opv stability – from materials to modules -...

38
OPV Stability – From Materials to Modules H.-J. Egelhaaf

Upload: vanlien

Post on 07-Mar-2018

229 views

Category:

Documents


8 download

TRANSCRIPT

Page 1: OPV Stability – From Materials to Modules - Organextorganext.org/userfiles/talks-conference/hans_joachim_egelhaa.pdf · OPV Stability – From Materials to Modules H.-J. Egelhaaf

OPV Stability –From Materials to Modules

H.-J. Egelhaaf

Page 2: OPV Stability – From Materials to Modules - Organextorganext.org/userfiles/talks-conference/hans_joachim_egelhaa.pdf · OPV Stability – From Materials to Modules H.-J. Egelhaaf

OPV: AdvantagesOPV: Advantages

Design features:• Flexible, thin, light-weight• Printable in various widths

• Low light sensitivity (indoor/outdoor)

• Off- angle performance

• Multiple colors: red, green blue

• Roll-to-roll printed

• Transparent version• Customized voltage

Page 3: OPV Stability – From Materials to Modules - Organextorganext.org/userfiles/talks-conference/hans_joachim_egelhaa.pdf · OPV Stability – From Materials to Modules H.-J. Egelhaaf

Arch Aluminum & Glass Curtain WallTamarac, Florida

Target: Building Integrated Applications

KonarkaNew Bedford, MA

Green HousePlants’ View

Bus ShelterSan Francisco, CA

Page 4: OPV Stability – From Materials to Modules - Organextorganext.org/userfiles/talks-conference/hans_joachim_egelhaa.pdf · OPV Stability – From Materials to Modules H.-J. Egelhaaf

Lifetime(3 - 5 years)

Efficiency(>3%)

Costs(<1 €/Wp)

Requirements for any PV technology

A successful product must fulfil all 3 requirements Efficiency, Lifetime and Cost

Required for Building Integrated Applications: > 6% (module!)

Effi

cien

cy (

%)

20001995

NREL

NREL

NREL

NREL

United Solar

United Solar12

8

4

0

16

20

University ofLausanne

2005

UCSBCambridge

NREL

U. Linz SiemensKonarka

Konarka

Sharp

Siemens

Konarka

Thin Film Technologies

Cu(In,Ga)Se2

CdS/CdTe

a- Si/a-SiGe

Emerging PV

Dye cells

OPV (polymer)

2010

1

28

4

0

16

20

OPV single junctionOPV single junction

Year

Konarka

PlextronicsUCSB

EPFL(SSDSSC)

SolarmerSolarmer

Heliatek

Page 5: OPV Stability – From Materials to Modules - Organextorganext.org/userfiles/talks-conference/hans_joachim_egelhaa.pdf · OPV Stability – From Materials to Modules H.-J. Egelhaaf

0

200

400

600

800

1,000

1,200

1,400

0

10

20

30

40

50

60

5 AM 6 AM 7 AM 8 AM 9 AM 10 AM 11 AM 12 PM 1 PM 2 PM 3 PM 4 PM 5 PM 6 PM 7 PM 8 PM 9 PM

Sol

ar I

rra

dian

ce (W

/m2 )

No

rma

lized

Ene

rgy

(wat

t hou

rs)

Konarka OPV

a-Si

c-Si

CIGS

Solar Irradiance

Competitive Testing - Energy Collection on 08/01/10

Panels are Normalized to 5 Wattsmeasured in standard lab conditions

Higher Efficiency at Low Light

Higher efficiency at

higher temperatures

20-35% more

energy collected

in one day (with

respect to std lab

conditions) than

competitive PV

technologies.

