la chimie quantitative - theorie - 2os.pdf

23
2OS A) Vocabulaire à maîtriser après ce chapitre La mole nombre d’Avogadro masse molaire atomique volume molaire masse molaire moléculaire mole C.N.T.P. Pascal bar torr mmHg atm expansibilité fluidité compressibilité dilatabilité baromètre fluide gaz parfait Les concentrations solution solvant soluté pourcentage massique pourcentage volumique concentration concentration molaire molarité titre concentration massique dilution dosage dosage volumétrique indicateur B) Les compétences à acquérir au cours de ce chapitre A la fin de ce chapitre vous devrez être capable de La mole Reconnaître, citer l’unité et nommer le nombre d’Avogadro. Expliquer ce qu’est la mole et savoir utiliser cette unité. Calculer la masse molaire des molécules à l’aide des masses atomiques contenues dans le tableau périodique. Convertir des masses en moles, et vice-versa, à l’aide de la masse molaire. Convertir des moles en nombre d’atomes et vice-versa, à l’aide du nombre d’Avogadro. Citer les CNTP. Déterminer le volume d’un gaz au CNTP, à l’aide du volume molaire depuis son nombre de moles et vice-versa. Convertir une pression de Pascal, en bar, en Torr, en atm, en mmHg et vice-versa. Convertir les degrés Celsius en degrés Kelvin et vice-versa. Utiliser la loi des gaz parfait pour trouver la valeur d’une des données qui serait inconnue dans la loi.

Upload: rafik-dra

Post on 14-Feb-2015

123 views

Category:

Documents


7 download

TRANSCRIPT

Page 1: la chimie quantitative - theorie - 2OS.pdf

2OS

A) Vocabulaire à maîtriser après ce chapitre

La mole

nombre d’Avogadro masse molaire atomique volume molaire

masse molaire moléculaire mole C.N.T.P.

Pascal bar torr

mmHg atm expansibilité

fluidité compressibilité dilatabilité

baromètre fluide gaz parfait

Les concentrations

solution solvant soluté

pourcentage massique pourcentage volumique concentration

concentration molaire molarité titre

concentration massique dilution dosage

dosage volumétrique indicateur

B) Les compétences à acquérir au cours de ce chapitre

A la fin de ce chapitre vous devrez être capable de

La mole

• Reconnaître, citer l’unité et nommer le nombre d’Avogadro.

• Expliquer ce qu’est la mole et savoir utiliser cette unité.

• Calculer la masse molaire des molécules à l’aide des masses atomiques contenues dans le tableau périodique.

• Convertir des masses en moles, et vice-versa, à l’aide de la masse molaire.

• Convertir des moles en nombre d’atomes et vice-versa, à l’aide du nombre d’Avogadro.

• Citer les CNTP.

• Déterminer le volume d’un gaz au CNTP, à l’aide du volume molaire depuis son nombre de moles et vice-versa.

• Convertir une pression de Pascal, en bar, en Torr, en atm, en mmHg et vice-versa.

• Convertir les degrés Celsius en degrés Kelvin et vice-versa.

• Utiliser la loi des gaz parfait pour trouver la valeur d’une des données qui serait inconnue dans la loi.

Page 2: la chimie quantitative - theorie - 2OS.pdf

2OS

La chimie quantitative 2

• Trouver le nombre de moles, la masse ou encore le volume des différents composés d’une équation chimique à partir de la masse, du nombre de mole ou du volume d’une molécule apparaissant dans une équation chimique.

La chimie quantitative des solutions

• Déterminer, d’après l’énoncé du problème, si une solution est utilisée pour l’expérience.

• Déterminer, si une solution est utilisée, quels composés sont le solvant et le soluté.

• Déterminer le pourcentage massique ou volumique d’un soluté ou d’un solvant, à partir du nombre de moles ou de la masse du soluté ou le nombre de moles ou de masse du solvant et vice-versa.

• Déterminer, en connaissant le pourcentage massique de la solution, la masse du solvant et/ou du soluté et vice-versa.

• Déterminer, en connaissant le pourcentage volumique de la solution, le volume du solvant et/ou du soluté et vice-versa.

• Déterminer le titre et/ou la molarité d’une solution, à partir du nombre de moles ou de la masse du soluté et vice-versa.

• Convertir une molarité en titre et vice-versa.

• Déterminer le nombre de moles et/ou de molécules de soluté, dans un volume donné de solution, à partir du titre ou de la molarité et vice-versa.

• Déterminer la concentration d’une solution après dilution et vice-versa.

• Déterminer le volume de solution ‘’concentrée’’, utilisé et/ou le nombre de moles utilisé pour préparer une solution diluée à partir d’une solution plus concentrée et vice-versa.

• Déterminer le volume, le nombre de moles, la masse ou encore la concentration d’un soluté utilisé dans un dosage en connaissant soit l’équation de la réaction soit la concentration, soit la masse, soit le nombre de mole de la substance à doser et vice-versa.

Amédéo Avogadro (Amedeo di Quaregna, comte), chimiste italien (Turin 1776 - id. 1856), auteur de l'hypothèse selon laquelle il y a le même nombre de molécules dans des volumes égaux de gaz différents à la même température et à la même pression. (Larousse)

1.1 Introduction

1.1.1 La mole et le nombre d’avogadro

Parce que les atomes et les molécules sont de très petite taille, un échantillon de matière, même très petit, contient un nombre énorme d'atomes ou de molécules. Par exemple 1 cm3 de cuivre contient environ 8,4·1022 atomes de cuivre. Soit environ 84'000 milliards de milliards d'atomes de cuivre. Le chimiste travaillant, pour des raisons pratiques avec des

Page 3: la chimie quantitative - theorie - 2OS.pdf

2OS

La chimie quantitative 3

échantillon de l’ordre du gramme, il manipule continuellement de très grandes quantités d’atomes ou de molécules.

