heinrich stefan coating

40
7/27/2019 Heinrich Stefan Coating http://slidepdf.com/reader/full/heinrich-stefan-coating 1/40 1 Workshop no. 105, FATS II Workshop no. 105, FATS II, Binzen, 26 Binzen, 26- 28 September, 2006 28 September, 2006 M. Peglow 1 , S. Heinrich 2 (speaker), E. Tsotsas 1 1: Chair for Thermal Process Engineering, Otto-von-Guericke University 2: Chair for Chemical Apparatus Design, Otto-von-Guericke University Magdeburg, Germany Population balance modeling as a tool for understanding fluidized bed coating

Upload: dr-mohammed-azhar

Post on 02-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Heinrich Stefan Coating

7/27/2019 Heinrich Stefan Coating

http://slidepdf.com/reader/full/heinrich-stefan-coating 1/40

1

Workshop no. 105, FATS IIWorkshop no. 105, FATS II,,

Binzen, 26Binzen, 26--28 September, 200628 September, 2006

M. Peglow1, S. Heinrich2 (speaker), E. Tsotsas1

1: Chair for Thermal Process Engineering, Otto-von-Guericke University

2: Chair for Chemical Apparatus Design, Otto-von-Guericke University

Magdeburg, Germany

Population balance modeling

as a tool for understanding

fluidized bed coating

Page 2: Heinrich Stefan Coating

7/27/2019 Heinrich Stefan Coating

http://slidepdf.com/reader/full/heinrich-stefan-coating 2/40

2

Some granulated fluidized bed products

of the University of Magdeburg

protein

granulation from

suspensiongranulation from

melt

urea

granulation from

solution

potash

Page 3: Heinrich Stefan Coating

7/27/2019 Heinrich Stefan Coating

http://slidepdf.com/reader/full/heinrich-stefan-coating 3/40

3

Population BalancesDistributed Properties

Disperse phase – state variables:

Density distributions

k jf f(t,r , x )=

x1 x

Description of disperse systemsq 60% of all products in chemical industry are disperse systems

q Traditional approaches for modeling: averages

q Detailed modeling by means of population balances

Spatial distributed

disperse system

properties xj: x1, ..., xN

(internal coordinates)

spatial coordinates r k: r 1, r 2, r 3(external coordinates)

, z.B. Partikelgröße

r 2*

r 1*

f , z.B. Anzahldichte

r 1

r 2

r 3

r 3*

e.g. particle size

r 2*

r 1*

f e.g. number density

r 1

r 2

r 3

r 3*Continuous phase – state variables:

density

pressure

concentrations of species; enthalpy

velocity in direction r m

( , )

( , )

( , )

v v ( , )

====

k

k

l l k

m m k

t r

p p t r

t r

t r

ρ ρ

φ φ

Page 4: Heinrich Stefan Coating

7/27/2019 Heinrich Stefan Coating

http://slidepdf.com/reader/full/heinrich-stefan-coating 4/40

4

Population BalancesDisperse phase, f = (f

i )

Challenges:q multidimensional

(regarding f i resp. x j)

q efficient calculation of the

integral sink and source

terms

Coupling with continuous phase

growth aggregationbreakage

( ) (

) xagg i xbr i

f

k iik

k

iij

j

i dV f hdV f h j f r

f G xt

f

x x

~,~,, )v,,( )v,,(v )v,( ∫ ∫ ΩΩ

+=+∂∂

+∂∂

+∂∂

φφφ

con-

vection

Population balance:

accu-

mulation

diffu-

sion

property x j

f f

property x j

f

property x j

nucleation

Boundary conditions:

)()()v,( ,0, φφ jnuc jiij B x f G =⋅

property x j

f

Page 5: Heinrich Stefan Coating

7/27/2019 Heinrich Stefan Coating

http://slidepdf.com/reader/full/heinrich-stefan-coating 5/40

5

Droplets

(H2O+Binder)

gas inlet (dry, warm)

gas outlet (humid, cold)

Liquid

(Binder)

