mura-030.pdf

6
An Adiabatic Theorein for Motions Which Exhibit Invariant Phase Curves Keith R. Symon, Wayne University, August 4, 1954 We consider a particle with one degree of freedom moving according to a Hamiltonian function H(p,q,,A,t), depending on a parameter , and which may also depend on the time. We assume that for each fixed value of h of interest, the motion is stable and exhibits invariant phase curves, that is, curves which are either continuously or periodically transformed into themselves by the transformation generated by the tIamiltonian - equations of motion. This implies that there i s a constant of - the motion c&(p,q,)\,t), which i s either independent of t or periodic in t, the invcriant curves being given by the equation d(p,q, ) , ,t) = d- = a constant. (1) When the Hamiltonian is independent of t, the invariant curves arc! simply the closed orbits on the phase plane. When t h e Hainiltonian is periodic in t, there is evidence, at least in many cases, for the existence of invariants of the form (1) with the same period in t. We will further assume that there is only one set of invariant curves, that is, that all constants of the inotion are functions of d. This seems to be true except in the case of the linear alternating gradient - - equations whe:~ tile betatron period is a rational multiple of the sector period; in the latter case it is probable that the adiabatic theorem can fail,

Upload: dragoslav-bjelica

Post on 07-Nov-2015

213 views

Category:

Documents


1 download

TRANSCRIPT

  • An Adiaba t ic Theorein f o r Motions Which Exh ib i t I n v a r i a n t Phase Curves

    Kei th R. Symon, Wayne Un ive r s i t y , August 4, 1954

    We cons ide r a p a r t i c l e w i t h one degree of freedom moving

    according t o a Hamiltonian f u n c t i o n H(p ,q , ,A, t ) , depending on a parameter , and which may a l s o depend on t h e time. We

    assume t h a t f o r each f i x e d value of h of i n t e r e s t , t h e motion i s s t a b l e and e x h i b i t s i n v a r i a n t phase curves , t h a t i s , curves

    which a r e e i t h e r con t inuous ly o r p e r i o d i c a l l y transformed i n t o

    themselves by t h e t ransformat ion gene ra t ed by t h e tIamiltonian

    - equa t ions of motion. Th i s imp l i e s t h a t t h e r e i s a c o n s t a n t of -

    t he motion c & ( p , q , ) \ , t ) , which i s e i t h e r independent of t o r p e r i o d i c i n t, t h e i n v c r i a n t curves being g iven by t h e equa t ion

    d ( p , q , ), , t ) = d- = a cons t an t . (1)

    When t h e Hamiltonian i s independent of t, the i n v a r i a n t curves

    arc! s imply t h e c lo sed o r b i t s on t h e phase plane. When t h e

    Hainiltonian i s p e r i o d i c i n t , t h e r e i s evidence, a t l e a s t i n

    many cases , f o r t h e e x i s t e n c e of i n v a r i a n t s of t h e form (1) w i t h t h e same p e r i o d i n t. We w i l l f u r t h e r assume t h a t t h e r e

    i s on ly one s e t of i n v a r i a n t curves , t h a t i s , t h a t a l l

    c o n s t a n t s of t h e inotion a r e f u n c t i o n s o f d . This seems t o be t r u e except i n t h e case o f t h e l i n e a r a l t e r n a t i n g g r a d i e n t

    -

    - equa t ions whe:~ tile b e t a t r o n per iod i s a r a t i o n a l m u l t i p l e of

    t h e s e c t o r per iod; i n t h e l a t t e r ca se i t i s probable t h a t t h e

    a d i a b a t i c theorem can f a i l ,

  • The theorem t o be :>roved i s t h a t under t h e above

    t issunptions, i f t h c parameter ,,A! i s changed s u f f i c i e n t l y slowly ( i n comparison wi th t h e per io6 of o s c i l l a t i o n o r t h e b e t a t r o n p e r i o d ) , a s e t of p a r t i c l e s which l i e i n i t i a l l y on a n i n v a r i a n t curve w i l l con t inue t o l i e on so-ie i n v a r i a n t

    curve. L i o u v i l l e f s theorem s t a t e s t h a t a s e t of p a r t i c l e s

    which l i e on any c l o s e d curve ( n o t n e c e s s a r i l y i n v a r i a n t ) w i l l a f t e r any change i n parameters l i e on n c lo sed curve haviilg

    t h e saqe a rea . An immediate c o r o l l a r y of t h e s e two theorems

    i s t h a t f o r s u l ' f i c i e n t l y slow c l zan~es i n t h e p a r a n e t s r ,,A, , t h e a r e a of t:.le i n v a r i a n t curve on wklicil a p a r t i c l e i s l o c a t e d

    w i l l re-,nain cons t an t . h'heLn i;he ~ i ~ n i l t o n i a n i s independent of -

    P t , t h i s reduces t o t h e u s u a l state7:ient or' t h e a d i a b a t i c

    i nva r i ance of t h e a r e a 01' trle o r b i t i n the phase plane.

