

p_, u Q)

~ [/]

h-........ rrJ E--< ss ·c p_,

~ 1000.

8000.

6000.

I'-

4000. ,--, r-. u Q)

!:] [/] Q) ..........

>=1 E--< 2000. >=1 >=1 rrJ~

~ u 0.

160.

120. ~

80. ClJr-. u

Q) !:] [/] ~ Q) .......... 40. >=1 E--< ~~ >=1 >=1 rrl~

~ ------u 0.

6.

4. ,--, C\l

lD 2. ,--, r-. u Q)

!:] [/] Q) ..........

>=1 E--< 0. >=1 >=1 rrJ~

~ u ~2.

2.

Ol C\l

0. 2 C\l C\lr-. u

Q) !:] [/] Q) ..........

>=1 E--< ~1.

>=1 >=1 rrl~

~ u ~2.

s Semple~ Hulbert ect~ Deep EM Grid

500E X Component s & Ltd.

Page 30: Geophysical Survey Report - Ontario

Channels 22 - 29 Channels 15 - 21 Channels 8 - 14 Channels 1 - 7 Primary Pulse

I I f-'o f-'o ru w rn "" "" rn 0 0 0 0 0 0 0 0

I f-" f-" 0 0 0 0 0 0 0 0 I CJl CJl 0 CJl 0 0 0 0 0 0 0 0

ru f-" 0 f--'" ru f--'" 0 f--'" ru w 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

1'0 -0

0 ;:;:, Fd•

~ m [/]

UJ -P m -0

s 0 Ulu o-

[/] ~ 7 R' ::r:

r::; -0-'

t \) I ~ II

m OJ '"-j -0 r+ 0 co '"-j

0

m ()

L' m r+ r+ ~ I ~r+t::l

' ~)\) 111! ) ) ~ ~ CD m -0 m

u 0

M ::;:: () '"-j Fd•

~ Ill ll/l1 \ \ 1111111 I IIIII II

~

0 0 0

Page 31: Geophysical Survey Report - Ontario

;:;:, Fd•

~ m [/]

UJ m s mu

o-[/] ~ 7 R' ::r:

r::; -0-' m '"-j

nr+ 0 s u o m ~ ()

L' m r+ r+ ~ I ~r+t::l

m m u M ::;:: () '"-j Fd•

~

Channels 22 - 29

I /\J 0

OJ

fil

f \"1/f/

Channels 15 - 21

I /\J """

I /\J 0

( \

f\ \

t ~~~

/\J

Channels 8 - 14

""" 0 """ 0

~Ill ! ! (

~I l II I

N/ I I I I

OJ 0

f-"

/\J 0

Channels 1 - 7

f-"

Ol 0 0

~Ill If

~\\))))

111111

/\J 0 0 0

""" 0 0 0

Ol 0 0 0

Primary Pulse

OJ f-"

0 0 0 0 0 0 0

f-"

0 0 0

/\J 0 0 0

GJ 0 0 0

~--~--~----~--~o

1'0 -0

0

-P -0

0

tl OJ -0

0

1 CD -0

0

I ~

0 0 0

Page 32: Geophysical Survey Report - Ontario

Q) [/]

3r-. p_, u

Q)

~ [/]

h-........ rrJ E--< ss ·c p_,

I'-

,--, r-. u Q)

!:] [/] Q) ..........

>=1 E--< >=1 >=1 rrJ~

~ u

Ol N

N Nr-. u

Q) !:] [/] Q) ..........

>=1 E--< >=1 >=1 rrl~

~ u

120000.

80000.

40000.

0.

-40000.

-80000.

20000.

10000.

0.

-10000.

-20000.

200.

150.

100.

4.

2.

-2.

2.

0.

-1.

-2.

0 200 400 600 800 1000 I

s Semple~ Hulbert ect~ Deep EM Grid 600E

s &

Page 33: Geophysical Survey Report - Ontario

0 200 400 600 800 1000 1200. I

800.

Q) [/] 400. 3r-.

p_, u Q)

~ [/]

h-........ 0. rrJ E--< ss ·c p_,

~400.

6000.

4000.

I'-

2000. ,--, r-. u Q)

!:] [/] Q) ..........

>=1 E--< 0. >=1 >=1 rrJ~

~ u ~2000.

160.

120. ~

80. ClJr-. u

Q) !:] [/] Q) ..........

>=1 E--< 40. >=1 >=1 rrl~

~ u 0.

3.

2. ,--, C\l

lD 1. ,--, r-. u Q)

!:] [/] Q) ..........

>=1 E--< 0. >=1 >=1 rrJ~

~ u ~1

2.

Ol C\l

C\l 0. C\lr-. u

Q) !:] [/] Q) ..........

>=1 E--< ~1.

>=1 >=1 rrl~

~ u ~2.

s Semple~ Hulbert ect~ Deep EM Grid

700E X Component s & Ltd.

Page 34: Geophysical Survey Report - Ontario

Channels 22 - 29 Channels 15 - 21 Channels 8 - 14 Channels 1 - 7 Primary Pulse

I -- - ru w """ """

OJ ru 0 0 0 0 0 0 0 0 - - ru w 0 0 0 0 0 0 0 0

I I I 0 0 0 0 0 0 0 0 0 0 0 0 ru - 0 - ru

""" ru 0 ru

""" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

N N I ~ ~ )" "d I 0

1'0 -0

0 ;:;:,

! j~ tJ I fiJI I \ ~/ \t Fd•

~ m [/]

UJ

I f( ill(( I~ It

-P m -0

s 0 --1 u o-

[/] ~ 7 R' ::r:

r::; -0-'

~ ~ ~ i II

m OJ '"-j -0 r+ 0 co '"-j

0

m ()

L' m r+ r+ ~ I ~r+t::l

t ]\ 11111 ~ t CD m -0 m u 0

M ::;:: () '"-j Fd•

~

1111 I t t 0 0 0

Page 35: Geophysical Survey Report - Ontario
Page 36: Geophysical Survey Report - Ontario
Page 37: Geophysical Survey Report - Ontario

Channels 22 - 29 Channels 15 - 21

I I I 1'J f-" 0 f--'" 1'J

""" 1'J 0 1'J

[/] Ill¥ Ill II /

UJ

l (D ~)) s cou o-

[/] 0 (D

Ml R' ::r:

r::; - I 0-' ~)))) (D '"-j

nr+ 0 s u 0 (D

~ () L' (D r+ r+ ~ I ~r+t::l 1 1, (D

(D

u M ::;:: () '"-j Fdo

~ I Ill\! 1!111 I

Channels 8 - 14 Channels 1 - 7

I 1'J 1'J

f-" f-" 0 0

""" OJ 1'J m 0 0

""" 0 0 0 0 0 0 0 0

11/\ ( < ~/}/ ?

