rafael rocha pacheco, desenvolvimento de nanopartículas...

100
UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ODONTOLOGIA DE PIRACICABA RAFAEL ROCHA PACHECO DESENVOLVIMENTO DE NANOPARTÍCULAS COM PROPRIEDADES ÓPTICAS DE FLUORESCÊNCIA EM COMPRIMENTOS DE ONDA ESPECÍFICOS PARA ATIVAÇÃO DE POLIMERIZAÇÃO DE MATERIAIS RESTAURADORES ODONTOLÓGICOS RESINOSOS DEVELOPMENT OF NANOPARTICLES WITH FLUORESCENCE OPTICAL PROPERTIES IN SPECIFIC WAVELENGTHS FOR LIGHT ACTIVATION OF RESIN- BASED DENTAL RESTORATIVE MATERIALS PIRACICABA 2017

Upload: hatu

Post on 25-Nov-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ODONTOLOGIA DE PIRACICABA

RAFAEL ROCHA PACHECO

DESENVOLVIMENTO DE NANOPARTÍCULAS COM

PROPRIEDADES ÓPTICAS DE FLUORESCÊNCIA EM

COMPRIMENTOS DE ONDA ESPECÍFICOS PARA

ATIVAÇÃO DE POLIMERIZAÇÃO DE MATERIAIS

RESTAURADORES ODONTOLÓGICOS RESINOSOS

DEVELOPMENT OF NANOPARTICLES WITH

FLUORESCENCE OPTICAL PROPERTIES IN SPECIFIC

WAVELENGTHS FOR LIGHT ACTIVATION OF RESIN-

BASED DENTAL RESTORATIVE MATERIALS

PIRACICABA

2017

Page 2: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

RAFAEL ROCHA PACHECO

“DESENVOLVIMENTO DE NANOPARTÍCULAS COM PROPRIEDADES ÓPTICAS DE

FLUORESCÊNCIA EM COMPRIMENTOS DE ONDA ESPECÍFICOS PARA ATIVAÇÃO DE

POLIMERIZAÇÃO DE MATERIAIS RESTAURADORES ODONTOLÓGICOS RESINOSOS”

“DEVELOPMENT OF NANOPARTICLES WITH FLUORESCENCE OPTICAL PROPERTIES

IN SPECIFIC WAVELENGTHS FOR LIGHT ACTIVATION OF RESIN-BASED DENTAL

RESTORATIVE MATERIALS”

Tese apresentada à Faculdade de Odontologia de

Piracicaba da Universidade Estadual de Campinas como

parte dos requisitos para obtenção do titulo de Doutor em

Materiais Dentários.

Thesis presented to the Piracicaba Dental School of the

University of Campinas in partial fulfillment of the

requirements for degree of Doctor in Dental Materials.

Orientador: Prof. Dr. Marcelo Giannini

Co-orientador: Prof. Dr. Mário Alexandre Coelho Sinhoreti

ESTE EXEMPLAR CORRESPONDE À VERSÃO FINAL

DA TESE DEFENDIDA PELO ALUNO RAFAEL ROCHA

PACHECO, E ORIENTADA PELO PROF. DR.

MARCELO GIANNINI.

PIRACICABA

2017

Page 3: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

Powered by TCPDF (www.tcpdf.org)

Page 4: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas
Page 5: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

DEDICATÓRIA

Dedico este trabalho à minha família.

Page 6: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

AGRADECIMENTOS ESPECIAIS

Agradeço, primeiramente, a Deus. Por tudo. Impossível me expressar em palavras. Se não

fosse por Sua misericórdia, nada seria possível.

Aos meus pais, Osmar e Zuleide, por todos esses anos de amor, dedicação, carinho,

paciência, amizade, esforço, suporte em tantos aspectos e por, sempre, acreditarem em mim.

À minha irmã, Renata, por toda a preocupação, carinho, amizade e cuidado demonstrados em

todos os anos de minha vida.

À minha noiva, Melissa, por ser minha companheira, meu suporte, minha amiga, por todo

respeito, incentivo, compreensão e, especialmente, por todo amor e carinho.

Aos meus amigos, André Pinho, André Sousa, Bruno Bueno, Bruno Zen, Caio Vinícius,

Eduardo Ozera, Enzo Rosetti, Lucas Tomaselli, Pedro Tolentino, Rafael Vitti, Roberto Dinelli,

Rodrigo Lessa, Thiago Bueno e Tiago Dias, que muito me apoiaram em diferentes momentos da

minha vida, estando sempre presentes, mesmo quando distantes.

Page 7: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

AGRADECIMENTOS

À Faculdade de Odontologia de Piracicaba, da Universidade Estadual de Campinas, em

nome do Diretor, Prof. Dr. Guilherme Elias Pessanha Henriques, e Diretor Associado, Prof. Dr.

Francisco Haiter Neto, insituição onde tive a oportunidade de desenvolver minha formação acadêmica

de graduação e pós-graduação, por 10 anos.

Ao meu orientador, Prof. Dr. Marcelo Giannini, por ter acreditado em mim e ter demonstrado

isso por todos esses anos. Agradeço pelo conhecimento, pela ajuda em momentos difíceis e pelas

oportunidades a mim concedidas.

Ao programa de Pós-Graduação em Materiais Dentários da Faculdade de Odontologia de

Piracicaba - UNICAMP e, todos que, de alguma forma, colaboram com seu crescimento. Tenho imensa

gratidão e orgulho de poder dizer que fiz parte deste programa.

À Profa. Dra. Regina Maria Puppin-Rontani, coordenadora do Programa de Pós-Graduação

em Materiais Dentários, Departamento de Odontologia Restauradora, da Faculdade de Odontologia de

Piracicaba - UNICAMP, pela amizade, educação, respeito, competência, suporte, conselhos e carinho

que tem demonstrado desde os primeiros contatos durante a graduação.

Aos docentes do Programa de Pós-Graduação em Materiais Dentários, Profa. Dra. Fernanda

Miori Pascon, Prof. Dr. Lourenço Correr-Sobrinho, Prof. Dr. Luís Roberto Marcondes Martins, Prof.

Dr. Mário Fernando de Goes, Prof. Dr. Rafael Leonardo Xediek Consani e Prof. Dr. Simonides

Consani, pelo conhecimento, educação, carinho, dedicação, preocupação, amizade e toda a ajuda

durante esses dois anos. Nunca vou conseguir expressar o tamanho do impacto de cada um em minha

vida, pessoal e profissional, ou sequer agradecer o suficiente.

A Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), pela bolsa

concedida durante o Doutorado e pelo programa de Pesquisador Visitante Especial, também da

CAPES, que permitiu a oportunidade de realizar o doutorado sanduíche e, consequentemente, o

desenvolvimento deste trabalho.

À Augusta University e ao Prof. Frederick Allen Rueggeberg, por terem me dado a

oportunidade de desenvolver meu trabalho em uma instituição de tanto prestígio, e totais condições

de realizar este trabalho. Ao Prof. Frederick Allen Rueggeberg, extendo meu agradecimento mais do

que especial, por todo o conhecimento, cuidado, acolhimento, carinho, e demonstração de humildade

que tive o prazer de desfrutar, mas, acima de tudo, pela amizade impagável. Sem dúvidas, um dos

maiores exemplos de pessoa e profissional que tive em minha vida. Esse trabalho não existiria sem

sua mente brilhante.

Ao Instituto de Física “Gleb Wataghin”, em nome dos professores, Prof. Dr. Carlos Rettori,

Prof. Dr. Ricardo Rodrigues Urbano e aos alunos do programa de pós-graduação, Ali Garcia Flores

e Guilherme Gorgen Lesseux, por toda ajuda, confiança, companheirismo, carinho e respeito com

que me receberam. O trabalho seria, literalmente, impossível sem a participação de cada um.

À pós-doutoranda e, principalmente, amiga, Ailla Carla Rocha Acosta Lancelotti, por toda

ajuda com o trabalho e tanto carinho demonstrado por tantos anos.

Page 8: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

À University of Detroit Mercy, minha atual instituição, por acreditar no meu potencial e me

dar totais condições para a conclusão deste trabalho.

Ao meu co-orientador e, membro titular da banca de defesa, Prof. Dr. Mário Alexandre Coelho

Sinhoreti, pelo companheirismo, cuidado, carinho, respeito, bondade, amizade e humildade. Um

exemplo como professor e, principalmente, como pessoa.

Ao Prof. Dr. Américo Bortolazzo Correr, por todos ensinamentos, pela contribuição a minha

formação profissional, amizade, respeito e por aceitar ser membro titular da banca de defesa, pelo

companheirismo, contribuindo, e muito, para o enriquecimento do trabalho.

Ao Prof. Dr. Eduardo José Carvalho de Souza Júnior, por aceitar ser membro titular da banca

de defesa, se deslocando por mais de 1.000 Km até o local da defesa. Muito obrigado pela amizade e

parceria, ao longo desses anos, espero que continue por muitos anos.

Ao Prof. Dr. João Paulo de Lyra e Silva, por aceitar ser membro titular da banca de defesa, e

contribuir para o enriquecimento do trabalho. Porém, agradeço, principalmente, por sua prezada

amizade que tornou os anos de pós-graduação muito mais agradáveis.

Ao Prof. Dr. Luís Henrique Araújo Raposo, por aceitar ser membro titular da banca de defesa,

e contribuir para o enriquecimento do trabalho. Um aluno exemplar, um profissional exemplar e um

amigo exemplar. Acredito que suas atitudes foram inspiradoras a muitos alunos do programa. Muito

obrigado por sua amizade.

Aos membros da banca de qualificação, Profa. Dra. Ana Rosa Costa Correr, Profa. Dra.

Vanessa Cavalli e Prof. Dr. Rafael Pino Vitti, por aceitarem o convite, dispenderem o tempo para

leitura e correção, e tanto contribuir para o enriquecimento do trabalho, com excepcional gentileza.

À Selma Aparecida Barbosa de Sousa Segalla, secretária da Área de Materiais Dentários,

Departamento de Odontologia Restauradora, da Faculdade de Odontologia de Piracicaba - UNICAMP,

pela atenção, cuidado e amizade.

Ao técnico especializado do laboratório da Área de Materiais Dentários, Departamento de

Odontologia Restauradora, da Faculdade de Odontologia de Piracicaba - UNICAMP, engenheiro, e

mestre, Marcos Blanco Cangiani, por toda ajuda, companheirismo, amizade, respeito, risadas,

conselhos e força durante esse período. Vou levar para sempre no meu coração, como um exemplo de

pessoa.

Ao biólogo, e mestre, Adriano Luis Martins, supervisor do Centro de Microscopia e Imagens,

da Faculdade de Odontologia de Piracicaba – UNICAMP, por toda ajuda, amizade e companheirismo

demonstrados desde a graduação. Obrigado pelo carinho.

Aos meus amigos de mestrado e doutorado, que dividiram comigo não somente experiências

profissionais, mas marcaram suas passagens em minha vida. Especialmente: Caio, Camila, Eveline,

Raquel e Renata, companheiros desde a graduação, até a conclusão do doutorado. Muito obrigado

pela amizade...

Agradeço, também, a todos aqueles que, de alguma forma, contribuíram com meu

desenvolvimento pessoal e profissional. Àqueles que sempre demonstraram educação, respeito,

compaixão e torceram pelo meu bem. Muito obrigado.

Page 9: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

RESUMO

O objetivo neste presente estudo foi descrever um método de síntese de

nanocristais b-NaYF4:30%Yb,0.5%Tm com propriedades de fluorescência por

upconversion (UC), em comprimentos de onda específicos para ativação de

fotoiniciadores de uso odontológico quando irradiados por um laser infravermelho (IR),

para indução de conversão monomérica de materiais restauradores odontológicos

fotoativados. No primeiro capítulo deste estudo, um método de síntese para

nanocristais-b foi descrito, utilizando diferentes reagentes químicos e temperatura

controlada a diferentes períodos para crescimento dos cristais. Em seguida, um

método de purificação, utilizando banhos consecutivos de etanol e clorofórmio, foi

determinado, resultando em um pó branco. A caracterização morfológica dos cristais

sintetizados foi realizada por meio de microscopia eletrônica de varredura (SEM) e

Microscopia Eletrônica de Transmissão (TEM), enquanto a composição foi

determinada por meio de Espectroscopia por Energia Dispersiva de Raios-X (EDX).

O espectro de emissão dos nanocristais quando excitados por um laser IR de 975 nm

a 1 W foi avaliado por um espectrofotômetro de 350-900 nm associado a um cabo de

fibra óptica de 450 µm e um sensor (n = 5). Os nanocristais obtidos foram observados

como dispersos, de tamanho uniforme de 200nm e de única fase cristalina

(hexagonal). O espectro de emissão através de UC foi observado a 365 nm, 450 nm,

475 nm, 650 nm e 800nm, quando os cristais foram expostos a um laser IR de 975

nm. Para o segundo capítulo, a transmissão de IR através de diferentes substratos

odontológicos, quando comparada a luz azul, foi analisada por meio de um radiômetro.

Uma abertura customizada foi impressa em termopolímero branco (ABS) e

posicionada sobre o sensor, permitindo que a energia que era transmitida através dos

diferentes materiais (n = 5) fosse detectada em uma determinada área. Análise de

variância de três fatores demonstrou transmissão do laser IR estatisticamente maior

para esmalte, resinas com partículas de fibra e cerâmicas de baixa translucidez,

quando comparada à luz azul. Para o terceiro capítulo, os nanocristais foram

incorporados a uma resina sem carga (Bis-GMA e TEGDMA) em diferentes

concentrações (15%, 30% e 60% em peso) seguido da análise do espectro de

emissão, do liner UC resultante, utilizando configuração similar de espectrofotometria

(n = 5). Interposições de tecidos dentários e compósitos em diferentes espessuras

Page 10: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

foram posicionados entre a fonte de luz e o sensor, para determinar a eficiência no

efeito de UC através de diferentes substratos (n = 5). A influência da emissão espectral

do liner UC sobre o grau de conversão de uma resina fotoativada por luz azul (apenas)

foi determinada por meio de Espectroscopia Transformada de Infravermelho de

Fourier (FTIr) (n = 5). Os mesmos substratos do segundo capítulo foram interpostos

de forma a determinar a influência da emissão gerada através de UC em situações

clínicas. Uma concentração ideal de partículas foi definida em 30%. A emissão

espectral foi reduzida por diferentes interposições, influenciando a cinética de

polimerização de uma resina fotoativada por luz azul. No entanto, a análise de

variância (p < 0.01) demonstrou que a emissão UC foi suficiente para induzir

conversão monomérica em todos grupos avaliados através de FTIr. Em conclusão, a

transmissão de IR através de diferentes substratos odontológicos foi suficiente para

excitar nanocristais sintetizados de b-NaYF4:30%Yb,0.5%Tm, resultando em um

efeito UC suficiente para induzir conversão monomérica em um material resinoso

fotoativado por luz azul.

Palavras-chave: Nanotecnologia, fluorescência, espectro infravermelho,

polimerização.

Page 11: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

ABSTRACT

The aim of this study was to describe the synthesis route of b-

NaYF4:30%Yb,0.5%Tm nanocrystals with upconverting (UC) spectral emission, on

wavelengths optimal for activation of Dental photoinitiators when irradiated by infrared

(IR) laser, in order to induce monomeric conversion of light-curable dental restorative

materials. For the first chapter of this study, a method for b-nanocrystals synthesis was

described, using different chemicals and controlled temperature for crystal growth.

Following, a purification method, using consecutive baths of ethanol and chloroform,

have been determined, resulting in a white powder. Morphological characterization of

resulting nanocrystals was performed by Scanning Electron Microscopy (SEM) and

Transmission Electron Microscopy (SEM), while composition was determined by

Energy Dispersive X-Ray (EDX). Spectral emission of UC nanocrystals once exposed

to a 1 W IR 975 nm laser was evaluated by a calibrated configuration for

spectrophotometry, using a 350-900 nm spectrophotometer associated to a 450 µm

optical fiber cable and cosine corrector (n = 5). Nanocrystals of b-

NaYF4:30%Yb,0.5%Tm were obtained from synthesis confirming uniform size of

200nm, well-dispersed and single-phase (hexagonal) nanocrystals. Spectral UC

emission was observed at 365 nm, 450 nm, 475 nm, 650 nm and 800 nm, once

irradiated by 975 nm IR laser. For the second chapter, the transmission of IR through

different dental substrates, when compared to blue light, was analyzed by using a

thermopile, connected to a radiometer. A custom aperture was 3D-printed in white

thermopolymer (ABS) and placed over the thermopile, allowing energy that was

transmitted through dental tissues, composites and ceramics (n = 5) to be detected at

a specific area. Analysis of variance (p < 0.01) determined that transmission of IR was

significantly higher for enamel, fiber-reinforced composites and reduced translucency

ceramics, when compared to blue light. For the third chapter, nanocrystals were

incorporated to an unfilled resin (Bis-GMA and TEGDMA) at different concentrations

(15%, 30% and 60%wt) and spectral emission of resulting UC liner was calculated

using similar configuration of spectrophotometry (n = 5). Interpositions of dental tissues

and composites at different thicknesses were placed between light source and cosine

corrector, in order to determine the UC efficiency through different substrates (n = 5).

The influence of the UC liner spectral emission on the degree of conversion of a blue-

Page 12: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

light curable resin was determined by Fourier Transformed IR (FTIr) spectroscopy (n

= 5). Same substrates were interposed in order to determine the influence of UC

emission at clinically relevant situations. Optimal concentration of UC nanocrystals was

determined at 30%. Spectral emission was reduced by different interpositions,

influencing the kinetic of cure of a blue-light curable resin. Furthermore, analysis of

variance determined that UC emission was sufficient to induce monomeric conversion

at all evaluated FTIr groups. In conclusion, IR light transmission through different

dental substrates was sufficient to excite synthetized NaYF4:30%Yb,0.5%Tm

nanocrystals, resulting in a UC effect that induced monomeric conversion of a blue-

light curable resin based material.

Keywords: Nanotechnology, fluorescence, infrared spectrum, polymerization.