Ainsi, en étudiant différents échantillons de matière, on a constaté que si on prend

- 12 g de carbone-12 - ou 14 g de carbone-14 - ou 30.9716 g de phosphore etc.,

les échantillons contiennent tous 6,02·1023 atomes.

Autrement dit, un échantillon dont la masse (en gramme) à la même valeur que la masse atomique de l’élément composant l’échantillon, contient toujours 6,02·1023 atomes. Cette constance a permis, aux chimistes, de créer une nouvelle unité de quantité de matière appelée la mole. Une mole correspond à un ensemble de 6,02·1023 atomes ou 6,02·1023 molécules. Cette unité s’abrège mol.

1.1.2 Définitions

La mole est la quantité de matière contenant autant d’atomes ou de molécules ou d’ions etc. qu'il y a d'atomes de carbone dans 12 (g) de carbone-12 pur (12C).

Le nombre d’atomes dans 12 (g) de carbone) est appelé nombre d'Avogadro. Il est habituellement noté NA. Sa valeur approchée est :

NA = 6,02·1023 (mol-1) (mol-1 car NA est un nombre de particules par mole)

On peut résumer par : 1 mole ≡ 6,02·1023 atomes, molécules, ions, électrons

1.1.3 Comment passer de la mole au nombre de particules et vice-versa

Unité du nombre d’Avogadro = mol-1

Fraction: mol

atomes

1

)(1002.623

Le nombre d’Avogadro fait appel à 2 données :

- le nombre d’atomes - la mole

Le nombre d’Avogadro nous permet, via une proportion, de passer du nombre d’atomes dans l’échantillon au nombres de mole dans l’échantillon ou vice-versa.

Proportion :

mol

atomes

1

)(1002.623

⋅ =

néchantilloldansmolesdenombre

néchantilloldansatomesdnombre

'

''

Quelques exemples :

Dans les échantillon suivants, combien y a-t-il de ‘’particules’’ ?

a) 0,5 mole d'électrons : mol

électronsx

mol

électronsd

5.01

)'(1002.623

=⋅

� x = 3.01·1023 électrons

Page 4: la chimie quantitative - theorie - 2OS.pdf

2OS

La chimie quantitative 4

b) 1 mole de grains de riz

c) 10 moles de molécules

d) 0,25 mole d'atomes

Formalisme :

Le nombre de mole est symbolisé par la lettre n. Ainsi le nombre de mole de cuivre s’écrit: n(Cu) ou nCu

1.2 La masse molaire atomique (Ma)

1.2.1 Définition

La masse d'une mole d'atomes d'un élément est appelée masse molaire atomique Ma.

Ces unités sont g/mol Autrement dit :

La masse molaire atomique d'un élément est égale, en valeur, à sa masse atomique.

Exemples

Hydrogène H : Masse atomique = [u] MH = g/mol

Oxygène O: Masse atomique = [u] MO = g/mol

Cuivre Cu : Masse atomique = [u] MCu = g/mol

Chlore Cl : Masse atomique = [u] MCl = g/mol

1.2.2 Trouver le nombre de moles et d’atomes à partir de la masse d’un échantillon

1.2.2.1 La masse molaire atomique

Unité de la masse molaire = g/mol

Fraction : mol

genatomiquemasse

1

La masse molaire fait appel à 2 données : - la masse (en grammes) - la mole

La masse molaire nous permet, via une proportion, de passer de la masse en gramme de l’échantillon au nombres de mole dans l’échantillon ou vice-versa.

Proportion :

mol

genatomiquemasse

1 =

)(

)(

néchantillon

néchantillom

Page 5: la chimie quantitative - theorie - 2OS.pdf

2OS

La chimie quantitative 5

1.2.2.2 Le nombre d’avogadro

Unité du nombre d’Avogadro = mol-1

Fraction : mol

atomes

1

)(1002.623

Le nombre d’Avogadro fait appel à 2 données : - Le nombre d’atomes - la mole

Le nombre d’Avogadro nous permet, via une proportion, de passer du nombre d’atomes dans l’échantillon au nombres de mole dans l’échantillon ou vice-versa.

Proportion :

mol

atomes

1

)(1002.623

⋅ =

)(

''

néchantillon

néchantilloldansatomesdnombre

Exemples

A) La masse molaire du cuivre étant de 63.5 g/mol, un échantillon de 63,5 g de cuivre

contient 1 mole d'atomes de cuivre, et, comme une mole contient 6,02•1023 atomes,

63.5 g de cuivre contiennent 6,02•1023 atomes.

63,5 g Cu ≡ 1 mole de Cu ≡ 6,02·1023 atomes de cuivre

B) Combien y a-t-il de mole(s), ainsi que d'atomes de cuivre dans une lame de cuivre de 254 mg de cuivre ?

Masse � mole : On utilise la masse molaire.

Masse en gramme : 254 mg = 0.254 g

Proportion : mol

g

1

5.63 = néchantilloldansmolesx

g

'

254.0 ⇒ n(Cu) = x = 4•10-3 mol

mol � nombre d’atomes : On utilise le nombre d’Avogadro.

Proportion : mol

atomes

1

)(1002.623

⋅ = mol

néchantilloldansatomesx3

104

'−

⋅ ⇒ x = 2.41•1021 atomes

Réponse : Notre échantillon de cuivre contient 4•10-3 mol et 2.41•1021 atomes.

1.3 La masse molaire moléculaire (Mm)

1.3.1 Définition

La masse d'une mole de molécules d'un corps pur est appelée masse molaire moléculaire Mm. Ces unités sont g/mol

La masse molaire moléculaire s’obtient en additionnant les masses molaires atomiques des atomes composant la molécule.