Higher Measured Efficiency in Usage Conditions

Page 6: OPV Stability – From Materials to Modules - Organextorganext.org/userfiles/talks-conference/hans_joachim_egelhaa.pdf · OPV Stability – From Materials to Modules H.-J. Egelhaaf

Requirements for any PV technology

A successful product must fulfil all 3 requirements Efficiency, Lifetime and Cost

Lifetime(3 - 5 years)

Efficiency(>3%)

Costs(<1 €/Wp)

Building Integrated Applications: < 1 €/Wp (module)

Page 7: OPV Stability – From Materials to Modules - Organextorganext.org/userfiles/talks-conference/hans_joachim_egelhaa.pdf · OPV Stability – From Materials to Modules H.-J. Egelhaaf

Requirements for any PV technology

A successful product must fulfil all 3 requirements Efficiency, Cost and Lifetime

Lifetime(3 - 5 years)

Efficiency(>3%)

Costs(<1 €/Wp)

Flex Applications (niche markets?): > 5 yearsBuilding Integrated Applications: > 15 years in 2011

> 20 years in 2012

Page 8: OPV Stability – From Materials to Modules - Organextorganext.org/userfiles/talks-conference/hans_joachim_egelhaa.pdf · OPV Stability – From Materials to Modules H.-J. Egelhaaf

OverviewOverview of Degradation of Degradation MechanismsMechanisms

Page 9: OPV Stability – From Materials to Modules - Organextorganext.org/userfiles/talks-conference/hans_joachim_egelhaa.pdf · OPV Stability – From Materials to Modules H.-J. Egelhaaf

Towards 20 Years Lifetime

The complexity of the problem requiresbreaking down the task into three levels:

- Materials (Degradation of Organic and Inorganic Components)

- Solar Cells(Decay of Performance)

- Solar Modules(Cells + Buss Bars + Packaging + ElectricalConnections)

Page 10: OPV Stability – From Materials to Modules - Organextorganext.org/userfiles/talks-conference/hans_joachim_egelhaa.pdf · OPV Stability – From Materials to Modules H.-J. Egelhaaf

MaterialsMaterials

Understanding the degradation mechanismswill help make OPV intrinsically more stable• Longer life times

• Save on costs for packaging

Degradation of the polymer depends on:- the chemical structure of the polymer- the environmental conditions- the composition of the photoactive blend

Page 11: OPV Stability – From Materials to Modules - Organextorganext.org/userfiles/talks-conference/hans_joachim_egelhaa.pdf · OPV Stability – From Materials to Modules H.-J. Egelhaaf

PhotoPhoto --oxidation of P3HT: wavelengthoxidation of P3HT: wavelength

300 400 500 600 700 800

1E-7

1E-6

0.0

0.2

0.4

0.6

0.8

1.0

Effe

ctiv

enes

sIrradiation wavelength / nm

1-10-E

400 500 600 7000.0

0.2

0.4

0.6

0.8

1.0

Abs

orpt

ion

Wavelength λ[nm]

300 400 500 600 700 800

1E-7

1E-6

1E-5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Effe

ctiv

enes

s

Irradiation Wavelength [nm]

1-10-E

400 500 600 7000,0

0,5

1,0

1,5b

Abs

orba

nce

Wavelength λ [nm]

The PCQY does not follow the absorption spectrumradical mechanism very probable

Regio-random P3HT Regio-regular P3HT

ReactionSpectra

ActionSpectra

H. Hintz, H.-J. Egelhaaf, L. Lüer, J. Hauch, H. Peisert, Th. Chassé, Chem. Mater. 23 (2011) 145

Page 12: OPV Stability – From Materials to Modules - Organextorganext.org/userfiles/talks-conference/hans_joachim_egelhaa.pdf · OPV Stability – From Materials to Modules H.-J. Egelhaaf

PhotoPhoto --oxidation of P3HT: wavelengthoxidation of P3HT: wavelength

0 5 10 150.0

0.2

0.4

0.6

0.8

1.0 UV 365

Abs

nor

mal

ized

Time*103 [min]

a

0 20 40 60 800.0

0.2

0.4

0.6

0.8

1.0

VIS 525

Abs

nor

mal

ized

Time*103 [min]

b

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

1.2

UV/VIS loss at 520nm [norm]

Abs

orba

nce

[nor

m]

VIS 525 b 0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Abs

orba

nce

[nor

m]

UV/VIS loss at 520 nm [norm]