Page 13: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

SUMÁRIO 1. INTRODUÇÃO ................................................................................................... 14

2. ARTIGOS ........................................................................................................... 19

2.1. ARTIGO 1: Synthesis and characterization of upconverting nanocrystals of

b-NaYF4 doped with Yb+3 and Tm+3 ....................................................................... 19

2.2. ARTIGO 2: Comparison of blue and IR light transmission through different

dental substrates ................................................................................................... 33

2.3. ARTIGO 3: Effect of upconverting nanocrystals spectral emission on the

monomeric conversion of resin based materials ................................................... 53

3. DISCUSSÃO ...................................................................................................... 75

4. CONCLUSÃO .................................................................................................... 80

REFERÊNCIAS ......................................................................................................... 81

APÊNDICE 1 - Figuras .............................................................................................. 88

ANEXO 1 – Comprovante de Submissão do Artigo ................................................ 100

Page 14: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

14

1. INTRODUÇÃO

A introdução de materiais odontológicos à base de resina na prática

odontológica permitiu que procedimentos restauradores, diretos ou indiretos, fossem

realizados de forma mais conservadora, devido a adesão que estes materiais podem

apresentar aos tecidos dentais (Ferracane, 2011). Polímeros são, basicamente,

cadeias longas formadas por unidades repetidas, chamadas monômeros, que reagem

entre si formando uma rede (Stansbury, 2000). Essa reação (polimerização) consiste

na quebra das ligações duplas de carbono, presentes em monômeros à base de

metacrilato ou outros tipos de monômeros, quando expostas a radicais livres

(Stansbury, 2000). A formação de radicais livres é resultado de um processo de

ativação, que pode ser química ou física (através de luz visível) (Stansbury, 2000;

Rueggeberg, 2011). O processo de fotoativação (com luz visível) representou um

grande avanço na prática clínica odontológica, permitindo maior controle do tempo de

trabalho do material restaurador por parte do cirurgião-dentista (Ferracane, 2011;

Rueggeberg, 2011). Para que a fotoativação ocorra, a luz visível em um comprimento

de onda específico, em uma dose mínima de energia, deve ser irradiada sobre

moléculas fotossensíveis chamadas fotoiniciadores (Harris et. al., 1999; Stansbury,

2000; Ferracane, 2011; Rueggeberg, 2011). Atualmente, o sistema fotoiniciador mais

comum entre os materiais restauradores à base de resina é uma associação entre

canforquinona e uma amina (Stansbury, 2000; Rueggeberg, 2011). A canforquinona

é um fotoiniciador de tipo II e, quando exposta a um comprimento de onda no espectro

da luz azul (pico de absorção em 468 nm), atinge um estado energético conhecido

como “triplet” interagindo com a amina e resultando na formação de radicais livres que

iniciam a polimerização (Harris et. al., 1999; Stansbury, 2000; Ferracane, 2011;

Rueggeberg, 2011; AlQahtani et. al., 2015).

Durante a polimerização, os espaços entre os monômeros, antes ocupados

por forças de Van der Waals, são substituídos por ligações covalentes, resultando em

uma contração volumétrica (Versluis et. al., 1998; Chuang et. al., 2016). Essa

contração, conhecida como contração de polimerização, pode gerar tensões na área

de união dente-resina, representando um dos maiores problemas inerentes aos

procedimentos restauradores adesivos (Versluis and Tantbirojn, 2009). A tensão de

contração pode levar a formação de fendas marginais (Fronza et. al., 2015), trincas

Page 15: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

15

no esmalte (Rosatto et. al., 2015), sensibilidade pós-operatória (Rosatto et. al., 2015),

manchamento e cárie secundária (Bicalho et. al., 2014; Rosatto et. al., 2015). A tensão

de polimerização pode ser influenciada por diversos fatores, incluindo a composição

orgânica e inorgânica do material restaurador (Kalliecharan et. al., 2016), técnica

restauradora (Bicalho et. al., 2014), “fator C” da cavidade (Al Sunbul et. al., 2016),

velocidade da polimerização e método de fotoativação (Chuang et. al., 2016). O

ângulo de incidência da luz azul sobre a restauração também apresenta influência

sobre a tensão de polimerização de forma que, uma irradiação ortogonal a

restauração (perpendicular a superfície oclusal) pode levar a maiores tensões de

polimerização (Chuang et. al., 2016) em uma restauração classe I, por exemplo. Uma

adequada dose de energia é essencial para que a reação de polimerização ocorra,

sendo assim, a redução na irradiância dado um mesmo tempo de exposição leva a

uma redução das propriedades físicas e mecânicas dos materiais poliméricos devido

ao menor grau de conversão monomérico e formação de ligações cruzadas

(Stansbury, 2000; Vandewalle et. al., 2004; Price et. al., 2014).

A luz é uma onda eletromagnética que, quando transmitida através de

diferentes corpos, pode sofrer um efeito conhecido como espalhamento (Miles et. al.,

2001; Harlow et. al., 2016). Esse espalhamento é mais evidente para comprimentos

de ondas menores (espalhamento de Rayleigh = l-4), sendo determinante para a

profundidade de polimerização de resinas compostas diretas ou para a fotoativação

de cimentos resinosos através de materiais restauradores indiretos (Miles et. al., 2001;

Harlow et. al., 2016). Para reduzir os efeitos da profundidade e contração de

polimerização, técnicas incrementais têm sido descritas, de forma que o incremento

de material seja de, aproximadamente, 2 mm, aumentando o tempo do procedimento

restaurador (Bouschlicher et. al., 2004; Bicalho et. al., 2014). Recentemente, uma

nova classe de materiais restauradores diretos, conhecidos como resinas do tipo bulk

fill, foi introduzida ao mercado como uma possível solução para o problema causado

pela profundidade de polimerização, podendo ser utilizado em incrementos de até 5

mm representando, assim, uma simplificação da técnica (Fronza et. al., 2015;

Kalliecharan et. al., 2016). Alterações na porção orgânica e/ou inorgânica permitiriam

uma maior transmissão de luz e, consequentemente, maior profundidade de

polimerização para estes materiais (AlQahtani et. al., 2015; Fronza et. al., 2015). Além

Page 16: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

16

disso, fotoiniciadores alternativos sensíveis a diferentes comprimentos de onda de luz

visível, como o violeta, têm sido incorporados nas formulações destes materiais

(Harlow et. al., 2016). Fotoiniciadores alternativos de tipo I apresentam maior

eficiência na formação de radicais livres com uma dose de energia menor (Stansbury,

2000; Harlow et. al., 2016). No entanto, a luz violeta é altamente afetada pelo efeito

do espalhamento, por apresentar um comprimento de onda menor (maior frequência)

(Miles et. al., 2001) quando comparada a luz azul, levando a baixa profundidade de

polimerização (Harlow et. al., 2016).

A luz visível pode ser observada, também, através de um efeito óptico,

chamado fluorescência (Auzel, 2004). A fluorescência, como conhecemos, consiste

na conversão de ondas de maior energia (menores comprimentos de onda) em ondas

de menor energia (maiores comprimentos de onda), definida como emissão do tipo

Stoke (Auzel, 2004; Li and Zhang, 2008). Um exemplo deste efeito de fluorescência é

a conversão de luz ultra violeta em luz visível (azul, por exemplo) (Li and Zhang, 2008).

No entanto, emissões do tipo Anti-Stoke têm sido reportadas na literatura, onde ondas

de menor energia (maiores comprimentos de onda) são convertidas em ondas de

maior energia (menores comprimentos de onda) (Auzel, 2004; Boyer et. al., 2006).

Esse efeito é conhecido como “upconversion” (UC) e, um exemplo seria a conversão

de luz infravermelho em luz visível (por exemplo, azul) (Scheps, 1996; Auzel, 2004;

Boyer et. al., 2007; Stepuk et. al., 2012). Ondas eletromagnéticas no espectro do

infravermelho (IR) são longas (entre 800 nm e 1 mm) e são afetadas em menor

intensidade pelo efeito do espalhamento quando transmitidas através de diferentes

corpos (Fried et. al., 1995; Miles et. al., 2001; Li and Zhang, 2008).

Recentemente, a literatura tem reportado métodos para a síntese de

cristais, contendo terras raras em sua composição (itérbio, ítrio, túlio, érbio, etc), que

demonstram efeito de UC quando irradiados com laser de IR a 975 nm (Auzel, 2004;

Krämer et. al., 2004; Boyer et. al., 2006; Mai et. al., 2006; Boyer et. al., 2007; Li and

Zhang, 2008; Iwamoto et. al., 2010). Os cristais podem apresentar diferentes tipos de

“hospedeiros”, sendo que fluoretos seriam ideais para a emissão de luz visível azul

(Auzel, 2004; Boyer et. al., 2006). Íons itérbio (Yb) e túlio (Tm), associados ou não,

foram os primeiros descritos na literatura com efeito UC e, atualmente, são os íons

com maior eficiência de UC (3.4x10-2 cm2/mWn-1) (Auzel, 2004; Boyer et. al., 2006).

Page 17: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

17

Cristais de NaYF4 dopados por Tm+3 e Yb+3, quando irradiados por laser de 975 nm,

apresentam um efeito de upconversion por transferência de energia de dois fótons

(two-photon energy transfer upconversion (ETU)) (Auzel, 2004), em comprimentos de

onda de luz visível azul (450-470 nm) (Mai et. al., 2006; Li and Zhang, 2008). Esse

efeito consiste na absorção de fótons de menor energia pelo íon diretamente excitado

(sensibilizador) seguido de transferência para o segundo íon (ativador), que libera um

fóton em maior estado energético (Auzel, 2004). A padronização e controle do método

de síntese é extremamente importante para que os cristais sintetizados sejam

uniformes em tamanho, forma, e dispersão de fases (Mai et. al., 2006; Iwamoto et. al.,

2010). Nanocristais de NaYF4, após a síntese, podem ser obtidos na fase cúbica (fase

a) ou hexagonal (fase b) (Mai et. al., 2006; Iwamoto et. al., 2010), sendo que cristais

b apresentam maior eficiência no efeito UC e menor tamanho (Jana et. al., 2002). Um

tamanho reduzido (200 nm) confere maior área de superfície em um mesmo volume,

maior reatividade ao cristal assim como um aumento nos efeitos quânticos alterando

assim, os efeitos ópticos (Takagi et. al., 1990).

Como resultado da síntese, uma solução orgânica contendo diferentes

reagentes e uma dispersão de nanopartículas é obtida (Takagi et. al., 1990; Shan et.

al., 2007; Shan et. al., 2011). A incorporação desses nanocristais-b UC em materiais

resinosos odontológicos permitiria a emissão de luz azul a partir do interior do material

restaurador (Stepuk et. al., 2012) ou na região de união entre dente e material

restaurador (como proposto neste trabalho). A adição de nanocristais a uma resina

fluída de composição básica de Bis-GMA e TEGDMA resultaria em um material

resinoso contendo nanocristais com efeito de UC, que poderia ser utilizado como um

liner, de forma a ser aplicado sobre a camada adesiva previamente ao material

restaurador. Quando irradiado por um laser IR (975 nm), o liner UC emitiria luz azul

uniformemente na área de união do material restaurador com o dente, induzindo

conversão monomérica e reduzindo os efeitos deletérios da profundidade de

polimerização e contração de polimerização.

Assim, o presente estudo foi dividido em três 3 capítulos e seus respectivos

objetivos foram: [1] descrever um método de síntese de nanocristais com

propriedades ópticas de UC em comprimentos de onda específicos para fotoativação

de materiais resinosos odontológicos, quando irradiados por um laser IR (975 nm) e

Page 18: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

18

caracterizar morfologicamente os nanocristais sintetizados; [2] comparar a

transmissão de luz visível azul e IR (emitido através de um laser desenvolvido e

caracterizado para este uso) através de diferentes substratos odontológicos; [3]

incorporar nanocristais sintetizados e purificados em uma resina fluída contendo Bis-

GMA e TEGDMA, para obtenção de um liner com efeito de UC, em uma concentração

ideal e avaliar o efeito da emissão de luz azul UC no grau de conversão de materiais

restauradores à base de resina.

Page 19: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

19

2. ARTIGOS

2.1. ARTIGO 1: Synthesis and characterization of upconverting nanocrystals

of b-NaYF4 doped with Yb+3 and Tm+3

ABSTRACT

Objectives: The aim of this study was to synthetize b-NaYF4:30%Yb,0.5%Tm

nanocrystals followed by a purification method, morphological characterization,

composition and spectral emission that would convert infrared (IR) into blue visible

light.

Materials and Methods: Nanocrystals synthesis was performed by using a volumetric

flask with magnetic stirring and controlled temperature. A solution of 10 mL of

trifluoroacetic acid and 0.00116 g of thulium oxide was agitated for 20 minutes at room

temperature (23°C). Temperature was gradually increased, up to 80°C, resulting in

thulium trifluoroacetate. At 30oC, 7.5 mL of octadecene and 7.5 mL oleic acid were

added as well as NaCF3COOH, Y(CF3COOH)3, and Yb(CF3COOH)3, under magnetic

stirring for 20 minutes. Temperature was raised again to 100°C for 30 minutes, then

increased to 330°C for another 25 minutes. An amount of 2 mL of resulting solution

was separated into a test tube where consecutive baths of alcohol and chloroform (and

centrifugation) resulted in a white powder of nanocrystals. Energy dispersive X-Ray

(EDX) spectroscopy was used to determine the composition of the nanocrystals. The

spectra were obtained using the EDX equipment at 15 kV, 100s lifetime, 20-25% dead

time and working distance of 20 mm. Morphology and dispersion were determined by

Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM).

Nanocrystals were observed at 10,000X and 20,000X (SEM), and 120,000X (TEM).

Spectral emission by nanocrystals (irradiated by 975nm laser) was determined using

a calibrated configuration of spectrophotometer associated to a 450 μm fiber optic

cable and a cosine corrector (n=5).

Results: Following chemical elements were detected (EDX): sodium (Na), yttrium (Y),

ytterbium (Y), chloride (Cl), calcium (Ca) and fluoride (F). Microscopic analysis (SEM

and TEM) showed a high concentration and uniform dispersion of uniformly shaped

UC nanocrystals, no bigger than 200nm (b-phase), and no clustering observed.

Spectral emission analysis found emission peaks at 365 nm, 450 nm and 475 nm.

Page 20: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

20

Conclusion: Described synthesis and purification methods resulted in a powder of

uniform, monodisperse, single-phase, 200 nm crystals of b-NaYF4:30%Yb,0.5%Tm,

with UC effect at three clinically relevant wavelengths once irradiated by a 975 nm IR

laser.

Keywords: Nanotechnology, fluorescence, infrared rays, polymerization. INTRODUCTION

Fluorescence emission usually follows the principle of Stokes law which states

that the excitation energy is always higher than emitted energy [1]. This effect is usually

observed when organic dyes or semiconductor nanocrystals emit visible light under

excitation of UV (down-conversion) [2]. However, anti-Stokes emission or

upconversion (UC) effect, violates Stokes basic law because lower energy frequencies

can be converted into higher energy [1]. Those longer wavelengths (i.e. infrared), with

higher penetration through different materials [2], are converted into shorter

wavelengths, i.e., blue visible light. In Dentistry, many resin-based restorative materials

are light-activated, using a specific wavelength for excitation of photoinitiators [3, 4].

Camphorquinone associated to an amine is the most common photoinitiator system

used in dental resin-based restorative materials formulations and is sensitive to blue

light (peak of absorption at 468 nm) [5].

For UC nanocrystals synthesis, fluorides have demonstrated to be ideal ion

hosts for blue light emission [1] and different ions may lead to specific emission

properties [1]. Thulium (Tm+3) is one of the first ions, alone or in association to

Ytterbium (Yb+3) that has demonstrated upconversion properties. The UC effect

observed for sodium yttrium fluoride (NaYF4) crystals doped with Yb+3 and Tm+3 can

be described as two-photon energy transfer upconversion (ETU) [1], resulting in

emission on 450-500 nm region once exposed to infrared (IR) excitation of 975 nm [6,

7]. ETU effect is observed when the ion directly excited (sensitizer) donates photons

to a second ion (activator) that emits the output photon at a higher energy [1]. Synthesis

method plays an important role on the crystal morphology and, consequently, on the

many properties [2, 8]. For NaYF4 synthesis, resultant nanocrystals can be cubic (a-

phase) or hexagonal (b-phase), depending on the method used [9, 10]. Thus, the

control of synthesis method is critical for obtaining specific phases, since b-NaYF4

Page 21: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

21

doped with Yb+3 and Tm+3 is known for being one of the materials with the highest

upconversion efficiencies (3.4x10-2 cm2/mWn-1) [1, 2, 6, 11]. An optimal synthesis

would result in a monodisperse, single-crystalline, well-shaped and phase-pure crystal

solution [9]. Crystal size is also critical for UC efficiency, because nano scaled particles

demonstrate an increased number of atoms on the surface when compared to bigger

particles, thus, increased surface area and reactivity [12]. Also, quantic effects are

increased altering optical properties [13].

Light curing procedure is a major step in Restorative Dentistry because it is

critical in order to ensure optimal properties of resin based restorative materials [14].

Sufficient energy in specific wavelength that matches photoinitiator peak of absorption

is essential [4, 5, 15] and as mentioned, shorter wavelengths (such as blue light) are

highly scattered within different materials [16, 17] resulting in a technical limitation

known as depth of cure for composite restoration procedures. Conventional

composites are recommended to be placed in increments that should not exceed 2

mm, in thickness, which increases the chair-side procedure time. Same effect is

observed for indirect restorations, since high frequencies are attenuated when

transmitted, which could reduce the degree of conversion and mechanical properties

of resin cements.

Also, during polymerization, the free space among monomers is reduced,

resulting in a volumetric reduction known as polymerization shrinkage [18]. This

volumetric reduction result in shrinkage stresses that can affect the restoration bonding

interface [19, 20], which might lead to marginal gap formation [21], enamel crack [22],

post-operative sensitivity [22], marginal staining and secondary caries [22, 23].

Shrinkage is influenced by many factors, including the material composition, cavity

preparation design [24], filling technique and, also, angle of light incidence [19].

Thus, the incorporation of UC nanocrystals in a cavity liner could result in a UC

material that would emit blue light from the bonded interface walls once exposed to IR

excitation, leading to monomeric conversion on the composite placed adjacent to it,

possibly reducing the limitations of blue light transmission and the vector of

polymerization shrinkage stress. The aim of this study was to describe the synthesis

of b-NaYF4:30%Yb,0.5%Tm nanocrystals followed by morphological characterization,

composition and spectral emission, and purification method in order to obtain a fine

Page 22: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

22

powder for incorporation on resin-based restorative dental materials. Hypothesis are

that [1] controlled synthesis would result in hexagonal phase nanocrystals of

NaYF4:30%Yb,0.5%Tm with [2] UC effect from IR to emit visible blue light and that [3]

the purification method would not inhibit the UC effect on nanocrystals.

MATERIALS AND METHODS Nanoparticles synthesis

In a volumetric flask with magnetic stirring and controlled temperature, 10 mL

of trifluoroacetic acid (Sigma Aldrich, St. Louis, MI, USA) and 0.00116 g of thulium

oxide (Sigma Aldrich, St. Louis, MI, USA) were added. The solution was agitated for

20 minutes at room temperature (23°C). Gradually the temperature was increased

using low flow of argon, because the solution is very volatile, up to 80°C. At this

moment occurred the formation of thulium trifluoroacetate. Temperature was

maintained at 80°C for excess liquid evaporation on a hood. Solution was allowed to

cool down at room temperature to reach 30°C. At this temperature, 7.5 mL of

octadecene (Sigma Aldrich, St. Louis, MI, USA) and 7.5 mL oleic acid (Sigma Aldrich,

St. Louis, MI, USA) were added as well as NaCF3COOH (Sigma Aldrich, St. Louis, MI,

USA), Y(CF3COOH)3 (Sigma Aldrich, St. Louis, MI, USA), and Yb(CF3COOH)3 (Sigma

Aldrich, St. Louis, MI, USA) calculated on the desired molar ratio. Addition was made

under magnetic stirring and argon flow for 20 minutes. Temperature was raised again

to 100°C for 30 minutes, then increased to 330°C for another 25 minutes. Solution

underwent cooling down at room temperature [10].

