process technologies for sub-100-nm inp hbts & ingaas mosfets

45
Process Technologies For Sub-100-nm InP HBTs & InGaAs MOSFETs M. A. Wistey*, U. Singisetti, G. J. Burek, B. J. Thibeault, A. Baraskar, E. Lobisser, V. Jain, J. Cagnon, S. Stemmer, A. C. Gossard University of California, Santa Barbara *Now at Notre Dame E. Kim, P. C. McIntyre Stanford University Y.-J. Lee Intel B. Yue, L. Wang, P. Asbeck, Y. Taur University of California, San Diego 2009 Topical Workshop on Heterostructure Microelectronics, August 25-28, Nagano, Japan, Mark. Rodwell, University of California, Santa Barbara

Upload: katelyn-hogan

Post on 03-Jan-2016

36 views

Category:

Documents


2 download

DESCRIPTION

2009 Topical Workshop on Heterostructure Microelectronics, August 25-28, Nagano, Japan,. Process Technologies For Sub-100-nm InP HBTs & InGaAs MOSFETs. Mark. Rodwell, University of California, Santa Barbara. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Process Technologies  For Sub-100-nm  InP HBTs & InGaAs MOSFETs

Process Technologies

For Sub-100-nm

InP HBTs & InGaAs MOSFETs

M. A. Wistey*, U. Singisetti, G. J. Burek, B. J. Thibeault, A. Baraskar, E. Lobisser, V. Jain, J. Cagnon, S. Stemmer, A. C. GossardUniversity of California, Santa Barbara*Now at Notre Dame

E. Kim, P. C. McIntyreStanford University

Y.-J. LeeIntel

B. Yue, L. Wang, P. Asbeck, Y. TaurUniversity of California, San Diego

2009 Topical Workshop on Heterostructure Microelectronics, August 25-28, Nagano, Japan,

Mark. Rodwell, University of California, Santa Barbara

Page 2: Process Technologies  For Sub-100-nm  InP HBTs & InGaAs MOSFETs

III-V transistors: the goal is scaling

2-3 THz InP HBTs: 32 nm / 64 nm scaling generations

2-3 THz HEMTs: 10-15 nm, balanced / fully scaled devices

15 nm InGaAs MOSFETs for VLSI

implication:

we need new fabrication processes

Page 3: Process Technologies  For Sub-100-nm  InP HBTs & InGaAs MOSFETs

FET parameter change

gate length decrease 2:1

current density (mA/m), gm (mS/m) increase 2:1

channel 2DEG electron density increase 2:1

gate-channel capacitance density increase 2:1

dielectric equivalent thickness decrease 2:1

channel thickness decrease 2:1

channel density of states increase 2:1

source & drain contact resistivities decrease 4:1

Changes required to double transistor bandwidth

GW widthgate

GL

HBT parameter change

emitter & collector junction widths decrease 4:1

current density (mA/m2) increase 4:1

current density (mA/m) constant

collector depletion thickness decrease 2:1

base thickness decrease 1.4:1

emitter & base contact resistivities decrease 4:1

eW

ELlength emitter

constant voltage, constant velocity scaling

nearly constant junction temperature → linewidths vary as (1 / bandwidth)2

fringing capacitance does not scale → linewidths scale as (1 / bandwidth )

Page 4: Process Technologies  For Sub-100-nm  InP HBTs & InGaAs MOSFETs

III-V Fabrication Processes Must Change... Greatly

32 nm base & emitter contacts...self-aligned

3 mA/m → 200 mA/m2 contacts above ~ 5 nm N+ layer

→ refractory contacts !

15 nm source / drain contacts...self-aligned< 10 nm source / drain spacers (sidewalls)

15 nm gate length

1/2 m2 contact resistivities

70 mA/m2 → refractory contacts

32 nm emitter junctions1 m2 contact resistivities

Page 5: Process Technologies  For Sub-100-nm  InP HBTs & InGaAs MOSFETs

FETs

Page 6: Process Technologies  For Sub-100-nm  InP HBTs & InGaAs MOSFETs

Semiconductor Capacitances Must Also Scale

inversiontorsemiconduc /Tc

oxc

)( thgs VV

2*2 2/ nmqcdos

)2/()()(charge channel 2* nmEEqVVcqn wellfwellfdoss

motion) onalunidirecti(

qEE wellf /)(

scale. both alsomust states ofdensity & thicknessInversion

Page 7: Process Technologies  For Sub-100-nm  InP HBTs & InGaAs MOSFETs

Highly Scaled FETProcess Flows

Page 8: Process Technologies  For Sub-100-nm  InP HBTs & InGaAs MOSFETs

Why III-V MOSFETs

Silicon MOSFETs:

Gate oxide may limit <16 nm scaling

IBM 45nm NMOS

Narayan et al, VLSI 2006

* Enoki et al , EDL 1990

Alternative: In0.53Ga0.47As channel MOSFETs

low m* (0.041 mo) → high injection velocity, vinj (~ 2-3×107 cm/s)*

→ increase drive current, decreased CV/I

Id / Wg ~ cox(Vg-Vth)vinj

Page 9: Process Technologies  For Sub-100-nm  InP HBTs & InGaAs MOSFETs

MOSFET scaling*: lateral and vertical

Goal :

double package density → lateral scaling Lg, Wg, Ls/d

*Rodwell, IPRM 2008

double the MOSFET speed

keep constant gate controlvertical scaling tox , tqw , xj

Page 10: Process Technologies  For Sub-100-nm  InP HBTs & InGaAs MOSFETs

Target device structure

Target 22 nm gate length

Control of short-channel effects vertical scaling1 nm EOT: thin gate dielectric, surface-channel device5 nm quantum well thickness<5 nm deep source / drain regions

~3 mA/m target drive current low access resistanceself-aligned, low resistivity source / drain contactsself-aligned N+ source / drain regions with high doping

-4

-3

-2

-1

0

1

2

3

0 50 100 150 200 250

En

erg

y (

eV

)

Y (Ang.)

Al2O

3

InGaAs InAlAs

Page 11: Process Technologies  For Sub-100-nm  InP HBTs & InGaAs MOSFETs

22 nm InGaAs MOSFET: Source Resistance

IBM High-k Metal gate transistor

Image Source: EE Times

smi

did Rg

II

1 g

DSsheet

DSg

cs W

L

LWR

3/

/

LgLS/D

• Source access resistance degrades Id and gm

• IC Package density : LS/D ~ Lg =22 nm → c must be low

• Need low sheet resistance in thin ~5 nm N+ layer

• Design targets: c ~1 m2, sheet ~ 400

Page 12: Process Technologies  For Sub-100-nm  InP HBTs & InGaAs MOSFETs

22nm ion implanted InGaAs MOSFET

• Shallow junctions ( ~ 5 nm), high (~5×1019 cm-3) doping

• Doping abruptness ( ~ 1 nm/decade)

• Lateral Straggle ( ~ 5 nm)

• Deep junctions would lead to degraded short channel effects

Key Technological Challenges

Page 13: Process Technologies  For Sub-100-nm  InP HBTs & InGaAs MOSFETs

Why HEMTs are Hard to Improve

III-V MOSFETs do not face these scaling challenges

Source DrainGate

K Shinohara

1st challenge with HEMTs: reducing access resistance

gate barrier lies under S/D contacts → resistance

low electron density under gate recess→ limits current

Ec

Ewell-

EF

2nd challenge with HEMTs: low gate barrierhigh tunneling currents with thin barrierhigh emission currents with high electron density

channelgate barrier

Page 14: Process Technologies  For Sub-100-nm  InP HBTs & InGaAs MOSFETs

HEMTs Differ in Access Resistance, Electrostatics

HEMTs: short gate lengths, wide spacing / recess, wide contacts

wide recess→ improved DIBL, improved subthreshold slope, wide contacts→ OK access resistivity even with poor contacts

VLSI MOSFETs : short gate lengths, narrow contacts, no spacing/recess

Need good DIBL even withzero drain/gate offset.

Need low S/D resistance even with22 nm width contacts.

Page 15: Process Technologies  For Sub-100-nm  InP HBTs & InGaAs MOSFETs

InGaAs MOSFET with N+ Source/Drain by MEE Regrowth1

1Singisetti, ISCS 20082Wistey, EMC 20083Baraskar, EMC 2009

Interface

HAADF-STEM1*

2 nm

InGaAs

InGaAs

regrowth

Self-aligned source/drain defined by MBE regrowth2

Self-aligned in-situ Mo contacts3

Process flow & dimensions selected for 22 nm Lg design; present devices @ 200 nm gate length

* TEM by J. Cagnon, Susanne Stemmer Group, UCSB

Page 16: Process Technologies  For Sub-100-nm  InP HBTs & InGaAs MOSFETs

Regrown S/D process: key features

Vertical S/D doping profile set by MBEno n+ junction extension below channelabrupt on few-nm scale