~

~I I 1/ J / ~111/J

~I I\ I ( 111111

IIIII I I 1 1111111

""" m

0 0 0 0 0 0

Primary Pulse

I I m

""" 0 0 0 0 0 0

I 1'J 0 0 0 0

1'J 0 0 0

1'0 -0

0

~ -8

t -8

t -8

-

0 0 0

Page 38: Geophysical Survey Report - Ontario

Channels 22 - 29 Channels 15 - 21

I I I N f-'" 0 f--'" N "" N 0 N

[/] Ill

'Y UJ Ill (D I~ s

cou o-

[/] ~ 7 R' ::r:

r::; - ~tr ) 0-' (D '"-j r+

(D ()

L' (D r+ r+ ::J I

tt ~\ ~r+t::l (D (D

u M ::;:: () '"-j F 0

~ Ill\\ lfllll I

Channels 8 - 14 Channels 1 - 7

f-'" I 0 CJl

f-" f-" N 0 0 CJl 0 CJl 0 0 0

"" 0 0 0 0 0 0 0 0

~II II I \I~

~II!! lit

~\\ \ \ m

111111 I I 1111

IIIII III 1111

Primary Pulse

I I I f-'" rn m "" CJl 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

I N 0 0 0 0 0

1'0 0 0

\t-8

~8

t8

II-

0

II 6

Page 39: Geophysical Survey Report - Ontario
Page 40: Geophysical Survey Report - Ontario
Page 41: Geophysical Survey Report - Ontario

0 200 400 600 800 1000 600. I

400.

Q) [/] 200. 3r-.

p_, u Q)

~ [/]

h-........ 0. rrJ E--< ss ·c p_,

~200.

4000.

3000.

I'-

2000. ,--, r-. u Q)

!:] [/] Q) ..........

>=1 E--< 1000. >=1 >=1 rrJ~

~ u 0.

160.

120. ~

80. ClJr-. u

Q) !:] [/] Q) ..........

>=1 E--< 40. >=1 >=1 rrl~

~ u 0.

4.

2. ,--, C\l

lD 0. ,--, r-. u Q)

!:] [/] Q) ..........

>=1 E--< ~2.

>=1 >=1 rrJ~

~ u ~4.

2.

Ol C\l

0. 2 C\l

6

C\lr-. u Q)

!:] [/] Q) ..........

>=1 E--< ~1.

>=1 >=1 rrl~

~ u ~2.

Semple~ Hulbert ect~ Deep EM Grid 11 ODE X Component

s & Ltd.

Page 42: Geophysical Survey Report - Ontario
Page 43: Geophysical Survey Report - Ontario

UJ (D

- s 1\Ju affi

[/] o I R'M::C

n 0 s

r::; -0-' (D '"-j r+

u (D 0 () ~ r+

L' m I r+ ~ u ~ r+ (D

(D

u M ::;:: () '"-j Fdo

~

Channels 22 - 29

I [\J 0

Channels 15 - 21

I [\J "'"

I [\J 0 [\J

Channels 8 - 14

"'" 0 "'" 0 OJ 0

f-"

[\J

0

Channels 1 - 7

f--"

f-" 0 Ol 0 0 0 0

f--"

0 0 0

[\J

0 0 0

Primary Pulse

w I 0 "'" 0 0 0 0 0 "'" 0

0

OJ 0 0

f--" [\J 0 0

u 0

1'0 -0

0

-P -0

0

OJ -0

0

CD -0

0

0 0 0

Page 44: Geophysical Survey Report - Ontario

Ol N

-5000.

-10000.

-15000.

-20000.

4000.

2000.

-2000.

0

-4000.

150.-

-50.-

6.

4.

2.

-2.

2.

-1.

-2.

200 400 600 800 1000

Semple~ Hulbert ect~ Deep EM Grid

1200E Z Component s & Ltd.

Page 45: Geophysical Survey Report - Ontario

L' t::r UJ m m

- s wu 0-

[/] om I

R'M::C r::;

n 0 s

c; m '"-j r+

u m 0 () ~ r+

L' m I r+ ~ u ~ r+ m

m u M ::;:: () '"-j Fdo

~

Channels 22 - 29

I [\J 0

Channels 15 - 21

I [\J "'"

I [\J 0

~

[\J

Channels 8 - 14

"'" 0 "'" 0 OJ 0

f-"

[\J

0

Channels 1 - 7

f-"

Ol 0 0

f-"

0 0 0

[\J

0 0 0

w 0 0 0

Primary Pulse

,p I 0 "'" 0 0 0 0

I [\J 0 0 0

[\J 0 0

"'" 0 0

u 0

1'0 -0

0

-P -0

0

OJ -0

0

CD -0

0

Page 46: Geophysical Survey Report - Ontario

Channels 22 - 29 Channels 15 - 21 Channels 8 - 14 Channels 1 - 7 Primary Pulse

I ['0 f-' f-' I

f-' f-' ['0 w 0 CJl 0 CJl I f-' f-' 0 0 0 0 0 0 0 0

I CJl CJl 0 CJl 0 0 0 0 0 0 0 0 ['0 f-' 0 f--'" ['0 f--'" 0 f--'" ['0 w 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

1'0

fill I I mil I \ rs

'II L' Fd•

~ UJ m m

- s

' ~ 1 ) ) 111lt \ ) m~ \t-8 wu -om [/] o I R'M::C

r::; -0-' m

N """l r+

n 0 s t ~f) 1wl u \If \t-§ u m 0 ()

L' ~ r+ r+ m I ~ ~ u

r+ m m u

M ::;:: () j {I ~ ( (tl lt8 '"-j Fd•

~

Page 47: Geophysical Survey Report - Ontario
Page 48: Geophysical Survey Report - Ontario

0 200 400 600 800 0.

-2000.

Q) [/] -4000. 3r-.

p_, u Q)

~ [/]

h-........ -6000. rrJ E--< ss ·c p_, -8000.

2000.

1000.

I'-

0. ,--, r-. u 3 Q)

!:] [/] Q) ..........

>=1 E--< -1000. >=1 >=1 rrJ~

~ u -2000.