Synthesis resulted in an organic solution (OS) where particles were

suspended. In order to evaluate the particles, as well as incorporate them in restorative

dental materials, a dry powder should be obtained from OS. An amount of 2 mL from

OS was separated into a test tube and 15 mL of puriss (P.A.) ethanol (Sigma Aldrich,

St. Louis, MI, USA) was added, creating a solution (ES). ES was centrifuged for 15

minutes at 3,600 RPM (Excelsa Baby I, Fanem, São Paulo, SP, Brazil) and the

supernatant was rinsed. This procedure was repeated for 3 times. Following, 8 mL of

chloroform (P.A.) (Sigma Aldrich, St. Louis, MI, USA) was added into the test tube,

creating a solution with the suspended particles (CS). An amount of 1.0 mL of CS

solution was added into 2.0 mL microtubes (Eppendorf Safe-Lock Tube™, Eppendorf

Page 23: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

23

AG, Hamburg, Germany) and centrifuged for 5 minutes at 12,500 RPM (5°C) (5810,

Eppendorf AG, Hamburg, Germany). Supernatant was removed and excess

chloroform was allowed to air dry, resulting in a white powder of nanoparticles.

Spectral emission analysis

Wavelength emission by nanoparticles spectra was determined using a

calibrated configuration of spectrophotometer (USB2000, Ocean Optics, Dunedin, FL,

USA) associated to a 450 μm fiber optic cable (QP400-2-UV-VIS, Ocean Optics,

Dunedin, FL, USA). In a dark room, particles were irradiated using a 975 nm laser

(L975P1WJ, Thorlabs Inc., Newton, NJ, USA), coupled to a laser diode current

controller (LDC220C, serial#M00297621, Thorlabs Inc., Newton, NJ, USA) and a

thermoelectric temperature controller (TED220C, serial #M00298181, Thorlabs Inc.,

Newton, NJ, USA). Spectral emission was captured by a cosine corrector (CC-3-UV-

T, Ocean Optics, Dunedin, FL, USA) coupled to the fiber optic cable, and data was

displayed by software (SpectraSuite, Ocean Optics, Dunedin, FL, USA).

Dispersive x-ray energy spectroscopy (EDX)

In order to evaluate composition of synthetized nanoparticles, 2 mL of

chloroform (P.A.) (Sigma Aldrich, St. Louis, MI, USA) was added into microtube

containing the nanoparticles, in order to create a suspension (NS). The suspension

was applied on the top of a carbon-tape by a glass rod, mounted on plastic stubs and

sputter-coated with carbon (MED 010, Balzers, Liechtenstein) for EDX evaluation (Link

ISIS, Oxford, UK) associated to SEM (JSM 5600LV, Jeol, Japan). The analysis was

made by SEM, which has coupled EDX equipment. The spectra were obtained using

the EDX (Vantage System, Noran Instruments, Middleton, WI, USA) with 15 kV, 100s

lifetime, 20-25% dead time and working distance at 20 mm.

Electron microscopy (SEM and TEM)

The morphology and dispersion of nanoparticles was determined by two

different microscopies. Nanoparticles were observed in magnifications of 10,000X and

20,000X using SEM. Same NS suspension was applied by a glass rod on the top of a

carbon tape mounted on metal stubs and sputter-coated with gold, in a thickness of

Page 24: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

24

approximately 50 Å in a vacuum evaporator (SCD 050, Bal-Tec AG, Balzers,

Liechtenstein) for SEM observation (JSM 5600LV, Jeol, Japan) operated under 15 kV

voltage, beam width of 25-30 nm and working distance of 10-15 mm.

TEM analysis allowed a higher magnification and resolution in order to

determine the morphology of nanoparticles. NS suspension was diluted in order to

reduce the concentration and isolate the nanoparticles for observation, using toluene

(TS), which was deposited on copper grids (Sigma Aldrich, St. Louis, MI, USA) suitable

for TEM using glass rods. Microscope used to observe the nanoparticles (JEM 1400,

Jeol, Japan) was operating at 120 kV voltage. Images were obtained at a magnification

of 120,000X.

RESULTS

Synthesis resulted in an organic solution that underwent a purification method

obtaining a fine white powder. Resulting powder was evaluated and EDX analysis

identified the following chemical elements: sodium (Na), yttrium (Y), ytterbium (Y),

chloride (Cl), calcium (Ca) and fluoride (F), as expected from the synthesis method (b-

NaYF4:30%Yb,0.5%Tm). Figure 1 represents the EDX spectra obtained identifying the

elements in the composition of UC nanocrystals.

Figure 1. EDX spectra obtained from synthetized nanoparticles (b-

NaYF4:30%Yb,0.5%Tm).

Page 25: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

25

Morphological analysis of synthetized particles with magnifications of 10,000X

and 20,000X showed a high concentration and uniform dispersion of UC nanocrystals,

with no clustering observed (Figure 2). Particles demonstrated uniform shape, with size

no bigger than 200 nm.

Figure 2. SEM micrographs of synthetized nanoparticles. A- Magnification of 10,000X;

B- Magnification of 20,000X.

In order to observe the nanoparticles in a higher magnification (120,000X),

TEM was performed revealing plate-shaped crystals (hexagonal phase) with,

approximately, 200 nm (confirming the phase of b-NaYF4:30%Yb,0.5%Tm), as seen

on Figure 3.

Figure 3. TEM micrographs of synthetized nanoparticles at a magnification of

120,000X.

Spectral emission of b-NaYF4:30%Yb,0.5%Tm when exposed to 975 nm laser

is demonstrated in Figure 4. It is possible to observe the spectral emission in the blue

Page 26: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

26

light region (450 nm and 475 nm), optimal for camphorquinone absorbance. Other

peaks were observed in red region (800 nm) and a smaller peak for green emission

(650 nm). At 975 nm is possible to observe the laser diode emission used for this study.

Figure 4. Spectral emission emitted by nanoparticles powder (notice peaks at 450 nm

and 475 nm, in optimum absorption for camphorquinone).

Figure 5 illustrates spectral emission specifically on 350-520 nm wavelength

region. Notice peaks on 450 nm and 475 nm, and a peak of UV emission (360 nm).

0

500

1000

1500

2000

2500

3000

3500

4000

4500

350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050

INTE

NSIT

Y (c

ount

s)

WAVELENGTH (nm)

NaYF4 NANOCRYSTAL DOPED WITH Yb+3 and Tm+3 SPECTRAL EMISSION WHEN IRRADIATED BY 975nm LASER

Page 27: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

27

Figure 5. Spectral emission on 350-520 nm range emitted by nanoparticles powder

(notice peaks at 450 nm, 475 nm and 360 nm).

DISCUSSION

Nanocrystals of b-NaYF4:30%Yb,0.5%Tm were synthetized and EDX analysis

confirmed the composition expected for these UC particles. For the synthetized

nanocrystals, Yb+3 and Tm+3 were the sensitizer and activator, respectively. Synthesis

methods resulted in a viscous, brown organic solution, which needed to be purified in

order to obtain the nanocristals. First hypothesis was confirmed since morphological

analysis demonstrated uniform dispersion of plate-shaped nanocrystals (hexagonal

phase), similar to reported in literature for similar synthesis methods [8-10, 25], with a

few modifications, as described in materials and methods. Chemical element Tm was

not represented on EDX analysis due to its low concentration (0.5%) and difficulty of

differentiation from other rare earth, like Yb. The control of a phase pure synthesis is

critical since hexagonal crystals have demonstrated higher UC efficiency when

compared to cubic phase [9, 10, 25]. Uniform size was also observed, with average

particle size of 200 nm, resembling the inorganic portion of nanofilled resin composites

[26]. The incorporation of these nanocrystals in a resin-based material would configure

a similar composition to those of conventional nanofilled resin composites (or flowable

composites) consisting of, basically, dimethacrylate monomers and inorganic fillers [3].

0,000

0,005

0,010

0,015

0,020

0,025

0,030

0,035

350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520

POW

ER D

ENSI

TY (m

W/c

m2)

WAVELENGTH (nm)

NaYF4 NANOCRYSTAL DOPED WITH Yb+3 and Tm+3 350-520nm RANGE EMISSION WHEN IRRADIATED BY 975nm LASER

Page 28: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

28

Also, although the particle size was in the nanoscale, no cluster formation was

observed for the nanocrystals, which might lead to uniform incorporation into resin-

based materials and higher emitting surface area (nanocrystals within clusters would

not emit/receive sufficient energy).

Second hypothesis was also accepted since the spectral emission of

synthetized b-NaYF4:30%Yb,0.5%Tm nanocrystals, when exposed to 975 nm, could

be suitable for dental applications demonstrating peaks on 450 nm and 475 nm,

optimal for camphorquinone excitation. Previous studies have reported the UC effects

of these nanocrystals dispersed in a solution (with chloroform, i.e.) [10, 11, 27]. Third

hypothesis tested was that purified nanocrystals, as a powder, would still emit blue

light once exposed to IR, and it was accepted. It was important to describe a

purification method and the effects on UC, because particles should be as pure as

possible for incorporating in resin-based materials. The incorporation of >1 µm NaYF4

UC bulk crystals into a resin-based material have been reported in the literature [7]

with major differences to what is proposed in the present study regarding the possible

clinical application of these materials and particle morphology. Restorative composites

containing these crystals, once exposed to the IR laser, would emit visible blue-light

within the whole composite increment [7], still leading to the same polymerization

shrinkage problems faced for blue-light curing with an incidence angle of 90o

orthogonal to the occlusal surface of the restoration [19]. The incorporation of UC

nanocrystals in a cavity liner could result in a UC material that would emit blue light

from the walls of the preparation, leading to monomeric conversion of the composite

placed adjacent to it, which might reduce the effects of polymerization shrinkage

stress. Also, bulk UC crystals with increased average size (> 1 µm) would result in

reduced surface area for the UC effect [12, 13]. An increased surface area with

reduced size crystals (200 nm) would allow intimate contact between camphorquinone,

present in the resin formulation, and the UC nanocrystals, leading to higher degree of

conversion and increased mechanical properties [14].

Emission peak at ultraviolet (UV) wavelength region (360 nm) was also

observed which might represent an important finding for dental applications, since

alternative photoinitiators are highly sensitive to UV region (<400 nm). These

alternative photoinitiators are usually type I photoinitiators, which are more efficient in

Page 29: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

29

generating free-radicals, requiring lower energy dose, when compared to

camphorquinone (type II) [14, 28]. The spectral emission of synthetized UC

nanocrystals is interestingly similar to the spectral emission observed for polywave

light curing units [29], which demonstrate peaks at blue and violet wavelength region.

Third generation light emitting diodes (LEDs) used in Dentistry deliver energy in violet

region in order to activate alternative photoinitiators (Lucerin TPO, Ivocerin) widely

used in recent introduced composites, mainly for bulk-filling technique [14, 17, 21].

Even though type I photoinitiators are known for being more efficient, violet light has

shorter wavelength when compared to blue light, demonstrating a higher scattering

effect within restorative materials, thus, lower penetration [16, 17]. Further studies

should be conducted in order to increase the efficiency of UC from IR to UV, since

nanocrystals with UC properties from IR to UV (or violet region light) could lead to

higher degree of conversion at increased depths. ETU cooperative luminescence using

praseodymium (Pr+3) ions could lead to a three-photon effect, which would upconvert

from 477 nm (blue light curing units) excitation to UV (400-250 nm) [1, 30].

Furthermore, these UC nanocrystals could be incorporated into resin cements (or

using same UC liners prior to resin cement) which would allow the addition of

alternative photoinitiators on resin cement formulations and, consequently, increased

mechanical properties since IR, and even blue, would be less scattered through

indirect restorative materials when compared to UV/violet.

Transmission of 975 nm wavelength through different types of dental

restorative materials is critical for proper excitation of these nanocrystals in previously

described clinical applications and should be evaluated in future studies. IR light that

is transmitted through different dental substrates should be enough to induce the UC

effect. The influence of a resin matrix in which the nanocrystals will be incorporated

should be also evaluated, since a different medium might inhibit the UC effect (IR

absorption, spectral emission absorption, refraction, etc). Conventional resin

composite inorganic matrixes are connected to the organic matrix by a coupling agent,

since particles are passive of silanization. Alterations in the nanocrystal composition

by adding SiO2, either by coating or in crystal composition, could allow the union of UC

nanocrystals to organic matrix. Also, further studies are necessary in order to evaluate

biocompatibility of these nanocrystals and determine the clinical outcomes.

Page 30: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

30

CONCLUSION

The following conclusions can be made:

1. Synthesis method resulted in uniform, monodisperse, single hexagonal phase

crystals of NaYF4:30%Yb,0.5%Tm with 200 nm in average size;

2. Synthetized nanocrystals demonstrated UC effect at three dental clinically

relevant peaks (365 nm, 450 nm and 475 nm) when excited by 975 nm (IR)

laser;

3. Purification method did not inhibit the UC effect of synthetized nanocrystals.

ACNOWLEDGEMENTS

Supported by Coordination for the Improvement of Higher Education Personnel (Capes

#3110/2010; #A043-2013 and #1777/2014), Brazil.

REFERENCES

[1] Auzel F. Upconversion and anti-stokes processes with f and d ions in solids.

Chemical reviews. 2004;104:139-74.

[2] Li Z, Zhang Y. An efficient and user-friendly method for the synthesis of hexagonal-

phase NaYF4: Yb, Er/Tm nanocrystals with controllable shape and upconversion

fluorescence. Nanotechnology. 2008;19:345606.

[3] Ferracane JL. Resin composite—state of the art. Dental materials. 2011;27:29-38.

[4] Rueggeberg FA. State-of-the-art: dental photocuring—a review. Dental Materials.

2011;27:39-52.

[5] Stansbury JW. Curing dental resins and composites by photopolymerization.

Journal of esthetic and restorative Dentistry. 2000;12:300-8.

[6] Boyer J-C, Vetrone F, Cuccia LA, Capobianco JA. Synthesis of colloidal

upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal

decomposition of lanthanide trifluoroacetate precursors. Journal of the American

Chemical Society. 2006;128:7444-5.

[7] Stepuk A, Mohn D, Grass RN, Zehnder M, Kramer KW, Pelle F, et al. Use of NIR

light and upconversion phosphors in light-curable polymers. Dental materials : official

publication of the Academy of Dental Materials. 2012;28:304-11.

Page 31: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

31

[8] Boyer J-C, Cuccia LA, Capobianco JA. Synthesis of colloidal upconverting NaYF4:

Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals. Nano Letters. 2007;7:847-52.

[9] Mai H-X, Zhang Y-W, Si R, Yan Z-G, Sun L-d, You L-P, et al. High-quality sodium

rare-earth fluoride nanocrystals: controlled synthesis and optical properties. Journal of

the American Chemical Society. 2006;128:6426-36.

[10] Iwamoto W, Vargas J, Holanda L, Alves E, Moreno M, Oseroff S, et al. Improved

Route for the Synthesis of Colloidal NaYF4 Nanocrystals and Electron Spin

Resonance of Gd3+ Local Probe. Journal of nanoscience and nanotechnology.

2010;10:5708-14.

[11] Krämer KW, Biner D, Frei G, Güdel HU, Hehlen MP, Lüthi SR. Hexagonal sodium

yttrium fluoride based green and blue emitting upconversion phosphors. Chemistry of

Materials. 2004;16:1244-51.

[12] Jana NR, Gearheart L, Obare SO, Murphy CJ. Anisotropic chemical reactivity of

gold spheroids and nanorods. Langmuir. 2002;18:922-7.

[13] Takagi H, Ogawa H, Yamazaki Y, Ishizaki A, Nakagiri T. Quantum size effects on

photoluminescence in ultrafine Si particles. Applied Physics Letters. 1990;56:2379-80.

[14] Price R, Shortall A, Palin W. Contemporary issues in light curing. Operative

Dentistry. 2014;39:4-14.

[15] Vandewalle KS, Ferracane JL, Hilton TJ, Erickson RL, Sakaguchi RL. Effect of

energy density on properties and marginal integrity of posterior resin composite

restorations. Dental materials : official publication of the Academy of Dental Materials.

2004;20:96-106.

[16] Miles RB, Lempert WR, Forkey JN. Laser rayleigh scattering. Measurement

Science and Technology. 2001;12:R33.

[17] Harlow J, Rueggeberg F, Labrie D, Sullivan B, Price R. Transmission of violet and

blue light through conventional (layered) and bulk cured resin-based composites.

Journal of Dentistry. 2016;53:44-50.

[18] Al Sunbul H, Silikas N, Watts DC. Polymerization shrinkage kinetics and

shrinkage-stress in dental resin-composites. Dental Materials. 2016.

[19] Chuang S-F, Huang P-S, Chen TY-F, Huang L-H, Su K-C, Chang C-H. Shrinkage

behaviors of dental composite restorations—The experimental–numerical hybrid

analysis. Dental Materials. 2016.

Page 32: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

32

[20] Versluis A, Tantbirojn D. Relationship between shrinkage and stress. Dental

computing and applications: advanced techniques for clinical Dentistry: IGI Global,

Hershey; 2009. p. 45-64.

[21] Fronza BM, Rueggeberg FA, Braga RR, Mogilevych B, Soares LES, Martin AA, et

al. Monomer conversion, microhardness, internal marginal adaptation, and shrinkage

stress of bulk-fill resin composites. Dental Materials. 2015;31:1542-51.

[22] Rosatto C, Bicalho A, Veríssimo C, Bragança G, Rodrigues M, Tantbirojn D, et al.

Mechanical properties, shrinkage stress, cuspal strain and fracture resistance of

molars restored with bulk-fill composites and incremental filling technique. Journal of

Dentistry. 2015;43:1519-28.

[23] Bicalho A, Valdívia A, Barreto B, Tantbirojn D, Versluis A, Soares C. Incremental

filling technique and composite material-part II: shrinkage and shrinkage stresses.

Operative Dentistry. 2014;39:e83-e92.

[24] Kalliecharan D, Germscheid W, Price RB, Stansbury J, Labrie D. Shrinkage stress

kinetics of Bulk Fill resin-based composites at tooth temperature and long time. Dental

Materials. 2016;32:1322-31.

[25] Shan J, Qin X, Yao N, Ju Y. Synthesis of monodisperse hexagonal NaYF4: Yb,

Ln (Ln= Er, Ho and Tm) upconversion nanocrystals in TOPO. Nanotechnology.

2007;18:445607.

[26] Beun S, Glorieux T, Devaux J, Vreven J, Leloup G. Characterization of nanofilled

compared to universal and microfilled composites. Dental Materials. 2007;23:51-9.

[27] Xu W, Xu X, Wu F, Zhao G, Zhao Z, Zhou G, et al. Infrared to visible upconversion

fluorescence in Yb, Tm: YAG single crystal. Optics communications. 2007;272:182-5.

[28] Schneider LFJ, Pfeifer CS, Consani S, Prahl SA, Ferracane JL. Influence of

photoinitiator type on the rate of polymerization, degree of conversion, hardness and

yellowing of dental resin composites. Dental Materials. 2008;24:1169-77.

[29] Price RB, Labrie D, Rueggeberg FA, Felix CM. Irradiance Differences in the Violet

(405 nm) and Blue (460 nm) Spectral Ranges among Dental Light‐Curing Units.

Journal of Esthetic and Restorative Dentistry. 2010;22:363-77.

[30] Scheps R. Upconversion laser processes. Progress in Quantum Electronics.

1996;20:271-358.

Page 33: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

33

2.2. ARTIGO 2: Comparison of blue and IR light transmission through

different dental substrates

ABSTRACT Objectives: The aim of this study was to evaluate the 975nm infrared (IR) light

transmission through different dental tissues and restorative materials.