Primary

particles

Objective:Example 1: Description of simultaneous agglomeration and drying

using population balances

Agglomerate

Agglomeration Drying

Population BalancesFluidized bed spray agglomeration

Page 6: Heinrich Stefan Coating

7/27/2019 Heinrich Stefan Coating

http://slidepdf.com/reader/full/heinrich-stefan-coating 6/40

6

Drying of agglomerate

Determination of moisture content X, temperature ϑ andsize v of agglomerates

( ) ( )ps p g g eq P sM A Y X, Y = ⋅β ⋅ ρ ϑ − ⋅ ν η & &

Heating/Cooling of agglomerate

( )ps p ps p sQ A= ⋅ α ⋅ ϑ − ϑ&

P

New: moisture content and temperature of agglomerates are

- similar to size of agglomerate – distributed properties.Ñ

+Formation of agglomerate

Population BalancesDefinition of particle properties

Page 7: Heinrich Stefan Coating

7/27/2019 Heinrich Stefan Coating

http://slidepdf.com/reader/full/heinrich-stefan-coating 7/40

7

Population phenomena:+ Agglomeration

+ Breakage

+ Growth

Attrition/Layering,

Drying/Wetting

Heating/Cooling+ Nucleation

M a s s o f l i q u i d

Solid particle volume

l1+ l2

l1

l2

v1 v2 v1+ v2

AgglomerationDrying

Wetting

(Not shown: heat and mass transfer)

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )

v l

0 0

0 0

f t,v,l G v,l f t,v,l 1t,v u,u,l , f t,v u,l f t,u, d dut l 2

t,v,u,l, f t,v,l f t,u, d du∞ ∞

∂ ∂ ⋅+ = β − − γ γ ⋅ − − γ ⋅ γ γ ∂ ∂

− β γ ⋅ ⋅ γ γ

∫ ∫

∫ ∫

partial integro differential equation

Population BalancesMultidimensional population balance

Page 8: Heinrich Stefan Coating

7/27/2019 Heinrich Stefan Coating

http://slidepdf.com/reader/full/heinrich-stefan-coating 8/40

8

• High numerical effort (exponential in number of properties N)

• Model reduction using marginal distributions (linear in N)• Assumption: influence of moisture content of particles on agglomeration is

only considered by the pre-factor of agglomeration kernel β

Number distribution:

Liquid distribution:

( ) ( )0

n t,v f t,v,l dl∞

= ∫

( ) ( )l

0

m t,v l f t,v,l dl∞

= ⋅∫

( ) ( ) ( ) ( )' *0t,v,u,l, t,v,u t v,uβ γ = β = β ⋅β

Model reduction Pre-factor

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

v l

0 0

0 0

f t,v,l G v,l f t,v,l 1 t,v u,u,l , f t,v u,l f t,u, d dut l 2

t,v,u,l, f t,v,l f t,u, d du∞ ∞

∂ ∂ ⋅+ = β − − γ γ ⋅ − − γ ⋅ γ γ ∂ ∂

− β γ ⋅ ⋅ γ γ

∫ ∫

∫ ∫

Population BalancesReduction of multidimensional population balance

Page 9: Heinrich Stefan Coating

7/27/2019 Heinrich Stefan Coating

http://slidepdf.com/reader/full/heinrich-stefan-coating 9/40

9

Heterogeneous fluidized bed model with

active bypass for gas phase.

Number distribution

Liquid distribution

Agglomeration Wetting/Drying

( )( ) ( ) ( ) ( ) ( ) ( ) ( )

v* *

0

0 0

n v 1t u,v u n u n v u du n v u,v n u du

t 2

∞ ∂= β β − ⋅ ⋅ − − β ⋅ ∂

∫ ∫

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )v

l * *

0 l l np ps

0 0

m v t u,v u n u m v u du n v u,v m u du M Mt v

∂ ∂= β β − ⋅ ⋅ − − β ⋅ + − ∂ ∂ ∫ ∫ & &

(Not shown: Enthalpy-distribution)

Coupling

Influence of moisture only onpre-factor!