Exemples

:2OHM MH = g/mol MO = g/mol OHM

2=

Page 6: la chimie quantitative - theorie - 2OS.pdf

2OS

La chimie quantitative 6

42SOHM : MH = g/mol MS = g/mol MO = g/mol

=42SOHM

Formalisme :

La masse molaire est symbolisée par la lettre M. Ainsi la masse molaire de HCl s’écrit : M(HCl) ou MHCl

1.3.2 Trouver le nombre de moles et de molécules à partir de la masse d’un échantillon

1.3.2.1 La masse molaire

Unité de la masse molaire = g/mol

Fraction : mol

genmoléculelademasse

1

La masse molaire fait appel à 2 données : - la masse (en grammes) - la mole

La masse molaire nous permet, via une proportion, de passer de la masse en gramme de l’échantillon au nombres de mole dans l’échantillon ou vice-versa.

Proportion :

mol

genmoléculelademasse

1 =

)(

)(

néchantillon

néchantillom

1.3.2.2 Le nombre d’avogadro

Unité du nombre d’Avogadro = mol-1

Fraction : mol

molécules

1

)(1002.623

Le nombre d’Avogadro fait appel à 2 données : - Le nombre d’atomes - la mole

Le nombre d’Avogadro nous permet, via une proportion, de passer du nombre d’atomes dans l’échantillon au nombres de mole dans l’échantillon ou vice-versa.

Proportion :

mol

molécules

1

)(1002.623

⋅ =

)(

'

néchantillon

néchantilloldansmoléculesdenombre

Exemples

A) La masse molaire de l’acide sulfurique étant de 98 g/mol, un échantillon de 98 (g) d'acide sulfurique contient 1 mole de molécules et, comme une mole contient 6,02·1023

molécules, 98 g d’acide sulfurique contiennent 6,02·1023 molécules.

98 g H2SO4 ≡ 1 mole de H2SO4 ≡ 6,02·1023 molécules de H2SO4

B) Combien y a-t-il de mole(s) ainsi que de molécules d'acide sulfurique dans 3,92 g d'acide sulfurique ?

Masse � mole : On utilise la masse molaire.

Page 7: la chimie quantitative - theorie - 2OS.pdf

2OS

La chimie quantitative 7

Proportion: mol

g

1

98 = néchantilloldansmolesx

g

'

92.3 ⇒ n(acide) = x = 4•10-3 mol

mol � nombre d’atomes : On utilise le nombre d’Avogadro.

Proportion:mol

molécules

1

)(1002.623

⋅ = mol

néchantilloldansmoléculesx3

104

'−

⋅ ⇒ x = 2.41•1021 molécules

Réponse : Notre échantillon de cuivre contient 4•10-3 mol et 2.41•1021 molécules.

1.4 Le volume molaire des gaz (V0)

1.4.1 La loi d'Avogadro-Ampère

Avogadro en 1811 et Ampère en 1814 émirent l'hypothèse qu'un volume déterminé d'un gaz quelconque contient toujours le même nombre de moles et donc de molécules.

teconsn

Vtan= ou nteconsV ⋅= tan avec V = volume ; n = nombre de moles

Cette hypothèse, confirmée aujourd'hui, conduit à l'énoncé de la loi d'Avogadro-Ampère:

Dans les même conditions de température et de pression, les volumes molaires (volume d'une mole de molécules) de gaz quelconques, sont les mêmes.

1.4.2 Les CNTP

CNTP signifie : les Conditions Normales de Température et de Pression.

Dans ces conditions: La température = 0°C ou 273,15°K La pression = 1.01325.105 Pa

Aux CNTP, le volume molaire, c’est-à-dire le volume d’une mole, de tous les gaz vaut

22.4 litres.

Cela signifie qu’aux C.N.T.P, 4 (g) de gaz hélium (1 mol), 32 (g) de gaz oxygène O2 (1 mol) occupent le même volume de 22,4 (litres).

Remarques

a) 1.01325.105 Pa est la pression atmosphérique moyenne au bord de la mer.

b) Le volume molaire d'un gaz dépend de la pression et de la température.

Ainsi, si la température du gaz s'élève de 0 à 20 (°C) pour une pression de 1.01325.105 Pa, le volume molaire du gaz passe de 22.4 litres à 24,04 litres.

1.4.3 Trouver le volume d’un gaz à partir de la masse d’un échantillon

Unité du volume molaire = l/mol

Fraction (au CNTP) = mol

l

1

4.22

Le volume molaire fait appel à 2 données : - le volume (en litres) - la mole

Page 8: la chimie quantitative - theorie - 2OS.pdf

2OS

La chimie quantitative 8

Le volume molaire nous permet, via une proportion, de passer du nombre de moles de l’échantillon au volume de l’échantillon ou vice-versa.

Proportion :

Au CNTP : mol

l

1

4.22 =

)(

)(

néchantillon

néchantilloV

Exemples

A) La masse molaire du dihydrogène étant de 2 g/mol, une 1 mole de gaz hydrogène

(H2) aux C.N.T.P pèse 2 (g) et contient 6,02••••1023 molécules H2 dans un volume de 22,4 litres.

2(g) H2 ≡ 1 mole ≡ 6,02·1023 molécules H2 ≡ 22,4 (l)

B) Combien y a-t-il de moles d'hydrogène dans 1 litre de dihydrogène aux C.N.T.P ?

Volume � mole : On utilise le volume molaire.

Proportion : mol

l

1

4.22 =

néchantilloldansmolesx

l

'

1 ⇒ n(H2) = x = 4.46•10-2 mol

1.5 La loi des gaz parfaits

1.5.1 Les unités de pression

La pression se mesure, dans le système international (SI) en pascal (symbole Pa). Un pascal équivaut à une force d’un newton exercée sur une surface d’un mètre carré :

21

11

m

NPa =

Le pascal est une unité très petite. Par exemple, la pression atmosphérique vaut approximativement 101'325 (Pa) = 101,325 (kPa).