Materials and Methods: The output power of the IR laser was evaluated as a function

of the current (mA), by a thermopile (PM10, Coherent Inc., USA). Loss of power with

distance was evaluated. To evaluate the beam profile, a camera (Spiricon IEE-1394,

Ophir Optronics Solutions Ltd., USA) associated with a specific software (LBA-FW

v.4.89, Spiricon Inc.) were used. Power transmission of IR laser was evaluated using

the thermopile (975 nm) through tooth tissues, composites and ceramics, and

compared to a monowave blue-light (BL) curing unit (Bluephase® 16i, Ivoclar Vivadent,

Liechtenstein). Six tooth tissue groups (enamel, dentin and enamel/dentin junction)

were evaluated, eight composites and eight glass ceramics at four thicknesses (1, 2,

3 and 4mm) were evaluated (n=5). Data was subjected to statistical analysis of

variance and Tukey test (IBM®SPSS®Statistics, IBM Corporation, Armonk, NY, USA)

and Pearson Correlation.

Results: Statistical analysis demonstrated a linear correlation (r=0.9884) between

current and IR power, with no statistical reduction of power with increased distances

(collimated 2mm in diameter uniform beam). For tooth tissues, highest power

transmission, for both wavelengths, was observed for enamel 1mm (EN1) and the

lowest for dentin 2mm and enamel/dentin junction 2mm+dentin 1mm. The only group

where IR demonstrated statistical higher transmission when compared to BL was EN1.

For all composites and ceramics, increased thickness resulted in reduction of power

transmission values (except for everX (EX) composite and e.max HT (XH) ceramic, for

IR). IR resulted in higher transmission through composites, except for Tetric (TC)

composite. Highest BL transmission values were observed for SDR Flow, at all

thicknesses. Higher IR/BL ratios were observed for EX, Herculite (HE) and Lava

Ultimate (LU), while the lowest ratio was observed for TC. Reduced translucency

shades within the same material resulted in lower values, specially for BL transmission.

Page 34: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

34

Higher IR/BL ratios were observed for e.Max LT, Vita Base Dentin and XH, while the

lowest values were found for Vita Enamel and Paradigm C.

Conclusion: IR transmission through enamel is higher, when compared to BL, while no

difference is observed for dentin. Transmission of IR is higher than BL for resin

composites, except for a light shaded composite. Fiber-reinforced composite

demonstrated the higher IR/BL transmission ratio. Greater ratio was observed for lower

translucency ceramics when compared to high translucency.

Keywords: Dental curing lights, energy, resin composites, ceramics, infrared rays

INTRODUCTION

Visible light curing procedures are widely performed in Dentistry since

numerous dental resin based materials use photoinitiators in order to generate free-

radicals and induce polymerization [1, 2]. Once the photoinitiator is irradiated by the

specific wavelength it either interacts with other molecules or breaks, releasing free

radicals. The most common photoinitiator in Dentistry is the camphorquinone, a type II

photoinitiator [3] that undergoes a bimolecular reaction, with peak of absorption in 468

nm (blue light) [4]. Alternative photoinitiators, such as Lucerin TPO and Ivocerin, are

highly sensitive to light below 420 nm, and require a lower radiant exposure when

compared to camphorquinone [5]. The degree of monomer-to-polymer conversion is

directly related to the energy dose [3], in that specific wavelength, which is delivered

from the light-curing unit and activates these photoinitiator molecules and,

consequently, the number of reactive molecules that induces polymerization reaction

[4]. Reduced irradiances may lead to a reduction on the degree of monomer-to-

polymer conversion [5], which may compromise many properties such as hardness [6],

elastic modulus [7], flexural strength [8], bond strength [9], biocompatibility [10] and

marginal integrity [11] for resin based materials and is highly influenced by the light

transmission of each material.

Composition and thickness of restorative material plays an important role in

light attenuation [12]. Dental tissues demonstrate different optical properties (opacity,

translucency, opalescence), thus, a variety of restorative materials with varied light

transmission behaviors [13] and shades are available, in order to reproduce the natural

appearance of natural dentition [12]. Blue light transmission through these materials,

Page 35: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

35

specifically, is critical, since blue light is highly scattered within different substrates.

Light scattering is directly dependent on the wavelength (l) and frequency [14], hence,

shorter wavelengths (higher frequencies) are more affected by the Rayleigh scattering

(RS) effect (RS = l-4). In this thought, blue light (450-490 nm) and violet light (400-450

nm) demonstrate lower transmission when compared to longer wavelengths, like green

(490-570 nm) or yellow light (570-600 nm). Infrared (IR) light is a part of the invisible

spectrum (800 nm-1 mm), comprising any wavelength longer than visible red light (620-

800 nm), and would be less affected by the Rayleigh scattering when compared to

other frequency [14, 15] on the visible spectrum, due to longer wavelengths.

Crystals of sodium yttrium fluoride (NaYF4) doped with rare earth (e.g.

ytterbium, Yb, and thulium, Tm) demonstrates upconversion (UC) effect once

irradiated by IR laser [15]. UC effect converts lower frequencies (IR) into higher

frequencies [16], on different wavelength ranges, including blue (450-490 nm) and UV

(< 400 nm) light. Nanocrystals (200 nm) of NaYF4 doped with Yb+3 and Tm+3 have been

synthetized using similar synthesis methods to reported in literature [17-20] with UC

emission peaks on blue and UV once irradiated by a 975 nm laser. The incorporation

of these crystals into resin based materials, used as cavity liners, might be useful in

dental restorative procedures since light could be emitted from the preparation bonded

area, increasing the degree of conversion of the adjacent restorative materials and,

therefore, reducing the effects of reduced depth of cure due to light transmission and

polymerization shrinkage. The IR energy that irradiates these UC particles in the UC

liners would be critical for adequate UC effect. Laser light transmission through

different Dentistry-relevant substrates have been evaluated for other purposes, such

as pulp vitality assessment [21], caries detection and treatment [22, 23], anthropologic

identification [24], among others (using different wavelengths).

The aim of this study is to evaluate the 975 nm IR light transmission through

different dental substrates, using a specifically calibrated IR laser and compare to the

transmission of visible blue-light. Hypothesis tested for this study are: [1] IR light would

demonstrate higher power transmission through different dental tissues when

compared to blue light; [2] IR light would demonstrate higher power transmission

through different composites when compared to blue light; [3] IR would demonstrate

higher power transmission through different ceramics when compared to blue light.

Page 36: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

36

MATERIALS AND METHODS

For this study, a 975 nm, 1 W laser diode (L975P1WJ, Thorlabs Inc., Newton,

NJ, USA) was used. The diode was coupled to a temperature controlled laser diode

mount (TCLDM9, Thorlabs Inc., Newton, NJ, USA). The mount was connected to a

laser diode current controller (LDC220C, serial#M00297621, Thorlabs Inc., Newton,

NJ, USA) and to a thermoelectric temperature controller (TED220C, serial

#M00298181, Thorlabs Inc., Newton, NJ, USA). A mounted aspheric lens (C230TMD-

B, Thorlabs Inc., Newton, NJ, USA) was fixed over the 975 nm laser diode using a lens

adapter (S1TM09, Thorlabs Inc., Newton, NJ, USA). The laser diode current controller

and the thermoelectric temperature controller had to be settled in order to optimize the

power and stabilization of the beam. The LDC220C was operated at 1700 mA

(CONST: I; LD POL: AG), while TED200C was operated at 1 A and a temperature of

23oC (TSET: 10kΩ and TH: 20kΩ).

Laser output power and focal distance

The output power of the laser was measured according to the current (mA)

displayed on the laser diode controller. The power of the beam was evaluated using a

thermopile sensor (PM10, part #1097901, serial #0860108R, Coherent Inc., Santa

Clara, CA, USA) with a laser power meter (Fieldmate, part #1098297, serial

#0307J08R, Coherent Inc., Santa Clara, CA, USA). The temperature controlled laser

diode mount was fixed on the top of a 4”x 3” mini lab jack (L200, Thorlabs Inc., Newton,

NJ, USA), which allowed a vertical fine adjustment of the mount. The mini lab jack was

fixed on the top of a 12” x 24”x ½” optical breadboard (MB1224, Thorlabs Inc., Newton,

NJ, USA).

Thermopile was fixed on the top of a 125 mm metric linear translation stage

(#56-794, Edmund Optics Inc., Barrington, NJ, USA). Stage was fixed on the top of a

heavy-duty lab jack (L490, Thorlabs Inc., Newton, NJ, USA), coupled to the optic

breadboard (MB1224, Thorlabs Inc.) in a distance of 28 cm of the mini lab jack (L200,

Thorlabs Inc.). The current (mA) was raised in a scale of 100 mA at a time and the

power (mW) was measured with the thermopile. In order to determine the loss of power

output with distance, the same configuration was used, and, the linear translation stage

allowed the thermopile to move away from the beam source in a metric scale. The first

Page 37: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

37

reading with the thermopile and the laser power meter was taken at a 90 mm distance

from the source. The system was moved 10 mm away from the source at a time, so

that the last reading was taken at a 230 mm distance.

Laser beam profile

To evaluate the beam profile, a camera beam profiler (Spiricon IEE-1394,

serial #6344166, Ophir Optronics Solutions Ltd., North Logan, UT, USA) associated

with a specific software (LBA-FW v.4.89, Spiricon Inc.) were used. The camera was

fixed on the top of two 125 mm metric linear translation stages (#56-794, Edmund

Optics Inc., Barrington, NJ, USA). This allowed the camera not to move only for

distance testing, but also to calibrate the focus. The stages were fixed on the top of a

heavy-duty lab jack (L490, Thorlabs Inc., Newton, NJ, USA), coupled to the optic

breadboard (MB1224, Thorlabs Inc.) A homogeneous diffuser opal glass mounted on

a lens mount for Ø2" optics (LMR2, Thorlabs Inc., Newton, NJ, USA) was used as a

target for the beam profiling. The diffuser was aligned with the camera in a way that

the focus was on the irradiated surface of the diffuser. The distance of the camera to

the target was of 210 mm. This allowed the software to be calibrated and make

accurate measurements of the beam size.

The adjustment of the beam profile was performed adjusting the focal distance

of the beam by changing the vertical position of the lens adapter relative to the mount.

To check the beam size and focus, an IR detector card (VRC4, serial #TP00939488,

Thorlabs Inc., Newton, NJ, USA) was used. The card has a photosensitive region that,

when activated (870-1070 nm) fluoresce in green light, identifying the IR laser. The

beam was adjusted so the focal distance was 4.0 m away from the mount, which

allowed the beam to be as collimated as possible, close to the mount. After the focus

was made as far as possible from the source, the beam profile was analyzed at 100

mm from the target. The power output for this evaluation was of 100 mW (500 mA).

The profiling was performed with the software calibrated in terms of power output of

the laser and physical dimensions. Thus, it was possible to evaluate the power

percentage in a determined area of the beam (2 mm aperture for Fourier transformed

infrared spectroscopy tests).

Page 38: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

38

Power transmission through different substrates

Power transmission was evaluated using a thermopile sensor (PM10, part

#1097901, serial #0860108R, Coherent Inc., Santa Clara, CA, USA) recently

calibrated using methods traceable to NIST-traceable standard source, connected to

a laser power meter (Fieldmate, part #1098297, serial #0307J08R, Coherent Inc.,

Santa Clara, CA, USA). A custom aperture of 5 mm in diameter and 0.5 mm of

thickness was printed in a customized 3D printer using white termopolymer

(Acrylonitrile Butadiene Styrene [ABS], Octave Systems Inc., CA, USA). The aperture

was placed on the top of the thermopile, allowing only a 5 mm beam diameter to go

through the interposing materials (tooth tissues, composites and ceramics). IR laser

transmission (975 nm) was compared to a monowave blue light-curing unit

(Bluephase® 16i, Ivoclar Vivadent, Schaan, Liechtenstein, serial #1671297).

To determine the % of power through different tooth substrates, fifteen bovine

teeth were used. The roots were removed and crowns were sectioned using a linear

precision saw (IsoMet® 5000, Buehler, Lake Bluff, IL, USA) with a diamond disc (Series

15LC Diamond, Buehler Ltd., Lake Bluff, IL, USA) under water refrigeration, obtaining

specific substrates. Surface roughness was standardized using SiC abrasive paper

discs (Leco Corporation, St. Joseph, MI, USA) of 320, 400 and 600 grits under water

irrigation in a polisher/grinder (Ecomet® III, Buehler Ltd., Lake Bluff, IL, USA).

Specimen thickness and parallelism were measured using a digital micrometer

(Mitutoyo, Kawasaki, Japan). Six tooth substrates at different thicknesses were tested

for this evaluation (n = 3): [EN1] 1 mm thick enamel, [DE1] 1 mm dentin, [DE2] 2 mm

dentin, [ED2] 2 mm enamel/dentin junction, [E1D1] 1mm enamel over 1mm dentin and

[ED2D1] 2 mm enamel/dentin junction and 1 mm dentin. Two different light sources

were used: [BL] 460 nm blue light only light source (Bluephaseâ 16i, Ivoclar Vivadent,

Schaan, Liechtenstein) or [975] 975 nm IR laser (Thorlabs Inc., NJ, USA).

The power transmission through 7 different composites was also evaluated.

Custom PVS (Express XT, 3M ESPE, St. Louis, MN, USA) molds of 10 mm in diameter

were made varying the depth by 1 mm, 2 mm, 3 mm and 4 mm. Uncured resin

composite was placed in the molds, covered with a piece of Mylar, and light-cured with

a blue-only light source for 20 seconds. Surface roughness was standardized using

SiC abrasive paper discs (Leco Corporation, St. Joseph, MI, USA) of 320, 400 and 600

Page 39: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

39

grits under water irrigation in a polisher/grinder (Ecomet® III, Buehler Ltd., IL, USA).

Composite samples were divided in (n = 5): [TC] Tetricâ (Ivoclar Vivadent, Schaan,

Liechtenstein, shade White), [HE] Herculiteä Ultra (Kerr Dental, Orange, CA, USA,

shade A2), [TB] Tetric EvoCeramâ Bulk-Fill (Ivoclar Vivadent, Schaan, Liechtenstein,

shade IVA), [SD] Surefilâ SDRâ Flow (Dentsply Caulk, York, PA, USA, shade

Universal), [FB] Filtekä Bulk Fill Flowable (3M ESPE, St. Louis, MN, USA, shade A2),

[EX] EverX Posteriorä (GC, Tokyo, Japan, shade Universal). An indirect restorative

composite for CAD-CAM ([LU] Lavaä Ultimate (3M ESPE, St. Louis, MN, USA, shade

A2), was also evaluated together with direct composites (all shades were equivalent to

A2, except for TC, a negative control).

The light transmission was also analyzed using CAD/CAM glass ceramic

blocks following the same protocol as used for the indirect composite. Samples were

sectioned from CAD/CAM blocks using a linear precision saw with a diamond disc

under water refrigeration at four different thicknesses (1 mm, 2 mm, 3 mm or 4 mm)

followed by sintering procedures. Surface roughness of each ceramic sample was

standardized using SiC abrasive paper discs (Leco Corporation, St. Joseph, MI, USA)

of 320, 400 and 600 grits under water irrigation in a polisher/grinder (Ecomet® III,

Buehler Ltd., Lake Bluff, IL, USA). Indirect restorative material samples were divided

in (n = 5): [FE] VitaVM®7 Enamel (VITA Zahnfabrik, Germany, shade ENL), [FD]

VitaVM®7 Base Dentine (VITA Zahnfabrik, Germany, shade 2M2), [EH]

Empress®CAD HT (Ivoclar Vivadent, Schaan, Liechtenstein, shade A2), [EL]

Empress®CAD LT (Ivoclar Vivadent, Schaan, Liechtenstein, shade A2), [PC]

Paradigm™C (3M ESPE, St. Louis, USA, shade A2), [XH] e.max®CAD HT (Ivoclar

Vivadent, Schaan, Liechtenstein, shade A2) and [XL] e.max®CAD LT (Ivoclar

Vivadent, Schaan, Liechtenstein, shade A2).

Samples were interposed between the light sources and the thermopile and

data were recorded. Three groups of substrates were analyzed: tooth structures, resin

composites (direct and indirect) and glass ceramics. Data from these three groups

were subjected to statistical analysis of variance and Tukey test (IBM®SPSS®Statistics,

IBM Corporation, Armonk, NY, USA).

Page 40: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

40

RESULTS

Laser output power and focal distance

Statistical analysis demonstrated a linear (Pearson) correlation (r=0.9884)

between current and power of IR laser (Figure 1A). It is possible to observe that after

400 mA, the power increases proportionally reaching a maximum of 1 W, at 1500-1600

mA (Figure 1A). Also, the influence of the distance was evaluated, in order to obtain a

collimated laser beam. Figure 1B demonstrates the correlation of power and distance,

and it is possible to observe that there was no statistical reduction on power values

with increased distances (up to 230 mm) of the laser to the thermopile.

Figure 1. Graphs of correlation between power and current (p < 0.0001) and between

power and distance for 975 nm IR laser.

Laser beam profile

Original laser beam profile demonstrated an elliptical shape of 6 x 0.5 mm,

approximately. The shape and size of the beam would not be the optimum for the

following analysis, once it would not cover the necessary surface area of each

individual specimen. Therefore, it was necessary to expand the beam in one axis in

order to obtain a profile as circular as possible. Figure 2 (A and B) demonstrates a high

concentration of IR energy in a 2 mm diameter aperture that would be optimal for

following analysis. Figure 2A shows a two-dimensional profile, where “hot colors” (red,

orange and yellow) represent higher energy concentration and “cold colors” (green,

blue and violet) represent lower energy. White circle demonstrates the 2 mm aperture

used for the study. Figure 2B is a three-dimensional representation of the beam profile,

demonstrating the “top hat factor” for the IR laser.

Page 41: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

41

Figure 2. Beam profile of 975 nm IR laser. A- 2D image of energy concentration B- 3D

image representing the beam profile.

Power transmission through different substrates

Percentage of power transmission means (standard deviation) through

different tooth tissues is shown in Table 1. For IR laser and blue light, EN1 resulted in

statistical higher values when compared to all other groups within the same light source,

followed by DE1. Lowest power transmission for both sources were observed for DE2

and ED2D1. The only group where IR demonstrated statistical higher transmission

when compared to blue light was EN1. Groups DE2, E1D1 and ED2D1 did not differ

statistically when comparing different light sources. Blue light transmission was

significantly higher when compared to IR for groups DE1 and ED2.

Page 42: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

42

Table 1. Means (standard deviation) of light transmission (% of power) through tooth

tissues.

% OF POWER

GROUP 975nm LASER BLUE LIGHT

EN1 52.9 (0.4) A a 40.9 (0.9) A b

DE1 33.4 (0.8) B b 38.1 (0.8) B a

DE2 15.7 (0.5) E a 14.3 (0.9) D a

ED2 21.9 (0.2) D b 24.4 (0.4) C a

E1D1 25.7 (0.5) C a 26.4 (0.8) C a

ED2D1 16.2 (0.7) E a 15.0 (1.0) D a

Means followed by different letter (uppercase letter compare groups within the same light, lowercase letters compare IR laser and blue light for the same group) are statistically different (p < 0.01). n=3 specimens per group. Abbreviations: EN1 (transmission through 1mm of enamel); DE1 (transmission through 1mm dentin); DE2 (transmission through 2mm dentin); ED2 (transmission through 2mm enamel/dentin junction); E1D1 (transmission through 1mm enamel + 1mm dentin); ED2D1 (transmission through 2mm enamel/dentin junction + 1mm dentin).