Coupling

Population BalancesReduction of multidimensional population balance

Page 10: Heinrich Stefan Coating

7/27/2019 Heinrich Stefan Coating

http://slidepdf.com/reader/full/heinrich-stefan-coating 10/40

10

Ñ

P Applicable for any grid type, moments to be conserved can be chosen

Difficult to program

Cell Average, Fixed Pivot, Moving Pivot

P

Only applicable for geometric grids

Easy to program, very common

Only existing formulation for reduced multidimensional PBE!

(Hounslow‘s DTMD)

Ñ

P

Hounslow’s DPBE (Extension by Litster and Wynn)

Population BalancesCommon discretization schemes

Page 11: Heinrich Stefan Coating

7/27/2019 Heinrich Stefan Coating

http://slidepdf.com/reader/full/heinrich-stefan-coating 11/40

11

Linear grid Geometric grid

( ) ( ) ( ) ( ) ( ) ( ) ( )v

0 0

n v 1 u,v u n u n v u du n v u,v n u dut 2

∂ = β − ⋅ ⋅ − − β ⋅∂ ∫ ∫ Method of Lines

Primary particle:

Agglomerate:

d0

dI= 40 d

0

Example:

( )3

0

3

0

40dI 64000

d= =

( )3

0

3

0

40dln

dI 17

ln2= ≈ PÑ

Number of grip points:

Population BalancesDiscretization schemes

Page 12: Heinrich Stefan Coating

7/27/2019 Heinrich Stefan Coating

http://slidepdf.com/reader/full/heinrich-stefan-coating 12/40

12

Number distribution – Application of Hounslow‘s DPBE

Liquid distribution – Application of Hounslow‘s DTMD

Agglomeration Wetting/Drying

( )( ) ( ) ( ) ( ) ( ) ( ) ( )

v* *

0

0 0

n v 1t u,v u n u n v u du n v u,v n u du

t 2

∞ ∂= β β − ⋅ ⋅ − − β ⋅

∂ ∫ ∫

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )v

l * *

0 l l np ps

0 0

m v t u,v u n u m v u du n v u,v m u du M Mt v

∂ ∂= β β − ⋅ ⋅ − − β ⋅ + − ∂ ∂ ∫ ∫ & &

Coupling

(Not shown: Enthalpy density distribution)

Problem:

How will the moisture distribution X(v) change during agglomeration

when mass transfer is neglected?…or…

Can intensive material properties (moisture content/temperature) be calculated?

Ñ

Population BalancesLack of Hounslow’s discretization

Page 13: Heinrich Stefan Coating

7/27/2019 Heinrich Stefan Coating

http://slidepdf.com/reader/full/heinrich-stefan-coating 13/40

13

M o

i s t u r e

a n

d m a s s o

f p a r t

i c l e s

Solid volume of a particle

Initial condition

Final distributions are not identical!

Problem:

How will the moisture distribution X(v) change during agglomeration

when mass transfer is neglected?

( ) ( )l pm v m v=

( ) ( )l pm v m v≠

Population BalancesLack of Hounslow’s discretization

Page 14: Heinrich Stefan Coating

7/27/2019 Heinrich Stefan Coating

http://slidepdf.com/reader/full/heinrich-stefan-coating 14/40

14

M o

i s t u r e c o n

t e n t

Moisture content has

been changed

Hounslow’s approach is not

consistent with intensive

properties!

Coupling with gas phase not

possible!

Reason: particle mass (DPBE) is

assigned in a different way than

moisture (DTMD).

( )X v 1=

( )X v 1≠

( )( )

( )

( )

( )l l

p

m v m vX v

k n v m v= =

Problem:

How will the moisture distribution X(v) change during agglomeration

when mass transfer is neglected?