Self-aligned & low resistivity...source / drain N+ regions...source / drain metal contacts

Gate-firstgate dielectric formed after MBE growth uncontaminated / undamaged surface

Page 17: Process Technologies  For Sub-100-nm  InP HBTs & InGaAs MOSFETs

Process flow* * Singisetti et al, 2008 ISCS, September, Frieburg Singisetti et al; Physica Status Solidi C, vol. 6, pp. 1394,2009

Page 18: Process Technologies  For Sub-100-nm  InP HBTs & InGaAs MOSFETs

SiO2

W

Cr

FIB Cross-section

Damage free channel

Process scalable to sub-100 nm gate lengths

Key challenge in S/D process: gate stack etch

Requirement: avoid damaging semiconductor surface:

Approach: Gate stack with multiple selective etches*

* Singisetti et al; Physica Status Solidi C, vol. 6, pp. 1394,2009

Page 19: Process Technologies  For Sub-100-nm  InP HBTs & InGaAs MOSFETs

Key challenge in S/D process: dielectric sidewall

2-DSimulation of an artificially on state device in Atlas, Silvaco. Source doping 6e19 cm-3

4 1018

8 1018

1.2 1019

1.6 1019

2 1019

2.4 1019

2.8 1019

0 10 20 30 40 50 60 70 80

10nm SiN20 nm SiN30 nm SiNel

ectr

on c

once

ntra

tion

(cm

-3)

distance (nm)

gate source

sidewall

tswn (cm-3) Rs (m)

10 nm > 1×1019 620 nm > 5×1018 2030 nm ~ 4×1018 60

ns under sidewall: electrostatic spillover from source, gate

Sidewall must be kept thin: avoid carrier depletion, avoid source starvation

spillover

Page 20: Process Technologies  For Sub-100-nm  InP HBTs & InGaAs MOSFETs

Raised vs. Recessed S/D Regrowth:

planar regrowth regrowth under sidewalls

more difficult growth...

...tolerate of high Dit

in access region

need thin sidewalls(now ~25nm)

High Dit ?→ severe carrier depletion

SRC Neoclassical CMOS Research Center

Page 21: Process Technologies  For Sub-100-nm  InP HBTs & InGaAs MOSFETs

MBE Regrowth→ Gap Near Gate→ Source Resistance

W / Cr / SiO2

gate

W / Cr / SiO2

gate

SEM

SEM

• Shadowing by gate: No regrowth next to gate

• Gap region is depleted of electronsHigh source resistance because of electron depletion in the gap

MBE growth by Dr. Mark Wistey, device fabrication and characterization by U. Singisetti

W/Cr

gate

Mo+InGaAs

Ti/Au Pad

Gap in regrowth

SiO2 cap

Page 22: Process Technologies  For Sub-100-nm  InP HBTs & InGaAs MOSFETs

Migration Enhanced Epitaxial (MEE) S/D Regrowth*

*Wistey, EMC 2008

Wistey, ICMBE 2008

High T migration enhanced

Epitaxial (MEE) regrowth*

regrowth interface

gateNo Gap

45o tilt SEM

Top of SiO2 gate

No Gap

Side of gate

High temperature migration enhanced epitaxial regrowth

MBE growth by Dr. Mark Wistey, device fabrication and characterization by U. Singisetti

Page 23: Process Technologies  For Sub-100-nm  InP HBTs & InGaAs MOSFETs

SiO2

WCr

Originalinterface

InGaAsregrowth

SiNx

SiO2

WCr

Originalinterface

InGaAsregrowth

SiNx

W/Cr gate Pad

Ti/Au Pad

Mo+InGaAs

W/Cr gate Pad

Ti/Au Pad

Mo+InGaAs

Regrown S/D III-V MOSFET: Images

Cross-section after regrowth,

but before Mo deposition

Top view of completed device

Page 24: Process Technologies  For Sub-100-nm  InP HBTs & InGaAs MOSFETs

Source Resistance: electron depletion near gate

• Electron depletion in regrowth shadow region (R1 )

• Electron depletion in the channel under SiNx sidewalls (R2 )