Power transmission through different composites is shown in Table 2. For all

groups and light sources, increased thickness resulted in statistical reduction on power

transmission values, except for EX 3 mm and EX 4 mm for IR, that did not differ

statistically. IR resulted in higher transmission when compared to blue light, except for

TC 1 mm, TC 2 mm, TC 3 mm and TC 4 mm. There was no statistical difference

between IR and blue light for TB 2 mm, TB 3 mm and TB 4 mm. For IR, higher power

transmission values were observed for EX, at all thicknesses, while lowest values were

observed for TC. For blue light, highest values were observed for SD, at all thicknesses,

while the lowest were observed for HE and LU.

Page 43: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

43

Table 2. Means (standard deviation) of light transmission (% of power) through

different resin composites.

% OF POWER

GROUP 975 nm LASER BLUE LIGHT

1 mm 2 mm 3 mm 4 mm 1 mm 2 mm 3 mm 4 mm

TC 25.3 (0.1) D a 9.8 (0.2) E b 4.1 (0.4) E c 1.7 (0.2) E d 36.5 (0.8) B a * 26.2 (1.1) B b * 15.7 (0.7) B c * 10.1 (0.6) BC d *

HE 42.9 (2.8) CD a * 31.8 (2.1) C b *

23.6 (1.4) C c *

16.4 (0.8) C d * 27.9 (0.4) D a 19.0 (0.7) E b 11.9 (0.2) D c 6.3 (0.2) D d

TB 39.3 (1.8) D a * 22.7 (2.1) D b *

13.4 (1.2) D c * 7.4 (0.7) D d * 32.6 (0.8) C a 22.2 (1.2) CD b

* 15.0 (0.4) BC c

* 8.9 (0.2) C d *

SD 55.1 (3.0) AB a * 38.7 (1.6) B b *

30.2 (1.2) B c *

22.5 (0.4) B d * 40.6 (0.7) A a 30.9 (0.3) A b 23.5 (0.7) A c 16.2 (0.9) A d

FB 50.3 (3.1) B a * 32.8 (2.4) C b *

21.5 (1.3) C c *

13.4 (1.2) C d * 33.4 (0.5) BC a 22.2 (0.6) D b 14.0 (0.3) C c 7.8 (0.7) CD d

EX 59.3 (3.3) A a * 51.0 (2.6) A b *

40.6 (3.4) A c *

34.5 (1.4) A c * 33.6 (2.6) BC a 25.0 (0.6) BC b 16.4 (0.5) B c 11.9 (0.1) B d

LU 45.9 (0.4) C a * 30.8 (0.1) C b *

22.4 (0.1) C c *

17.9 (0.1) C d * 30.9 (0.9) CD a 18.6 (0.3) E b 11.0 (0.7) D c 7.2 (0.0) D d

Means followed by different letter (uppercase letters compare composites for the same thickness, lowercase letters compare thicknesses for the same composite, symbols (* and †) compare light sources) are statistically different (p < 0.01). n=3 specimens per group. Abbreviations: TC (Tetric®), HE (Herculite™), TB (Tetric EvoCeram® Bulk-Fill), SD (Surefil®SDR® Flow), FB (Filtek™ Bulk Fill Flowable), EX (EverX Posterior™), LU (Lava™ Ultimate).

Table 3 shows power transmission through different dental ceramics. For all

groups and light sources, increased thickness resulted in statistical reduction on power

transmission values, except for XH 3 mm and XH 4 mm for IR, which did not differ

statistically. IR resulted in higher transmission when compared to blue light for all

groups, except for FE 2 mm, FE 3 mm, FE 4 mm, PC 3 mm and PC 4 mm, where no

statistical difference was found. For IR and blue light, higher power transmission values

were observed for FE. There was no statistical difference for IR among FE 4 mm, PC

4 mm, XH 4 mm, EH 4 mm and EL 4 mm. Lowest values for IR were observed for FD,

while for blue light lowest values were observed for and FD and XL, at all thicknesses

(except XL 1 mm). Reduced translucency shades within the same material (XL and XH,

or, EL and EH, or, FD and FE) resulted in lower values when compared to increased

translucencies, specially for blue light transmission.

Page 44: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

44

Table 3. Means (standard deviation) of light transmission (% of power) through

different ceramics.

% OF POWER

GROUP 975 nm LASER BLUE LIGHT

1 mm 2 mm 3 mm 4 mm 1 mm 2 mm 3 mm 4 mm

FE 50.1 (0.2) A a * 33.9 (0.1) A b * 25.6 (0.1) A c * 20.0 (0.1) A d * 43.7 (0.3) A a 33.2 (0.5) A b * 26.7 (0.5) A c * 20.0 (0.3) A d *

FD 29.1 (0.3) F a * 21.9 (0.1) E b * 15.7 (0.2) E c * 12.1 (0.1) B d * 21.1 (0.7) G a 11.3 (0.3) E b 4.9 (0.6) E c 2.6 (0.3) D d

EH 35.6 (0.7) DE a * 25.3 (0.2) D b * 19.4 (0.5) D c * 15.5 (0.2) AB d * 33.7 (0.2) C a 21.6 (0.5) C b 13.4 (0.5) C c 7.5 (1.0) C d

EL 33.2 (0.4) E a * 24.3 (0.1) D b * 19.0 (0.2) D c * 15.5 (0.2) AB d * 31.3 (0.9) D a 17.3 (0.7) D b 10.3 (0.6) D c 5.7 (1.2) C d

PC 43.2 (0.2) B a * 29.6 (0.4) B b 23.0 (0.3) B c * 18.6 (0.1) A d * 39.6 (0.4) B a 31.0 (0.4) B b * 23.6 (0.3) B c * 17.8 (0.7) B d *

XH 40.8 (0.3) C a * 25.9 (0.2) C b * 20.0 (0.1) C c * 19.3 (0.7) A c * 28.4 (0.5) E a 16.4 (0.3) D b 10.8 (0.6) D c 5.7 (0.5) C d

XL 37.1 (0.3) D a * 24.5 (0.3) D b * 18.6 (0.1) CD c * 14.2 (0.2) B d * 24.4 (1.2) F a 12.6 (0.5) E b 6.2 (0.6) E c 2.2 (0.5) D d

Means followed by different letter (uppercase letters compare ceramics for the same thickness, lowercase letters compare thicknesses for the same ceramic, symbols (* and †) compare light-sources) are statistically different (p < 0.01). n=3 specimens per group. Abbreviations: FE (VitaVM®7 Enamel), FD (VitaVM®7 Base Dentine), EH (Empress®CAD HT), EL (Empress®CAD LT), PC (Paradigm™C), XH (e.max®CAD HT), XL (e.max®CAD LT).

Figure 3 demonstrates the ratio of IR and blue-light that was transmitted

through composites and ceramics. For composites (Figure 3A) higher IR/blue-light

ratios were observed for EX, HE and LU, while the lowest ratio was observed for TC

(negative values represent lower IR transmission when compared to blue light). For

ceramics (Figure 3B) higher ratios were observed for XL, FD and XH, while the lowest

values were found for FE and PC.

Page 45: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

45

Figure 3. Ratio of IR/blue-light transmission through different substrates. A- Ratio

through composites; B- Ratio through ceramics.

DISCUSSION The IR laser power was determined in a function of the current (mA). Increased

currents greater 400 mA resulted in proportional increase of laser power. For this study,

a limit of 1 W was reached due to the specifications of the laser diode used. It was

Page 46: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

46

extremely important that the laser beam was as collimated as possible, so no reduction

of IR irradiance would be observed with increasing distance from the source. Also,

laser beam uniformity is important so energy is delivered uniformly on different

locations of each restorative procedure. A minimum beam diameter was required for

the evaluations; however, diameter should be increased for clinical applications

because a wider area must be irradiated at the same time, which would result in UC

from all preparation walls, simultaneously. IR laser (975 nm) transmission was

compared to a second-generation LED blue-light only light curing unit, with a peak of

emission at 450 nm.

Blue light transmission through dental tissues has been investigated as an

attempt of increasing the energy dose on the preparations walls and, consequently,

reducing the effects of limited depth of cure [25, 26]. First hypothesis was rejected

since, for evaluated dental tissues, EN 1 mm was the only group in which IR

transmission was statistically higher than blue light. Enamel weakly scatters light at

near infrared (NIR) when compared to any other wavelength [13]. However, dentin

strongly scatter visible and NIR resulting in similar transmission of IR and blue light for

all the other groups [13, 26]. Although IR light transmission through dentin was not

significantly higher when compared to blue light, UC liners containing crystals that

converts IR to ultraviolet light could lead to an increase on the degree of monomeric

conversion of resin based materials (resin cements or resin composites) containing

alternative (and more efficient) photoinitiators, sensitive to < 420 nm [5, 27].

Different types of composites evaluated resulted in varied power transmissions

for IR and blue light. Bulk fill composites were recently introduced to Dentistry as a

possible solution for incrementally used composite limitations, such as polymerization

shrinkage and depth of cure [3, 28, 29], reducing the chair-side time of direct

procedures [30]. Modifications of these composites include increased blue-light

transmission [31], which was significantly higher for SD when compared to all groups

at all thicknesses (due to similar refractive index of filler particles and monomeric

composition), followed by all bulk-fill composites evaluated in this study (TB, FB, EX)

and TC. TC shade for the evaluation was the lightest among all composites. Reduced

chroma (lower a*, in the CIE L*a*b* scale) would lead to a “less yellowish” hue. As

yellow is the complementary color of blue (+a* and –a*), composites with higher a*

Page 47: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

47

values would absorb more blue light, while lighter shades (white) would reflect more

IR [32, 33]. Thus, second tested hypothesis was accepted since IR was less scattered

through different composites, with only one exception of a lighter shade one. The

lowest blue light transmission values were observed for one conventional composite,

used for incremental technique (HE) and one indirect composite (LU). Both

formulations of these materials are not optimal for blue light transmission since both

organic (composition) and inorganic (morphology and composition) matrixes are not

modified for this specific purpose [3, 28, 31]. For both HE and LU, the ratio of IR/blue

light power transmission was higher when compared to all to other composites, similar

to EX.

EX was the composite group that demonstrated higher statistical values for IR

transmission light at all thicknesses. The inorganic portion of this composite consists

of, basically, short E-glass fibers [31, 34, 35] which resulted in higher IR transmission

when compared to other composites in the study that contains spherical or irregularly

shaped filler particles (TC, HE, TB, SD contain irregular shaped fillers while FB and

LU, spherical) [31]. No statistical difference on IR power transmission was found for

increasing thickness from 3 to 4 mm for EX, which may be important for deeper

preparations. The IR irradiation on the UC particles placed under 4 mm of EX might be

enough to cause UC effect when compared to other composites, making EX an optimal

commercially available composite for this use.

Third hypothesis was accepted since IR light demonstrated higher

transmission through ceramic materials. Increased translucencies (H) and opacities

(L) of ceramics played an important role on power transmission, since no difference

was found between IR and blue light for groups FE 2 mm, FE 3 mm, FE 4 mm and PC

2 mm, PC 3 mm and PC 4 mm of these HT glass ceramics. Feldspathic ceramic

contains a high amorphous content [36], with leucite crystals, which allows higher light

transmission (even blue light) [37]. Same can be observed for PC, since it is, basically

a feldspathic ceramic with an increased content of leucite [36, 38] but still, with high

light transmission when compared to lithium disilicate. Also, for HT lithium disilicate

(XH), there was no statistical difference by increasing the thickness from 3 to 4 mm,

which may represent an important finding for cementation procedures of indirect

restorations, like crowns, onlays or inlays [39]. Synthetized UC nanocrystals have

Page 48: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

48

demonstrated UC effect from IR to blue light (˜450 nm) and UV (< 400 nm) thus, resin

cements placed under indirect restorations could use both conventional and alternative

photoinitiators, which would result in increased degree of conversion, since type I

photoinitiators undergoes a unimolecular reaction and are more reactive to light (< 420

nm) when compared to camphorquinone (type II), requiring a lower radiant exposure

[5, 27]. Low translucency feldspathic ceramics (FD) group resulted in lowest values for

IR and blue light transmission when compared to other ceramics. However, the ratio

of IR to blue light of FD at 4 mm was of more than 400%, similar to that observed for

XL, which was over 600%. Thus, the IR transmission through high opacity ceramics is

greater than blue light, which might result in a possible solution of curing through

indirect restorations with increased thicknesses and opacities [39].

Future studies should be conducted in order to determine the IR transmission

through different shades of restorative materials and the influence of the UC effect

resultant from the IR excitation in the degree of conversion of light-curable resin based

materials, containing different initiators. Also, increased power and beam diameter

might result in higher UC emission in a cavity preparation, thus specific light-curing

units that would emit IR in 975 nm should be developed for this specific purpose. IR

laser is known for generating heat [13] so, the influence of this specific wavelength on

the pulp temperature rise should be analyzed to determine effects on biological tissues.

CONCLUSION

It was concluded that:

1. IR transmission through enamel is higher, when compared to blue light, while

no difference was observed for dentin;

2. Bulk-fill composites demonstrated higher blue light transmission when

compared to conventional composites. IR transmission was higher than blue

light for all composites, except for one white shade composite, while a fiber-

reinforced composite showed the highest IR transmission among all materials;

3. IR transmission was higher for all ceramics when compared to blue light. High

translucency ceramics demonstrated higher light transmission for both IR and

blue light. The IR/blue-light power transmission ratio was greatly observed for

lower translucency ceramics.

Page 49: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

49

ACNOWLEDGEMENTS

Supported by Coordination for the Improvement of Higher Education Personnel (Capes

#3110/2010; #A043-2013 and #1777/2014), Brazil.

REFERENCES

[1] Ferracane JL. Resin composite—state of the art. Dental materials. 2011;27:29-38.

[2] Rueggeberg FA. State-of-the-art: dental photocuring—a review. Dental Materials.

2011;27:39-52.

[3] AlQahtani M, Michaud P, Sullivan B, Labrie D, AlShaafi M, Price R. Effect of High

Irradiance on Depth of Cure of a Conventional and a Bulk Fill Resin-based Composite.

Operative Dentistry. 2015;40:662-72.

[4] Stansbury JW. Curing dental resins and composites by photopolymerization.

Journal of esthetic and restorative Dentistry. 2000;12:300-8.

[5] Price R, Shortall A, Palin W. Contemporary issues in light curing. Operative

Dentistry. 2014;39:4-14.

[6] Caldas DB, de Almeida JB, Correr-Sobrinho L, Sinhoreti MA, Consani S. Influence

of curing tip distance on resin composite Knoop hardness number, using three different

light curing units. Operative Dentistry. 2003;28:315-20.

[7] Correr AB, Sinhoreti MA, Sobrinho LC, Tango RN, Schneider LF, Consani S. Effect

of the increase of energy density on Knoop hardness of dental composites light-cured

by conventional QTH, LED and xenon plasma arc. Brazilian dental journal.

2005;16:218-24.

[8] Harris JS, Jacobsen PH, O'Doherty DM. The effect of curing light intensity and test

temperature on the dynamic mechanical properties of two polymer composites. Journal

of oral rehabilitation. 1999;26:635-9.

[9] Lohbauer U, Rahiotis C, Kramer N, Petschelt A, Eliades G. The effect of different

light-curing units on fatigue behavior and degree of conversion of a resin composite.

Dental materials : official publication of the Academy of Dental Materials. 2005;21:608-

15.

[10] de Souza Costa CA, Hebling J, Hanks CT. Effects of light-curing time on the

cytotoxicity of a restorative resin composite applied to an immortalized odontoblast-cell

line. Operative Dentistry. 2003;28:365-70.

Page 50: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

50

[11] Ferracane JL, Mitchem JC, Condon JR, Todd R. Wear and marginal breakdown

of composites with various degrees of cure. Journal of dental research. 1997;76:1508-

16.

[12] Mikhail SS, Schricker SR, Azer SS, Brantley WA, Johnston WM. Optical

characteristics of contemporary dental composite resin materials. Journal of Dentistry.

2013;41:771-8.

[13] Fried D, Glena RE, Featherstone JD, Seka W. Nature of light scattering in dental

enamel and dentin at visible and near-infrared wavelengths. Applied optics.

1995;34:1278-85.

[14] Miles RB, Lempert WR, Forkey JN. Laser rayleigh scattering. Measurement

Science and Technology. 2001;12:R33.

[15] Stepuk A, Mohn D, Grass RN, Zehnder M, Kramer KW, Pelle F, et al. Use of NIR

light and upconversion phosphors in light-curable polymers. Dental materials : official

publication of the Academy of Dental Materials. 2012;28:304-11.

[16] Auzel F. Upconversion and anti-stokes processes with f and d ions in solids.

Chemical reviews. 2004;104:139-74.

[17] Boyer J-C, Cuccia LA, Capobianco JA. Synthesis of colloidal upconverting NaYF4:

Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals. Nano Letters. 2007;7:847-52.

[18] Boyer J-C, Vetrone F, Cuccia LA, Capobianco JA. Synthesis of colloidal

upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal

decomposition of lanthanide trifluoroacetate precursors. Journal of the American

Chemical Society. 2006;128:7444-5.

[19] Shan J, Qin X, Yao N, Ju Y. Synthesis of monodisperse hexagonal NaYF4: Yb,

Ln (Ln= Er, Ho and Tm) upconversion nanocrystals in TOPO. Nanotechnology.

2007;18:445607.

[20] Shan S-N, Wang X-Y, Jia N-Q. Synthesis of NaYF 4: Yb 3+, Er 3+ upconversion

nanoparticles in normal microemulsions. Nanoscale research letters. 2011;6:1.

[21] Hirmer M, Danilov SN, Giglberger S, Putzger J, Niklas A, Jäger A, et al.

Spectroscopic study of human teeth and blood from visible to terahertz frequencies for

clinical diagnosis of dental pulp vitality. Journal of Infrared, Millimeter, and Terahertz

Waves. 2012;33:366-75.

Page 51: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

51

[22] Goldman L, Hornby P, Meyer R, Goldman B. Impact of the laser on dental caries.

1964.

[23] Fried D. IR laser ablation of dental enamel. BiOS 2000 The International

Symposium on Biomedical Optics: International Society for Optics and Photonics;

2000. p. 136-48.

[24] Odor T, Chandler N, Watson T, Ford T, McDonald F. Laser light transmission in

teeth: a study of the patterns in different species. International endodontic journal.

1999;32:296-302.

[25] Price RB, Murphy DG, Dérand T. Light energy transmission through cured resin

composite and human dentin. Quintessence international. 2000;31.

[26] Arikawa H, Kanie T, Fujii K, Ban S, Takahashi H. Light-attenuating effect of dentin

on the polymerization of light-activated restorative resins. Dental materials journal.

2004;23:467-73.

[27] Schneider LFJ, Pfeifer CS, Consani S, Prahl SA, Ferracane JL. Influence of

photoinitiator type on the rate of polymerization, degree of conversion, hardness and

yellowing of dental resin composites. Dental Materials. 2008;24:1169-77.

[28] Hollaert T, Gilli M, Leloup G, Leprince J. Quality of cure in depth of bulk-fill

composites: Physico-mechanical properties. Dental Materials. 2016;32:e91.