Pour cette raison, on utilise encore le bar (unité de pression utilisée généralement pour la pression atmosphérique) qui vaut 100 (kPa).

baromètre

La pression exercée par l’atmosphère est mesurée à l’aide d’un baromètre.

Cet instrument a été inventé par Evengelisto Torricelli (1643).

Un baromètre est un long tube étroit, fermé à une de ses extrémités et rempli de mercure. En retournant ce tube sans laisser rentrer l’air dans une cuve pleine de mercure, la colonne de mercure s’écoule dans la cuve jusqu’à ce que la pression exercée par le mercure liquide équilibre la pression exercée par l’atmosphère.

La hauteur finale de la colonne de mercure est proportionnelle à la pression atmosphérique.

Page 9: la chimie quantitative - theorie - 2OS.pdf

2OS

La chimie quantitative 9

La hauteur de la colonne de mercure, par un jour normal, au niveau de la mer, est d’environ 760 mm. Une pression de 760 millimètres de mercure (qu’on écrit 760 mmHg) correspond donc à la pression atmosphérique normale au niveau de la mer. L’unité 1 (mmHg) est souvent remplacée par 1 (Torr) (en hommage à Torricelli).

Une autre unité de pression est d’un usage courant pour les pressions proches de la pression atmosphérique, c’est l’atmosphère (symbole atm), avec 1 (atm) = 760 (mmHg ou Torr) = 101,325 (kPa).

En résumé :

Unité SI : Pascal (Pa) : 1 Pa = 1 (N/m2)

Autres unités conventionnelles : 1 bar = 100 (kPa)

1 (atm) = 101,325 (kPa) = 760 (mmHg) = 760 (Torr)

1.5.2 Les propriétés des gaz

Les propriétés de l’état gazeux sont les suivantes :

• expansibilité : Les gaz occupent tout le volume qui leur est offert.

• fluidité : Les gaz ne peuvent pas être saisis entre les doigts, ils n’ont pas de forme propre.

• compressibilité : On peut facilement réduire le volume d’un gaz en le comprimant à l’aide d’un piston.

• dilatabilité : Le volume occupé par un gaz augmente avec la température. Nous pouvons utiliser ces propriétés pour construire un modèle du gaz à l’échelle moléculaire.

� Parce que le gaz est un fluide sans forme propre, nous savons que les interactions entre ses molécules sont faibles. Si elles étaient fortes, les molécules se colleraient les unes aux autres et formeraient un liquide ou un solide.

� Les gaz sont très compressibles, nous pouvons donc en déduire qu’il y a beaucoup d’espace entre les molécules. Dans les liquides et les solides, les molécules sont en contact et il est très difficile de les comprimer.

� Parce que le gaz est expansible et qu’il occupe immédiatement tout le récipient, ses molécules doivent se déplacer à très grande vitesse.

Le modèle moléculaire des gaz correspondant à ces propriétés, décrit le gaz comme un ensemble de molécules très éloignées se déplaçant sans cesse de façon aléatoire. Les collisions font varier la vitesse de molécules, comme les boules d’un billard tridimensionnel.

Page 10: la chimie quantitative - theorie - 2OS.pdf

2OS

La chimie quantitative 10

1.5.3 Le modèle du gaz parfait

Le gaz parfait n’existe pas. C’est un modèle théorique idéal qui suppose que les molécules de gaz sont sans interaction entre elles (en dehors des chocs élastiques sans perte d’énergie) et qu’elles n’ont pas de volume propre. C’est une limite vers laquelle le gaz réel peut tendre lorsque sa pression tend vers zéro.

Dans ce modèle, les molécules se déplacent toujours en ligne droite ne changeant de direction que lorsqu’elles entrent en collision avec les parois du récipient ou une autre molécule.

Bien que cette description montre que les vitesses des molécules sont très différentes, on peut définir une vitesse moyenne caractéristique qui dépend de la température du gaz.

En fait, la température d’un gaz est une mesure de la vitesse moyenne de ses molécules : plus la température est élevée, plus la vitesse moyenne des molécules est élevée.

1.5.4 Les 3 lois de base des gaz parfaits

Robert Boyle (1627-1691)

1.5.4.1 La loi de Boyle

Robert Boyle, en 1662, a observé que lorsqu’on comprime une quantité donnée de gaz, à température constante, sa pression augmente et son volume diminue de telle sorte que le produit P·V reste inchangé.

teconsVP tan====⋅⋅⋅⋅ ou V

teconsP tan====

Pour une quantité donnée de gaz, à température constante, la pression est inversement proportionnelle au volume.

Charles Gay-Lussac

1.5.4.2 La loi de Charles

Charles et Gay-Lussac, deux scientifiques français, ont montré, près de deux siècles après Boyle, qu’à pression constante (conditions isobares), le volume d’une quantité constante de gaz augmente proportionnellement avec la température.

Lorsqu’on porte sur un graphique le volume en fonction de la température, on obtient une droite. On constate que toutes les droites isobares convergent vers un même point. Ce point commun correspond à un volume nul et à une température de –273,15 °C. Comme le volume d’un gaz ne peut pas être négatif, il faut que cette température soit la température la plus basse possible.