UV 365 a

S

n

Different reaction pathways for different wavelengths

S

n

λirr = 365 nm λirr = 525 nm

H. Hintz, C. Sessler, H. Peisert, T. Chassé, H.-J. Egelhaaf, in preparation

FTIR signals

Page 13: OPV Stability – From Materials to Modules - Organextorganext.org/userfiles/talks-conference/hans_joachim_egelhaa.pdf · OPV Stability – From Materials to Modules H.-J. Egelhaaf

PhotoPhoto --oxidation of P3HT: Humidityoxidation of P3HT: Humidity

0 100 2000,0

0,2

0,4

0,6

a

Abs

orba

nce

time / min

1

2

3

Time trace of absorption maximum during degradation under1: oxygen2: humidified oxygen (100% rel. Humidity)3: humidified nitrogen (100% rel. Humidity)

0 20 40 60 80 1002

3

4

5

6

100

150

200

reac

tion

rate

/ 10

-3m

in-1 b

Relative humidity % at 22°C

reaction rate %

H. Hintz, H.-J. Egelhaaf, L. Lüer, J. Hauch, H. Peisert, Th. Chassé, Chem. Mater. 23 (2011) 145

Page 14: OPV Stability – From Materials to Modules - Organextorganext.org/userfiles/talks-conference/hans_joachim_egelhaa.pdf · OPV Stability – From Materials to Modules H.-J. Egelhaaf

Effect of Fullerene Structure

EF1 (-3.53 eV)

F2 (-3.60 eV)

F3 (-3.66 eV)

F4 (-3.70 eV)

F5 (-3.75 eV)

F6 (-3.80 eV)F7 (-3.81 eV)

F8 (-3.83 eV)

� PCBM

P3HT Fullerene

HOMO

LUMO

LUMO

e-

e-

Fullerene LUMO energy

Page 15: OPV Stability – From Materials to Modules - Organextorganext.org/userfiles/talks-conference/hans_joachim_egelhaa.pdf · OPV Stability – From Materials to Modules H.-J. Egelhaaf

Effect of Fullerene on P3HT Photobleaching

�All fullerenes stabilize P3HT

�Stabilizing factor: 2-7 (5 for PCBM)

0 5 10 15 20 25 30 35 40 45 500

11

22

33

44

55

66

77

88

99 Fullerene (LUMO):

F1 (-3.53 eV)

F2 (-3.60 eV)

F3 (-3.66 eV)

F4 (-3.70 eV)

F5 (-3.75 eV)

F6 (-3.80 eV)

F7 (-3.81 eV)

F8 (-3.83 eV)

pristine P3HT

no

rmal

ize

d O

D a

t P

3H

T m

axi

mu

m [

%]

time of degradation [h]

A. Distler, H.-J. Egelhaaf, D. Waller, K.-S. Cheon, S. Rodman, D. Guldi, in preparation

Page 16: OPV Stability – From Materials to Modules - Organextorganext.org/userfiles/talks-conference/hans_joachim_egelhaa.pdf · OPV Stability – From Materials to Modules H.-J. Egelhaaf

Photobleaching vs. Fullerene LUMO

-3.50 -3.55 -3.60 -3.65 -3.70 -3.75 -3.80 -3.85

40

45

50

55

60

65

70

75

80

85

90

95

100

time of degradation:

0 h

0.5 h

1 h

2 h

3 h

5 h

10 h

30 h

50 h

no

rma

lize

d O

D a

t P

3H

T m

axi

mu

m [

%]

LUMO [eV]

maximum stabilization effect (F5)

Page 17: OPV Stability – From Materials to Modules - Organextorganext.org/userfiles/talks-conference/hans_joachim_egelhaa.pdf · OPV Stability – From Materials to Modules H.-J. Egelhaaf

Effect of Polymer Structure / Fullerene

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.70.00

0.25

0.50

0.75

1.000.00

0.25

0.50

0.75

1.000.0

0.5

1.0

1.5

2.0

D/D0 D/D0 + DIO F/F0 F/F0 + DIO

c) Si-PCPDTBT

00

xPCBM

(w/w)