[29] Garcia D, Yaman P, Dennison J, Neiva G. Polymerization shrinkage and depth of

cure of bulk fill flowable composite resins. Operative Dentistry. 2014;39:441-8.

[30] Benetti A, Havndrup-Pedersen C, Honoré D, Pedersen M, Pallesen U. Bulk-fill

resin composites: polymerization contraction, depth of cure, and gap formation.

Operative Dentistry. 2015;40:190-200.

[31] Fronza BM, Rueggeberg FA, Braga RR, Mogilevych B, Soares LES, Martin AA, et

al. Monomer conversion, microhardness, internal marginal adaptation, and shrinkage

stress of bulk-fill resin composites. Dental Materials. 2015;31:1542-51.

[32] Schopenhauer A, Runge PO. On Vision and Colors; Color Sphere: Chronicle

Books; 2012.

[33] Yanagimoto H, Zama Y, Okamoto H, Hosoda T, Abe Y, Nakamura M. Near-

infrared reflecting composite pigments. Google Patents; 2003.

Page 52: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

52

[34] Tsujimoto A, Barkmeier Ww, Takamizawa T, Latta Ma, Miyazaki M. Mechanical

properties, volumetric shrinkage and depth of cure of short fiber-reinforced resin

composite. Dental materials journal. 2016;35:418-24.

[35] Garoushi S, Säilynoja E, Vallittu PK, Lassila L. Physical properties and depth of

cure of a new short fiber reinforced composite. Dental Materials. 2013;29:835-41.

[36] Conrad HJ, Seong W-J, Pesun IJ. Current ceramic materials and systems with

clinical recommendations: a systematic review. The Journal of prosthetic Dentistry.

2007;98:389-404.

[37] Heffernan MJ, Aquilino SA, Diaz-Arnold AM, Haselton DR, Stanford CM, Vargas

MA. Relative translucency of six all-ceramic systems. Part II: core and veneer

materials. The Journal of prosthetic Dentistry. 2002;88:10-5.

[38] Denry I, Holloway JA. Ceramics for dental applications: a review. Materials.

2010;3:351-68.

[39] Ayres APA, Andre CB, Pacheco RR, Carvalho AO, Bacelar-Sá RC, Rueggeberg

FA, et al. Indirect restoration thickness and time after light-activation effects on degree

of conversion of resin cement. Brazilian dental journal. 2015;26:363-7.

Page 53: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

53

2.3. ARTIGO 3: Effect of upconverting nanocrystals spectral emission on the

monomeric conversion of resin based materials

ABSTRACT Objectives: The aim of this study was to evaluate the effects of incorporating

nanoparticles with upconversion (UC) properties into a resin, resulting in a UC liner,

and the effect of the visible-light spectral emission on the degree of conversion (DC)

of resin based materials.

Materials and Methods: In order to obtain resin discs of UC liners, a resin bonding

containing TEGDMA and BisGMA (Heliobond®, Ivoclar Vivadent, Liechtenstein) agent

was selected for this study. Nanoparticles were added to resin bonding at 3 different

concentrations (15%, 30% and 60%wt) and inserted into a custom PVS mold (Express

XT, 3M ESPE, USA), blue-light cured (Bluephase® 16i, Ivoclar Vivadent, Liechtenstein)

for 10 seconds resulting in uniform resin discs of 6.0 x 0.5 mm. Spectral emission of

resin discs, when directly irradiated by a 975nm laser, was evaluated (n=5). Also, the

effect of dental tissues and composite interposition on the spectral emisison was

determined (n=5). A calibrated configuration for spectrophotometry analysis was used

(USB2000, Ocean Optics, USA) associated to a software (SpectraSuite, Ocean Optics,

USA). The effect of blue-light emission from a resin disc containing 30% of UC

nanoparticles, through different substrates, on the DC of the resin bonding was

determined by FTIr spectroscopy (FTS-40; Digilab LLC/Bio-Rad Inc.). Data was

subjected to analysis of variance and Tukey test (α=0.05) (IBM®SPSS®Statistics, IBM

Corporation, Armonk, NY, USA).

Results: Spectral emission analysis of UC liners containing different concentrations of

UC nanocrystals demonstrated peaks at 450nm, 475nm and 365nm. There was a

significant increase on power density by increasing the UC nanocrystals concentration

from 15% to 30%, however, no difference was found for increasing from 30% to 60%.

300s of IR exposure on a UC liner induced 47.3% of monomeric conversion on a resin

based material, with no difference to blue-light curing after 600s. Increased substrate

thickness interpositions resulted in reduced spectral emission, that could be observed

and related to the kinetic of cure. Degree of conversion of ̃ 35% (at 660s) was observed

even through 4mm of composite interposition.

Page 54: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

54

Conclusion: The incorporation of NaYF4 nanoparticles doped with Yb3+ and Tm+3 into

a resin based material, in an optimal concentration of 30%, results in UC liner with

spectral emission at sufficient visible blue-light energy to induce DC on a resin based

material, even through different substrate interpositions.

Keywords: Quantum dots, nanoparticles, fluorescence, polymerization, spectrometry

INTRODUCTION Light activation of resin composites, used for direct restorative procedures, is

a critical subject since the main concerns for the use and indication of these materials

are related to the consequences of polymerization [1, 2]. Dental resin composites are,

basically, dimethacrylate based polymeric structures reinforced by a dispersion of filler

particles (amorphous silica, glass, crystalline minerals, short fibers) bonded to the

organic matrix by a silane coupling agent [2]. Visible light activated composites present

photoinitiators in their formulations that are sensitive to specific wavelengths.

Camphorquinone associated to an amine (as co-initiator) is the most common

photoinitiator system [2, 3]. Once irradiated by blue light (peak of absorption on 468

nm), camphorquinone reaches an excited energy state and reacts with the amine,

releasing free-radicals [3] which are responsible for converting double bonds of the

methacrylate groups into single bonds, also known as degree of conversion

(percentage of cure) [4, 5].

As monomers are converted into a polymeric structure, Van der Waals spaces

are replaced by covalent bonds resulting in a volume reduction known as

polymerization shrinkage [1]. Volumetric shrinkage remains as one of the greatest

problems for resin composite restorative procedures because it may develop internal

stresses [6, 7] and, consequently (once these stresses exceed the composite-tooth

interface bonding strength), it may lead to internal marginal gap [8], enamel crack [9],

post-operative sensitivity [9], marginal staining and secondary caries [9, 10]. Shrinkage

stress may be influenced by many factors such as organic and inorganic content [11],

filling technique [10], c-factor of cavity preparation [1], polymerization rate and light-

curing conditions [6]. A minimum amount of energy (16 J/cm2) in the blue visible-light

spectrum is required to activate the camphorquinone and start the polymerization

reaction [2, 3, 12]. Resin composites tend to shrink towards the center and is highly

Page 55: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

55

influenced by the composition and degree of conversion [6]. The incidence of blue light

play an important role on the shrinkage pattern and stress distribution, since orthogonal

light irradiation (90o to the top surface of the restoration), at regular irradiation intensity

leads to greater shrinkage strain, stress and interfacial debonding [6].

Light is attenuated when transmitted through different materials [13]. This

effect is known as Rayleigh light scattering, in which higher frequencies (l) are greater

influenced by this effect (light scattering = l-4). Blue light is a short wavelength (425-

490 nm), of high frequency, and is highly scattered within a restorative material. That

is one of the main factors that determine the depth of cure of resin composite materials.

Recently, bulk-fill resin composites have been introduced to dental practice as a

possible solution to the limited depth of cure for composites. These materials present

alterations in their formulations such as increased translucency, variations in filler

content, monomeric composition, and alternative photoinitiators, since they require

less energy to generate same number of free radicals [8, 14]. Furthermore, the

absorption peaks of some alternative photoinitiators are at ultra-violet (UV, < 400nm)

or violet light (400-425 nm) region, which would demonstrate higher scattering when

compared to blue-light. Longer wavelengths such as infra-red (IR) would be less

affected by the scattering effect, therefore, would demonstrate higher penetration and

transmission through different materials [13, 15].

IR excitation on crystals of NaYF4 doped with rare earth [16] results in physical

phenomenon reported in the literature as upconversion (UC) [17]. The UC process (or

anti-Stoke emission) exceeds excitation energies by up to 100 times, which violates

Stokes law, which states that excitation photons are at higher energy than emitted

ones. That means that UC crystals would convert lower frequency into higher

frequency. Thulium (chemical element: Tm) doped crystals produce emission in the

blue spectrum when excited by IR [18-20]. Nanoparticles of sodium ytterbium fluoride

(NaYF4) doped with Ytterbium+3 (chemical element: Yb) and Tm+3 have been

synthetized [21-26], with an average size of 200 nm that would demonstrate UC

emission with peaks on ˜450 and ˜480 nm, optimal for camphorquinone activation. The

incorporation of these nanoscale crystals into a pure resin based material would result

in a liner with UC properties that could be used after bonding procedures in a cavity

preparation prior to the placement of the restorative materials [12]. Once exposed to

Page 56: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

56

IR (975nm), UC nanoparticles present in the liner would convert the energy into visible

blue light, inducing monomeric conversion (increase of mechanical properties) of the

adjacent resin composite, that could reduce the effects of polymerization shrinkage

and increase the depth of cure of resin-based materials.

The aim of this study was to evaluate the effects of incorporating UC

nanoparticles into a resin bonding material, at different concentrations, creating a liner

with UC properties. The hypothesis tested were: [1] the incorporation of these

nanoparticles into a resin matrix would not inhibit the UC process; [2] liners containing

higher concentrations of UC nanoparticles would result in greater UC efficiency and,

consequently, increased blue-light spectral emission; [3] the blue-light emitted from the

UC liner would induce monomeric conversion on blue-light-activated resin based

materials; [4] the amount of energy that is transmitted through different substrates is

sufficient to stimulate the UC effect on the liner and, consequently, monomeric

conversion on resin based materials.

MATERIALS AND METHODS

Resin disc preparation

In order to obtain discs containing fluorescent nanoparticles, a resin bonding

containing TEGDMA and BisGMA (Heliobond®, lot#S04976, Ivoclar Vivadent, Schaan,

Liechtenstein) agent was selected for this study. The weight of one drop of the light-

curing bonding resin was determined using an electronic analytical balance (Sartorius

1712, Goettingen, Germany) as 0.0259 g. Following, the resin bonding was inserted

into a PVS mold (Express XT, 3M ESPE, St. Paul, MN, USA), covered with a piece of

Mylar and pressure was applied by using a glass micro slide (Gold Seal™, Becton

Dickinson and Company, Franklin Lakes, NJ, USA). Resin bonding was then light

cured using a blue-only light source (Bluephase® 16i, serial#1671297, Ivoclar

Vivadent, Schaan, Liechtenstein) for 10 seconds, resulting in one disc of 6.0 x 0.5 mm

and 0.0196 g in weight.

Pre-synthetized nanoparticles were stored in 2.0 mL microtubes (Eppendorf

Safe-Lock Tube™, Eppendorf AG, Hamburg, Germany), weighed and selected for use

according to lot number and weight amount. Calculations were made in order to

determine the concentration of nanoparticles in a resin disc made with this

Page 57: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

57

configuration. A concentration of 30.3% was determined by adding 0.0157 g of

nanoparticles in two drops of the resin bonding. To incorporate the nanoparticles in a

uniformly dispersed way into the resin bonding, 1.0 mL of chloroform (CAS-no.67-66-

3, Sigma-Aldrich, St. Louis, MO, USA) was added to the dry particles and energy was

given to the mixture using an ultrasonic scaler (Cavitron® Select™ SPS™, serial#124-

38680, Dentsply Professional, York, PA, USA) with an ultrasonic handpiece (Steri-

mate®, #04112, Dentsply Professional, York, PA, USA) coupled to an ultrasonic insert

(Cavitron® 30K™ FSI-SLI-10S, Dentsply Professional, York, PA, USA), in order to

create an uniform suspension.

Two drops of resin bonding were added to the chloroform/nanoparticles

mixture and, again, ultrasonically agitated. Airflow was settled into the microtube in

order to help chloroform to evaporate. After chloroform evaporation, uncured resin

bonding/nanoparticles mixture was inserted in the PVS mold using disposable Pasteur

pipets (FISHERbrand®, lot#0511, Fisher-Scientific, Pittsburgh, PA, USA), covered with

a piece of Mylar, pressed with a glass micro slide and blue-light-cured for 10 seconds,

resulting in a uniform resin disc of 6.0 x 0.5 mm containing 30.3%wt of upconverting

nanoparticles. Similar steps were performed, resulting in resin discs with 15% and

60%wt of upconversing nanoparticles.

Spectral emission analysis

In order to determine the spectral emission of resin discs containing different

concentrations of upconverting nanoparticles (15%, 30% and 60%), when directly

irradiated by a 975 nm laser or through different substrates, a calibrated configuration

for spectrophotometry analysis was used. A 300-900 nm spectrophotometer

(USB2000, Ocean Optics, Dunedin, FL, USA) was used associated to a 450μm fiber

optic cable (QP400-2-UV-VIS, Ocean Optics, Dunedin, FL, USA). The

spectrophotometer equipment was calibrated by using a specific calibrating lamp for

this methodology (LS-1-CAL, Ocean Optics, Dunedin, FL, USA) that would allow a

precise detection of the UC effect. A cosine corrector was coupled to the fiber optic

cable (CC-3-UV-T, Ocean Optics, Dunedin, FL, USA) and fixed in a vertical position.

975 nm laser diode (L975P1WJ, Thorlabs Inc., Newton, NJ, USA), coupled to a

temperature controlled laser diode mount (TCLDM9, Thorlabs Inc., Newton, NJ, USA)

Page 58: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

58

were used. System was connected to a laser diode current controller (LDC220C,

serial#M00297621, Thorlabs Inc., Newton, NJ, USA) and a thermoelectric temperature

controller (TED220C, serial#M00298181, Thorlabs Inc., Newton, NJ, USA). A mounted

aspheric lens (C230TMD-B, Thorlabs Inc., Newton, NJ, USA) was fixed over the

975nm laser diode using a lens adapter (S1TM09, Thorlabs Inc., Newton, NJ, USA)

and placed perpendicularly and 100 mm away from the resin disc surface. Laser was

kept turned on for 10 minutes prior to any analysis, in order to reduce the effect of

current and temperature variations. Spectrophotometer equipment was connected to

a software (SpectraSuite, Ocean Optics, Dunedin, FL, USA) that allowed real-time

capturing of data and analysis.

The UC effect was evaluated for different concentrations and according to

exposure time and specific wavelength. Thus, it was possible to determine which

concentration would present higher efficiency for the UC effect and, consequently,

more suitable for the following methodologies. Also, it was determined the influence of

the current (mA) and the power (mW) of the 975 nm laser on the UC effect. The current

controller on the laser was increased gradually in a 100 mA scale and the resin disc

emission was evaluated. Following, different substrates (enamel, dentin,

enamel/dentin junction, composites, ceramics) with different thicknesses were

interposed and the influence of these interpositions on the spectral emission was

determined.

Degree of conversion (FTIr)

Determination of degree of conversion of resin bonding comparing blue LED light to

975 nm IR laser

In order to evaluate the effect of blue-light emission from a resin disc containing

fluorescent nanoparticles on the degree of conversion of the resin bonding

(Heliobond®, Ivoclar Vivadent, Schaan, Liechtenstein), FTIr spectroscopy

methodology was used. The study compared the percentage of cure of the light curable

resin bonding containing or not upconverting nanoparticles using a blue-only LED light

source (Bluephase® 16i, serial#1671297, Ivoclar Vivadent, Schaan, Liechtenstein) or

a 975 nm IR laser (Thorlabs Inc., cidade, NJ, USA). For all tests in FTIr, power of

infrared laser was set on 1W.

Page 59: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

59

Uncured resin bonding material was placed in direct contact with the horizontal

diamond element of an attenuated total reflectance (ATR) attachment (Golden Gate;

Specac Inc., Fort Washington, PA, USA) on Fourier transformed infrared spectrometer

(FTS-40; Digilab LLC/Bio-Rad Inc., Philadelphia, PA, USA) in a constant thickness of

0.05 mm, controlled by the placement of two adhesive tape pieces (Scotch™ Matte

Finish Magic™ Tape, 3M, St. Paul, MN, USA) on the sides of the diamond. A polyester

strip (Mylar® Type D, 0.08”, DuPont Teijin Films, Chester, VA, USA) was placed over

the resin bonding and pressed against the adhesive tape with a microscope glass slide

(Gold Seal™, Becton Dickinson and Company, Franklin Lakes, NJ, USA). Glass slide

was removed and the Mylar surface was covered with a thin film of non-drying

immersion oil for microscopy (Immersion-oil Type B, formula: code 1248, R. P. Cargille

Laboratories Inc., Cedar Grove, NJ, USA) in order to reduce the influence of air

refractive index.

To evaluate the efficacy of 975 nm infrared laser associated with resin discs

containing fluorescent nanoparticles (NP), a blue-light (BL) only LED light source

(Bluephase® 16i, Ivoclar Vivadent) was used as control. A resin bonding disc without

nanoparticles (HB) was used to simulate the thickness and refractive index of NP. Four

groups were tested for this evaluation (n = 5): Blue-light only through pure resin

bonding disc (BLHB); Blue-light only through resin bonding disc containing

nanoparticles (BLNP); 975nm infrared laser through pure resin-bonding disc (975HB);

975 nm infrared laser through resin bonding disc containing nanoparticles (975NP).

A software (BIO-RAD Win-IRtm Version 4.14, Galactic Industries Corp,

.Salem, NH, USA) was used associated to the FTIr spectrometer. Infrared spectra were

collected between 1680 cm−1 and 1500 cm−1 at a rate of 1 spectrum per second at 2-

cm−1 resolution, for 10 minutes. Five replications were made for each group. Monomer

conversion was calculated by standard methods using changes in the ratios of

aliphatic-to-aromatic C=C absorption peaks (1636 cm−1 / 1608 cm−1) in both cured and

uncured resin bonding. Following, each interposition was placed according to each

group. Data at 300s and 600s were selected and subjected to statistical analysis

(IBM®SPSS®Statistics, IBM Corporation) using two-way ANOVA and post-hoc Tukey’s

test (p < 0.01).

Page 60: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

60

Determination of degree of conversion of resin bonding through tooth substrates

To determine the unfilled resin % of cure through different tooth substrates

(enamel and dentin), fifteen bovine teeth were used. The roots were removed and

crowns were sectioned using a linear precision saw (IsoMet® 5000, Buehler, Lake Bluff,

IL, USA) with a diamond disc (Series 15LC Diamond, Buehler Ltd., Lake Bluff, IL, USA)

under water refrigeration, obtaining specific substrates. Surface roughness was

standardized using SiC abrasive paper discs (Leco Corporation, St. Joseph, MI, USA)

of 320, 400 and 600 grits under water irrigation in a polisher/grinder (Ecomet® III,

Buehler Ltd., Lake Bluff, IL, USA). Specimen thickness and parallelism were measured

using a digital micrometer (Mitutoyo, Kawasaki, Japan). Eight groups were tested on

FTIr spectroscopy for this evaluation (n = 5): Blue-light through 1 mm enamel

(BLHBEN), blue-light through 1 mm dentin (BLHBDE1), blue-light through 2 mm dentin

(BLHBDE2), blue-light through 2 mm enamel/dentin junction (BLHBED), 975 nm

infrared laser through 1mm enamel (975NPEN), 975 nm infrared laser through 1mm

dentin (975NPDE1), 975 nm infrared laser through 2 mm dentin (975NPDE2), 975 nm

infrared laser through 2 mm enamel/dentin junction (975NPED). Data was subjected

to statistical analysis (IBM®SPSS®Statistics, IBM Corporation, Armonk, NY, USA)

using two-way ANOVA and post-hoc Tukey’s test (p < 0.01).

