neutrino ocillations and astroparticle physics (3) introduction to cosmology and high energy...

51
Neutrino Ocillations and Astroparticle Physics (3) Introduction to Cosmology and High Energy Astrono John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 8 May 2002 - expansion of the universe - some astronomy - some cosmology - big bang nucleosynthesis - cosmic microwave background radiation - SuperNova Type 1a - Energy composition of universe

Upload: albert-mckenzie

Post on 13-Jan-2016

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

Neutrino Ocillations and Astroparticle Physics (3)

Introduction to Cosmology and High Energy Astronomy

John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS)

Pisa, 8 May 2002

- expansion of the universe- some astronomy - some cosmology- big bang nucleosynthesis - cosmic microwave background radiation- SuperNova Type 1a- Energy composition of universe

Page 2: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

Expansion of Universe

Edwin Hubble

Mt. Wilson100 InchTelescope

Velocity of galaxyproportional to distance:

v= H r

H ~ 70 km/sec / Mpc

Page 3: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

Astronomy Scales

4.5 pc 450 kpc 150 Mpc

Nearest Stars Nearest Galaxies Nearest Galaxy Clusters

1 pc = 3 light years = 3 1016 km

Page 4: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

GalaxiesSpiral (Milky Way)

Solar Mass: M = 2 1033g

Typical stars mass 1-10 M

Typical Galaxies 106 - 1012 M

~ 10% mass

~ 90% mass

1kpc1kpc

100kpc

Page 5: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

Milky Way Galaxy

Magnetic field few G

Page 6: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

Cosmic Accelerators: Hillas Plot

E Z B L Z: Charge of particleB: Magnetic fieldL: Size of object: Lorentz factor of shock wave

L

B

GRB (artist)

Crab Pulsar

Vela SNR

3C47

M87, AGN

Centurus A

M87

Page 7: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

Radio Images

Visible light

Active Galactic Nuclei

Page 8: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

QUASAR MICROQUASAR QUASAR MICROQUASAR

Central black hole

108- 109 102- 105

distant galaxies local galaxy

QUASARS & MICROQUASARS

Page 9: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

QUASARS & MICROQUASARS

Page 10: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

Gamma-Ray Burst StoryGamma-Ray Burst StoryGamma Ray Burst were first detected by the Vela satellites that were developed in the sixties to monitor nuclear test ban treaties.

1st GRB

Page 11: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

Gamma Ray Bursts : present knowledge ~1-2 / day, duration 10ms - 100s, isotropic distribution in sky, at extra galactic distances.

secNow evidenceof GRB associationwith supernova

Cou

nt r

ate

in u

nit o

f 100

0 co

unts

s-1

ANTARES will dump all data in 100 secs of gamma ray burst warning signal

Page 12: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

Multi-Messengers to see Whole Universe

Distant universeinvisible in high energy photons

need neutrinos

Quasarformation period

Page 13: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

Evolution of the Universe

: mass density in universeConsider a particle on surface of sphere which expands with universe: r : radius of sphereMass inside sphere is: (4/3) r3 Potential energy of particle: -(4/3)r3 G/rKinetic energy: r2/2so total energy: r2/2 -(4/3)r3 G/r = E

..

Sphere evolves with time, write r(t) = a(t) xremember H = v/r = a/a

.

Then get Freidmann equation: H2 = (8/3) G - K/a2

where K = -2EEvolution of universe depends on value of K if K < 0, energy E > 0 expansion continues for ever if K > 0, energy E < 0 eventually universe contracts K = 0 critical value

Page 14: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

Matter Density and Curvature of the Universe

With K = 0 Freidmann equation: H2 = (8/3) G define critical density: c = (3/8)H2/G

define density fraction: = / c

Same K comes into the spatial line element in General Relativity:

Freidmann eqn: H2 = (8/3) G - K/a2

If K = 0, geometry is Euclidean - flat, if K = 0, geometry curved

equivalently if = 0 universe is flat > 0 curvature positive, universe is closed < 0 curvature negative, universe is open

Page 15: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

Cosmological Constant

Freidmann equation becomes: H2 = (8/3) G - K/a2 + /3

where is cosmological constant

Einstein did not know about the expansion of the universe andadd a ad-hoc term to make universe static

Theory no longer needs it, but experiment seems to indicate its presence

Conventional to treat it as another contribution to the density fraction (t) = matter(t) +

= matter +

Page 16: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

Future of Universe

Page 17: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

Origin of Elements

formed in:

Big Bang Nucleo-synthesis

Hot Stars

Supernova Explosions

Cosmic Ray Interactions

Page 18: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

Big Bang

time after big bang

tem

pera

ture

of

univ

erse

3000 K

1010 K

3 105 y 100 s

Neutral hydrogen formsuniverse transparent to lightfossil photon radiation frozen

T (K) ~ 1010/t½ (s)Equilibrium n/p endsNucleosynthesis begins

nuclei atoms

Page 19: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

Particle Physics after Big Bang

time since Big Bang

Page 20: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

First Minute after Big Bang

Production rates = Annihilation rates equilibrium of particles and no nuclei formed

N (neutron)N (proton) = e m/kT

When temperature falls below 1010 K (1 MeV) reactions cease

(m = 1.3 MeV)In equilibrium:

