old rocks and new mountains: natural history of the adirondacks glenn a. richard

66
Old Rocks and New Mountains: Natural History of the Adirondacks Glenn A. Richard

Upload: margarita-dancer

Post on 16-Dec-2015

216 views

Category:

Documents


0 download

TRANSCRIPT

Old Rocksand

New Mountains:

Natural Historyof

the AdirondacksGlenn A. Richard

Relief Map of Adirondacks

The Adirondacks are a dome of old rock (1.1 billion years), surrounded by much younger rock (less than 600 million years)

Map of Streams and Lakes

Surface water elevations are primarily controlled by underlying bedrock elevations, rather than the type of bedrock.

Radial drainage pattern:

Streams flow primarily outward from the center toward the edge.

However, drainage in the Adirondacks is also controlled by faults.

Roads

Roadless areas are undeveloped. ~43% of 6 million acre Adirondack Park (created in 1892) is owned by the state and belongs to the Forest Preserve (created in 1885).

Mount Marcy, highest point in New York (5344’), from Haystack. Predominant rock type is metanorthosite (Mineralogy: mostly blue labradorite feldpar (high in Ca, some Na, low in K), with some pyroxene).

Shore of Lake Champlain (elevation 95 feet) from eastern Adirondacks. Lowest elevation in Adirondacks.

Haystack from Marcy – July 2, 2001. Rugged topography caused by faulting, uplifting, erosion by water and glacial ice.

Gothics – September 2, 2001- Note steep rockslides

Picea rubens and Abies balsamea just below tree line on Haystack, third highest peak in the state at 4960’.

Cross section of Earth

Layers of the Earth:

•Inner Core

•Outer Core

•Mantle

•Crust

Lithosphere divided into tectonic plates. Plates are in motion – several centimeters per year – PLATE TECTONICS

Orogeny: Collision of plates can build mountains (Example: Himalayas now rising due to current collision of Indian and Asian plates).

Crust and very upper mantle are hard rock, called lithosphere.

Diagram by Keelin Murphy

Plate Boundaries

Divergent: East Pacific Rise

Convergent: West Coast of South America -Andes forming here

Transform: San Andreas Fault

Diagram by Keelin Murphy

Fossil stromatolite (blue-green alga, 1.3 bya) near Balmat in western Adirondacks. From Pre-Grenville Ocean prior to Grenville Orogeny .

1.3 Billion Years Ago: Pre-Grenville Ocean

Metanorthosite (intruded about 1.15 bya) with labradorite crystal on Noonmark. Smaller amounts of pyroxene are present.

Grenville Orogeny metamorphosed the rock about 1.1 bya while it formed the Grenville Supercontinent and the Grenville Mountains.

1.1 Billion Years Ago: Grenville Orogeny

Boudinage in migmatite, northwestern Adirondacks formed during Grenville Orogeny 1.1 bya

Lake Placid from Whiteface. Shape is controlled by a group of faults that formed about 650 million years ago, when Grenville Supercontinent split up.

650 Million Years Ago: Grenville Supercontinent Breaks Up

Colden, Avalanche Pass, Algonquin, Indian Pass, Wallface. Passes are valleys formed along faults.

Lake Placid from Whiteface. Shape is controlled by some of the faults that formed about 650 million years ago.

Faulting helps to create valleys and basins for

streams and lakes.

Diabase dike (650 mya) in western Adirondacks intruded during breakup of Grenville supercontinent.

Ripple marks on Potsdam Sandstone (500 mya), Ausable Chasm display. Formed in warm shallow sea. Potsdam sandstone probably covered Adirondacks and was eroded from central portions after later uplift.

500 Million Years Ago: A Warm Shallow Sea

Great Range from Noonmark – Adirondacks rising since 60 to 15 million years ago for uncertain reasons. Some have attributed uplift to a hot spot, but there is not much evidence for that.

