gsi uhv system upgrade

22
H. Reich-Sprenger, 13th ICFA Beam Dynamics Mini-workshop 9-12 December .2003 1 GSI UHV System Upgrade GSI UHV System Upgrade The GSI The GSI Future Accelerator Facility for Beams of Ions and Antiprotons SIS18 UHV Status SIS18 UHV Upgrade Ion Induced Desorption SIS100 / SIS300 : Cryogenic UHV see also: O. Boine-Frankenheim: "The international Accelerator Project at GSI" A. Krämer: "Ion Induced Desorption Yield Measurements at GSI" E. Mustafin: "Theory of Dynamic Vacuum Instability Induced by Lost Heavy Ions in Accelerator Rings"

Upload: trixie

Post on 11-Jan-2016

39 views

Category:

Documents


0 download

DESCRIPTION

GSI UHV System Upgrade. The GSI Future Accelerator Facility for Beams of Ions and Antiprotons SIS18 UHV Status SIS18 UHV Upgrade Ion Induced Desorption SIS100 / SIS300 : Cryogenic UHV. see also: O. Boine-Frankenheim: "The international Accelerator Project at GSI" - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: GSI UHV System Upgrade

H. Reich-Sprenger, 13th ICFA Beam Dynamics Mini-workshop 9-12 December .2003 1

GSI UHV System UpgradeGSI UHV System Upgrade

• The GSI The GSI Future Accelerator Facility for Beams of Ions and Antiprotons

• SIS18 UHV Status

• SIS18 UHV Upgrade

• Ion Induced Desorption

• SIS100 / SIS300 : Cryogenic UHV

see also:

O. Boine-Frankenheim: "The international Accelerator Project at GSI"

A. Krämer: "Ion Induced Desorption Yield Measurements at GSI"

E. Mustafin: "Theory of Dynamic Vacuum Instability Induced by Lost Heavy Ions in Accelerator Rings"

Page 2: GSI UHV System Upgrade

H. Reich-Sprenger, 13th ICFA Beam Dynamics Mini-workshop 9-12 December .2003 2

The GSI The GSI Future Accelerator Facility for Beams of Ions and Antiprotons

Acceleration

I

II III

Experiments

100m

From protons to uranium In future also antiprotons

1 MeV/u to 2 GeV/u In future up to 30 GeV/u

109 to 1011 particles/cycle In future 1012 particles/cycle

0.1 Hz to 1 Hz Repetition rate In future up to 3 Hz Multi-user operation: pulse to pulse

3ion species, full energy range

Nuclear and Hadron Physics Nuclear Chemistry Atomic Physics Material Science Plasma Physics Biophysics

see: O. Boine-Frankenheim: "The international Accelerator Project at GSI"

Page 3: GSI UHV System Upgrade

H. Reich-Sprenger, 13th ICFA Beam Dynamics Mini-workshop 9-12 December .2003 3

The GSI The GSI Future Accelerator Facility for Beams of Ions and Antiprotons

Page 4: GSI UHV System Upgrade

H. Reich-Sprenger, 13th ICFA Beam Dynamics Mini-workshop 9-12 December .2003 4

GSI International Accelerator FacilityGSI International Accelerator FacilityUHV system requirementsUHV system requirements

Due to ion beam lifetime requirements(e.g.: U28+ in SIS18):

SIS18: warm p≈5·10-12 mbarESR: warm p≈5·10-12 mbar

SIS100: cold arcs T=7-20K warm straight sections T=300K p≈5·10-12 mbar

SIS300: cold arcs T=4.2K warm straight sections T=300K p≈5·10-12 mbar

NESR: p≈5·10-12 mbarHESR: p≤10-10 mbarRESR: p≤10-10 mbarCR: p≤10-10 mbarHEBL: length 2.5 km, 70% cold

*all pressures: N2 equivalent

SIS100/300

HESR

NESRCR

RESR

from SIS18

Page 5: GSI UHV System Upgrade

H. Reich-Sprenger, 13th ICFA Beam Dynamics Mini-workshop 9-12 December .2003 5

The heavy ion synchrotron SIS The heavy ion synchrotron SIS present statuspresent status

12 sectors each: 18 m long 200 mm 4 TSP 3 Ion pumps (triode type) 1-2 extractor gauge

7 vacuum sectors One pumping station with

turbo molecular pump (rough pumping + bake-out)

