microfabrication nathaniel j. c. libatique, ph.d. [email protected]

31
Microfabrication Nathaniel J. C. Libatique, Ph.D. [email protected]

Upload: beverly-bond

Post on 11-Jan-2016

220 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Microfabrication Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com

Microfabrication

Nathaniel J. C. Libatique, [email protected]

Page 2: Microfabrication Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com

Sze, Semiconductor Devices, John Wiley and Sons

Process StepsProcess Steps

• Start with polished wafers of chosen and crystal orientation• Films: epitaxial, thermal oxides, polysilicon, dielectrics, metals• Doping: via diffusion or ion implantation• Lithography: shadow masked or projection• Etching: Wet and Dry• Sequential Mask Transfer• Stepper Iteration

Page 3: Microfabrication Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com

Sze, Semiconductor Devices, John Wiley and Sons

Wafer Wafer Die Die Device Device

Page 4: Microfabrication Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com

IngredientsIngredients

• Clean Rooms• Exposure Techniques• Masks• Photoresist• Pattern Transfer• Etching

Page 5: Microfabrication Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com

Clean Room TechnologyClean Room Technology

Sze, Semiconductor Devices, John Wiley and Sons

1.Pinholes2.Constriction

of I3.Short ckt

• Epitaxy: Dislocations

• Gate Oxide: Low VbRule of Thumb: particles greater than 1/10 of Lmin is disruptive. Lmin = 5 m requires < 0.5 micron dust particles

Page 6: Microfabrication Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com

Clean Room TechnologyClean Room Technology• Dust count should be four orders of magnitude lower than ordinary room air.

• Class 100: 100 particles (half micron or greater) per cubic foot = 3500 particles per cubic meter

• If we expose a 125 mm wafer for 1 minute to a laminar flow air stream at 30 m/min, how many dust particles will land on the wafer in a class 10 clean room?

Sze, Semiconductor Devices, John Wiley and Sons

Page 7: Microfabrication Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com

Particle EmissionParticle Emission

Sze, Semiconductor Devices, John Wiley and Sons

Page 8: Microfabrication Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com

Clean Room ClassesClean Room Classes

Page 9: Microfabrication Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com

Keep critical areas very smallKeep critical areas very small Separate working areasSeparate working areas Slight overpressure in white areasSlight overpressure in white areas Laminar flow boxes in poor air Laminar flow boxes in poor air

quality areasquality areas

DesignDesign

Page 10: Microfabrication Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com

Comb StructureComb Structure

White area for wafer and chip processing

Page 11: Microfabrication Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com

Ball Room StructureBall Room Structure

“HEPA filter” = high efficiency particulate air filter, Ceiling to floor laminar flows, Perforations in floor

Ceiling

Floor

Page 12: Microfabrication Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com

ExposureExposure

Sze, Semiconductor Devices, John Wiley and Sons

Page 13: Microfabrication Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com

GoalsGoals

ResolutionResolution RegistrationRegistration ThroughputThroughput

Yield and cost, complexity-function, power dissipation, speed

Page 14: Microfabrication Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com

Shadow PrintingShadow Printing

llmm ~ ( ~ (g)g)1/21/2

the gap the gap g g includes the resist includes the resist layerlayer

= 0.4 um, = 0.4 um, gg = 50 um, 4 um = 50 um, 4 um = 0.25 um, = 0.25 um, gg = 15 um, 2 um = 15 um, 2 um Dust dimensions > g can Dust dimensions > g can

damage the mask!damage the mask!

Page 15: Microfabrication Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com

Projection PrintingProjection Printing

Avoids mask damageAvoids mask damage To increase resolution To increase resolution image a image a

small portion at a timesmall portion at a time Large masks followed by 10:1 Large masks followed by 10:1

demag ordemag or 1:1 masks1:1 masks Tradeoff: defect free masks vs. Tradeoff: defect free masks vs.

simpler opticssimpler optics

Page 16: Microfabrication Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com

Annular Field ScanAnnular Field Scan

Sze, Semiconductor Devices, John Wiley and Sons

Page 17: Microfabrication Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com

Small-Field Raster ScanSmall-Field Raster Scan

Sze, Semiconductor Devices, John Wiley and Sons

Page 18: Microfabrication Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com

Reduction Step and Reduction Step and RepeatRepeat

Sze, Semiconductor Devices, John Wiley and Sons

Page 19: Microfabrication Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com

1:1 Step and Repeat1:1 Step and Repeat

Sze, Semiconductor Devices, John Wiley and Sons

Page 20: Microfabrication Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com

Sze, Semiconductor Devices, John Wiley and Sons

Resolution and DOFResolution and DOF

Page 21: Microfabrication Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com

http://en.wikipedia.org/wiki/F-number

f/# = f/Df/# = f/D

f/32f/5

D

f

Page 22: Microfabrication Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com

D

f

Page 23: Microfabrication Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com

CAD used to generate mask artworkSecondary chip sites for process evaluationas well as for alignment-registration

Mask defect density is a concern in mask fabrication

Page 24: Microfabrication Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com

Yield vs Defect DensityYield vs Defect Density

Semicon’s Dirty Secret

Y ~ e-DA for one mask level

For multiple mask levels:Y ~ e-NDA

Page 25: Microfabrication Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com

PhotolithographyPhotolithography

Page 26: Microfabrication Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com

Response CurveResponse Curve

Vertical axis: % Remaining after Vertical axis: % Remaining after exposure and developmentexposure and development

Horizontal Axis: ExposureHorizontal Axis: Exposure

Solubility increases with exposure for a positive resist

ET

Completely soluble. Measure of sensitivity for +ve resist

100%

E1

Page 27: Microfabrication Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com

Negative resist – cross linked polymers insoluble

Positive resist – exposed areas become soluble

ET = threshold energy, E1 drawn from tangent at ET (+ve)

Finite Solubility

Page 28: Microfabrication Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com

Post-EtchPost-Etch

Page 29: Microfabrication Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com

gamma = solubility with incremental energy increase, contrast ratio, sharpness

Page 30: Microfabrication Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com

Negative resists: lower exposure times due Negative resists: lower exposure times due to higher sensitivity to higher sensitivity high throughput high throughput

Positive resists: does not swell significantly Positive resists: does not swell significantly unlike negative resists unlike negative resists high resolution high resolution

CRM Grovenor, Microelectronic Materials

Page 31: Microfabrication Nathaniel J. C. Libatique, Ph.D. nlibatique@gmail.com

SitesSites

http://jas.eng.buffalo.edu/education/fhttp://jas.eng.buffalo.edu/education/fab/NMOS/nmos.htmlab/NMOS/nmos.html

http://www.ecse.rpi.edu/~schubert/http://www.ecse.rpi.edu/~schubert/Course-ECSE-6290Course-ECSE-6290

http://www.nikon.com/about/technolhttp://www.nikon.com/about/technology/core/optical_u/evanescent_e/indogy/core/optical_u/evanescent_e/index.htmex.htm