150.

100. ~

~ -%~ ClJr-. u

Q) !:] [/] Q) ..........

>=1 E--< 0. >=1 >=1 rrl~

~ u -50.

6.

4. ,--, C\l

lD 2. ,--, r-. u Q)

!:] [/] ~~ Q) .......... 0. >=1 E--<

>=1 >=1 rrJ~

~ u -2.

2.

Ol C\l

C\l 0. C\lr-. u

Q) !:] [/] Q) ..........

>=1 E--< -1. >=1 >=1 rrl~

~ u -2.

Semple~ Hulbert ect~ Deep EM Grid

1400E Z Component s & Ltd.

Page 49: Geophysical Survey Report - Ontario

Crone Geophysics & Exploration Ltd.

Geophysical Survey Report

APPENDIX III

PULSE EM DATA PROFILES (LIN-LOG SCALE)

Page 50: Geophysical Survey Report - Ontario

[J] -QJ

~ ~ ('j

~ u

QJ

s :0 I

'H ~

0 ~ m [J]

C\l~ c:l ~ ~----­('j

QJ [J]

3 p_,

?--. 1-< ('j

s 'C p_,

0 0 0 0 ,.--,

0 0

0 200 I

400 600 800

,.--, r------fl--------t-----&--__~ ~-~-&----~~

0

0 ,.--, I

0 0 ,.--, I

0 0 0 ,.--, I

0 0 0 0 ,.--, I s Semple~ Hulbert

OE X s &

p

ect~ Deep EM Grid

Ltd,

Page 51: Geophysical Survey Report - Ontario

[/]

Q) ~ ~ cD ~ u

QJ

6 :;:::i I

'H ~ 'H ()

0 QJ

m [/] C\1'-.._

F< 1:) ~ ~~

cD

QJ [/]

3 p_,

~ ~ cD

6 -~ p_,

0 200 I

g --------------------0 0

0 0 0 ,..-,

0 ~

I

0 0 ~

I

0 0 0 ~

I

0 0 0 0 ,..-, I

400 600 800

3

~

ect~Deep EM

Ltd.

Page 52: Geophysical Survey Report - Ontario

[J] -QJ

~ ~ ('j

~ u

QJ

s :0 I

'H ~ 'H u 0 QJ

m [J]

C\l'---. E--<

c:l ~ ~-----('j

QJ [J]

3 p_,

?--. 1-< ('j

s 'C p_,

0 0 0 0 ,.--,

0 0 0

0 0 ,.--,

0

0 ,.--, I

0 0 ,.--, I

0 0 0 ,.--, I

0 0 0 0 ,.--, I

0 200 I

400 600 800 1000 I

p

p

s Semple~ Hulbert ect~ Deep EM Grid

lODE X Component s & Ltd,

Page 53: Geophysical Survey Report - Ontario

[/] ~

QJ

~ ~ cD ~ u

QJ

a :;::1 I

'H ~ 'H u 0 QJ

m [/] (\)'-....._

E--< ccJ ~ ~~

ro QJ [/]

"3 CL,

~ I-< ro a c

CL,

0 0

0 I

§;T-+-~~~ ,.--,

0 0 0

0 0 ,.--,

0

0 ,.--, I

0 0 ,.--, I

0 0 0 ,.--, I

0 0 0 0 ,.--, I

20 I

400 I

600 I

----+B~

-------------~

~~

800 I

1000 I

~

~.·· ......... ,/7~-:z 0

,/

-Hulbert ect-Deep EM Grid C anent

s & Exploration Ltd.

Page 54: Geophysical Survey Report - Ontario

[J] -QJ

~ ~ ('j

~ u

QJ

s :0 I

'H ~ 'H u 0 QJ

m [J]

C\l'---. E--<

c:l ~ ~-----('j

QJ [J]