D/D0 F/F0

b) P3HT

a) C-PCPDTBT

D/D0 D/D0 + DIO F/F0 F/F0 + DIO

P. Kutka, A. Distler, T. Sauermann, H.-J. Egelhaaf, D. Di Nuzzo, S.C.J. Meskers, R.A.J. Janssen, in preparation

Fluorescence Intensity and Degradation Rateas a Function of PCBM content

S

n

PCBM enhances degradation

PCBM reduces degradation

PCBM slightlyreduces degradation

Degradation rate

Fluorescence intensity

Fluorescence intensity

Degradation rate

Page 18: OPV Stability – From Materials to Modules - Organextorganext.org/userfiles/talks-conference/hans_joachim_egelhaa.pdf · OPV Stability – From Materials to Modules H.-J. Egelhaaf

Solar Cells Solar Cells

Overall Loss of Efficiency consists of reversible and irreversible component

Degradation by Light and OxygenDegradation by Light and Oxygenair

N2

Page 19: OPV Stability – From Materials to Modules - Organextorganext.org/userfiles/talks-conference/hans_joachim_egelhaa.pdf · OPV Stability – From Materials to Modules H.-J. Egelhaaf

Irreversible Component

-0.50 -0.25 0.00 0.25 0.50 0.75 1.00

-5.0

0.0

5.0

10.0

15.0

20.0

undegraded 2% degraded 5% degraded

Cur

rent

den

sity /

mA*c

m-2

Voltage / V

b

Absorption and Jsc Loss after Illumination in Synthetic Air and Annealing in Nitrogen

Minor Changes in Absorption lead to 50% Jsc Loss

300 400 500 600 700 8000.0

0.5

1.0

1.5

O.D

.

Wavelength (nm)

0% 2% 5% 10% 20%

Page 20: OPV Stability – From Materials to Modules - Organextorganext.org/userfiles/talks-conference/hans_joachim_egelhaa.pdf · OPV Stability – From Materials to Modules H.-J. Egelhaaf

Irreversible Degradation Leads to StrongPhotoluminescence Quenching

600 700 800 9000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Pho

tolu

min

esce

nce

(106 c

ount

s)

Wavelength (nm)

0% 2% 5% 10% 20%

Absorption loss [%] 2 5 10 20

PL loss [%] 23 54 57 76

Loss in excitons which recombine in the P3HT domains!What about all the other excitons?

PCBM

P3HT

-

+

Page 21: OPV Stability – From Materials to Modules - Organextorganext.org/userfiles/talks-conference/hans_joachim_egelhaa.pdf · OPV Stability – From Materials to Modules H.-J. Egelhaaf

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(d)(b)

−∆T

/T (

10-2)

0% 10% 20%

(a) (c)

0% 10% 20%

0 150 300 450 600 750 900

Time Delay (ps)0 2 4 6 8 10 12 14

-0.2-0.10.00.10.20.30.40.50.60.7

DP

ExA

−∆T

/T (

10-2)

Time Delay (ps)

Effect of Degradation on Excited States

- Strong effect of degradationproducts on excitons (ExA) on a very short timescale

- Polaron (DP) lifetime slightlydecreases with degradation dueto recombination via degradationproducts

Transients at Different Degrees of Bleaching

F. Deschler, A. De Sio, E. von Hauff, P. Kutka, T. Sauermann, H.-J. Egelhaaf, J. Hauch, E. Da Como, Adv. Funct. Mater., accepted

HOMO

LUMO

P3HT

En

erg

y

PCBM

(a) (b) (d)(c)

τHEx-Ext τExd-Polt τHEx-Polf τPolf-r

Page 22: OPV Stability – From Materials to Modules - Organextorganext.org/userfiles/talks-conference/hans_joachim_egelhaa.pdf · OPV Stability – From Materials to Modules H.-J. Egelhaaf

Reversible Oxygen Effect on jV-curves

Solar Cell with inverted structure and Ag grid electrode

Reversible oxygen doping leads to reduction of jscA. Seemann, T. Sauermann, C. Lungenschmied, O. Armbruster, S. Bauer, H.-J. Egelhaaf, J. Hauch, Solar Energy 85 (2011) 1238