    I n o r d e r t o nrove t l ~ e theorein, we show t h a t t h e change

    i n i when ,)\ i s v a r i e d s lowly, i s a t'unc.tion ozlly oi' t h e i n i t i a l va lue of a , and heilca t h a t p a r t i c l e s hav ing i n i t i a l l y

    t h e sane va lue of iJ w i l l con t inue t o have t h o saj'lc va lues a t . The t ime r a t e oi' change i n i s

    . .

    d, - -- A* + --- C ) & ; + d_nL. +-d-& ,!, < d l ' d ? 6 d * A

    The sum of tilo f i r s t tiweit tor . , !~ i s zero , z ince ol i s a c o n s t a h t

    of t h e motion f o r constanL A . Suppose ilow t h a t a t t = tl, A = anci c i u r i l ~ : tile t i n e t2 - tl changes t o 's 1'

    C

    - h2 = + A )\ , Me w i l l talre & h s ' . ~ f f i c i e n t l y srnall

  • so t h a t t h e c h a r a c t e r of t h e motion i s n o t app rec i ab ly

    d i f f e r e n t f o r va lues of A between h and h 2, and we w i l l s e t

    where j( f o r cbnveniance i s t o be h e l d c o n s t a n t d u r i n g t h i s t ime t 2 - ti . The change i n &, i s

    Since we a r e t a k i n g A t o be c o n s t a n t , we can w r i t e t h i s i n t h e form

    The r i g h t s i d e i s t h e time average of 3 ~ ' / 3 ~ dur ing t h e time t 2 - tl. If we assu-ne t h a t we can c a l c u l a t e t h i s average f o r

    a f i x e d A between A1 and A 2 ( A A s u f f i c i e n t l y s m a l l ) , .

    t hen i f t he t i n e t 2 - tl i s made su f ; i c i en t ly l ong ( s m a l l ) , t h e e rgodic theorem s t a t e s t h a t t he r i g h t s i d e of ( 5 ) may be ..lade t o approach a cons t an t o f t i l e no t ion , and hence i s a

    f u n c t i o n of D( :

  • -4- For a d i a b a t i c v a r i a t i o n s i n ), , t h e chainbe i n d i s t h e r e f o r e governed by t h e d i f f e r e n t i a l equa t ion

    whose s o l u t i o n w i l l depend o n l y on t h e i n i t i a l v a l u e of CX .

    The e s s e n t i a l p o i n t i n t h e a p p l i c a t i o n of t h e c rgod ic

    theorem i s t h a t i f A changes s u f f i c i e n t l y slowly, t h e p a r t i c l e w i l l have t i n e t o pas s aany t imes t h r o u ~ h a l l p a r t s of t h e phase

    space corresponding t o i t s va lue of' , and h e m e t h e time

    average of dd \ w i l l n o t depend on where the p a r t i c l e i s a t any p a r t i c u l a r time. I t i s t h e r e f o r e n e c e s s a r y t h a t t h e

    A t ime r e q u i r e d f o r a s i g n i f i c a n t change i n :olust be xany -

    o s c i l l a t i o n per iods . How many w i l l depend upon t h e d e t a i l s of

    t h e motion and t h e n a t u r e of t h e f u n c t i o n / , If a p o i n t on t h e i n v a r i a n t curve i s alrnost f i x e d , o r allilost

    p e r i o d i c w i th low p e r i o d i c i t y , i t may be neces sa ry t o go through

    very many o s c i l l a t i o n s i n o r d e r t o sample t h e e n t i r e i n v a r i a n t

    curve i n t h e t ime average of >oc/JA . I t i s c l e a r t h a t s i n c e t h e o s c i l l a t i o n p e r i o d becomes i n f i n i t e on a s e p a r a t r i x

    s e p a r a t i n g two d i f f e r e n t t ypes of motion i n t h e phase plane,

    the t r a n s i t i o n from one type of :notion t o ano the r can lever be

    a d i a b a t i c .

    A s a s imple a p p l i c a t i o n of t h e above theorem ( sugges t ed by F. T. Cole) , we coilslder a sil-nple harmonic o s c i l l a t i o n

  • C r s i th EL ;~;lr'aonic drivinr,. term:

    2 + lJ :~= ,qcm w t . The Hamiltonian i s

    The s o l u t i o n , i f t he parameter A is cons t an t , i s

    where C , e a r e a r b i t r a r y cons tan ts . The f i r s t t e r m have t h e

    same p o r i ~ d i c i t g a s the IIarniltonian. The t r a n s i e n t terms

    r e p r e s e n t a n o t i o n around an e l l i p s e w i t h f requency ~ 3 , ; t h e

    c e n t e r of t he e l l i p se , r e p r e s e n t e d by t h e s t eady s t a t e terins,

    moves r i i th f requency LJ , and hence t h e e l l i p s e r e t u r n s

    p e r i o d i c a l l y t o t h e same p o s i t i o n . The t r a n s i e n t e l l i p s e :

  • -6- i s an i n v a r i a n t curve. According t o t h e aciiaba-tic theorem

    proved above, t h e a r e a o l t h i s curve r e a n i n s cons t an t f o r slow

    c h a n ~ e s i n the paraineter A , t h a t i.s, t h e t r a n s i e n t ampli tude

    remains constant . We can v e r i f y thal; t i l e conc lus ion i s c o r r e c t

    i n t h i s ca se by n o t i n g t h a t i f we s e t

    A = a t , (13)

    then Eq. ( 8 ) has t h e exac t s o l u t i o n

    wher-e C, 8 a r e a r b i t r a r y comtants, If - a i s van i sh ing ly smal l ,

    tho l.ast t e r n s a r e n e g l i s i b l e , and t h e motion c o n s i s t s of t h e

    s teady s t a t e p l u s a t r a n s i e n t of cons t an t ampli tude, i n agreeaient

    w i t h t h e a d i a b a t i c theorem.