Population BalancesLack of Hounslow’s discretization

Initial condition

Solid volume of a particle

Page 15: Heinrich Stefan Coating

7/27/2019 Heinrich Stefan Coating

http://slidepdf.com/reader/full/heinrich-stefan-coating 15/40

15

Inconsistency can be removed by introduction of correction factors(Peglow et. al, AIChE J. 2006)

Modification is identical with Hounslow’s formulation of DTMDfor K = 1

Population BalancesModification of Hounslow’s discretization

Peglow, M., Kumar, J., Warnecke, G., Heinrich, S., Tsotsas, E., Mörl, L., Hounslow, M.: An improved discretized tracer massdistribution of Hounslow et al., AIChE J. 52 (2006) 4, 1326-1332.

Page 16: Heinrich Stefan Coating

7/27/2019 Heinrich Stefan Coating

http://slidepdf.com/reader/full/heinrich-stefan-coating 16/40

16

Modification is consistent with

intensive properties!

Coupling with gas phase ispossible!

Basic concept can be adapted to

other numerical methods such as

Cell Average or Fixed Pivot.

Final distribution

( ) ( )l pm v m v=

( ) ( )l pm v m v=

Problem:

How will the moisture distribution X(v) change during agglomeration

when mass transfer is neglected?

Population BalancesModification of Hounslow’s discretization

Initial condition

Solid volume of a particle

M o

i s t u r e

a n

d m a s s o

f p a r

t i c l e s

Page 17: Heinrich Stefan Coating

7/27/2019 Heinrich Stefan Coating

http://slidepdf.com/reader/full/heinrich-stefan-coating 17/40

17

Intensive properties of solid phasein agglomeration processes

can be described

Formulation of a fluidized bed model for simultaneous agglomeration and

drying

Population BalancesTwo-phase fluidized bed model

Model assumptions

• Plug flow of gas phase

• Total back-mixing of solid phase

• Heat and mass transfer between

+ solid and suspension gas

+ suspension and bypass gas

• Agglomeration, no breakage

Page 18: Heinrich Stefan Coating

7/27/2019 Heinrich Stefan Coating

http://slidepdf.com/reader/full/heinrich-stefan-coating 18/40

18

Population BalancesSolid phase balance equations

• Number distribution

• Water distribution

• Enthalpy distribution

( )( ) ( ) ( ) ( ) ( ) ( )

v

0 0

n v,t 1t,u,v u n u,t n v u,t du n v,t t,u,v n u,t du

t 2

∞∂= β − − − β

∂ ∫ ∫

( )( ) ( ) ( ) ( ) ( ) ( ) ( )

vw,l

w,l w,l

0

p p

0

s n

m v,tt,u,v u n u,t m v u,t du m v,t t,u,v n u,t du

tM M

v

∞∂ ∂= β − − − − +β +

∂ ∂∫ ∫ & &

( )( ) ( ) ( ) ( ) ( ) ( ) ( )ps np pw s

vp

p p

0 0

p

h v,tt,u,v u n u,t h v u,t du h v,t t,u,v n u,t du

t vH H Q Q

∞∂ ∂= β − − − β +

∂ ∂− + − +∫ ∫ & && &

Page 19: Heinrich Stefan Coating

7/27/2019 Heinrich Stefan Coating

http://slidepdf.com/reader/full/heinrich-stefan-coating 19/40

19

• Number distribution

• Water distribution

• Enthalpy distribution

• Mass transfer particle – gas

• Heat transfer particle - gas

( )( ) ( ) ( ) ( ) ( ) ( )

v

0 0

n v,t 1t,u,v u n u,t n v u,t du n v,t t,u,v n u,t du

t 2

∞∂= β − − − β

∂ ∫ ∫

( )( ) ( ) ( ) ( ) ( ) ( ) ( )

vw,l

w,l w,l

0

p p

0

s n

m v,tt,u,v u n u,t m v u,t du m v,t t,u,v n u,t du

tM M

v

∞∂ ∂= β − − − − +β +

∂ ∂∫ ∫ & &

( )( ) ( ) ( ) ( ) ( ) ( ) ( )ps np pw s

vp

p p

0 0

p

h v,tt,u,v u n u,t h v u,t du h v,t t,u,v n u,t du

t vH H Q Q

∞∂ ∂= β − − − β +

∂ ∂− + − +∫ ∫ & && &

[ ]g pg p pes qp sX,M A Y Y )X( ) ( = ρ β − ν η ϑ &&

( )pgps spp AQ = ϑα − ϑ&

Particle properties:

• adsorption isotherm

• normalized drying curve)

Population BalancesSolid phase balance equations

Page 20: Heinrich Stefan Coating

7/27/2019 Heinrich Stefan Coating

http://slidepdf.com/reader/full/heinrich-stefan-coating 20/40

20

• Moisture distribution

• Enthalpy distribution

Population BalancesGas phase balance equations

( ) ( ) ( )p

g s sg sbs

dM Y Y1 1 M M

d tM

∂ ∂ ∂− ν = − − ν + −

ξ ∂ ∂ξ ∂ξ&& &

( ) ( ) ( )ps pg s s

g sb bs swsdM h h1 1 M H Q Qd t

H Q∂ ∂ ∂− ν = − − ν + − + −ξ ∂ ξ ∂ξ

−∂

& &&&& &

Suspension gas phase

• Moisture distribution

• Enthalpy distribution

Bypass gas phase

g b b sbg

dM Y Y dMM

d t d

∂ ∂ ν = −ν +

ξ ∂ ∂ξ ξ

&&

( )g b bg sb bs bw

dM h hM d H Q Q

d t

∂ ∂ ∂ ν = −ν ξ+ − −

ξ ∂ ∂ξ ∂ξ& && &

Page 21: Heinrich Stefan Coating

7/27/2019 Heinrich Stefan Coating

http://slidepdf.com/reader/full/heinrich-stefan-coating 21/40

21

Number distribution Moisture content

Particle temperature

X [ g

/ k g ]

ϑ

[ ° C ]

N

[ - ]

d [mm]t [s] d [mm]t [s]

d [mm]t [s]

Simulation of simultaneous

agglomeration, wetting and drying

3 stages

Population BalancesFluidized bed model – Simulation results

Page 22: Heinrich Stefan Coating

7/27/2019 Heinrich Stefan Coating

http://slidepdf.com/reader/full/heinrich-stefan-coating 22/40

22

X [ g

/ k g ]

ϑ

[ ° C ]

N

[ - ]

d [mm]t [s] d [mm]t [s]

d [mm]t [s]

Stage 1 – Pre-drying• Drying of solid material, decrease of

particle moisture content

• Heating of particles

• Particles size is constant

Number distribution Moisture content

Particle temperature

Population BalancesFluidized bed model – Simulation results

Page 23: Heinrich Stefan Coating

7/27/2019 Heinrich Stefan Coating

http://slidepdf.com/reader/full/heinrich-stefan-coating 23/40

23

X [ g

/ k g ]

ϑ

[ ° C ]

N

[ - ]

d [mm]t [s] d [mm]t [s]

d [mm]t [s]

Stage 2 – Spraying:• Wetting of solid material, increase of

particle moisture content

• Cooling of particles

• Change of particle size distribution by

agglomeration

Population BalancesFluidized bed model – Simulation results

Number distribution Moisture content

Particle temperature

Page 24: Heinrich Stefan Coating

7/27/2019 Heinrich Stefan Coating

http://slidepdf.com/reader/full/heinrich-stefan-coating 24/40

24

X [ g

/ k g ]

X [ g

/ k g ]

ϑ ϑ

[ [ ° ° C ] C ]

N

[

N

[ - - ] ]

d [mm]d [mm]t [s]t [s] d [mm]d [mm]t [s]t [s]

d [mm]d [mm]t [s]t [s]

Stage 3 – Drying:• Drying of particles

• Heating of particles

• Particles size is constant

Population BalancesFluidized bed model – Simulation results

Number distribution Moisture content

Particle temperature

Page 25: Heinrich Stefan Coating

7/27/2019 Heinrich Stefan Coating

http://slidepdf.com/reader/full/heinrich-stefan-coating 25/40

25

Lab scale fluidized bed: GLATT GPCG 1.1

Particle system

• Primary particles: Microcrystalline cellulose

• Binder: Pharamcoat 606 (HPMC-Binder)