3 p_,

?--. 1-< ('j

s 'C p_,

0 0 0 0 ,.--,

0 0 0

,.--,

0

0 ,.--, I

0 0 ,.--, I

0 0 0 ,.--, I

0 0 0 0 ,.--, I

0 200 I

s

400 600 800 1000 I

~~~ ·········~······0·· ... ~·····

B~ ~Hr-

~ 1{3~

B

Semple~ Hulbert ect~ Deep EM Grid

200E X Component s & Ltd,

Page 55: Geophysical Survey Report - Ontario

[J] -QJ

~ ~ ('j

~ u

QJ

s :0 I

'H ~

0 ~ m [J]

C\l~ c:l ~ ~----­('j

QJ [J]

3 p_,

?--. 1-< ('j

s 'C p_,

0 0 0

0

0 1-----t---­,.--,

0 0 0

0 0 ,.--,

0 ,.--, I

0 0 ,.--, I

0 0 0 ,.--, I

0 0 0 0 ,.--, I

2 0 400 600 800 1000 I

~: .•••••••••••... ·····················""········

ernple~ Hulbert ect~ Deep EM Grid 200E

s &

Page 56: Geophysical Survey Report - Ontario

[J] -QJ

~ ~ ('j

~ u

QJ

s :0 I

'H ~ 'H u 0 QJ

m [J]

C\l'---. E--<

c:l ~ ~-----('j

QJ [J]

3 p_,

?--. 1-< ('j

s 'C p_,

0 0 0 0 ,.--,

0 0 0

0 0 ,.--,

0

0 0 ,.--, I

0 0 0 ,.--, I

0 0 0 0 ,.--, I

0 200 I

s

400 600 800 1000

Hl~

---~1

1-~ ~

Semple~ Hulbert ect~ Deep EM Grid

300E X Component s & Ltd,

Page 57: Geophysical Survey Report - Ontario

[/]

Q) ~ ~ cD ~ u

QJ

6 ;:; I

'H ~

0 ~ m [/] [\]~ 1:) ~ ~~

cD

QJ [/]

3 p_,

~ ~ cD

6 -~ p_,

0

0 I

0 0~

0

0 0 0 ,..-,

0 ,..-,

0 ~

I

0 0 ~

I

0 0 0 ,..-, I

0 0 0 0 ,..-, I

200 I

400 I

600 I

Semple-Hulbert Line 300E

Ge s &

800 I

ect-Deep EM

1000 I

Page 58: Geophysical Survey Report - Ontario

[J] -QJ

~ ~ ('j

~ u

QJ

s :0 I

'H ~ 'H u 0 QJ

m [J]

C\l'---. E--<

c:l ~ ~-----('j

QJ [J]

3 p_,

?--. 1-< ('j

s 'C p_,

0 0 0 0 ,.--,

0 0 0

0 0 ,.--,

0

0 ,.--, I

0 0 ,.--, I

0 0 0 ,.--, I

0 0 0 0 ,.--, I

0 200 I

400 600 800 1000

~

~1

p

s Semple~ Hulbert ect~ Deep EM Grid

X Component Ltd,

Page 59: Geophysical Survey Report - Ontario

[J] -QJ

~ ~ ('j

~ u

QJ

s :0 I

'H ~ 'H u 0 QJ

m [J]

C\l'---. E--<

c:l ~ ~-----('j

QJ [J]

3 p_,

?--. 1-< ('j

s 'C p_,

0

0 ,.--, I

0 0 ,.--, I

0 0 0 ,.--, I

0 0 0 0 ,.--, I

0 200 400 600 800 1000 I

Semple~ Hulbert ect~ Deep EM Grid

Page 60: Geophysical Survey Report - Ontario

[J] -QJ

~ ~ ('j

~ u

QJ

s :0 I

'H ~

0 ~ m [J]

C\l~ c:l ~ ~----­('j

QJ [J]

3 p_,

?--. 1-< ('j

s 'C p_,

0 0 0 0 ,.--,

0 0 0

0 0 ,.--,

0

0 ,.--, I

0 0 ,.--, I

0 0 0 ,.--, I

0 0 0 0 ,.--, I

0 200 I

400 600 800 1000

s Semple~ Hulbert ect~ Deep EM Grid

500E X Component s & Ltd,

Page 61: Geophysical Survey Report - Ontario

[J] -QJ

~ ~ ('j

~ u

QJ

s :0 I

'H ~

0 ~ m [J]

C\l~ c:l ~ ~----­('j

QJ [J]

3 p_,

?--. 1-< ('j

s 'C p_,

0 0 ,.--,

0

0 ,.--, I

0 0 ,.--, I

0 0 0 ,.--, I

0 0 0 0 ,.--, I

0 200 400 600 800 1000 I I

~~

' "< ... "~ ~·~······ ~~~----~B~~

Semple~ Hulbert ect~ Deep EM Grid 500E

s &

Page 62: Geophysical Survey Report - Ontario

[J] -QJ

~ ~ ('j

~ u

QJ

s :0 I

'H ~ 'H u 0 QJ

m [J]

C\l'---. E--<

c:l ~ ~-----('j

QJ [J]

3 p_,

?--. 1-< ('j

s 'C p_,

0 0 0 0 ,.--,

0 0 0

0 0 ,.--,

0

0 ,.--, I

0 0 ,.--, I

0 0 0 ,.--, I

0 0 0 0 ,.--, I

0 200 400 600 800 1000 I

s Semple~ Hulbert ect~ Deep EM Grid

600E X Component s & Ltd,

Page 63: Geophysical Survey Report - Ontario

[/] -QJ

>=1 >=1 cD

eC u

QJ

s :;::l I

'H ~ 'H u 0 QJ

m [/] C\l'-...

E--< C) >=1 >:1'---' cD

QJ [/]

3 p_,

~ h cD s -~ p_,

0 0 ,.--,

0 ~

0 ~

I

0 0 ~

I

0 0 0 ~

I

0 0 0 0 ~

I

0 I

200 I

400 600 800 1000 I I I I

-----s~

_.//

..--{

~

es Semple~ Hulbert ect~ Deep EM Grid Loop Line 600E

Crone Ge s &

Page 64: Geophysical Survey Report - Ontario

[J] -QJ

~ ~ ('j

~ u

QJ

s :0 I

'H ~

0 ~ m [J]

C\l~ c:l ~ ~----­('j

QJ [J]

3 p_,

?--. 1-< ('j

s 'C p_,

0 0 ,.--, I

0 0 0 ,.--, I

0 0 0 0 ,.--, I

0 200 I

400 600 800 1000

s Semple~ Hulbert ect~ Deep EM Grid

700E X Component s & Ltd,

Page 65: Geophysical Survey Report - Ontario

[J] -QJ

~ ~ ('j

~ u

QJ

s :0 I

'H ~ 'H u 0 QJ

m [J]

C\l'---. E--<

c:l ~ ~-----('j

QJ [J]

3 p_,

?--. 1-< ('j

s 'C p_,

0 0 0 0 ,.--,

0 0 0

0 0 ,.--,

0

0 ,.--, I

0 0 ,.--, I

0 0 0 ,.--, I

0 0 0 0 ,.--, I

0 200 400 600 800 1000 I I

\~~'

; "_: =-

~//

~~~

1nes Semple~ Hulbert ect~ Deep EM Grid 700E

s &

Page 66: Geophysical Survey Report - Ontario

[J] -QJ

~ ~ ('j

~ u

QJ

s :0 I

'H ~ 'H u 0 QJ

m [J]

C\l'---. E--<

c:l ~ ~-----('j

QJ [J]

3 p_,

?--. 1-< ('j

s 'C p_,

0 0 ,.--,

0 0 ,.--, I

0 0 0 ,.--, I

0 0 0 0 ,.--, I

0

p

200 400 600 800 1000 I I

s Semple~ Hulbert ect~ Deep EM Grid

BODE X Component s & Ltd,

Page 67: Geophysical Survey Report - Ontario

[J] -QJ

~ ~ ('j

~ u

QJ

s :0 I

'H ~

0 ~ m [J]

C\l~ c:l ~ ~----­('j

QJ [J]

3 p_,

?--. 1-< ('j

s 'C p_,

0 0 0 0 ,.--,

0 0 ,.--, I

0 0 0 ,.--, I

0 0 0 0 ,.--, I

0 200 I

Macdon a

400 600 800 1000

s Semple~ Hulbert ect~ Deep EM Grid BODE

s &

Page 68: Geophysical Survey Report - Ontario

[J] -QJ

~ ~ ('j

~ u

QJ

s :0 I

'H ~ 'H u 0 QJ

m [J]

C\l'---. E--<

c:l ~ ~-----('j

QJ [J]

3 p_,

?--. 1-< ('j

s 'C p_,

0 0 ,.--, I

0 0 0 ,.--, I

0 0 0 0 ,.--, I

200 I

400 600 800 1000

s Semple~ Hulbert ect~ Deep EM Grid

900E X Component s & Ltd,

Page 69: Geophysical Survey Report - Ontario

[/] ~

QJ

~ ~ cD

c.c1 u

QJ

.§ +-' I

'H ~ 'H u 0 QJ

Ol [/] N'-..__

E-< ccJ ~ ~~

cD

QJ [/]

~ CL,

p... 1-< cD s -~ CL,

0 0 0 0 ,.--,

0 0 0

0 0 ,.--,

0

0 ,.--, I

0 0 ,.--, I

0 0 0 ,.--, I

0 0 0 0 ,.--, I

200 I

400 I

600 I

800 I

1000 I

~~

Semple-Hulbert ect-Deep EM Grid Line 9 C anent

Ge s & Exploration Ltd.