Page 23: OPV Stability – From Materials to Modules - Organextorganext.org/userfiles/talks-conference/hans_joachim_egelhaa.pdf · OPV Stability – From Materials to Modules H.-J. Egelhaaf

Temporal behaviour of cell performance

Performance loss is mainly due to loss in jsc (partly reversible) and to loss in FF (irreversible)

Cell parameters: efficiency, jsc, Voc, FF

A. Seemann, T. Sauermann, C. Lungenschmied, O. Armbruster, S. Bauer, H.-J. Egelhaaf, J. Hauch, Solar Energy 85 (2011) 1238

Page 24: OPV Stability – From Materials to Modules - Organextorganext.org/userfiles/talks-conference/hans_joachim_egelhaa.pdf · OPV Stability – From Materials to Modules H.-J. Egelhaaf

Oxygen Effect on CELIV measurements

CELIV traces Charge carrier concentration

Oxygen doping leads to increase in charge carrier concentration- Slow in the dark- accelerated under illumination

A. Seemann, T. Sauermann, C. Lungenschmied, O. Armbruster, S. Bauer, H.-J. Egelhaaf, J. Hauch, Solar Energy 85 (2011) 1238

Page 25: OPV Stability – From Materials to Modules - Organextorganext.org/userfiles/talks-conference/hans_joachim_egelhaa.pdf · OPV Stability – From Materials to Modules H.-J. Egelhaaf

Charge Carrier Formation Monitored by ESR

Light + Oxygen Formation of Metastable Charge Carriers

ESR signal in the darkand under illumination

Time trace of ESR signal upon light ‚on under air and light off under vacum

A. Aguirre, S.C.J. Meskers, R.A.J. Janssen, H.-J. Egelhaaf, Org. Electronics (2011)

Page 26: OPV Stability – From Materials to Modules - Organextorganext.org/userfiles/talks-conference/hans_joachim_egelhaa.pdf · OPV Stability – From Materials to Modules H.-J. Egelhaaf

Mechanism of Oxygen Doping

-5.1

-3.7

-2.9

-6.1

E / eV

P3HT O2 PCBM

1

2

4

3

Page 27: OPV Stability – From Materials to Modules - Organextorganext.org/userfiles/talks-conference/hans_joachim_egelhaa.pdf · OPV Stability – From Materials to Modules H.-J. Egelhaaf

Effect on Device: Simulation with PC1D

Doping leads to the formation of a space charge region in front of the anodeShielding of the electric field in the bulkReduced charge carrier extraction

Solving the fully coupled set of Differential Equationsfor an Effective Medium Bulk Semiconductor

Page 28: OPV Stability – From Materials to Modules - Organextorganext.org/userfiles/talks-conference/hans_joachim_egelhaa.pdf · OPV Stability – From Materials to Modules H.-J. Egelhaaf

Intrinsic Degradation

• Active layers

• Interfaces

• Electrodes

Extrinsic Degradation

• Buss Bars, Leads

• Packaging films

• Adhesives

Lifetime is a

System

Property

Modules

Page 29: OPV Stability – From Materials to Modules - Organextorganext.org/userfiles/talks-conference/hans_joachim_egelhaa.pdf · OPV Stability – From Materials to Modules H.-J. Egelhaaf

Lowell, MA

Southern Florida Southern Arizona

Location Lowell, MA.

facing solar south at 42° ≈1600 kWh / m2

2 measurement modes:

a) Outdoor JV in 4th quadrant with

modulated load and wireless data

read out

b) Periodic characterization under

standard solar simulator

Outdoor Testing - Konarka

Page 30: OPV Stability – From Materials to Modules - Organextorganext.org/userfiles/talks-conference/hans_joachim_egelhaa.pdf · OPV Stability – From Materials to Modules H.-J. Egelhaaf

Encapsulation of the ModuleEncapsulation of the Module……

Substrate

Encapsulation

Electrode

Buss Bar

Active Layers

Page 31: OPV Stability – From Materials to Modules - Organextorganext.org/userfiles/talks-conference/hans_joachim_egelhaa.pdf · OPV Stability – From Materials to Modules H.-J. Egelhaaf

0%

20%

40%

60%

80%

100%

120%

140%

No

rma

lize

d E

ffic

ien

cy

Gen1, Lowell Rooftop

Gen 2, Lowell rooftop

Gen2, South Florida

Two years outdoor without drop in performance.