Characterization

• Adsorption isotherm

• Drying curve

Measurement

• Particle size distribution

• Mean particle moisture content (no resolution!)• Temperature and moisture of gas

• Spraying ratePrimary

particles

Population BalancesExperimental results

Page 26: Heinrich Stefan Coating

7/27/2019 Heinrich Stefan Coating

http://slidepdf.com/reader/full/heinrich-stefan-coating 26/40

26

Adsorption isotherm Desorption isotherm

System: DVS 1 Firma PorotechPrinciple: Balance, measurement of

change of sample mass

Model: Fitting using the BET-Isotherm

(3 fitting parameters)

Population BalancesMaterial properties

eqweq

eq

p

pg

X,p ( )MY

P p (X, )M=

ϑ

ϑ

%

%

eq satp p eq pp ( ) p ( ) (X, X ),ϑ φϑ ϑ=

Page 27: Heinrich Stefan Coating

7/27/2019 Heinrich Stefan Coating

http://slidepdf.com/reader/full/heinrich-stefan-coating 27/40

27

Normalized drying curve

Population BalancesMaterial properties

System: DVS 1 Firma Porotech

Principle: Balance, measurement of change of sample mass

ps

ps,I

M

M

( )( )

( )

ηη

η

ν =&

&

&

hyg

cr hyg

X XX X−

η −=

Page 28: Heinrich Stefan Coating

7/27/2019 Heinrich Stefan Coating

http://slidepdf.com/reader/full/heinrich-stefan-coating 28/40

28

Gas outlet temperature Mean particle moistureGas outlet humidity

Population BalancesExperimental results – Influence of gas flow rate

High gas flow rate

Page 29: Heinrich Stefan Coating

7/27/2019 Heinrich Stefan Coating

http://slidepdf.com/reader/full/heinrich-stefan-coating 29/40

29

Gas outlet temperature Mean particle moistureGas outlet humidity

Population BalancesExperimental results – Influence of gas flow rate

Low gas flow rate

Page 30: Heinrich Stefan Coating

7/27/2019 Heinrich Stefan Coating

http://slidepdf.com/reader/full/heinrich-stefan-coating 30/40

30

Population BalancesExperimental results – Influence of gas flow rate

High gas flow rate Low gas flow rate

4

0 5.4 10−β = ⋅ 4

0 7.4 10−β = ⋅

Page 31: Heinrich Stefan Coating

7/27/2019 Heinrich Stefan Coating

http://slidepdf.com/reader/full/heinrich-stefan-coating 31/40

31

Restrictions:• Empirical agglomeration kernel

• Fitting of kinetic constants

to measurements,

thus solely descriptive model

• Only one way coupling between

drying and agglomeration model!

Population BalancesExperimental results

( )

( )

( )

( )

a 0.7105

0 0b 0.0621

u v u v

u v u v

+ +β = β = β

⋅ ⋅

Kernel ( )v,uβ Lit.

1 [1]

u v+ [2]

u v⋅

( ) ( )a b

u v u v+ ⋅ [3]

( ) ( )2/3 2/3u v 1/ u 1/ v+ + [4]

1 für 1t t≤

u v+ für 1t t>

[5]

1 für *W W≤

0 für *W W>

mit ( ) ( )a b

W u v u v= + ⋅

[6]

( )3

1/3 1/ 3u v+ [7]

( )2

1/ 3 1/3u v 1 u 1 v+ + [8]

Sim Exp

0,i 0,i

Simi 0,ii

q (t) q (t)RE(t)q (t)−= ∑ ∑

[1] Kapur, P.C., Fürstenau, D.W.: A coalescence model for granulation,Ind. Eng. Chem. Process Des. Dev. 8 (1969), 56-62.

[2] Golovin, A.M.: The solution of the coagulation equation for raindrops,Sov. Phys. Dokl. 8 (1963), 191-193.

[3] Kapur, P.C.: Kinetics of granulation by non-random coalescencemechanism, Chem. Eng. Sci. 27 (1972), 1863-1869.