SiO2

WCr

Originalinterface

InGaAsregrowth

SiNx

SiO2

WCr

Originalinterface

InGaAsregrowth

SiNx

R1

R2

Page 25: Process Technologies  For Sub-100-nm  InP HBTs & InGaAs MOSFETs

SiO2

W

Cr

InGaAs

InGaAs

InGaAs

InGaAs

InAlAs

Regrowth profile dependence on As flux*

Uniform filling with lower As flux

multiple InGaAs regrowths with InAlAs marker layers

increasing As flux

regrowth

surface

* Wistey et al, EMC 2009

Wistey et al NAMBE 2009

MBE growth by Dr. Mark Wistey, device fabrication and characterization by U. Singisetti

uniform filling

Page 26: Process Technologies  For Sub-100-nm  InP HBTs & InGaAs MOSFETs

InAs source/drain regrowth

1 Wistey et al, EMC 2009

Wistey et al NAMBE 2009. 2Bhargava et al , APL 1997

InAsregrowth

Gate

side of gate

top of gate

Mo S/D metal with N+ InAs underneath

Improved InAs regrowth with low As flux for uniform filling1

InAs less susceptible to electron depletion: Fermi pinning above Ec2

Page 27: Process Technologies  For Sub-100-nm  InP HBTs & InGaAs MOSFETs

Self-Aligned Source/Drain regrowth

Page 28: Process Technologies  For Sub-100-nm  InP HBTs & InGaAs MOSFETs

Self-Aligned Contacts: Height Selective Etching*

Mo

InGaAs

PR

PR PR

* Burek et al, J. Cryst. Growth 2009

Dummy gate

No regrowth

Page 29: Process Technologies  For Sub-100-nm  InP HBTs & InGaAs MOSFETs

Fully Self-Aligned III-V MOSFET Process

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1

dra

in c

urre

nt,

I D (m

A/

m)

VDS

(V)

Lg = 200 nm W

g = 8 m

Vgs

: 0 to 4 V in 0.5 V steps

Page 30: Process Technologies  For Sub-100-nm  InP HBTs & InGaAs MOSFETs

Why Is the Device Drive Current Low ? → Dit

Devices used Stanford / McIntyre ALD Al2O3 gate dielectricbest Stanford results: H passivation for low Dit.

FET results: H gets driven away in process need, but do not yet have, post-process H anneal → high Dit on present FETs, c.a. 1013 / cm2/eV.

High Dit → Carrier depletion under sidewalls greatly increased access resistance.

High Dit→ inefficient charge modulation→ low gm.

Page 31: Process Technologies  For Sub-100-nm  InP HBTs & InGaAs MOSFETs

128 nm / 64 nm / 32 nm HBT Fabrication

Page 32: Process Technologies  For Sub-100-nm  InP HBTs & InGaAs MOSFETs

256 nm GenerationInP DHBT

0

10

20

30

109 1010 1011 1012

109

101

0

101

1

1012

dB

Hz

f = 560 GHz

fmax

= 560 GHz

U

H21

0

10

20

30

40

109 1010 1011 1012

dB

Hz

UH21

f = 424 GHz

fmax

= 780 GHz

0

5

10

15

20

0 1 2 3 4V

ce

mA

/m

20

10

20

30

40

109 1010 1011 1012

dB

Hz

U

H21

ft = 660 GHz

fmax

= 218 GHz

0

10

20

30

0 1 2 3

mA

/m

2

Vce

150 nm thick collector

70 nm thick collector

60 nm thick collector

200 GHz master-slavelatch design

Z. Griffith, E. Lind

J. Hacker, M. Jones

324 GHzAmplifier

Page 33: Process Technologies  For Sub-100-nm  InP HBTs & InGaAs MOSFETs

Process Must Change Greatly for 128 / 64 / 32 nm Nodes

Undercutting of emitter ends... ...and loss of emitter adhesion.

control undercut→ thinner emitter thinner emitter

→ thinner base metalthinner base metal→ excess base metal resistance

{101}A planes: fast

{111}A planes: slow

Page 34: Process Technologies  For Sub-100-nm  InP HBTs & InGaAs MOSFETs

128 / 64 nm HBT Process: Where We Are Going

Key Features:

contact metals: no liftoff sputter deposition dry etched

ohmic contacts base & emitter refractory: thermally stable

target ~2000 GHz device

semiconductor junctions dry etched self-aligned

Page 35: Process Technologies  For Sub-100-nm  InP HBTs & InGaAs MOSFETs

Conclusion

Page 36: Process Technologies  For Sub-100-nm  InP HBTs & InGaAs MOSFETs

Fabrication Processes for nm/THz III-V Transistors

10-30 nm junctions ...