Page 70: Geophysical Survey Report - Ontario

[J] -QJ

~ ~ ('j

~ u

QJ

s :0 I

'H ~ 'H u 0 QJ

m [J]

C\l'---. E--<

c:l ~ ~-----('j

QJ [J]

3 p_,

?--. 1-< ('j

s 'C p_,

0 0 0 0 ,.--,

0 0 0

0 0 ,.--,

0

0 ,.--, I

0 0 ,.--, I

0 0 0 ,.--, I

0 0 0 0 ,.--, I

0 200 400 600 800 1000 I

Semple~ Hulbert ect~ Deep EM Grid

1000E X Component s & Ltd,

Page 71: Geophysical Survey Report - Ontario

[/]

Q) ~ ~ cD ~ u

QJ

6 ;:; I

'H ~ 'H ()

0 QJ

().) [/]

C\1'-...._ E-<

'1:) ~ ~~

cD

QJ [/]

3 p_,

~ ~ ell

6 .h p_,

0 0 0 0

0 0 0 ,.--,

0 0

0 ,.--,

0 ~

I

0 0 ,.--, I

0 0 0 ,.--, I

0 0 0 0 ,.--, I

0 I

200 I

onald Mines

Loop Crone

400 I

600 I

Semple-Hulbert Line 100

Ge s &

800 I

ect-Deep EM

1000 I

~~

Page 72: Geophysical Survey Report - Ontario

[J] -QJ

~ ~ ('j

~ u

QJ

s :0 I

'H ~ 'H u 0 QJ

m [J]

C\l'---. E--<

c:l ~ ~-----('j

QJ [J]

3 p_,

?--. 1-< ('j

s 'C p_,

0 0 0 0 ,.--,

0 0 0

0 0 ,.--,

0

0 ,.--, I

0 0 ,.--, I

0 0 0 ,.--, I

0 0 0 0 ,.--, I

0 200 I

400 600 800 1000

~

~ ----~~

~

~

Semple~ Hulbert ect~ Deep EM Grid 11 ODE X Component

s & Ltd,

Page 73: Geophysical Survey Report - Ontario

[J] -QJ

~ ~ ('j

~ u

QJ

s :0 I

'H ~

0 ~ m [J]

C\l~ c:l ~ ~----­('j

QJ [J]

3 p_,

?--. 1-< ('j

s 'C p_,

0 0 0 0 ,.--,

0 ,.--, I

0 0 ,.--, I

0 0 0 ,.--, I

0 0 0 0 ,.--, I

0 200 I

cdonald Mines

400 600 800 1000

Semple~ Hulbert ect~ Deep EM Grid

11 ODE Z Component s & Ltd,

Page 74: Geophysical Survey Report - Ontario

[J] -QJ

~ ~ ('j

~ u

QJ

s :0 I

'H ~ 'H u 0 QJ

m [J]

C\l'---. E--<

c:l ~ ~-----('j

QJ [J]

3 p_,

?--. 1-< ('j

s 'C p_,

0 0 ,.--, I

0 0 0 ,.--, I

0 0 0 0 ,.--, I

0 200 400 600 800 1000 I

Semple~ Hulbert ect~ Deep EM Grid

1200E X Component s & Ltd,

Page 75: Geophysical Survey Report - Ontario

[J] -QJ

~ ~ ('j

~ u

QJ

s :0 I

'H ~

0 ~ m [J]

C\l~ c:l ~ ~----­('j

QJ [J]

3 p_,

?--. 1-< ('j

s 'C p_,

0 0 0 0 ,.--,

0 0 ,.--, I

0 0 0 ,.--, I

0 0 0 0 ,.--, I

0 200 I

Macdonald

400 600 800 1000

Semple~ Hulbert ect~ Deep EM Grid

1200E Z Component s & Ltd,

Page 76: Geophysical Survey Report - Ontario

[J] -QJ

~ ~ ('j

~ u

QJ

s :0 I

'H ~ 'H u 0 QJ

m [J]

C\l'---. E--<

c:l ~ ~-----('j

QJ [J]

3 p_,

?--. 1-< ('j

s 'C p_,

0 0 0 0 ,.--,

0 0 ,.--,

0

0 0 ,.--, I

0 0 0 ,.--, I

0 0 0 0 ,.--, I

0 200 400 600 800 I

Semple~ Hulbert ect~ Deep EM Grid

1300E X Component s & Ltd,

Page 77: Geophysical Survey Report - Ontario

[J] -QJ

~ ~ ('j

~ u

QJ

s :0 I

'H ~

0 ~ m [J]

C\l~ c:l ~ ~----­('j

QJ [J]

3 p_,

?--. 1-< ('j

s 'C p_,

0 0 0 0 ,.--,

0 0 0

0

0 r-t----0 ,.--,

0 ,.--, I

0 0 ,.--, I

0 0 0 ,.--, I

0 0 0 0 ,.--, I

lf-------,L__

200 400 600 800 I

4

Semple~ Hulbert ect~ Deep EM Grid

1300E Z Component s & Ltd,

Page 78: Geophysical Survey Report - Ontario

[J]

G) ~ ~ ('j

~ u

QJ

s :0 I

'H ~ 'H u 0 QJ

[J]

gj~ c:l ~ ~----­('j

QJ [J]

3 p_,

?--. 1-< ('j

s 'C p_,

0 0 0 0 ,.--,

0 0 ,.--, I

0 0 0 ,.--, I

0 0 0 0 ,.--, I

0 I

200 400 600 800 I I I I

EM Grid

Page 79: Geophysical Survey Report - Ontario

[J] -QJ

~ ~ ('j

~ u

QJ

s :0 I

'H ~ 'H u 0 QJ

m [J]

C\l'---. E--<

c:l ~ ~-----('j

QJ [J]

3 p_,

?--. 1-< ('j

s 'C p_,

0 0 0 0 ,.--,

0 0 0

0 0 ,.--,

0

0 ,.--, I

0 0 ,.--, I

0 0 0 ,.--, I

0 200 400 600 800 I

Semple~ Hulbert ect~ Deep EM Grid

1400E Z Component s & Ltd,

Page 80: Geophysical Survey Report - Ontario

Crone Geophysics & Exploration Ltd.