Page 11: la chimie quantitative - theorie - 2OS.pdf

2OS

La chimie quantitative 11

Cette température est la valeur du zéro de l’échelle Kelvin reliée à l’échelle Celsius par : 15,273)()( +°=° CTKT

Si on exprime les températures dans l’échelle Kelvin, la loi de Charles s’écrit :

teconsT

Vtan= ou TteconsV ⋅= tan

A pression constante, le volume d’une quantité déterminée d’un gaz est directement proportionnel à la température T (en degré K). 1.5.4.3 La loi d’Avogadro

Ampère

Avogadro, en 1811, et Ampère, en 1814, émirent l'hypothèse qu'un volume déterminé d'un gaz quelconque, contient toujours le même nombre de molécules. Cette hypothèse, aujourd'hui confirmée, conduit à l'énoncé de la loi d'Avogadro-Ampère :

A température et pression constantes, le nombre de moles de gaz contenu dans un volume donné est le même quel que soit le gaz

Avogadro

Si n représente le nombre de moles de gaz, cette loi s’écrit :

teconsn

Vtan= ou nteconsV ⋅= tan

Selon cette expression à température et pression constante, le volume d’un gaz est directement proportionnel au nombre de moles de gaz.

1.5.4.4 La loi des gaz parfaits

Les gaz qui obéissent aux 3 lois précédentes sont dits parfaits. La combinaison de ces lois donne :

teconsTn

VPtan=

La constante est appelée constante des gaz parfaits et on lui a donné comme symbole R, l’équation d’état devient donc :

RTn

VP=

⋅ ou TRnVP ⋅⋅=⋅

• La pression est exprimée en Pa et le volume en m3 et R vaut 8,314 [J/(°K·mol)]

1.5.4.5 Quelques exemples d’utilisation des lois des gaz parfaits

Exemple 1

Calculez le volume(V) occupé par une mole (volume molaire) d'un gaz parfait à 0°C et

Page 12: la chimie quantitative - theorie - 2OS.pdf

2OS

La chimie quantitative 12

sous une pression de 1 atmosphère (= CNTP).

A) Changement des unités des données en unités S.I.

T = 0°C = 273.15°K P = 1 atm = 1.0132 510⋅ Pa

B) Transformation de la loi des gaz parfaits pour calculer V

PV = nRT ⇒ V = (nRT)/P

C) Calcul de V avec les valeurs numériques

R =8,314 [J/(°K·mol)] V = lm 4.221024.21001325.1

15.273314.81 32

5=⋅=

⋅⋅ −

Exemple 2

Calculez la pression en kPa et en atm qui règne à l’intérieur d’un tube de télévision, sachant que son volume est de 5 ℓ , sa température 23 °C et qu’il contient 0,01 mg de gaz azote.

A) Changement des unités des données en unités S.I.

m = 0.01 mg = 10-5 g T = 23°C = 273.15 + 23 = 293.15°K V = 5 l = 5 3310 m

−⋅

B) Transformation de la loi des gaz parfaits pour calculer P

PV = nRT ⇒ P = (nRT)/V

C) Calcul de n(N2) dont la valeur est nécessaire pour calculer P avec la loi des gaz parfaits

M(N2) = 28 g/mol; )(

10

1

28

2

5

Nnmol

g−

= n(N2) = 3.57 710

−⋅ mol

D) Calcul de la pression en Pa

R =8,314 [J/(°K·mol)] P = =⋅

⋅⋅⋅

3

7

105

15.296314.81057.3 = 0.18 Pa

E) Transformation de la pression en atm

18.0

)(

1001325.1

15

atmP

Pa

atm=

⋅ P(atm)= 1.78 6

10−

⋅ atm

Exemple 3

L'analyse chimique d'un hydrocarbure montre qu'il contient 91,7% de carbone et 8,3% d'hydrogène. 2,04 grammes de cet hydrocarbure occupent 850 millilitres à 100 °C et sous une pression de 715 (mmHg).

a) Calculez la masse moléculaire approximative de l'hydrocarbure.

b) Quelle est la formule brute de ce gaz ?

Page 13: la chimie quantitative - theorie - 2OS.pdf

2OS

La chimie quantitative 13

CALCUL DE M(hydrocarbure)

A) Calcul de la pression en Pa

Pa

Hgmm

Pax

Hgmm5

1001325.1

760715

⋅= x = 9.53 4

10⋅ Pa

B) Transformation des autres unités

T = 273.15 + 100 = 373.15°K V = 8.5 ml = 8.5 3410 m

−⋅

C) Transformation de la loi des gaz parfaits pour calculer n

PV = nRT ⇒ n = (PV)/RT

D) Calcul de n avec les valeurs numériques

n = 15.373314.8

105.81053.944

⋅⋅⋅−

= 2.6 210

−⋅ mol

E) Calcul de la masse molaire

M(hydrocarbure) = n

m = 2.04 / 2.6 2

10−

⋅ = 78.46 g/mol

FORMULE BRUTE DE L’HYDROCARBURE

A) Nombre d’atome de carbone par molécule

100

7.9146.78 ⋅≅ 72

12

72= 6

B) Nombre d’atome d’hydrogène par molécule

≅⋅

100

3.846.786 6

1

6=

C) Formule brute : C6H6

1.6 Etude quantitative des réactions chimiques

1.6.1 Principe

C’est Lavoisier qui le premier pesa avec précision les réactifs et les produits d’une réaction chimique.

Par cette méthode rigoureuse, il découvrit la loi qui porte son nom :

Antoine-Laurent Lavoisier

(1743-1794)

Au cours d’une réaction chimique, la somme des masses des réactifs est égale à la somme des masses des produits formés.

Nous avons déjà appliqué cette loi pour écrire l'équation chimique équilibrée d’une réaction chimique.

Nous allons maintenant utiliser les moles pour l’illustrer.

Page 14: la chimie quantitative - theorie - 2OS.pdf

2OS

La chimie quantitative 14

Exemple

L’attaque d’une barre de fer par un acide fort (l’acide chlorhydrique)

2 Fe + 6 HCl → 2 FeCl3 + 3 H2 (gaz)

� L'équation chimique équilibrée indique le nombre relatif de molécules qui interviennent dans la réaction. Ainsi, cette équation signifie que chaque fois que 2 atomes de fer sont attaqués, il faut 6 molécules d’acide chlorhydrique pour obtenir 2 molécules de chlorure de fer(III) et 3 molécules de gaz hydrogène.