1 RGA

Page 6: GSI UHV System Upgrade

H. Reich-Sprenger, 13th ICFA Beam Dynamics Mini-workshop 9-12 December .2003 6

SIS18 residual gas composition (10/2003)RGA spectra examples

0 20 40 60 80 1001E-13

1E-12

1E-11

1E-10

H2 95.7%CH4 1.8%Ar 0.3%CO 0.9%CO2 --%Oil 1.3%

184W6+

184W5+

184W4+ 184W3+184W2+

ion

curr

ent [

A]

m/q

184W7+

S03VK4

0 20 40 60 80 100

2,00E-011

4,00E-011

6,00E-011

8,00E-011

1,00E-010

1,20E-010

1,40E-010

H2 95.7%CH4 1.8%Ar 0.3%CO 0.9%CO2 --%Oil 1.3%

184W6+

184W5+

184W4+ 184W3+184W2+

ion

cu

rre

nt [

A]

m/q

184W7+

S03VK4

0 20 40 60 80 1001E-13

1E-12

1E-11

1E-10

H2 75.2%CH4 16.2%Ar 4.7%CO 2.8%CO2 0.2%Oil 0.8%

184W6+

184W5+

184W4+

184W3+

184W2+

ion

curr

ent [

A]

m/q

184W7+

S09VK4

0 20 40 60 80 100

2,00E-011

4,00E-011

6,00E-011

8,00E-011

1,00E-010

1,20E-010

1,40E-010

H2 75.2%CH4 16.2%Ar 4.7%CO 2.8%CO2 0.2%Oil 0.8%

184W6+

184W5+

184W4+

184W3+

184W2+

ion

cu

rre

nt [

A]

m/q

184W7+

S09VK4

Ar

CxHy

S03 total pressure: 3*10-12 mbar S08 total pressure: 6.8*10-11 mbar

existing "micro-leaks"and contaminations

Page 7: GSI UHV System Upgrade

H. Reich-Sprenger, 13th ICFA Beam Dynamics Mini-workshop 9-12 December .2003 7

Static conditions:Static conditions:SIS18 UHV Status, october 2003 (no ion beam operation)SIS18 UHV Status, october 2003 (no ion beam operation)

Total pressure SIS18 10/2003

1,00E-121,10E-112,10E-113,10E-114,10E-115,10E-116,10E-117,10E-118,10E-119,10E-11

TotalpressureSIS1810/2003

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12

Partial pressure distribution SIS18 10/2003

CxHy

Ar

CO

CH4

H2

injectionextraction

Contamination of Ar, Hydrocarbons

Page 8: GSI UHV System Upgrade

H. Reich-Sprenger, 13th ICFA Beam Dynamics Mini-workshop 9-12 December .2003 8

Dynamic Vacuum and Beam LifetimeDynamic Vacuum and Beam Lifetime

Desorption processes degenerate the residual gas pressure ( U28+ case )

Initiated by :

Systematic beam losses on

acceptance limiting devices

(septa) ( 8MeV/u < E <100MeV/u )

Stripped beam ions ( 8MeV/u < E <100MeV/u )

Ionized and accelerated residual

gas ( E < keV) : minor effect

losses increase with number of injected ions

( shorter beam life time due to stronger pressure bumps )

Even at “zero current” ion beam lifetime is to short

P. Spiller, December 2001

8.75 MeV/u U28+

Page 9: GSI UHV System Upgrade

H. Reich-Sprenger, 13th ICFA Beam Dynamics Mini-workshop 9-12 December .2003 9

UU28+28+ ion beam operation: ion beam operation:total ion beam loss inside first dipoletotal ion beam loss inside first dipole

1.00E-12

1.00E-11

1.00E-10

1.00E-09

39300 39600 39900 40200 40500 40800 41100

time [seconds]

pre

ss

ure

[m

ba

r]

S01

S02

S03

S04

S05

S06

S07

S08

S09

S10

S11

S12

Uranium U28+ losses in S01MU1

48 microAmpere over200 microsecondseach 6.8 seconds

48 microAmpere over200 microsecondseach 1.8 seconds

S01 local pressure rises do not strongly influence neighbouring UHV sections

Easy measurement at other maschines could help to get high energy data for desorption processes

Page 10: GSI UHV System Upgrade

H. Reich-Sprenger, 13th ICFA Beam Dynamics Mini-workshop 9-12 December .2003 10

UU73+73+ ion beam operation ion beam operation

0.00E+00

5.00E-12

1.00E-11

1.50E-11

2.00E-11

2.50E-11

3.00E-11

3.50E-11

4.00E-11

4.50E-11

5.00E-11

5.50E-11

6.00E-11

6.50E-11

7.00E-11

7.50E-11

8.00E-11

25200 25500 25800 26100 26400 26700 27000 27300 27600 27900 28200 28500 28800 29100 29400 29700 30000

time [seconds]

pre

ssu

re [

mb

ar]