Geophysical Survey Report

APPENDIX IV

CRONE INSTRUMENT SPECIFICATIONS

Page 81: Geophysical Survey Report - Ontario

 

 

SYSTEM DESCRIPTION  

The  Crone  Pulse  EM  system  is  a  time  domain  electromagnetic  method  (TDEM)  that  utilizes  an alternating pulsed primary current with a controlled shut‐off and measures the rate of decay of the induced secondary field across a series of time windows during the off‐time. The system uses a transmit loop of any size  or  shape.  A  portable  power  source  feeds  a  transmitter  which  provides  a  precise  current  waveform through the loop. The receiver apparatus is moved along surface lines or down boreholes. 

The  transmitter  cycle  consists of  slowly  increasing  the current over a  few milliseconds, a constant current,  abrupt  linear  termination  of  the  current,  and  finally  zero  current  for  a  selected  length  of  time  in milliseconds. The EMF created by the shutting‐off of the current induces eddy currents in nearby conductive material thus setting‐up a secondary magnetic field. When the primary field is terminated, this magnetic field will decay with time. The amplitude of the secondary field and the decay rate are dependent on the quality and size of  the conductor. The receiver, which  is synchronized to  the off‐time of  the  transmitter, measures this transient magnetic field where it cuts the surface coil or borehole probe.  These readings are across fixed time windows or "channels".  SYSTEM TERMINOLOGY  Ramp Time 

"Ramp time" refers to the controlled shut‐off of the transmitter current. Three ramp times are  selectable  by  the  operator;  0.5ms,  1.0ms,  and  1.5ms.  By  controlling  the  shut‐off  rather  than having  it  depend  on  the  loop  size  and  current  ensures  that  the  same waveform  is maintained  for different loops so data can be properly compared. 

The 1.5ms ramp is the normally used setting for good conductors. It keeps the early channel responses on scale and decreases the chance of overload. The faster ramp times of 1.0ms and 0.5ms will enhance the early time responses. This can be useful  for weak conductors when data from the higher end of the frequency spectrum is desired. 

 Time Base 

Time base is the length of time the transmitter current is off (it includes the ramp time). This also  equals  the  on  time  of  the  current.    Time  bases  are  available  for  both  60Hz  and  50Hz  noise rejection respectively: 

 8.33ms (30Hz), 16.66ms (15Hz), 50ms (5Hz), 100ms (2.5Hz), 150ms (1.67Hz), 300ms (0.833Hz), 500ms (0.5Hz), 750ms (0.33Hz), 1000ms (0.25Hz) 

10ms  (25Hz),  20ms  (12.5Hz),  50ms  (5Hz),  100ms  (2.5Hz),  150ms  (1.67Hz),  300ms (0.833Hz), 500ms (0.5Hz), 750ms (0.33Hz), 1000ms (0.25Hz) 

 Since  readings  are  taken  during  the  off  cycles,  the  time  base  will  have  an  effect  on  the 

receiver channels. Normally, a standard time base is selected for the type of system and survey being used,  but  this  can  be  changed  to  suit  a  particular  situation.  A  longer  time  base  is  preferred  for conductors  of  greater  time  constants,  and  in  surveys  such  as  resistive  soundings  where  more channels are desired. 

 Zero Time Set 

The  term  "zero  time  set"  or  "ZTS"  refers  to  the  starting  point  for  the  receiver  channel measurements. It is manually set on the receiver by the operator thus allowing adjustments for the ramp times and fine tuning for any fluctuations in the transmitter signal. 

   

Crone Pulse EM 

System Description 

Page 82: Geophysical Survey Report - Ontario

Receiver Channels The  rate  of  decay  of  the  secondary  field  is  measured  across  fixed  time  windows  which 

occupy most of  the off‐time of  the  transmitter. These  time windows are  referred  to  as  "channels". These  channels  are  numbered  in  sequence with  "1"  being  the  earliest.  The  analog  and  datalogger receivers measured  eight  fixed  channels.  The digital  receiver,  being under  software  control,  offers more flexibility in the channel positioning, channel width, and number of channels. 

 PP Channel 

The  PEM  system monitors  the  primary  field  by  taking  a measurement  during  the  current ramp and storing this information in a "PP channel". This means that data can be presented in either normalized or normalized formats, and additional information is available during interpretation. The PP  channel  data  can  provide  useful  diagnostic  information  and  helps  avoid  critical  errors  in  field polarity. 

 Synchronization 

Since the PEM system measures the secondary field in the absence of the primary field, the receiver  must  be  in  "sync"  with  the  transmitter  to  read  during  the  off‐time.  There  are  three synchronization  methods  available:  cable  connection,  radio  telemetry,  and  crystal  clock.  This flexibility enhances the operational capabilities of the system. 

 SURVEY METHODS  

The wide frequency spectrum of data produced by a Pulse EM survey can be used to provide structural  geological  information  as  well  as  the  direct  detection  of  conductive  or  conductive associated  ore  deposits.  The  various  types  of  survey  methods,  from  surface  and  borehole,  have greatly  improved  the  chances  of  success  in  deep  exploration  programs.  There  are  eight  basic profiling methods as well as a resistivity sounding mode. 

 Moving Coil 

A small, multi‐turn transmitter loop (13.7m diameter) is moved for each reading while the receiver remains a fixed distance away. This method is ideal for quick reconnaissance in areas of high background conductivity. 

 Moving Loop 

Same as Moving Coil method, but with a larger rectangular transmit loop (100 to 300 meters). This method provides deeper penetration in areas of high background conductivity, and works best for near‐vertical conductors. This method can be used in conjunction with the Moving In‐loop survey for increased sensitivity to horizontal conductors. 

 Moving In­Loop 

A rectangular transmit loop of size 100 to 300 meters is moved for each reading while the receiver remains at the center of the loop. This method provides deep penetration in areas of very high background conductivity, and works best for near‐horizontal conductors. It can be used in conjunction with the Moving Loop survey. 