Maintenant, si au lieu de considérer les atomes et les molécules individuellement, on considère des ensembles de 6,02x1023 atomes et molécules (1 mole), on obtient :

2 moles Fe + 6 moles HCl → 2 moles FeCl3 + 3 moles H2 (gaz)

• Nous pouvons facilement trouver les masses correspondant à ces nombres de moles en utilisant les masses molaires comme décrit dans les paragraphes précédents.

• Si le nombre de moles de réactifs n’est pas le même que celui donné dans l’équation, ce qui est généralement le cas, nous pouvons trouver les bons rapport par de simples proportions.

1.6.2 Exemple de procédure

1.6.2.1 Les réactifs sont en quantités stoechiométriques

Reprenons la réaction de l’exemple du paragraphe précédent

Si dans la réaction précédente, on utilise 4,48 (g) de fer et une quantité d’acide chlorhydrique suffisante, quelle masse de chlorure de fer(III) et quelle masse de dihydrogène obtiendrons-nous ?

PROCEDURE POUR TROUVER LES REPONSES

Remarque de départ

L’équation équilibrée nous indique que:

2 moles Fe + 6 moles HCl → 2 moles FeCl3 + 3 moles H2(gaz)

Il n’est pas possible de calculer directement la masse de chlorure de fer (III) et la masse de dihydrogène depuis la masse de fer, car le lien entre le fer et les autres composés impliqués dans la réaction, qui est présenté dans l’équation équilibrée de la réaction, ce fait en moles !

Stratégie

A) Il faut convertir la masse de fer en mole puisque c’est l’unité utilisée pour faire le rapport entre le fer et les autres composés de la réaction à travers l’équation.

Page 15: la chimie quantitative - theorie - 2OS.pdf

2OS

La chimie quantitative 15

B) Par une simple proportion, le nombre de moles de fer dans 4.48 g, nous permettra de trouver le nombre de moles correspondantes de dihydrogène et de chlorure de fer(III).

C) Finalement, en utilisant la masse molaire du dihydrogène et du chlorure de fer (III), le nombre moles de ces derniers sera convertie en masse et nous aurons nos réponses.

Calculs

A) Masse de fer � mole de fer : On utilise la masse molaire du fer

Proportion: mol

g

1

56 = néchantilloldansmolesx

g

'

48.4 ⇒ n(Fe) = x = 0.08 mol

B) Théorie : 2 moles Fe + 6 moles HCl → 2 moles FeCl3 + 3 moles H2 (gaz)

Pratique : 0.08 mol Fe + 0.24 mol HCl → 0.08 mol FeCl3 + 0.12 mol H2

Proportions: )(

08.0

6

2

HCln

Femol

HClmol

Femol=

)(

08.0

2

2

33FeCln

Femol

FeClmol

Femol=

)(

08.0

3

2

22Hn

Femol

Hmol

Femol=

C) moles � masse On utilise la masse molaire.

FeCl3 : M(FeCl3) = 56 + 3• 35.5 = 162.5 g/mol ;

Proportion: mol

g

1

5.162 = mol

gx

08.0 ⇒ x = 13 g

H2 : M(H2) = 2• 1 = 2 g/mol ; Proportion: mol

g

1

2 = mol

gx

12.0 ⇒ x = 0.24 g

Réponses : Nous obtiendrons 0.24 g de dihydrogène et 13 g de chlorure de fer (III).

Remarques générales

1. Le dihydrogène étant un gaz, il est, dans certains cas, préférable de calculer le volume du gaz que l’on obtient aux C.N.T.P, lorsque l’on fait réagir 4,48 (g) de fer.

Moles � volume : On utilise le volume molaire

Proportion: mol

l

1

4.22 =

moles

lx

12.0 ⇒ x = 2.69 l

2. Lors d'une réaction chimique, les substances réagissent toujours suivant les proportions stœchiométriques. Si une des substances est en excès, la quantité en excès ne réagit pas.

1.6.2.2 Un des réactifs est en excès

Le soufre et le zinc réagissent pour former du sulfure de zinc :

Zn + S → ZnS

Page 16: la chimie quantitative - theorie - 2OS.pdf

2OS

La chimie quantitative 16

Quelle quantité de sulfure de zinc obtiendra-t-on, si l'on fait réagir 32.5 (g) de zinc avec 64 (g) de soufre ?

Stratégie Attention : La plus grande masse ≠ le composé en excès.

Rappel : Il faut comparer les moles.

A) Convertir la masse de zinc et de soufre en moles pour trouver le composé en excès.

B) Trouver le nombre de moles de sulfure de zinc à partir du nombre de mole du réactifs limitant*.

Remarque: *Le réactif limitant est le réactif qui n’est pas en excès. Toutes les moles du réactif limitant réagissent au cours de la réaction, alors que seule une partie des moles du réactif en excès participe à la réaction.

C) Convertir le nombre de moles de sulfure de zinc en masse.

Calculs

A) Masse � mole : On utilise la masse molaire

M(Zn) = 65 g/mol ; proportion: mol

g

1

65 = molx

g5.32 ⇒ n(Zn) = x = 0.5 mol

M(S) = 32 g/mol ; proportion: mol

g

1

32 = molx

g64 ⇒ n(S) = x = 2 mol

L’équation équilibrée indique que le rapport Zn:S est de 1 mole de Zn pour 1 mole de S. Le rapport en moles calculées est Zn :S = 1:4.

� Le soufre est en excès, le Zn est le réactif limitant.