……affordsaffords OutdoorOutdoor LT > 2yrsLT > 2yrs

Page 32: OPV Stability – From Materials to Modules - Organextorganext.org/userfiles/talks-conference/hans_joachim_egelhaa.pdf · OPV Stability – From Materials to Modules H.-J. Egelhaaf

Stress Factors

• Light

• Humidity

• Temperature

• Oxygen

• Hot/Cold cycles

• Wet/Dry cycles

• Wind

• Rain

• Hail

• Pollutants

Intrinsic Degradation

• Active layers

• Interfaces

• Electrodes

Extrinsic Degradation

• Buss Bars, Leads

• Packaging films

• Adhesives

Lifetime is a

System

Property

Accelerated Lifetime Testing

Page 33: OPV Stability – From Materials to Modules - Organextorganext.org/userfiles/talks-conference/hans_joachim_egelhaa.pdf · OPV Stability – From Materials to Modules H.-J. Egelhaaf

Equipment Test EquipmentSolar Simulator AM1.5G, 100 mW/cm2

Dry Ovens Pass 1000 hrs at 65°C

Steady –State OvenTemperature / Humidity

Pass 1000 hrs @ 65°C / 85 % r.h.(extended 85°C/85 % r.h.)Thermal Cycling

ChamberTemperature / Humidity

3 hrs cycle, -40°C to + 80°C

Light Soaking ChambersTemperature / Humidity / RainUltraviolet Light Chamber

Pass 1000 hrs 65°C/1sun According to IEC + IEEE + ASTM standards

Flex bending > 1000 bends over 50 mm roll

Standard ALT Testing

Page 34: OPV Stability – From Materials to Modules - Organextorganext.org/userfiles/talks-conference/hans_joachim_egelhaa.pdf · OPV Stability – From Materials to Modules H.-J. Egelhaaf

Building a correlation with outdoor lifetime data.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 500 1000 1500 2000 2500

Time [hours]

Nor

m. E

ff. [a

.u.]

65°C/1sun

Lifetime of Production Modules

Page 35: OPV Stability – From Materials to Modules - Organextorganext.org/userfiles/talks-conference/hans_joachim_egelhaa.pdf · OPV Stability – From Materials to Modules H.-J. Egelhaaf

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 500 1000 1500 2000 2500 3000 3500 4000 4500Time Hours

No

rm.

Eff

. [a

.u.]

Barrier 3

Barrier 1

Barrier 2

WVTR Barrier 1 >> WVTR Barrier 2 >> WVTR Barrier 3

Lifetime of the modules depends on the adhesive/barrier quality.

65°C/85%rh

Lifetime of Production Modules

Page 36: OPV Stability – From Materials to Modules - Organextorganext.org/userfiles/talks-conference/hans_joachim_egelhaa.pdf · OPV Stability – From Materials to Modules H.-J. Egelhaaf

Flex Product pre-qualification for letter of compliance

IEC 61646 10.13 damp heat 85°C/85%RH 1000hours “PAS SED”

Page 37: OPV Stability – From Materials to Modules - Organextorganext.org/userfiles/talks-conference/hans_joachim_egelhaa.pdf · OPV Stability – From Materials to Modules H.-J. Egelhaaf

Flex Productpre-qualification for letter of compliance

IEC 61646 10.11 thermal cycling (50 cycles) + IEC 61646 10.12 humidity freeze (10 cycles) “PASSED”

Page 38: OPV Stability – From Materials to Modules - Organextorganext.org/userfiles/talks-conference/hans_joachim_egelhaa.pdf · OPV Stability – From Materials to Modules H.-J. Egelhaaf

Acknowledgments

The German Ministry for Education and Research is Acknowledged for Funding

(BMBF project „OPV Stability“)