 Large In­Loop 

A very large, stationary transmit loop (800m square or more) is used, and survey lines are run inside the loop. This mode provides very deep penetration (700m or more) and couples best with shallow dip conductors (<45 deg.) under the loop. 

 Deep EM 

A large, stationary transmit loop is used, and survey lines are run outside the loop. This mode provides very deep penetration, and couples best with steeply dipping conductors (>45 deg.) outside the loop. 

 

Page 83: Geophysical Survey Report - Ontario

Borehole (Z Component only) Isolated Borehole: A drill hole is surveyed by lowering a probe down a hole and surveying it 

with a number of transmit loops laid out on surface. The data from multiple loops gives directional information on the conductors. 

Multiple Boreholes: One  large  transmit  loop  is  used  to  survey  a  number  of  closely  spaced holes.  The  change  in  anomaly  from  hole  to  hole  provides  directional  information.  These methods have detected conductors to depths of 2500m from surface and up to 200m from the hole. 

 3­D Borehole 

Drill  holes  are  surveyed  with  both  the  Z  and  the  XY  borehole  probes.  The  X  and  Y components  provide  accurate  direction  information  using  just  one  transmit  loop.  Since  the  probe rotates as it moves down the hole a correction is required for the X‐Y data. This is accomplished in one of two ways. The measurement of the primary field from the "PP" channel can be used to apply a "cleaning"  algorithm  to  remove  most  of  the  secondary  field  contamination,  and  compare  this  to theoretical values. The amount of probe rotation is then calculated, and the correction can be made. The  second  method  involves  the  use  of  an  optional  orientation  tool  for  the  X‐Y  probe.  This attachment uses dip meters  to calculate  the probe rotation.   A  third method uses another rotation tool with integrated 3‐axis accelerometers and 3‐axis magnetometers which can be used to correct rotation on steeply dipping holes including vertical. 

 Underground Borehole 

Underground drill holes can be surveyed in any of the above mentioned borehole methods with one or more transmit loops on the surface. Near‐horizontal holes can be surveyed using a push‐rod system. 

 Resistivity Soundings 

By  reading  a  large  number  of  channels  in  the  centre  of  a  transmit  loop  it  is  possible  to perform a decay curve analysis giving a best‐fit layer earth model using programs such as ARRTI or TEMIX. 

 EQUIPMENT  Transmit Loops 

The PEM system  can operate with practically  any  size  of  transmit  loop,  from a multi‐turn circular  loop 13.7m in diameter,  to a 1 or 2  turn  loop of any shape up to 1 or 2 kilometers square using standard insulated copper wire of 10 or 12 gauge. The multi‐turn loop is made in two sections with  screw  connectors.  The  10  or  12  gauge  loop  wire  comes  on  spools  in  either  300m  or  400m lengths. The spools can be mounted on pack frame wire winders for laying out or retrieving. 

 Power Supply 

The PEM system has been produced in 2 varieties: high power (4.8 KW), and low power (2.4 KW).  The low power PEM system normally operates with an input voltage from 24V to 240V with a maximum output current of 20 amps. For very  low power surveys a 20amp/hr 24V battery can be used.   The high power system operates on a continuously variable voltage input up to 240V with a maximum output current of 30 amps.   The power supply requires a motor generator and a voltage regulator to control and filter the input voltage to the transmitter. 

 Specifications: PEM Motor Generator 

(2.4 KW) 4.5 hp Robin EH34 engine, 120V 3‐phase alternator  (4.8 KW) 11 hp Robin RGV6100 240V/120V generator (1‐phase)  cable output to regulator  fuse type overload protection  steel frame  external gas tank 

Page 84: Geophysical Survey Report - Ontario

optional packframe for low‐power generator  wooden shipping box  unit weight: 33kg (2.4 KW); 81kg (4.8 KW)  shipping weight: 47kg (2.4 KW); 100kg (4.8 KW) 

 Specifications: PEM Variable Voltage Regulator 

High Power  Continuously variable voltage output up to 240V  30 amp maximum current  Integrated sealed aluminum case ruggedized for shipping  Shipping weight 18kg 

Low Power  selectable voltage between 24v and 120v  20amp maximum current  anodize d aluminum case  padded wooden shipping box  unit weight 10kg; shipping weight 18kg 

fuse and internal circuit breaker protection  cable connections to motor generator and transmitter 

 Specifications: PEM Transmitter 

High Power  Timebases 

8.33ms (30Hz), 10ms (25Hz), 16.66ms (15Hz), 20ms, (12.5Hz), 50ms (5Hz), 100ms (2.5Hz),  150ms  (1.67Hz),  300ms  (0.833Hz),  500ms  (0.5Hz),  750ms  (0.33Hz), 1000ms (0.25Hz) 

ramp times: 0.5ms, 1.0ms, 1.5ms  operating voltage: continuously variable input up to 240V  output current up to 30amp maximum  optional current control feedback system features constant current output with ±0.1 amp 

precision  integrated sealed aluminum case ruggedized for shipping with shock protection 

Low Power  Timebases 

8.33ms (30Hz), 10ms (25Hz), 16.66ms (15Hz), 20ms, (12.5Hz), 50ms (5Hz), 100ms (2.5Hz), 150ms (1.67Hz), 300ms (0.833Hz) 

operating voltage: 24v to 120v  output current: 5amp to 20amp  anodized aluminum case  optional pack frame  unit weight 12.5kg; shipping weight 22kg  padded wooden shipping box 

monitors for input voltage, output current, shut‐off ramp, tx loop continuity, instrument temperature, and overload output current 

automatic shut‐off for open loop, high instrument temperature, and overload  fuse and circuit breaker overload protection  three sync modes: 

built‐in radio and antenna  cable sync output for direct wire link to receiver or remote radio  crystal clock connection with built‐in optical isolation 

    

Page 85: Geophysical Survey Report - Ontario

Receiver The receiver measures the rate of decay of the secondary field across several time channels. 

The  Crone  Digital  Receiver,  in  use  since  1987  uses  software  control,  offering  a  variety  of programmable channel configurations. 