[4] Sastry, K.V.S.: Similarity size distribution of agglomerates during their growth by coalescence in granulation or green pelletization, Int. J. Min.Proc. 2 (1975), 187-203.

[5] Adetayo, A.A., Litster, J.D., Pratsinis, S.E., Ennis, B.J.: Populationbalance modelling of drum granulation of materials with wide sizedistribution, Powder Technol. 82 (1995), 37-50.

[6] Adetayo, A.A., Ennis, B.J.: Unifying approach to modelling granulecoalescence mechanisms, AIChE J. 43 (1997), 927-934.

[7] Smoluchowski, M.V.: Mathematical theory of the kinetics of thecoagulation of colloidal solutions, Z. Phys. Chem. 92 (1917), 129.

[8] Hounslow, M.J.: The population balance as a tool for understanding particle rate processes, in Kona. 1998.

Page 32: Heinrich Stefan Coating

7/27/2019 Heinrich Stefan Coating

http://slidepdf.com/reader/full/heinrich-stefan-coating 32/40

P l ti B l

Page 33: Heinrich Stefan Coating

7/27/2019 Heinrich Stefan Coating

http://slidepdf.com/reader/full/heinrich-stefan-coating 33/40

33

N u m

b e r o

f P P

o f B

N u m b e r o f P P o f A

Agglomeration of two types of primary particles (component A and B)

Parameters for calculation

• 22 x 22 geometric grid

• Size independent kernel

• Degree of aggregation

( )β γ = β0t,v,u,l,

agg 0I 1 N N 0.98= − =

Initial distribution

N u

m b e r

d e n s

i t y

n

component A

component B

Populations BalancesSimulation results – Test case 1

P l ti B l

Page 34: Heinrich Stefan Coating

7/27/2019 Heinrich Stefan Coating

http://slidepdf.com/reader/full/heinrich-stefan-coating 34/40

34

( )β γ = β0t,v,u,l,

agg 0I 1 N N 0.98= − =

Component A

Component B

M o m e n t

Dimensionless time

0th moment (number)

1st moment (mass)

Agglomeration of two types of primary particles (component A and B)

Parameters for calculation

• 22 x 22 geometric grid

• Size independent kernel

• Degree of aggregation

Populations BalancesSimulation results – Test case 1

P l ti B l

Page 35: Heinrich Stefan Coating

7/27/2019 Heinrich Stefan Coating

http://slidepdf.com/reader/full/heinrich-stefan-coating 35/40

35

PP BPP A

Final distribution (Numerical)

PP A PP B

Agglomeration of two types of primary particles (component A and B)

N u

m b e r

d e n s

i t y

n

N u m

b e r

d e n s

i t y

n

Final distribution (Analytical)

Populations BalancesSimulation results – Test case 1

P l ti B l

Page 36: Heinrich Stefan Coating

7/27/2019 Heinrich Stefan Coating

http://slidepdf.com/reader/full/heinrich-stefan-coating 36/40

36

Populations BalancesSimulation results – Test case 2

Parameters for computation

• 13 x 13 geometric grid• Constant kernel

• Degree of aggregation

( )β γ = β0t,v,u,l,

agg 0I 1 N N 0.98= − =

Agglomeration of mono-disperse particlessame amount of both properties in each particle

Property 1

P r o p e r t y 2

Populations Balances

Page 37: Heinrich Stefan Coating

7/27/2019 Heinrich Stefan Coating

http://slidepdf.com/reader/full/heinrich-stefan-coating 37/40

37

Populations BalancesSimulation results – Test case 2

Agglomeration of mono-disperse particlessame amount of both properties in each particle