Page 21: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

Nucleosynthesis starts

Deuterium necessary to start nucleosynthesis

Helium formed from deuterium

( Difficult to continue because no stable mass 5, 8 nuclei)

Page 22: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

Nucleosynthesis development

tritium

deuterium

helium-4

helium-3

(free neutrons decay)

Be, Li low levels

Page 23: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

Element Production in StarsPP cycle : cold stars CNO cycle : hot stars

Page 24: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

Heavy Element Production in Supernova

neutrons

protons

CNO cycle : hot stars rp process : supernova explosions

Nuclear cross-sections not well known: need accelerator measurements

stable nuclei

rp process

Page 25: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

Nucleosynthesis rate gives baryon density

Measured abundance of He, D Fraction of baryons < 5%

Must have non-baryonic particle dark matter

= Nb/N , baryon number fraction

Page 26: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

End of Opaque Universe

After recombination universe becomes transparent.See photons as Cosmic Microwave Background Radiation redshifted by 1000 to 2.7K

Page 27: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

Penzas and Wilson Discovery of Cosmic Microwave Background

Page 28: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

Cosmic Microwave Background Radiation

Page 29: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

Cosmic Microwave Background Radiation

(degrees)

(d

egre

es)

30 45 60 75 90 105 120 135

-30

-35

-40

-45

-50

-55

-60

temperature variation

Analyse angular distribution to see typical variation scale

Page 30: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

Measure Scale of CMBR Fluctuations

Page 31: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

CMBR Data Analysis

location of first peak: total~ 1 amplitude of other peaks sensitive to baryon

Page 32: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

Supernova Type 1aI mplosiondu noyaud ’étoile

Explosion d ’étoile

Expansion du matière onde de choc accélération

Supernova Restes du Supernova

Implosion of core ofred giant

Expansion of mattershock wave 0.5 c

Explosion of star

Supernova

Supernova Remnant

SNIa occurs at Chandrasekar mass, 1.4 Msun ‘Standard Candle’ measure brightness distance: B = L / 4d2

measure host galaxy redshift get recession velocity

test Hubble’s Law: v = H d, at large distances

Page 33: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

SuperNovae observed in our galaxy

Date Remnant Observed

352 BC Chinese 185 AD SNR 185 Chinese 369 ? Chinese 386 Chinese 393 SNR 393 Chinese 437 ? 827 ? 902 ? 1006 SN1006 Arabic, ... 1054 Crab Chinese,.. 1181 3C58 Chinese,.. 1203 ? 1230 ? 1572 Tycho Tycho Brahe 1604 Kepler Johannes Kepler 1667 Cas A not seen ?

Page 34: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

SuperNovae Remnants

Vela Cas ATycho

Crab

Cygnus Loop

Soleil

Tycho

Crab

Cas A

Vela

Kepler

Cygnus

SN1006

SN1006SN1006SN1054 (Crab)SN1680 (CasA)

Page 35: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

Supernova in Large Magellenic Cloud

Page 36: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

Distant Supernova

Page 37: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

Life of big star ( > 1,4 M)

End in Supernovae of type Ib, Ic et II

Page 38: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de
Page 39: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

Life of big star ( < 1,4 M)

Page 40: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

La nébuleuse de la Lyre

Page 41: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

Type Ia supernovae SNe Ia sont which accrete matter from neighbour star in binary system When the mass achieves the Chandrasekhar mass (~1.4 M) star collapses to neutron star in supernova explosion.

Always same mass so always same luminosity Standard Candle for measuring universe expansion

Flow of matter

Red Giant

White Dwarf

Page 42: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

Reference Image

Subtraction

Page 43: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

Expansion with Supernova Ia

Acceleration ofuniverse expansion

effe

ctiv

e m

agni

tude

b

righ

tnes

s

dis

tanc

e

non-linear v = H(t) d

redshift recession velocity

Page 44: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de
Page 45: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

In 1998, two teams: High-Z Supernovae and Supernovae Cosmology Project simultaneously annouce non-zero cosmological constant:

= 0,72 ± 0,23

M = 0,28 ± 0,09

Page 46: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

So what does it mean?

( due to E. Copeland, a theorist)

Page 47: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

Supernova at z1.7

Page 48: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

• 2500 SNe Ia per year with z < 1.7• Study Equation of state w=pw/w

Future Project: SNAP

-

-

Page 49: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

Understanding Nature of Dark Energy

Page 50: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

Evidence for Matter DensityCombined Data

Cosmic Microwave Background Radiation, Supernova 1a, Galaxy clusters and BBN

tot = total critical

critical density for flat universecritical= 3H2/8GN

H = h . 100 km/s/Mpc

M = matter critical

Page 51: Neutrino Ocillations and Astroparticle Physics (3)  Introduction to Cosmology and High Energy Astronomy John Carr Centre de Physique des Particules de

Matter/Energy in the Universe

baryons neutrinos cold dark matter

b +CDM

total

matter dark energy

Baryonic matter : b stars, gas, brown dwarfs, white

dwarfs

Matter:

Cold Dark Matter :CDM 0.3

WIMPS/neutralinos, axions

Neutrinos: if eV as from oscillations