 Specifications: Digital PEM Receiver 

26 bit (156dB) dynamic range  operating temperature ‐40°C to 50°C  built‐in non‐volatile memory  optional pack frame  unit weight 15kg; shipping weight 25.5kg  padded wooden shipping box  Menu driven operating software system offering the following functions: 

controls channel positions, channel widths, and number of channels  Timebases:    8.33ms  (30Hz),  10ms  (25Hz),  16.66ms  (15Hz),  20ms,  (12.5Hz),  50ms  (5Hz), 

100ms  (2.5Hz),  150ms  (1.67Hz),  300ms  (0.833Hz),  500ms  (0.5Hz),  750ms  (0.33Hz), 1000ms (0.25Hz) 

ramp time selectable  sample stacking from 1 to 65536  automatic gain and spike rejection  scrolling routines for viewing data  graphic display of decay curve and profile with various plotting options  routines for memory management  control of data transmission  provides information on instrument and operating status 

 Sync Equipment 

There are three modes of synchronization available; radio, cable, and crystal clock. The radio sync signal can be transmitted through a booster antenna from either the PEM Transmitter internal radio or through a Remote Radio. 

 Specifications: Sync Cable 

2 conductor, 24awg, Teflon coated  approx. 900m per aluminum spool with connectors 

 Specifications: Remote Radio 

operating frequency 27.12mhz  12V rechargeable gel cell battery supply  fuse protection  sync wire link to transmitter  coaxial link to booster antenna  anodized aluminum case  unit weight 2.7kg 

 Specifications: Booster Antenna 

8m, 4 section aluminum mast  guide rope support  ¼ wave CB fiberglass antenna  range up to 2km  coaxial connection to transmitter or remote radio 

 Specification: Crystal Clocks 

heat stabilized crystals  24V rechargeable gel cell battery supply 

Page 86: Geophysical Survey Report - Ontario

anodized aluminum case  rx unit can be separate or housed in the receiver  outlet for external supplementary battery supply 

 Surface PEM Receive Coil 

The Surface PEM Receive Coil picks up the EM field to be measured by the receiver. The coil is mounted on a tripod that can be positioned to take readings of any component of the field. 

 Specifications: Surface PEM Receive Coil 

ferrite core antenna  VLF filter  10khz bandwidth  two 9v transistor battery supply  tripod adjustable to all planes  unit weight 4.5kg; shipping weight 13.5kg  padded wooden shipping box 

 Surface SQUID sensor 

CSIRO 1‐, 2‐ or 3‐ axis high‐sensitivity superconducting sensor measures magnetic field in the sub‐pT range.  Specifications:  Surface SQUID sensor 

liquid nitrogen cooled, 12 hour operation between reservoir refills  low‐noise floor ~350fT/√Hz  man‐portable sensor and control system  moving loop, or large loop survey configuration  solid teflon non‐magnetic housing  operational temperature range:  ‐40°C to 40°C  total system packaged shipping weight (without liquid nitrogen):  62kg 

 Borehole PEM Z Component Probe 

The Z component probe measures the axial component of the EM field. The Z component data is not affected by probe rotation so no correction is required. 

 Specifications: Borehole PEM Z Component Probe 

ferrite core  dimensions: length ‐ 1.6m; dia ‐ 3.02cm (3.15cm for high pressure tested probes)  internal rechargeable NiCd battery supply  replaceable heat shrink tubing for abrasion protection  pressure tested for depths 1300m, 2000m, and 2800m  packaged in padded cover and aluminum tube  shipped in padded wooden box; total weight 17kg 

 Borehole PEM XY Component Probe 

The  XY  probe measures  two  orthogonal  components  of  the  EM  field  perpendicular  to  the axis of the hole. Correction for probe rotation can be achieved by mathematical theoretical primary field reduction or more commonly with an attached orientation tool sensor. 

 Specifications: Borehole PEM XY Component Probe 

ferrite core  dimensions: length ‐ 2.01m; dia ‐ 3.02cm  internal rechargeable ni‐cad battery supply 

Page 87: Geophysical Survey Report - Ontario

selection of X or Y coils by means of a switch box on surface or automatic switching with Digital receiver 

replaceable heat shrink tubing for abrasion protection  pressure tested for depths to 2800m  packaged in padded cover and aluminum tube  shipped in padded wooden box; total shipping weight 20kg 

 Specifications: Orientation Tool 

2 axis tilt sensors  accuracy ± 0.1 deg.  operating range ‐88 to ‐10 deg.  dimensions: length ‐ 0.94m; dia ‐ 28.5mm  packaged in padded cover and aluminum tube  shipped in padded wooden box; total shipping weight 14kg 

 Specifications: Rotation Angle Direction (RAD) Tool 

integrated 3‐axis accelerometers and 3‐axis magnetometers  dip and roll accuracy: ±0.5°, azimuth accuracy: ±1.0°  operating range: all  simultaneous 3D magnetometer borehole survey by station  optional continuous logging mode  dual 3‐axis sensors provide an alternative complete borehole Dip‐Azimuth measurement  dimensions: length – 0.75m; dia – 31.8mm  packaged in padded cover and aluminum tube  shipped in padded wooden box; total shipping weight 14kg  NiCd battery provides all‐day operation 

Length ‐ 0.93m; dia – 28.6mm  Packaged in padded cover and aluminum tube  Shipped in padded wooden box; total shipping weight 14kg 

 Borehole Equipment 

To lower the probe down a drill hole requires a cable and spool, winch assembly frame and cable counter. Borehole surveys also require equipment to "dummy probe" the hole before doing the survey. 

 Specifications: Borehole Cable 

two conductor shielded cable  kevlar strengthened  lengths are available up to 2600m on three sizes of spools  shipped in wooden box 

 Specifications: Slip Ring 

attaches to side of borehole cable spool providing a connection to the receiver while allowing the spool to turn. 

VLF filter  pure silver contacts 

 Specifications: Borehole Winch Frame 

welded aluminum frame  removable axle  chain driven, 3 speed gear box  hand or optional power winding  hand brake and lock 

Page 88: Geophysical Survey Report - Ontario

optional chain‐gear safety cover  two sizes: standard for up to 1300m cable; large for longer cables  shipped in wooden box 

 Specifications: Borehole Counter 

attaches to the drill hole casing  calibrated in meters  shipped in wooden box; total weight 13kg 

 Specifications: Dummy Probe and Cable 

solid steel or steel pipe  same dimensions as borehole probe  shear pin connection to dummy cable  steel dummy cable on aluminum spool  cable mounts on borehole frame  various lengths to 2600m on 3 spool sizes. 

Page 89: Geophysical Survey Report - Ontario

5935000m

4227774 4227775

4227783

\\J,I , ~ I ~ ~ ~0

Semple-Hulbeft~~roperty'

g:>

1-------+-~~~~-+---+--__.______.\)

E 0 0 0

Ill ~