Il faut donc prendre le nombre de zinc pour trouver le nombre de mole de ZnS.

B) Théorie : 1 Zn + 1 S → 1 ZnS

Pratique : 0.5 Zn + 2 S → 0.5 ZnS

Proportion: )(

5.0

1

1

ZnSn

Znmol

ZnSmol

Znmol=

C) Mole � masse: On utilise la masse molaire.

M(ZnS) = 65 + 32 = 97 g/mol; Proportion: mol

g

1

97=

mol

gx

5.0 ⇒ x = 48.5 g

Réponse : On obtiendra 48.5 g de sulfure de zinc.

Page 17: la chimie quantitative - theorie - 2OS.pdf

2OS

La chimie quantitative 17

2.1 Rappel

• Un solution est un mélange homogène contenant au minimum 2 composés : le solvant et le soluté.

• Le solvant est le composé, à l’état liquide, qui sert à dissoudre le soluté. Il est le composant majoritaire de la solution.

• Le soluté est soit un liquide, soit un solide, soit un gaz qui est dissout dans le solvant. Il est le composant minoritaire de la solution.

2.2 Les concentrations

En chimie et en physique, la concentration désigne la proportion d'un soluté dans une solution

Il y a plusieurs manières d’exprimer une concentration, mais en chimie, on utilise principa-lement la molarité et le titre.

2.2.1 Le titre ou concentration massique

Le titre d’une solution est la masse de substance dissoute dans un litre de solution.

V

mT =

m = masse de soluté en gramme

V = volume de la solution en litre

T = titre de la solution en g/l

Exemple

On dissout 20,2 g de nitrate de potassium dans 250 ml d’eau. Quel est le titre de la solution ?

Volume en litre : V = 250 ml = 0.25 l

Proportion : l

g

l

gx

25.0

2.20

1= ⇒ x = 80.8 g

Réponse : T(NaNO3) = 80.8 g/l

2.2.2 La molarité ou la concentration molaire

La molarité d’une solution est le nombre de moles de substance dissoute dans un litre de solution.

Page 18: la chimie quantitative - theorie - 2OS.pdf

2OS

La chimie quantitative 18

V

nC =

n = nombre de moles de soluté en mol

V = volume de la solution en litre

C = molarité en mol/l

Remarques :

1. L’abréviation de (mol/l) est le symbole M. Ainsi :

- une solution 1 M contient 1 (mol/l) de soluté.

- une solution 2 M contient 2 (mol/l) de soluté.

- une solution 0,5 M contient 0,5 (mol/l) de soluté.

2. Par convention, on désigne souvent la molarité d'une substance A en solution par la notation:

[A] = molarité de A en (mol/l).

Ainsi [H+] signifie concentration molaire ou molarité des ions H+ d'une solution.

Exemple

On dissout 20,2 (g) de nitrate de sodium dans 250 (ml) d’eau. Quelle est la molarité de la solution ?

A) Convertir la masse en mol car la molarité = mol/l �

Masse � mol : On utilise la masse molaire

Nitrate de potassium = NaNO3 M(NaNO3) = 23 + 14 + 3• 16 = 85 g/mol

Proportion : mol

g

1

85=

molx

g2.20 ⇒ n(NaNO3) = x = 2.38.10-1 mol

B) Calculer le nombre de moles dans 1 l.

Volume en litre : V = 250 ml = 0.25 l

Proportion : l

molx

1=

mol

mol

25.0

1038.21−

⋅ ⇒ n’(NaNO3) = x = 9.52.10-1 mol

Réponse : [NaNO3] = 9.52.10-1 M

2.2.3 Passer de la molarité au titre ou vice-versa

La molarité et le titre d'une substance A dissoute sont liés par la masse molaire MA de la substance selon la relation :

AAAA

A MCmol

g

l

mol

V

Mn

l

mol

gmol

l

gT ⋅=⋅=

⋅=

==

Exemple

Calculer la molarité d'une solution de sulfate de cuivre(II) dont le titre est de 240 (g/l).

Page 19: la chimie quantitative - theorie - 2OS.pdf

2OS

La chimie quantitative 19

Formule : )/()/()/( molglmollg AAA MCT ⋅= ⇒ )/(

)/(

)/(molg

AM

lgA

TlmolAC =

Calcul : M(CuSO4) = 63.5 + 32 + 4• 16 = 159.5 g/mol

)/(5.159

)/(240][

4

molg

lgCuSO = = 1.5 mol/l

2.2.4 La préparation d’une solution

Il

2.3 Les dilutions des solutions

Il arrive fréquemment au laboratoire de disposer d’une solution concentrée que l’on doit diluer pour obtenir une solution moins concentrée.

Cette dilution s’effectue à l’aide d’une pipette jaugée et d’un ballon jaugé qui permettent de mesurer des volumes précis de solution :

Page 20: la chimie quantitative - theorie - 2OS.pdf

2OS

La chimie quantitative 20

Exemple

A partir d’une solution de sulfate de cuivre(II) de concentration Ci = 0,5 M, on souhaite préparer un volume Vf = 500 (ml) d’une solution diluée de concentration Cf = 0,01 M.

Quel volume Vi de solution de départ doit-on prélever ?

Formules

Le nombre de moles (ou masse) de soluté reste inchangé entre le volume Vi de solution prélevé et le volume Vi + Veau (= Vf) de la solution diluée.

On a donc la relation suivante :

n(pipette) = n(solution fille)

Avec C = V

n ⇒ n = C⋅V

n (mol) = Ci⋅⋅⋅⋅Vi = Cf⋅⋅⋅⋅Vf

où Vi est obtenu par : i

ff

iC

VCV

⋅=

Calcul Vf = 500 ml = 0.5 l

Calcul de Vi : i

ff

iC

VCV

⋅= =

5.0

5.001.0 ⋅ = 0.01 l = 10 ml

Mode opératoire

A) Prélever 10 (ml) de la solution à diluer (0,5 M) à l’aide d’une pipette jaugée de 10 ml.