Determination of degree of conversion of resin bonding through resin composite

In order to determine the % of cure of a monomer-based material, placed on

the top of the resin bonding containing the upconverting nanoparticles, composite discs

were made with different thicknesses. The principle was to simulate the cure of an

uncured increment placement of resin composite, in a cavity. Custom PVS (Express

XT, 3M ESPE, St. Louis, MN, USA) molds of 10 mm in diameter were made varying

the depth by 1, 2, 3 and 4 mm. Uncured resin composite (EverX Posteriorä, GC Corp.,

Tokyo, Japan) was placed in the molds, covered with a piece of Mylar, and light-cured

with a blue-only light source for 20 seconds. Surface roughness was standardized

using SiC abrasive paper discs (Leco Corporation, St. Joseph, MI, USA) of 320, 400

and 600 grits under water irrigation in a polisher/grinder (Ecomet® III, Buehler Ltd.,

Lake Bluff, IL, USA). Specimen thickness and parallelism were measured using a

digital micrometer (Mitutoyo, Kawasaki, Japan). Eight groups were tested on FTIr

Page 61: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

61

spectroscopy for this evaluation (n = 5): Blue-light through 1 mm thick composite

(BLHBEX1), blue-light through 2 mm thick composite (BLHBEX2), blue-light through 3

mm thick composite (BLHBEX3), blue-light through 4 mm thick composite (BLHBEX4),

975 nm infrared laser through 1 mm thick composite (975NPEX1), 975 nm infrared

laser through 2 mm thick composite (975NPEX2), 975 nm infrared laser through 2 mm

thick composite (975NPEX3), 975 nm infrared laser through 4 mm thick composite

(975NPEX4). Data was subjected to statistical analysis (IBM®SPSS®Statistics, IBM

Corporation, Armonk, NY, USA) using two-way ANOVA and post-hoc Tukey’s test

(p<0.01).

To verify if there was any influence of 975 nm infrared laser 10 minutes

exposure on final cure of the unfilled resin, an extra scan was taken after a 10 seconds

blue-light exposure. Four groups were evaluated (n = 5): Blue-light for 10 seconds after

975 nm laser for 10 minutes through 1mm thick composite, (B9NPEX1), blue-light for

10 seconds after 975 nm laser for 10 minutes through 2 mm thick composite

(B9NPEX2), blue-light for 10 seconds after 975 nm laser for 10 minutes through 3 mm

thick composite (B9NPEX3), blue-light for 10 seconds after 975 nm laser for 10

minutes through 4 mm thick composite (B9NPEX4). Data was subjected to statistical

analysis (IBM®SPSS®Statistics, IBM Corporation) using two-way ANOVA and post-hoc

Tukey’s test (p<0.01).

RESULTS

Spectral emission analysis of the UC liners containing different concentrations

of UC nanoparticles demonstrated peaks on the 450 nm (blue), 475 nm (blue) and 365

nm (UV). Total spectral emission and specific wavelength emission was evaluated

(Figure 1). For all concentrations of UC nanoparticles, a peak of emission during the

first seconds of exposure was observed, followed by a reduction on the power density

for all wavelengths evaluated. There was a significant increase on power density by

increasing the UC nanoparticle concentration from 15% to 30%. However, there was

no statistical difference from 30% to 60%. UC liner containing 30% of UC nanoparticles

was selected for following tests.

Page 62: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

62

Figure 1. Effect of IR laser exposure time on the power density of different

concentrations of UC nanoparticles on the UC liner, at specific wavelengths. A- Total

spectrum emission; B- 460 to 490 nm emission; C- 440 to 460 nm emission; D- 350 to

370 nm emission.

Spectral emission was also evaluated as a function of IR output power

(current). After a current of approximately 400 mA, the laser output power increases,

resulting in UC effect on UC liner (Figure 2). At 1 W of IR output power (1600 mA),

power density of 460-490 nm was, approximately, 100% higher when compared to

440-460 nm emission. Similar relation was observed when comparing 440-460 nm to

350-370 nm. Total UC power density (350-490 nm) at 1 W was of 1.43 mW/cm2

(r(Pearson)=0.8457).

Page 63: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

63

Figure 2. Effect of current/power of IR laser on the power density of 30% concentration

UC liner, at specific wavelengths (350 – 490 nm, 460 – 490 nm, 440 – 460 nm and 350

– 370 nm).

Degree of conversion (DC) means (standard deviation) are presented in Table

1. Two-way ANOVA statistical analysis demonstrated that after 300 s of IR exposure

to UC liner (975NP) induced 47.3% of monomeric conversion on resin based material,

statistically different than 975HB. DC for 975NP was statistically lower than BLHB and

BLNP after 300 s, but no statistical difference was observed after the period of 600 s.

For all groups, except 975HB, degree of conversion increased significantly with time.

Page 64: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

64

Table 1. Means (standard deviation) of degree of conversion (%) for HeliobondÒ at

300 s and 600 s, using blue-light and IR laser through resin bonding disc containing or

not nanoparticles.

EVALUATED TIME (s) GROUP 300 600 BLHB 50.1 (0.2) A b 52.2 (0.3) A a BLNP 50.5 (0.2) A b 52.3 (0.4) A a 975HB 0.0 (0.0) C a 0.00(0.0) B a 975NP 47.3 (0.1) B b 52.4 (0.3) A a

Means followed by different letter (uppercase compares rows, lowercase compares columns) are statistically different (p < 0.01). n=5 specimens per group. Abbreviations: BLHB (blue-light only through pure resin bonding disc); BLNP (blue-light only through resin bonding disc containing nanoparticles); 975HB (975nm infrared laser through pure resin-bonding disc); 975NP (975 nm infrared laser through resin bonding disc containing nanoparticles).

Figure 3 represents the spectral emission of UC liner exposed to IR laser and

kinetic of cure according to different substrate interpositions. When dental substrates

were interposed it is possible to observe a reduction in the UC liner spectral emission.

975NPEN resulted in lower reduction when compared to 975NPDE1, 975NPDE2 and

975NPED. These reductions in spectral emission can be observed and related to the

kinetic of cure of the resin-based material (Figure 3). Blue light-curing (BLNP) reaches

a plateau of cure after 10 seconds of exposure. 975NP maximum cure is observed

after 480 seconds, and lower DC values are observed according to the interposition of

both dental substrates, especially for 2 mm of dentin (Table 2). For the composite

interpositions, similar results were obtained because an increase of the composite

thickness resulted in reduced UC spectral emission. Kinetic of cure shows the effect of

composite interpositions, where, even through 4 mm of composite a degree of

conversion (around 35% at 660 s) is observed for the resin based material.

Page 65: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

65

Figure 3. Spectral emission of 30% UC liner through different substrates and kinetic

of cure of resin using different curing protocols through different substrates. A- Spectral

emission of 30% concentration UC liner and reduction when IR was transmitted

through dental substrates; B- Kinetic of cure observed for Heliobond when exposed to

blue light emitted from 30% UC liner through dental substrates; C- Spectral emission

of 30% concentration UC liner and reduction when IR was transmitted through resin

composite; D- Kinetic of cure observed for Heliobond when exposed to blue light

emitted from 30% UC liner through resin composite.

Degree of conversion of resin bonding material cured by UC liner irradiated

through different thicknesses of dental substrates is represented in Table 2. Statistical

analysis (p < 0.01) showed no difference among BLHBEN, BLHBDE1, BLHBDE2 and

BLHBED at the two different time periods. For all groups, except BLHBED and

975NPDE2, there was a statistical increase in DC after 600 s, in which 975NPDE2

showed the lowest DC. Among the groups exposed to IR after 300 and 600 s,

975NPEN resulted in highest DC means, while 975NPDE2 the lowest, which did differ

from 975NPED after 300 s.

Page 66: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

66

Table 2. Means (standard deviation) of degree of conversion (%) for HeliobondÒ at

300 s and 600 s, using different curing protocols (blue-light (BL) and IR laser (975),

resin bonding containing (NP) or not (HB) nanoparticles) through tooth substrates at

different thicknesses.

EVALUATED TIME (s)

GROUP 300 600 BLHBEN 49.9 (0.5) A b 51.8 (0.3) A a

BLHBDE1 49.3 (0.5) A b 50.9 (0.5) A a BLHBDE2 45.3 (1.3) A b 47.4 (1.1) AB a BLHBED 48.6 (1.9) A a 50.4 (1.7) A a 975NPEN 37.6 (1.6) B b 44.7 (1.2) B a

975NPDE1 24.1 (8.1) C b 38.8 (2.0) C a 975NPDE2 0.4 (0.3) D a 1.8 (1.3) E a 975NPED 1.4 (1.7) D b 19.1 (5.8) D a

Means followed by different letter (uppercase compares rows, lowercase compares columns) are statistically different (p < 0.01). n = 5 specimens per group. Abbreviations: BLHBEN (blue-light through 1 mm enamel; BLHBDE1 (blue-light through 1 mm dentin); BLHBDE2 (blue-light through 2 mm dentin); BLHBED (blue-light through 2 mm enamel/dentin junction); 975NPEN (975 nm infrared laser through 1mm enamel); 975NPDE1 (975 nm infrared laser through 1mm dentin); 975NPDE2 (975 nm infrared laser through 2 mm dentin); 975NPED (975 nm infrared laser through 2 mm enamel/dentin junction).

Different thicknesses of composite were interposed and DC means (standard

deviation) are shown in Table 3. Statistical analysis (p < 0.01) showed no difference

among BLHBEX1, BLHBEX2, BLHBEX3 and BLHBEX4 for both times. All groups, with

exception of BLHBEX3 and BLHBEX4 increased significantly the DC values after 600

s when compared to 300 s. Even through 4 mm of composite, UC liner exposed to IR

spectral emission resulted in 33.8% of DC (Table 3).

Page 67: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

67

Table 3. Means (standard deviation) of degree of conversion (%) for HeliobondÒ at

300s and 600s, using different curing protocols (blue-light (BL) and IR laser (975), resin

bonding containing (NP) or not (HB) nanoparticles) through resin composite at different

thicknesses.

EVALUATED TIME (s) GROUP 300 600

BLHBEX1 50.6 (0.4) A b 52.2 (0.4) A a BLHBEX2 48.6 (1.0) A b 50.5 (1.0) A a BLHBEX3 47.4 (1.6) A a 49.4 (1.5) AB a BLHBEX4 46.4 (1.4) A a 48.3 (1.6) AB a 975NPEX1 39.3 (4.3) B b 46.2 (2.6) B a 975NPEX2 34.4 (6.3) B b 43.7 (2.8) BC a 975NPEX3 26.1 (3.6) C b 40.4 (1.2) C a 975NPEX4 8.5 (5.8) D b 33.8 (4.8) D a

Means followed by different letter (uppercase compares rows, lowercase compares columns) are statistically different (p < 0.01). n = 5 specimens per group. Abbreviations: BLHBEX1 (blue-light through 1 mm thick composite); BLHBEX2 (blue-light through 2 mm thick composite); BLHBEX3 (blue-light through 3 mm thick composite); BLHBEX4 (blue-light through 4 mm thick composite); 975NPEX1 (975 nm infrared laser through 1 mm thick composite); 975NPEX2 (975 nm infrared laser through 2 mm thick composite); 975NPEX3 (975 nm infrared laser through 2 mm thick composite); 975NPEX4 (975 nm infrared laser through 4 mm thick composite).

Groups exposed to IR demonstrated statistical difference for DC values at 600

s. After 10 s of blue-light exposure, groups did not differ statistically (Table 4). For all

groups, an increase on DC was observed after 10 s of blue-light exposure.

Table 4. Means (standard deviation) of degree of conversion (%) for HeliobondÒ at

600s, using 975 nm associated to UC liner followed by 10 s blue-light exposure,

through different composite thicknesses.

GROUP DC (%) AFTER IR for 600s DC (%) AFTER 10s BLUE LIGHT B9NPEX1 46.2 (2.6) A b 49.4 (1.8) A a B9NPEX2 43.7 (2.8) B b 49.0 (2.8) A a B9NPEX3 40.4 (1.2) C b 48.7 (2.4) A a B9NPEX4 33.8 (4.8) D b 47.1 (4.4) A a

Means followed by different letter (uppercase compares rows, lowercase compares columns) are statistically different (p < 0.05). n = 5 specimens per group. Abbreviations: B9NPEX1 (blue-light exposure after IR through 1mm of composite); B9NPEX2 (blue-light exposure after IR through 2mm of composite); B9NPEX3 (blue-light exposure after IR through 3mm of composite); B9NPEX4 (blue-light exposure after IR through 4mm of composite).

Page 68: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

68

DISCUSSION

First hypothesis was accepted since the addition of UC nanoparticles on a

resin-based material did not inhibit the UC effect. For this study, HeliobondÒ was

selected because of its simple monomeric composition and photoinitiator system

(camphorquinone, CQ). A low-viscosity hydrophobic resin containing BisGMA and

TEGDMA that could be activated by visible blue-light (CQ) only was required. The UC

effect happens “within” the crystal, thus, does not depend on the surrounding medium

[17, 20]. Each crystal of NaYF4 is doped by Yb and Tm and, once exposed to IR (975

nm) a sequential two-photon absorption UC process takes place, where the Yb ion

absorbs pump flux and transfers the energy to the activator ion (Tm) [17]. The first

photon populates a long-lived state and a second photon promotes this ion to an upper

emitting level [17]. Once accumulated, energy is released and spectral emission is

observed in a more energetic frequency, thus, of lower wavelength [17]. In this study,

emission was observed on the blue spectrum (˜450 and ˜480 nm) optimal for

camphorquinone excitation. Furthermore, it was observed a peak of emission on the

UV (˜365 nm) region, optimal for activating alternative photoinitiators such as Lucerin

TPO and Ivocerin [12, 14]. Alternative photoinitiators sensitive to UV light demonstrate

higher efficiency on the generation of free-radicals [27, 28]; thus, nanoparticles that

would convert IR into UV light might induce a greater number of free-radicals on resin

composites containing these photoinitiators.

Different concentrations of UC nanoparticles were incorporated into the resin-

based material, and spectral emission was evaluated in order to determine the optimal

concentration and efficiency of UC for the UC liner. The second hypothesis was

refused because, by increasing the concentration of nanoparticles from 15% to 30%,

there was a significant increase of the power density and irradiance observed for the

UC liner discs, but not with 60%. A higher concentration of UC nanoparticles means a

higher surface area of NaYF4 crystals, thus, higher efficiency on the UC phenomenon

[29, 30]. However, an increase from 30% to 60% did not demonstrate significant

influence on the spectral emission, which may be explained by a “saturation” of the

solution. At the concentration of 60%, the number of particles on the surface of the

discs, specifically, did not increase in a proportion that would represent a higher

Page 69: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

69

surface area of NaYF4 crystals. Then, all the monomeric conversion tests were

performed by using the UC liner disc that would contain 30% of UC nanoparticles.

The emission was evaluated according to the exposure period of IR laser. It

was observed a higher peak of energy on the first seconds of exposure to IR, which

may be explained by the UC process per se [17, 19-21, 23, 26]. As previously

described, the UC depends on the absorption and population of different levels of

energy, followed by an emission at higher energy. All energetic levels of UC

nanoparticles are at ground state prior to IR exposure [17, 18]. Once exposed, an

optimal number of energetic levels are populated and emitted on the first seconds and,

for the following, while UC is occurring, not all levels are available for population in the

same efficiency [17, 18]. A reduction on the power density, in a magnitude of

approximately 50%, was observed after the first minute of exposure, followed by a

plateau on the following minutes of exposure. A shuttering diaphragm in a specific

frequency could control the period of exposure to IR and, consequently, increase the

efficiency of UC emission, reducing the exposure time to IR.

The influence of the blue spectral emission on a CQ-containing resin-based

material was evaluated by FTIr methodology. Third hypothesis was accepted, because

blue light emitted from UC liners was sufficient to induce monomeric conversion on the

resin-based material. After 600 s of exposure, there was no statistical difference

between monomeric conversion obtained by using a monowave light curing unit or with

concentration of 30% UC liner associated to IR laser. Clinically, 600 seconds of chair-

side IR exposure would be not acceptable; however, 300 seconds of IR exposure was

sufficient to generate 47% of monomeric conversion, very close to that obtained for

direct blue light curing (50%). An IR exposure of 60 seconds was sufficient to induce

a monomeric conversion of more than 20% in the resin-based material (Figure 3 - B

and D). That percentage of conversion might reduce the effects of polymerization

shrinkage and increase the depth of cure of resin composites, since converted

polymeric network adjacent to UC liner would demonstrate increased mechanical

properties. Also, studies have been conducted in order to increase the efficiency of UC

properties for UC nanoparticles, by perfecting the synthesis methods [19-25].

Hexagonal UC nanoparticles demonstrates higher UC efficiency when compared to

cubic ones, due to the disposition of Yb and Tm within the crystalline structure and

Page 70: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

70

increased surface area [20, 23, 24, 29]. Increased efficiency might lead to increased

power density of spectral emission and, consequently, higher degree of conversion at

reduced exposure time. IR laser (975 nm) power output for all tests was set at 1 W. An

exponential increase of spectral emission of UC nanoparticles was observed by

increasing the IR laser power output, thus, increased IR laser power might lead to

higher efficiency on monomeric conversion for these materials.

Higher transmission of IR resulted in UC and consequent monomeric

conversion even through different substrates at different thickness. Fourth hypothesis

was accepted, because UC effect and monomeric conversion were observed through

different thicknesses of different substrates, obtaining varied results. Tooth substrates

at different thicknesses were interposed as obstacles to IR excitation and, values of

blue light emission and monomeric conversion were higher for enamel with 1 mm in

thickness. This result is expected since enamel presents higher translucency when

compared to dentin [31, 32]. The increase of thickness for dentin substrate resulted in

a statistical reduction on spectral emission values and, consequently, effected the

monomeric conversion. IR is highly reflected by opaque white substrates [33, 34],

which would explain a lower transmission through dentin substrates, resulting in lower

UC effect.

Resin composites were also placed as interpositions between UC liner discs

and IR laser. This interposition would simulate the depth of the cavity preparation that

would be filled by the resin composite. A specific resin composite (everX Posterior™,

GC) was selected in a previous study, because it demonstrated higher transmission

on IR spectrum, when compared to other composites. The inorganic composition for

this composite is, basically, short E-glass fibers and is indicated as bulk-fill material for

posterior restorations [35], while organic composition is, basically, BisGMA and

TEGDMA (similar to organic composition of Heliobond®) [8]. The combination between

a composite with increased IR transmission to an UC liner would be ideal for large

posterior restorations. Spectral emission power density reduced with increased

thicknesses of composite. However, an increase from 3 to 4 mm of composite did not

result in significant reduction of spectral emission, which suggests that even greater

thicknesses of composite might transmit enough IR energy for UC effect. The amount

of IR converted into blue light was enough to induce monomeric conversion for all

Page 71: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

71

composite thicknesses, even after 300 s and, this composite thickness increase

resulted in proportional reduction of the monomeric conversion, which could be

observed on the kinetic of cure (Figure 2). Since the transmission of IR through

different substrates is increased when compared to blue-light, this same technology

could be applied to resin cements used for indirect restorative procedures. As

mentioned, blue and violet light are highly scattered in different indirect restorative

materials, thus, UC particles in the blue / violet spectrum would allow the addition of

alternative photoinitiators to resin cements, increasing the monomeric conversion of

these materials.

