m341 12 lecture25 compressible flow intro

Upload: joao-henriques

Post on 04-Jun-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 m341 12 Lecture25 Compressible Flow Intro

    1/17

    Compressible flows

    - Introduction -Darko Matovic, 2012

    Queen's niversit!Dept" of Mec#anical and Materials $n%ineerin%

    MECH 341

    Fluid Mechanics II

  • 8/13/2019 m341 12 Lecture25 Compressible Flow Intro

    2/17

    Class objectives:

    Identify when are the flows compressible Classify flows according to Mach number

    Derive speed of sound from first principles

    Make distinction between adiabatic andisentropic flow

    Derive Mach relations for adiabatic flow

    Derive Isentropic pressure and densityrelations

  • 8/13/2019 m341 12 Lecture25 Compressible Flow Intro

    3/17

    Compressible flows around us:

    Punctured tire

    pray painting

    !ullets

    "#plosions

    IC engine intake$e#haust% knocking

    Compressed air jet & cleaning

  • 8/13/2019 m341 12 Lecture25 Compressible Flow Intro

    4/17

    'lows according to Mach number:

    Incompressible Ma ( )*+

    ubsonic )*+ ( Ma ( )*,

    -ransonic )*, ( Ma ( .*/

    upersonic .*/ ( Ma ( +*)

    0ipersonic +*) ( MaC

    om

    pres

    sible

    flow

    s

  • 8/13/2019 m341 12 Lecture25 Compressible Flow Intro

    5/17

    Compressible flows re1uire

    Continuity e1uation

    Momentum e1uation "nergy e1uation

    "1uation of state

  • 8/13/2019 m341 12 Lecture25 Compressible Flow Intro

    6/17

    2ew relations:

    Mach 2umber: Ma=Ua

    a speed of soundU velocity

    pecific&0eat

    3atio:k=

    cp

    cv

    cpsp* heat at const* pressure

    cv sp* heat at const* volume

    "1uation of state

    4perfect gas5:

    p=RT

    R=cpcv

    p pressure

    R gas constant

    T6 temperature density

    cv= R

    k. cp=k cv=

    k R

    k.a=k RT

  • 8/13/2019 m341 12 Lecture25 Compressible Flow Intro

    7/17

    Characteristic values for air:

    R=c pcv=/,78 /(kg 9)

    =.*/kg /m+

    ;T=/+*.;9;a=+t standard conditions:

    2ote: ?nits forRand cin the te#tbook are m/$4s/95

    which is e1uivalent to 8$4kg 95% but less intuitive*

  • 8/13/2019 m341 12 Lecture25 Compressible Flow Intro

    8/17

    peed of ound 4propagation speed

    for small pressure disturbances5&ave interior

    p

    T

    V=C

    pp

    T T

    V=C V

    Continuity across the wave:

    -his is a .D problem

    AC= AC V

    V=C

    VC

    Momentum conservation alongx:

    Fx=m VoutVi n pAp pA=ACCVC

    p=C V. Combining: C/= p

    .

  • 8/13/2019 m341 12 Lecture25 Compressible Flow Intro

    9/17

    Combining p= C V and p=C V

    C/

    =p

    .

    -he result indicates that the wave propagation is faster for strong

    disturbances 4large 5% i.e.e#plosion waves* 'or sound waves

    )* then a/

    =p

    Combining

    In order to determine the derivative 4slope5% we need to know

    what kind of process is this* @iven that there is no net heat

    e#change% it ought to be an adiabaticprocess* ince the density

    change is also infinitesimal it is also an isentropicflow* -hus:

    a=p s./ /

    = kp T.//

    'or perfect gas: a=k p=k R T

  • 8/13/2019 m341 12 Lecture25 Compressible Flow Intro

    10/17

  • 8/13/2019 m341 12 Lecture25 Compressible Flow Intro

    11/17

    Internal energy change: u/ u.=cv T/T.

    "nthalpy change: h/h.=cp T/T.

    !ut if we take into account

    that specific heats depend

    on temperature% then

    h/h.=.

    /

    cp dTand

    u/ u.=.

    /

    cv dT

  • 8/13/2019 m341 12 Lecture25 Compressible Flow Intro

    12/17

    Isentropic Process

    "ntropy change is obtained from T ds=dhdp /

    Introducing dh=cp dT and p=RT

    .

    /

    ds=

    .

    /

    cpdT

    T R

    .

    /dp

    p

    'or constant specific heat% these can be integrated to yield

    s/s.=cp lnT/

    T.

    R lnp/

    p.

    =cv lnT/

    T.

    R ln/

    .'or isentropic 4constant entropy5 process% s.=s/ * -hen

    p/

    p.=

    T/

    T.

    k

    k.=

    /

    .

    k

  • 8/13/2019 m341 12 Lecture25 Compressible Flow Intro

    13/17

    >diabatic and Isentropic teady 'low

    >pplying energy e1uation for .D flow:

    h.V.

    /

    / g .=h/

    V//

    / g /!"visc

    Ae can neglect viscous work% heat e#change and elevation4potential5 energy* -hen the .D energy e1uation reduces to:

    hV

    /

    /

    =h)=const where h) is the stagnation entha#p$

    where T)is the stagnation temperature.cp T

    V/

    / =cp T)

    hV

    /

    /

    =h)=const where h) is the stagnation entha#p$.

  • 8/13/2019 m341 12 Lecture25 Compressible Flow Intro

    14/17

    Mach number relations for adiabaticflow 4isentropic or notB5

    dividing cp T V/

    /=cp T) by cp T

    . V

    /

    / cp T=

    T)

    T % and using cp T=

    k R

    k.T=

    a/

    k.we arrive at

    T)

    T =.

    k.

    /

    V/

    a/

    or

    T)

    T =.

    k.

    /Ma

    / and

    a)

    a=T)T

    ./ /

    =[. k./ Ma/].//

    since aT.//

  • 8/13/2019 m341 12 Lecture25 Compressible Flow Intro

    15/17

    Mach number relations for isentropicflow 4must be adiabatic% tooB5

    T)

    T =.

    k.

    /Ma

    / 4from previous slide5

    ?sing isentropic relations p/

    p.=/.

    k

    =T/

    T. kk.

    and

    p)p=T)

    T k

    k.=[. k./ Ma/]

    k

    k.

    )=T)T.

    k.=[ . k./ Ma/]

    .

    k.

    Must also be isentropic

    (diabatic

  • 8/13/2019 m341 12 Lecture25 Compressible Flow Intro

    16/17

    Critical values 4at Ma.*)5alues at critical point% where Mach number is e1ual to one

    4sonic conditions5 are of special importance for compressibleflow calculations* 'or that reason% we mark these values by anasterisk:

    pE

    p)=

    /

    k.

    k

    k. E

    )=

    /

    k.

    .

    k.

    TE

    T)= /k.

    aE

    a)= /k.

    .//

    'or air 4k .*

  • 8/13/2019 m341 12 Lecture25 Compressible Flow Intro

    17/17

    Isentropic flow tables Do not confuse A (nozzlearea) with a(sound speed)!