Beginning 60 to 15 Million Years Ago: Adirondack Mountains Form

Glacial erratic near Debar Mountain in northern Adirondacks

Beginning 1.6 Million Years Ago: Continental and Alpine Glaciation

Potsdam Sandstone left by ice sheet on Poke-O-Moonshine

Au Sable Chasm with Potsdam Sandstone. Au Sable River has cut into the sandstone as uplift occurs.

Heart Lake from Mount Jo. Some consider it to be a glacial kettle.

Snow on Saint Regis Mountain with fall color at lower elevations, shows climate variation with elevation.

Mountain-ash on Saint Regis Mountain, October 8, 2000

Red oak at Lake Champlain shore. Soil in Adirondacks is mostly acid.

Vegetation reflects geology

Common juniper at Lake Champlain shoreline grows well in thin soil.

Maidenhair spleenwort - Asplenium trichomanes fern near Lake Champlain shoreline favors habitats where calcite is present.** Calcite is uncommon in Adirondacks **

Walking fern near Lake Champlain shoreline favors habitats where calcite is present.

Herb Robert near Lake Champlain shoreline favors habitats where calcite is present.

Braun’s holly fern near Cascade Lakes favors habitats where calcite is present.

Cystopteris bulbifera at Cascade Lakes favors habitats where calcite is present.

Pickerelweed in marsh at Lake Champlain shoreline

Cotton grass on floating bog mat at Sunday Pond. Peat is acidic and water is low in oxygen and dissolved nutrients

Insectivorous pitcher plant on Sunday Pond bog mat. Bog water is low in nitrates.

Pitcher plant flower on Sunday Pond bog mat

Bog laurel on Sunday Pond bog mat prefers wet acid conditions.

Insectivorous round-leaved sundew on Sunday Pond bog mat

Labrador tea on Sunday Pond bog mat favors wet acid conditions.

Black spruce on Sunday Pond bog mat

Larch on Sunday Pond bog mat

Bladderwort in bog at Paul Smith’s is insectivorous.

Snow on bog mat at Paul Smith’s

Webb-Royce Swamp (TNC property near Westport)

Broad-leaved cattail at Webb-Royce Swamp

Rubus odoratus purple flowering raspberry) on Poke-O-Moonshine

Adiantum pedatum (maidenhair fern) on Poke-O-Moonshine

Cornus canadensis (bunchberry) on Nun-Da-Gao Ridge On July 2, 2000 is in same genus as dogwoods.

Cornus canadensis on Crane Mountain On August 17, 2000

Polypodium virginianum in the Jay range

Trillium erectum near Scarface

Altona Flat Rock with Potsdam Sandstone – Pine barrens on very thin soil. Soil washed away by catastrophic flood during glacial times.

Clintonville Pine Barrens on sandy glacial outwash

State-rare Ceanothus herbaceus in Clintonville Pine Barrens

Pteridium aquilinum in Clintonville Pine Barrens grows well in dry, sandy, acidic soil.

Bearberry in Clintonville Pine Barrens gows well in dry, sandy, acidic soil.

Balsam fir in boreal forest on Crane Mountain. Cones point upward.

Red spruce in boreal forest Nun-Da-Gao Ridge. Cones point downward.

Haystack Summit (4960’) – Very thin soil and cool conditions above treeline support alpine plant community.

Deer’s hair sedge on Haystack Summit

Black crowberry (green) and mountain bilberry (red) on Noonmark in October

Jay Range composed of gabbroic metanothosite

In Summary:

1.3 Billion Years Ago – Warm shallow pre-Grenville Sea

1.1 Billion Years Ago - Grenville Orogeny

650 Million Years Ago – Grenville Supercontinent breaks up

500 Million Years Ago – Warm shallow sea, Postdam Sandstone

60 to 15 Million Years Ago – Adirondacks begin to rise

1.6 Million Years Ago – Ice Ages begin

Some books:

•Rocks And Routes of the North Country – Bradford VanDiver

•Geology of New York: A Simplified Account – University of the State of New York

•Roadside Geology of New York - Bradford VanDiver

•Bogs of the Northeast – Charles W. Johnson

A Map:

•New York State Geologic Highway Map – University of the State of New York

Lake Placid from Whiteface in winter