S01

S02

S03

S04

S07

S08

S09

S10

S11

S12

Preparation

1E+8 ions at 1 Hz with cooler

160 micro-second chopper

100 micro-second chopper

50 micro-second chopper

Uranium 73+

Page 11: GSI UHV System Upgrade

H. Reich-Sprenger, 13th ICFA Beam Dynamics Mini-workshop 9-12 December .2003 11

UU28+ 28+ / U/ U73+ 73+ operation, RGA diagnostic S01 [CO]operation, RGA diagnostic S01 [CO]

U28+, detecated ion beam loss in S01MU1

U73+ maschine exp., H.Damerau, failure of dipoles at 12000

no ion beam, service ion source

U73+, H. Damerau, machine experiments no ion-beam in SIS

(4:00 to 8:00pm)

U73+, U.Blell, machine experiments.

Maschinenexperimente 5.6.2002  Ion: U73+, U28+Energien : 11,17 MeV/u (73+) ; 8,7MeV/u (28+)Messort: Prisma RGA in S01VK4Messzeit: 5.6.2002 13:00 bis 6.6.2002 12:00UhrBemerkungen:

•in der Zeitskala bis ca. 10000sec wurde U28+ mit 8,7MeV/u gezielt in S01MU1 verloren: Puls 48muA, 200mus, Zykluszeit:ca. 1,8s•in der Zeitskala von 10000 bis 85000 fanden Maschinenexperimente (Damerau,Blell) mit U73+ statt•nachfolgend sind die aufgenommen Langzeitspektren dargestellt• nur für die Masse 28 (CO, N2) ist ein signifikanter Anstieg des Partialdrucks korreliert mit dem Strahlbetrieb zu beobachten

0 20000 40000 60000 800001E-13

1E-12

1E-11

1E-10

'Total' 'N2/CO'

pa

rt p

ress

ure

[mb

ar]

time [sec]

Page 12: GSI UHV System Upgrade

H. Reich-Sprenger, 13th ICFA Beam Dynamics Mini-workshop 9-12 December .2003 12

UU28+28+ ion beam operation of SIS18 ion beam operation of SIS18(up to 10(up to 101010 injected ions) injected ions)

Page 13: GSI UHV System Upgrade

H. Reich-Sprenger, 13th ICFA Beam Dynamics Mini-workshop 9-12 December .2003 13

Lifetime of ULifetime of U28+28+ ions in SIS18 ions in SIS18 at low ion beam intensities (~ 10at low ion beam intensities (~ 1088 ions per cycle) ions per cycle)

R. Olson et al., GSI Annual Report 2002, 97 (2003)

0 20 40 60 80 100 120 140 1600

5

10

15

20

25

H2 65 %

H20 17 %

CO/N2 8 %

Cl 4 %Ar 4 %C0

2 1 %

SIS18 measurement (2001) Loss code (V. Shevelko) n2CTMC (Olson) SIS18 measurement (Aug 2003)

time

[se

c]

E [MeV/u]

7.7x10-11 mbar

Page 14: GSI UHV System Upgrade

H. Reich-Sprenger, 13th ICFA Beam Dynamics Mini-workshop 9-12 December .2003 14

Vacuum Requirements for SIS18Vacuum Requirements for SIS18

Beam lifetime has to be significantly larger than cycling time of the SIS18

(Lifetime of at least 10 seconds for all kinds of operation)

Total pressure in low 1∙10-12 mbar with a small fraction of high Z gases even for highest beam intensities

optimized dynamic conditions:• efficient ion beam loss control,• low desorption at localized ion beam

losses,• maximized local pumping speed at

locations of ion beam loss,• No beam scrubbing possible due to

multi-user operation of SIS18

optimized static conditions:• minimized outgassing rate through

material and production control, cleaning, bakeout,

• removal of contaminations and "micro-leaks"

• efficient and distributed pumping.

Page 15: GSI UHV System Upgrade

H. Reich-Sprenger, 13th ICFA Beam Dynamics Mini-workshop 9-12 December .2003 15

Optimized Static Conditions:Optimized Static Conditions:2004 2005 2006 2007

Detection and removal of micro-leaks ( Ar !)

Exchange of contaminated insertions ( CxHy)

Replacement of all 24 dipole chambers ( bakeout to 300°C, coating?) [existing new spare chambers]

Replacement of all 12 quadrupole chambers ( bakeout to 300°C, coating?) [prototype and new chambers to be designed and built]

Ion Pumps: optimized IP regeneration, if necessary: replacement by noble diodes, optimized sublimation cycles ( improved pumping speed)

Page 16: GSI UHV System Upgrade

H. Reich-Sprenger, 13th ICFA Beam Dynamics Mini-workshop 9-12 December .2003 16

Optimized Dynamic Conditions:Optimized Dynamic Conditions:

collimators at locations of known ion beam loss:

injection section / septum

extraction / septum

with integrated high pumping speed:

- cryopump

low desorption materials:

- experiments at test bench with ion beam

distributed pumping speed:

- NEG ?