B) Vider le contenu (10 ml) de la pipette jaugée dans un ballon jaugé de 500 (ml).

C) Compléter avec de l’eau distillée au trait de jauge du ballon tout en agitant la solution de manière à l’homogénéiser.

2.4 Les dosages volumétriques lors de neutralisation acide-base

2.4.1 Introduction

La volumétrie est une méthode de dosage qui permet de déterminer la concentration inconnue d’une solution par une seconde solution de concentration connue.

La fin du dosage est signalée par un indicateur spécifique à la réaction qui en général change de couleur lorsque toute la substance à doser a été consommée par le réactif.

Dans les explications qui vont suivre, nous utiliserons la réaction de neutralisation entre un acide et une base selon la réaction générale :

Echantillon de la solution mère: Volume = Vi

Concentration = Ci

Solution mère: Volume = quelconque

Concentration = Ci

Solution fille:

Volume = Vi+Veau=Vf Concentration = Cf

Page 21: la chimie quantitative - theorie - 2OS.pdf

2OS

La chimie quantitative 21

Acide + Base → Sel + Eau

soit, simplement,

H+ + OH- → H2O

Pour la neutralisation des ions H+ par les ions OH- (et réciproquement), il faut autant d’ions OH- qu’il y a d’ions H+.

Lors du dosage d’un acide par une base, l’indicateur de fin de réaction est une substance qui change de couleur lorsqu’on passe d’un milieu acide à un milieu basique.

2.4.2 Exemples d’indicateurs (voir laboratoire)

Indicateur teinte en milieu acide teinte en milieu basique

bleu de bromothymol jaune bleu

phénolphtaléine incolore rouge violacé

rouge de méthyle rouge jaune

2.4.3 Principe de la méthode

A) On prélève dans un bécher un volume connu d’une solution (acide ou basique) dont la concentration est à déterminer.

B) On ajoute à cette solution quelques gouttes d’indicateur.

C) On dose cette solution en ajoutant goutte à goutte, à l’aide d’une burette, une solution de base ou d’acide de concentration connue

D) Au virage de l’indicateur (lorsqu’il change de couleur), on relève sur la burette le volume de la solution qui a été ajoutée pour faire virer l’indicateur (neutraliser la solution).

2.4.4 Le dispositif expérimental

Page 22: la chimie quantitative - theorie - 2OS.pdf

2OS

La chimie quantitative 22

2.4.5 Trouver la concentration inconnue de l’acide (ou de la base) si le rapport stoechiométrique acide:base est de 1:1

Pour neutraliser un volume VA = 100 (ml) d’une solution d’acide chlorhydrique (HCl) de concentration inconnue CA, on a besoin d’un volume VB = 30 (ml) d’une solution d’hydroxyde de sodium (NaOH) de concentration connue CB = 0,05 M.

Quelle est la concentration molaire (molarité) de la solution d’acide chlorhydrique ?

L’équation de la réaction

HCl + NaOH → NaCl + H2O

Rapport molaire entre l’acide et la base

1 mol HCl + 1 mol NaOH → 1 mol NaCl + 1 mol H2O

Formules

En nous basant sur l’équation : n(base) = n(acide)

Avec C = V

n ⇒ n = C⋅V

⇒ n(base) = CB⋅VB et n(acide) = CA⋅VA

⇒ CB⋅VB = CA⋅VA ⇒ CA = A

BB

V

VC ⋅

Calculs

CB = 0.05 mol/l VB = 30 ml = 0.03 l VA = 100 ml = 0.1 l

CA = A

BB

V

VC ⋅ =

1.0

03.005.0 ⋅ = 1.5.10-2 mol/l

Réponse La concentration de l’acide chlorhydrique est de 1.5.10-2 mol/l.

Remarque Le dosage se réduit en fait à la mesure précise des deux volumes Va et Vb.

2.4.6 Généralisation

2.4.6.1 Cas théorique

L’équation générale du dosage peut s’écrire de la manière suivante :

a⋅A + b⋅B → c⋅C + d⋅D

Rapport molaire entre les réactifs

a mol⋅A + b mol⋅B → c mol⋅C + d mol⋅D

Formules

Proportion : Bdemoles

Ademoles

b

a= ou

b

Bdemoles

a

Ademoles=

Page 23: la chimie quantitative - theorie - 2OS.pdf

2OS

La chimie quantitative 23

Avec C = V

n ⇒ n = C⋅V

Moles de A = CA⋅⋅⋅⋅VA Moles de B = CB⋅⋅⋅⋅VB

⇒ BB

AA

VC

VC

b

a

⋅= ou

b

VC

a

VC BBAA ⋅=

⋅ ⇒ BBAA VCaVCb ⋅⋅=⋅⋅

On a la relation générale suivante :

BBAA VCaVCb ⋅⋅=⋅⋅

2.4.6.2 Exemple

Pour neutraliser 50 ml d’une solution d’acide sulfurique, on a utilisé 200 ml d’une solution 0,2 M d’hydroxyde de sodium. Calculez la concentration de la solution d’acide sulfurique.

Equation : H2SO4 + 2 NaOH → Na2SO4 + 2 H2O

Formule: BBAA VCaVCb ⋅⋅=⋅⋅ ⇒ A

BBA

Vb

VCaC

⋅⋅=

Données : CA = ? VA = 50 ml = 0.05 l CB = 0.2 mol/l

VB = 200 ml = 0.2 l a = 1 b = 2

Calcul : A

BBA

Vb

VCaC

⋅⋅= =

05.02

2.02.01

⋅⋅ = 0.4 mol/l