Analytical Solution

Property 1

P r o p e r t y 2

P r o p e r t y 2

Property 1

number density

Fixed Pivot Technique Cell Average Technique

number density

Population Balances

Page 38: Heinrich Stefan Coating

7/27/2019 Heinrich Stefan Coating

http://slidepdf.com/reader/full/heinrich-stefan-coating 38/40

38

n u m b e r d

e n s i t y

c o m p o n e n t A c o m p o n

e n t B

n u m b e r d e n s i t y

c o m p o n e n t A c o m p o n

e n t B

Coupling of agglomeration and drying

P drying kinetics depend on particle sizeP Influence of particle moisture on agglomeration kernel (but only in pre-factor)

Ñ Bilateral coupling of agglomeration and drying

Experimental results

P Influence of mean moisture content

Ñ Measurement of particle size depended moisture or single particle moisture

Multidimensional population balanceP Model reduction using marginal distributions

P Development of discretization methods for intensive properties of solid phase

Ñ Extension of Cell-Average Methode to 2D problems (first simulation results)

Test simulation2D-PBE for agglomeration

Population BalancesSummary and Outlook

Population Balances

Page 39: Heinrich Stefan Coating

7/27/2019 Heinrich Stefan Coating

http://slidepdf.com/reader/full/heinrich-stefan-coating 39/40

39

Population BalancesOverview of new published literature

§ Heinrich, S., Peglow, M., Ihlow, M., Henneberg, M., Mörl, L.: Analysis of the start-up process in continuous fluidized bed spray

granulation by population balance modelling, Chem. Eng. Sci. 57 (2002) 20, 4369-4390

§ Peglow, M., Kumar, J., Warnecke, G., Heinrich, S., Mörl, L.: A new technique to determine rate constants for growth and agglomeration with size and time dependent nuclei formation, Chem. Eng. Sci. 61 (2006) 1,Special issue: Advances in population balance modelling, 282-292

§ Peglow, M., Kumar, J., Warnecke, G., Heinrich, S., Tsotsas, E., Mörl, L., Hounslow, M.: An improved discretized tracer massdistribution of Hounslow et al., AIChE J. 52 (2006) 4, 1326-1332

§ Kumar, J., Peglow, M., Warnecke, G., Heinrich, S., Mörl, L.: Improved accuracy and convergence of discretized populationbalance for aggregation: The cell average technique, Chem. Eng. Sci. 61 (2006), 3327-3342

§ Radichkov, R., Müller, T., Kienle, A., Heinrich, S., Peglow, M., Mörl, L.: A numerical bifurcation analysis of continuous fluidized bed spray granulation with external product classification, Chem. Eng. Proc. 45 (2006) 10, 826-837

§ Kumar, J., Peglow, M., Warnecke, G., Heinrich, S., Mörl, L.: A discretized model for tracer population balance equation:Improved accuracy and convergence, Comp. Chem. Eng. 30 (2006), 1278-1292

§ Mörl, L., Heinrich, S., Peglow, M. (Eds.: Salman, A., Hounslow, M., Seville, J.P.K.): Fluidized bed spray granulation,Granulation (Handbook of Powder Technology, Volume 11), Chapter: The Macro Scale I: Processing for Granulation,Elsevier Science, 169 Seiten, in press, ISBN 0-444-51871-1

§Peglow, M., Heinrich, S., Tsotsas, E.: Towards a complete population balance model for fluidized bed spray granulation:Simultaneous drying and particle formation, Glatt International Times, 22 (2006) June, 7-13

§ Peglow, M., Kumar, J., Heinrich, S., Warnecke, G., Mörl, L., Wolf, B.: A generic population balance model for simultaneous agglomeration and drying in fluidized beds, Chem. Eng. Sci., Special issue: Applications of fluidization, 51 pages (in press)

§ Kumar, J., Peglow, M., Heinrich, S., Tsotsas, E., Warnecke, G., Hounslow, M.J. (Eds.: Tsotsas, E., Mujumdar, A.S.):Chapter 4: Numerical methods for solving population balances, Modern Drying Technology, Volume 1: Computational tools atdifferent scales, WILEY-VCH, 57 pages (submitted)

Page 40: Heinrich Stefan Coating

7/27/2019 Heinrich Stefan Coating

http://slidepdf.com/reader/full/heinrich-stefan-coating 40/40

40

Thank you for your attention!