self-alignment:dielectric sidewall spacersheight-selective etching

~100 mA/m2 current densities

refractory contactssputter-depositeddry-etched

~1 m2 contact resistivities

dry-etched junctions, minimal wet-etching

Page 37: Process Technologies  For Sub-100-nm  InP HBTs & InGaAs MOSFETs

(end)

Page 38: Process Technologies  For Sub-100-nm  InP HBTs & InGaAs MOSFETs

Subthreshold characteristics

• Ion/Ioff~ 104:1

-1 0 1 2 3 4 5

Vds

=0.1V

Vds

=1.0 V

325 mV/decade

Vgs

(V)

Lg=0.35 m

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

-1 0 1 2 3 4 5

Vds

=0.1V

Vds

=1.0V

290 mV/decadeI d(A)

Vgs

(V)

Lg=1.0 m

Page 39: Process Technologies  For Sub-100-nm  InP HBTs & InGaAs MOSFETs

Why do we need base regrowth?

Regrowth for less resistive base contacts contact moved away from c/b junction better reliability with thin base layers

regrowth interface

no gapdummy emitter

Migration Enhanced Epitaxial Regrowth

p =5x1019 cm-3 , 15 cm2/Vs

Page 40: Process Technologies  For Sub-100-nm  InP HBTs & InGaAs MOSFETs

parameter change

collector depletion layer thickness decrease 2:1

base thickness decrease 1.414:1

emitter junction width decrease 4:1

collector junction width decrease 4:1

emitter contact resistance decrease 4:1

current density increase 4:1

base contact resistivity decrease 4:1

Changes required to double transistor bandwidth:

Linewidths scale as the inverse square of bandwidth because thermal constraints dominate.

eW

bcWcTbT

ELlength emitter

Bipolar Transistor Scaling Laws

Page 41: Process Technologies  For Sub-100-nm  InP HBTs & InGaAs MOSFETs

InP Bipolar Transistor Scaling Roadmap

emitter 512 256 128 64 32 nm width16 8 4 2 1 m2 access

base 300 175 120 60 30 nm contact width, 20 10 5 2.5 1.25 m2 contact

collector 150 106 75 53 37.5 nm thick, 4.5 9 18 36 72 mA/m2 current density4.9 4 3.3 2.75 2-2.5 V, breakdown

f 370 520 730 1000 1400 GHzfmax 490 850 1300 2000 2800 GHz

power amplifiers 245 430 660 1000 1400 GHz digital 2:1 divider 150 240 330 480 660 GHz

industry university→industry

university2007-8

appearsfeasible

maybe

eW

bcWcTbT

Page 42: Process Technologies  For Sub-100-nm  InP HBTs & InGaAs MOSFETs

THz / nm Transistors: it's all about the interfaces

Metal-semiconductor interfaces (Ohmic contacts): very low resistivity

Dielectric-semiconductor interfaces (Gate dielectrics): very high capacitance density

Transistor & IC thermal resistivity.

Page 43: Process Technologies  For Sub-100-nm  InP HBTs & InGaAs MOSFETs

Changes required to double transistor bandwidth:

FET Scaling Laws

GW widthgate

GL

Linewidths scale as the inverse of bandwidth because fringing capacitance does not scale.

FET parameter change

gate length decrease 2:1

current density (mA/m), gm (mS/m) increase 2:1

channel 2DEG electron density increase 2:1

gate-channel capacitance density increase 2:1

dielectric equivalent thickness decrease 2:1

channel thickness decrease 2:1

channel density of states increase 2:1

source & drain contact resistivities decrease 4:1

Page 44: Process Technologies  For Sub-100-nm  InP HBTs & InGaAs MOSFETs

Self-Aligned VLSI Gate-Last Process

Page 45: Process Technologies  For Sub-100-nm  InP HBTs & InGaAs MOSFETs

Simple FET ScalingGoal double transistor bandwidth when used in any circuit

→ reduce 2:1 all capacitances and all transport delays→ keep constant all resistances, voltages, currents

All lengths, widths, thicknesses reduced 2:1

S/D contact resistivity reduced 4:1

oxgm TvWg /~/

oxgggs TLWC /~/

~/, gfgs WC

subcgsb TLWC /~/

If Tox cannot scale with gate length,

Cparasitic / Cgs increases,

gm / Wg does not increase

hence Cparasitic /gm does not scale

~/ ggd WC

)/~//~/ :(also oxgdsmggds TLGgLvWG