introduction to aerospace engineering - tu delft ocwreal g geometric altitude this is the one we...

14
1 Challenge the future Introduction to Aerospace Engineering Lecture slides

Upload: others

Post on 20-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Introduction to Aerospace Engineering - TU Delft OCWreal g geometric altitude This is the one we normally use. Difference is small e.g. 63500 ft vs 63307 ft = 0,3% AE1101 Introduction

1 Challenge the future

Introduction to Aerospace Engineering

Lecture slides

Page 2: Introduction to Aerospace Engineering - TU Delft OCWreal g geometric altitude This is the one we normally use. Difference is small e.g. 63500 ft vs 63307 ft = 0,3% AE1101 Introduction

1AE1101 Introduction to Aerospace Engineering |

Intro to Aerospace EngineeringAE1101ab-3-4 The Standard Atmosphere

Prof.dr.ir. Jacco Hoekstra

Page 3: Introduction to Aerospace Engineering - TU Delft OCWreal g geometric altitude This is the one we normally use. Difference is small e.g. 63500 ft vs 63307 ft = 0,3% AE1101 Introduction

2AE1101 Introduction to Aerospace Engineering |

http://natrium42.com/halo/flight2/

30 km hoogte = hoeveel %

vd atmosfeer onder je

Link to video at 30 km

(h = 30 489 m, 100 020 ft)

Tim Zaman’s(student) project

Page 4: Introduction to Aerospace Engineering - TU Delft OCWreal g geometric altitude This is the one we normally use. Difference is small e.g. 63500 ft vs 63307 ft = 0,3% AE1101 Introduction

3AE1101 Introduction to Aerospace Engineering |www.hollandshoogte.nlwww.hollandshoogte.nl

Page 5: Introduction to Aerospace Engineering - TU Delft OCWreal g geometric altitude This is the one we normally use. Difference is small e.g. 63500 ft vs 63307 ft = 0,3% AE1101 Introduction

4AE1101 Introduction to Aerospace Engineering |

Joe Kittinger: jump from 100,000 ft“Jump from space” ?

Page 6: Introduction to Aerospace Engineering - TU Delft OCWreal g geometric altitude This is the one we normally use. Difference is small e.g. 63500 ft vs 63307 ft = 0,3% AE1101 Introduction

5AE1101 Introduction to Aerospace Engineering |

Why a standard atmosphere?

ISA is reference atmosphere for:

- Meaningful aircraft performance specification- Pressure altitude definition & EAS/IAS/TAS definition- Model atmosphere for simulation & analysis

Realatmosphere

Page 7: Introduction to Aerospace Engineering - TU Delft OCWreal g geometric altitude This is the one we normally use. Difference is small e.g. 63500 ft vs 63307 ft = 0,3% AE1101 Introduction

6AE1101 Introduction to Aerospace Engineering |

International Standard Atmosphere(ISA)

p RTρ=dp g dhρ= −

0 0( )T T a h h= + −a = lapse rate

Page 8: Introduction to Aerospace Engineering - TU Delft OCWreal g geometric altitude This is the one we normally use. Difference is small e.g. 63500 ft vs 63307 ft = 0,3% AE1101 Introduction

7AE1101 Introduction to Aerospace Engineering |

Watch out when usinglapse rate a,

it is often given per km, but you should use SI-

units, so per m!

Use this instead of Anderson page 112!)

R = 287.05 J/kg Kg0= 9.81 m/s2

T = 288.15 K (15 ºC)p0 = 101325 Paρ = 1.225 kg/m3

International Standard Atmosphere

(= ICAO Std Atm)

(and no water vapour)M = 28.97 g/mol

Page 9: Introduction to Aerospace Engineering - TU Delft OCWreal g geometric altitude This is the one we normally use. Difference is small e.g. 63500 ft vs 63307 ft = 0,3% AE1101 Introduction

8AE1101 Introduction to Aerospace Engineering |

What do we need to define a standard atmosphere?

• Physically correct:• Pressure increases due to gravity• Gas law

• Two laws, while three variables define state: • Pressure• Temperature• Density

• So by defining one state variable, we define the entireatmosphere by applying the two laws of nature

Page 10: Introduction to Aerospace Engineering - TU Delft OCWreal g geometric altitude This is the one we normally use. Difference is small e.g. 63500 ft vs 63307 ft = 0,3% AE1101 Introduction

9AE1101 Introduction to Aerospace Engineering |

Hydrostatic equation/geopotential altitude

geometric altitudereal g

This is the one we normally use.

Difference is smalle.g. 63500 ft vs 63307 ft = 0,3%

Page 11: Introduction to Aerospace Engineering - TU Delft OCWreal g geometric altitude This is the one we normally use. Difference is small e.g. 63500 ft vs 63307 ft = 0,3% AE1101 Introduction

10AE1101 Introduction to Aerospace Engineering |

Absolute altitude & geometric altitude

hG

ha

Geometric altitude: real altitude with sea level = 0

Absolute altitude: distance to centre of earth

hG = ha + Rearth

Rearth = 6357 km

Page 12: Introduction to Aerospace Engineering - TU Delft OCWreal g geometric altitude This is the one we normally use. Difference is small e.g. 63500 ft vs 63307 ft = 0,3% AE1101 Introduction

11AE1101 Introduction to Aerospace Engineering |

Relation geopotential & geometric altitude

Page 13: Introduction to Aerospace Engineering - TU Delft OCWreal g geometric altitude This is the one we normally use. Difference is small e.g. 63500 ft vs 63307 ft = 0,3% AE1101 Introduction

12AE1101 Introduction to Aerospace Engineering |

International Standard Atmosphere(ISA) Layer with T gradientAs an exercise:

try to making an Excel sheetwith a table for steps of 100 m

Page 14: Introduction to Aerospace Engineering - TU Delft OCWreal g geometric altitude This is the one we normally use. Difference is small e.g. 63500 ft vs 63307 ft = 0,3% AE1101 Introduction

13AE1101 Introduction to Aerospace Engineering |

Layer with constant temperature T(11 km -20 km)

Use values at 11 km as base 1 for this formulae

On exam you should be able to derive all ISA formulae!