May/June 2003

since April 2003

beginning of 2004

final decision depends on desorption experiment results

Page 17: GSI UHV System Upgrade

H. Reich-Sprenger, 13th ICFA Beam Dynamics Mini-workshop 9-12 December .2003 17

Cryogenic Systems: Nuclotron Dipole for SIS100Cryogenic Systems: Nuclotron Dipole for SIS100

elliptical, 130x65mm

indirectly cooled with pipes and LHe, T=7-20Kp=1bar => 0.8mm stainless steel walldB/dt=4T/s => 0.5mm stainless steel wall (eddy current)

Alternative:conventional warm magnets with warm beam pipe

In the straight sections of SIS100 (6x60m) the vacuum chambers are at room temperature.

Page 18: GSI UHV System Upgrade

H. Reich-Sprenger, 13th ICFA Beam Dynamics Mini-workshop 9-12 December .2003 18

Cryogenic systems: RHIC Dipole for SIS300Cryogenic systems: RHIC Dipole for SIS300

round, diameter=100mm

directly cooled in LHe-bath, T=4.2K for quench protection p=30bardB/dt=1T/s

Page 19: GSI UHV System Upgrade

H. Reich-Sprenger, 13th ICFA Beam Dynamics Mini-workshop 9-12 December .2003 19

Requirements for warm (T=300K) vacuum beam Requirements for warm (T=300K) vacuum beam pipes in SIS100/300pipes in SIS100/300

• UHV compatible (outgassing rate: 10-13 mbarl/(s cm2)) • low desorption rate under ion bombardment• high electric conductivity (image current guidance, impedance)• non-magnetic, non-magnetizable • good weldability or other UHV compatible joining techniques, good machinability• moderate costs• good thermal conductivity• high mechanical stability at high temperature [bake out @573K for stainless steel]• low thermal expansion

Some (in principle) possible materials:Stainless steel, aluminum and aluminum alloys (?), copper and copper alloys (Al-Cu), titanium and titanium alloys, beryllium(???)

Page 20: GSI UHV System Upgrade

H. Reich-Sprenger, 13th ICFA Beam Dynamics Mini-workshop 9-12 December .2003 20

Comparison cold and warm vacuum chambersComparison cold and warm vacuum chambers

Cold Vacuum Chambers Warm Vacuum Chambers

Ion Induced Desorption

H2+->H2 ≈103-105 @ 0.5-

10keV

no high energy ion induced desorption data available!!

But no pressure increase observed in cold sections of RHIC! (?)

H2+->H2 ≈1 @ 0.5keV (impact of

secondary residual gas ions)

≈103-106 @ 1 MeV/u-10 GeV/u

(primary high energy ions)

Pumping speed

corresponds to sticking coefficient

Sticking Coefficient

@ T= 5-20K

H2: < 0.5

CO: ~ 1

CO2: ~ 1

CH4: ~ 1

NEG

H2: 0.007

CO/CO2: 0.5

no pumping speed for chemical inert gases (Ar, CH4, ...)

Page 21: GSI UHV System Upgrade

H. Reich-Sprenger, 13th ICFA Beam Dynamics Mini-workshop 9-12 December .2003 21

Open QuestionsOpen QuestionsWarm Vacuum Sections: Ion induced desorption yield at high energies? (experimental program

under way at the test bench and at SIS18 directly) Next step: Measurements at UNILAC, ERDA analysis of targets

Electron cloud effects?

Cold Vacuum Sections: Ion induced desorption yields at 4K for different materials? (experimental

program under way) Required wall thickness and material for cold chambers in fast ramped

magnets? (image current, eddy current, additional supports, heat load, impedance, field quality...) (first studies at University of Magdeburg). Next steps: construction / manufacturing / testing of vacuum chamber samples prototyping

Page 22: GSI UHV System Upgrade

H. Reich-Sprenger, 13th ICFA Beam Dynamics Mini-workshop 9-12 December .2003 22

Possible UHV collaboration inputs Possible UHV collaboration inputs

• NEG coating of vacuum chambers (SIS-dipole, 4-pole,... ?)

• experiments on low desorption yield materials

• design work on cryogenic vacuum chambers (SIS100,SIS300)

• Material/surface physics input to understand the desorption physics

• ........

GSI UHV group: M. Bender, M. Bevcic, P. Gaj, P. Horn, R. Kaminski, H. Kollmus, A. Krämer, J. Kurdal, H. Reich-Sprenger, H. Rittelmeyer, G. Savino, K. Welzel