CONCLUSION Within the limitations of this study, the following conclusions can be made:

1. The incorporation of NaYF4 nanoparticles doped with Yb3+ and Tm+3 into a resin

based material results in UC liner that demonstrated spectral emission with

peaks on 450 nm, 475 nm and 365 nm;

2. UC nanoparticles optimal concentration, in terms of UC spectral emission, on a

liner was stablished at 30%;

3. Visible blue-light emitted from UC liner was sufficient to induce DC on a resin

based material;

4. Interpositions of different substrates reduced the UC spectral emission of UC

liner, however, the emission was sufficient to promote monomeric conversion

even when 4 mm interposition of resin composite was present.

ACKNOWLEDGEMENT Supported by Coordination for the Improvement of Higher Education Personnel (Capes

#3110/2010; #A043-2013 and #1777/2014), Brazil.

REFERENCES [1] Al Sunbul H, Silikas N, Watts DC. Polymerization shrinkage kinetics and shrinkage-

stress in dental resin-composites. Dental Materials. 2016.

[2] Ferracane JL. Resin composite—state of the art. Dental materials. 2011;27:29-38.

Page 72: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

72

[3] Stansbury JW. Curing dental resins and composites by photopolymerization.

Journal of esthetic and restorative Dentistry. 2000;12:300-8.

[4] Bouschlicher M, Rueggeberg F, Wilson B. Correlation of bottom-to-top surface

microhardness and conversion ratios for a variety of resin composite compositions.

Operative Dentistry. 2004;29:698-704.

[5] Heigl N, Petter C, Rainer M, Najam-ul-Haq M, Vallant R, Bakry R, et al. Near infrared

spectroscopy for polymer research, quality control and reaction monitoring. J Near

Infrared Spectrosc. 2007;15:269-82.

[6] Chuang S-F, Huang P-S, Chen TY-F, Huang L-H, Su K-C, Chang C-H. Shrinkage

behaviors of dental composite restorations—The experimental–numerical hybrid

analysis. Dental Materials. 2016.

[7] Versluis A, Tantbirojn D. Relationship between shrinkage and stress. Dental

computing and applications: advanced techniques for clinical Dentistry: IGI Global,

Hershey; 2009. p. 45-64.

[8] Fronza BM, Rueggeberg FA, Braga RR, Mogilevych B, Soares LES, Martin AA, et

al. Monomer conversion, microhardness, internal marginal adaptation, and shrinkage

stress of bulk-fill resin composites. Dental Materials. 2015;31:1542-51.

[9] Rosatto C, Bicalho A, Veríssimo C, Bragança G, Rodrigues M, Tantbirojn D, et al.

Mechanical properties, shrinkage stress, cuspal strain and fracture resistance of

molars restored with bulk-fill composites and incremental filling technique. Journal of

Dentistry. 2015;43:1519-28.

[10] Bicalho A, Valdívia A, Barreto B, Tantbirojn D, Versluis A, Soares C. Incremental

filling technique and composite material-part II: shrinkage and shrinkage stresses.

Operative Dentistry. 2014;39:e83-e92.

[11] Kalliecharan D, Germscheid W, Price RB, Stansbury J, Labrie D. Shrinkage stress

kinetics of Bulk Fill resin-based composites at tooth temperature and long time. Dental

Materials. 2016;32:1322-31.

[12] Rueggeberg FA. State-of-the-art: dental photocuring—a review. Dental Materials.

2011;27:39-52.

[13] Miles RB, Lempert WR, Forkey JN. Laser rayleigh scattering. Measurement

Science and Technology. 2001;12:R33.

Page 73: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

73

[14] Harlow J, Rueggeberg F, Labrie D, Sullivan B, Price R. Transmission of violet and

blue light through conventional (layered) and bulk cured resin-based composites.

Journal of Dentistry. 2016;53:44-50.

[15] Li Z, Zhang Y. An efficient and user-friendly method for the synthesis of hexagonal-

phase NaYF4: Yb, Er/Tm nanocrystals with controllable shape and upconversion

fluorescence. Nanotechnology. 2008;19:345606.

[16] Stepuk A, Mohn D, Grass RN, Zehnder M, Kramer KW, Pelle F, et al. Use of NIR

light and upconversion phosphors in light-curable polymers. Dental materials : official

publication of the Academy of Dental Materials. 2012;28:304-11.

[17] Auzel F. Upconversion and anti-stokes processes with f and d ions in solids.

Chemical reviews. 2004;104:139-74.

[18] Scheps R. Upconversion laser processes. Progress in Quantum Electronics.

1996;20:271-358.

[19] Krämer KW, Biner D, Frei G, Güdel HU, Hehlen MP, Lüthi SR. Hexagonal sodium

yttrium fluoride based green and blue emitting upconversion phosphors. Chemistry of

Materials. 2004;16:1244-51.

[20] Mai H-X, Zhang Y-W, Si R, Yan Z-G, Sun L-d, You L-P, et al. High-quality sodium

rare-earth fluoride nanocrystals: controlled synthesis and optical properties. Journal of

the American Chemical Society. 2006;128:6426-36.

[21] Boyer J-C, Cuccia LA, Capobianco JA. Synthesis of colloidal upconverting NaYF4:

Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals. Nano Letters. 2007;7:847-52.

[22] Boyer J-C, Vetrone F, Cuccia LA, Capobianco JA. Synthesis of colloidal

upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal

decomposition of lanthanide trifluoroacetate precursors. Journal of the American

Chemical Society. 2006;128:7444-5.

[23] Iwamoto W, Vargas J, Holanda L, Alves E, Moreno M, Oseroff S, et al. Improved

Route for the Synthesis of Colloidal NaYF4 Nanocrystals and Electron Spin

Resonance of Gd3+ Local Probe. Journal of nanoscience and nanotechnology.

2010;10:5708-14.

[24] Shan J, Qin X, Yao N, Ju Y. Synthesis of monodisperse hexagonal NaYF4: Yb,

Ln (Ln= Er, Ho and Tm) upconversion nanocrystals in TOPO. Nanotechnology.

2007;18:445607.

Page 74: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

74

[25] Shan S-N, Wang X-Y, Jia N-Q. Synthesis of NaYF 4: Yb 3+, Er 3+ upconversion

nanoparticles in normal microemulsions. Nanoscale research letters. 2011;6:1.

[26] Xu W, Xu X, Wu F, Zhao G, Zhao Z, Zhou G, et al. Infrared to visible upconversion

fluorescence in Yb, Tm: YAG single crystal. Optics communications. 2007;272:182-5.

[27] Price R, Shortall A, Palin W. Contemporary issues in light curing. Operative

Dentistry. 2014;39:4-14.

[28] Schneider LFJ, Pfeifer CS, Consani S, Prahl SA, Ferracane JL. Influence of

photoinitiator type on the rate of polymerization, degree of conversion, hardness and

yellowing of dental resin composites. Dental Materials. 2008;24:1169-77.

[29] Takagi H, Ogawa H, Yamazaki Y, Ishizaki A, Nakagiri T. Quantum size effects on

photoluminescence in ultrafine Si particles. Applied Physics Letters. 1990;56:2379-80.

[30] Jana NR, Gearheart L, Obare SO, Murphy CJ. Anisotropic chemical reactivity of

gold spheroids and nanorods. Langmuir. 2002;18:922-7.

[31] Ragain J, Johnston WM. Accuracy of Kubelka-Munk reflectance theory applied to

human dentin and enamel. Journal of dental research. 2001;80:449-52.

[32] Vaarkamp J, Ten Bosch J, Verdonschot E. Propagation of light through human

dental enamel and dentine. Caries research. 1995;29:8-13.

[33] Fried D, Glena RE, Featherstone JD, Seka W. Nature of light scattering in dental

enamel and dentin at visible and near-infrared wavelengths. Applied optics.

1995;34:1278-85.

[34] Yanagimoto H, Zama Y, Okamoto H, Hosoda T, Abe Y, Nakamura M. Near-

infrared reflecting composite pigments. Google Patents; 2003.

[35] Tsujimoto A, Barkmeier Ww, Takamizawa T, Latta Ma, Miyazaki M. Mechanical

properties, volumetric shrinkage and depth of cure of short fiber-reinforced resin

composite. Dental materials journal. 2016;35:418-24.

Page 75: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

75

3. DISCUSSÃO

A prática da Odontologia restauradora adesiva se utiliza, basicamente, de

materiais resinosos que dependem do procedimento de fotoativação para que a

reação de polimerização ocorra (Ferracane, 2011; Rueggeberg, 2011). A dose de

energia no comprimento de onda ideal para absorção pelos fotoiniciadores presentes

na formulação deve ser suficiente para que radicais livres sejam formados,

desencadeando a reação (Stansbury, 2000). As propriedades de materiais a base de

resina dependem diretamente da adequada polimerização, e podem ser relacionadas

ao número de ligações duplas de carbono que são quebradas por estes radicais,

conhecido como grau de conversão (Ferracane et. al., 1997; Stansbury, 2000; Caldas

et. al., 2003; Arikawa et. al., 2004; Bouschlicher et. al., 2004; Correr et. al., 2005;

Lohbauer et. al., 2005; AlQahtani et. al., 2015; Fronza et. al., 2015). Atualmente,

diferentes materiais restauradores utilizados na prática clínica podem atenuar a

passagem da luz irradiada pelo aparelho fotoativador, o que leva a uma redução do

grau de conversão monomérica e, consequentemente, das propriedades dos

materiais, limitando o uso em procedimentos restauradores diretos ou indiretos (Price

et. al., 2000; Price et. al., 2014; Harlow et. al., 2016). A limitação da transmissão de

luz (azul ou violeta) através de compósitos odontológicos determina a profundidade

de polimerização destes materiais (Caldas et. al., 2003; Chen et. al., 2005; Garcia et.

al., 2014; Hollaert et. al., 2016). Além disso, durante a reação de polimerização, os

espaços entre monômeros são reduzidos devido a uma substituição de forças de Van

der Waals por ligações covalentes, levando a uma contração de polimerização

(Versluis and Tantbirojn, 2009; Fronza et. al., 2015; Al Sunbul et. al., 2016; Chuang

et. al., 2016; Kalliecharan et. al., 2016).

Essas limitações inerentes ao material resultam na necessidade de uma

técnica de inserção na cavidade restauradora de forma incremental, aumentando o

tempo do procedimento restaurador direto (Bicalho et. al., 2014; Rosatto et. al., 2015).

Diferentes materiais restauradores indiretos (como cerâmicas) também atenuam a

transmissão de luz azul ou violeta que pode levar a uma redução do grau de conversão

de cimentos resinosos, o que pode comprometer o procedimento como um todo

(Ayres et. al., 2015). O espalhamento que ocorre no interior de diferentes substratos

obedece a lei do espalhamento de Rayleigh, que descreve o espalhamento como o

Page 76: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

76

comprimento de onda ao inverso da quarta potência (l-4) (Miles et. al., 2001). Ou seja,

maiores comprimentos de onda apresentam menor espalhamento no interior de

corpos, sendo mais transmitidos. Neste mesmo pensamento, as luzes azul e violeta

são altamente afetadas por este efeito, apresentando baixa penetração nos materiais

odontológicos (Vaarkamp et. al., 1995; Arikawa et. al., 2004; Harlow et. al., 2016). A

luz infravermelho (IR) possui um comprimento de onda acima de 850nm, até 1mm

(Auzel, 2004; Xu et. al., 2007). Desta forma, para o presente estudo, nanocristais de

NaYF4 dopados por Yb+3 e Tm+3, e sensíveis ao IR, foram sintetizados. A literatura

reporta um efeito para estes cristais, conhecido por upconversion (UC), que descreve

uma emissão de luz em maior estado energético (maior frequência, menor

comprimento de onda) quando expostos a uma onda de menor energia (menor

frequência, maior comprimento de onda) (Takagi et. al., 1990; Scheps, 1996; Auzel,

2004; Xu et. al., 2007).

Os cristais foram sintetizados seguindo métodos reportados na literatura

(Krämer et. al., 2004; Boyer et. al., 2006; Mai et. al., 2006; Boyer et. al., 2007; Shan

et. al., 2007; Iwamoto et. al., 2010; Shan et. al., 2011), com pequenas alterações, para

uma padronização da síntese e obtenção de cristais de menor tamanho e maior

eficiência de conversão (Apêndice, Figura 1). A caracterização morfológica e de

composição dos cristais revelou uma síntese monodispersa e uniforme, com cristais

na fase hexagonal de tamanho médio de 200 nm, e picos de UC em 365 nm, 450 nm,

475 nm, 650nm e 800nm, quando irradiados por um laser de IR a 975 nm. Os picos

de 365 nm, 450 nm e 475 nm são de extrema importância para a área odontológica

sendo que são específicos para sensibilização de fotoiniciadores com picos de

absorção no espectro de luz azul e ultra-violeta (UV)-visível (Stansbury, 2000;

Schneider et. al., 2008; Price et. al., 2010; Rueggeberg, 2011; Price et. al., 2014). O

pico de 365nm é particularmente interessante devido ao fato de que fotoiniciadores

alternativos, de tipo I, apresentam maior eficiência na formação de radicais livres, com

uma menor dose de energia e são, basicamente, sensíveis a comprimentos de onda

abaixo de 420nm (Schneider et. al., 2008; Price et. al., 2014). Um aperfeiçoamento do

método de síntese pode resultar em cristais com maior eficiência de UC e picos de

maior intensidade na região UV. Uma possível alternativa seria a inclusão de

praseodímio (Pr+3) na formulação destes cristais (Auzel, 2004).

Page 77: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

77

A transmissão de luz azul e IR através de diferentes substratos relevantes

para a prática Odontológica foi avaliada no presente estudo (Apêndice, Figuras 3, 4,

5, 6, 7 e 14), revelando maior transmissão de IR, principalmente, para compósitos e

cerâmicas. A transmissão através de tecidos dentais (Apêndice, Figura 15)

demonstrou uma maior transmissão de IR para o esmalte, quando comparado a

dentina e junção amelodentinária. O esmalte, naturalmente, apresenta uma certa

translucidez que permite, também, a transmissão de luz azul (Apêndice, Figura 10)

(Fried et. al., 1995; Vaarkamp et. al., 1995) Já a dentina e a junção amelodentinária

apresentam maior opacidade (Odor et. al., 1999; Price et. al., 2000) que tende a refletir

o IR, devido a uma coloração mais “branca” (Yanagimoto et. al., 2003). O mesmo foi

observado para uma resina composta específica avaliada no trabalho de cor branca

(“White shade”, TC). Um cálculo da razão entre transmissão de luz IR e azul,

demonstrou valores de 17% para TC, sendo que outros compósitos (Apêndice, Figura

16) demonstraram valores de até 290% (EX), para amostras com 4 mm de espessura.

Ou seja, a luz IR foi transmitida quase três vezes mais para EX (Apêndice, Figura 17)

quando comparada a luz azul, devido a composição inorgânica deste compósito

(pequenas fibras de vidro) (Garoushi et. al., 2013; Fronza et. al., 2015; Tsujimoto et.

al., 2016). Compósitos do tipo bulk-fill (SD, TB, FB) transmitiram luz azul de forma

mais eficiente quando comparados a compósitos convencionais, devido a

modificações nas formulações que permitem menor absorção/espalhamento da luz

azul (AlQahtani et. al., 2015; Benetti et. al., 2015; Fronza et. al., 2015; Li et. al., 2015;

Hollaert et. al., 2016). Desta forma, os valores de razão IR/luz-azul para SD, TB e FB

ficaram entre 100-150%. Para procedimentos restauradores diretos, o material

restaurador ideal para transmissão de IR deveria apresentar composição inorgânica

semelhante a EX.

Para cerâmicas odontológicas (Apêndice, Figura 18) as diferenças na

opacidade e translucidez dos materiais apresentaram influência significativa sobre as

transmissões de luz IR e azul. Cerâmicas mais translúcidas (Denry and Holloway,

2010) (FE e PC) apresentaram valores de transmissão de luz azul maiores que

cerâmicas opacas. Para cerâmicas menos translúcidas (FD, EL, XL), a razão entre

IR/luz-azul foi mais evidente quando comparadas a cerâmicas de alta translucidez

(FE, EH, PC, XH), chegando a valores de 640% para XL a 4mm. Esse resultado é

Page 78: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

78

extremamente importante para procedimentos restauradores indiretos, onde a

espessura do material restaurador não permite adequada fotoativação do cimento

resinoso (onlay, inlay, coroas totais) (Ayres et. al., 2015). A incorporação de

nanocristais UC em cimentos resinosos permitiria a emissão de luz azul para ativação

da canforquinona e luz UV (365nm) para ativação de fotoiniciadores alternativos de

maior eficiência, resultando em melhores propriedades mecânicas do cimento

resinoso.

A purificação da solução orgânica obtida a partir da síntese não apresentou

influência sobre o efeito UC, resultado em um pó branco (Apêndice, Figura 2), com

propriedades de fluorescência quando irradiados por 1W de um laser a 975nm. O pó

de nanocristais foi incorporado em uma resina (Apêndice, Figuras 8 e 9) pura (BIS-

GMA e TEGDMA), resultando em um liner (Apêndice, Figuras 11, 12 e 13) com

propriedades de UC quando exposto ao IR. A incorporação dos nanocristais em uma

matriz orgânica não inibiu os efeitos UC quando irradiados pelo laser, e uma

concentração ideal de 30% em peso foi determinada (Apêndice, Figura 19). Uma

redução na concentração para 15% resultou em redução da eficiência de emissão do

liner sendo que, um aumento para 60% não apresentou diferença estatística quanto a

emissão de luz. A emissão de luz azul de um disco de resina confeccionado com o

liner UC quando exposto ao laser IR foi suficiente para causar conversão monomérica

em uma resina pura sensível a luz azul (Apêndice, Figuras 20 e 21). Após 300s, o

efeito UC presente no liner foi suficiente para causar 47.3% de grau de conversão em

uma resina (50.1% para o controle), sendo que após 600s não houve diferença

estatística quando comparado a fotoativação com um aparelho “monowave”. Este

resultado confirma a possibilidade de se fotoativar materiais a base de resina

utilizando efeitos de UC de um liner. A avaliação dos espectros de emissão do liner e

cinética de polimerização, mesmo através de diferentes interposições, demonstrou

conversão monomérica para todas situações, principalmente após 600s, permitindo a

transmissão de IR através de diferentes substratos e consequente fotoativação de

compósitos restauradores. A transmissão de IR através de EX foi elevada em

comparação a luz azul, sendo selecionada para as análises do grau de conversão

sendo que mesmo 4mm de compósito permitiu um grau de conversão de 33.8% após

600s (Apêndice, Figura 22). A fotoativação com luz azul após a exposição ao

Page 79: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

79

infravermelho resultou em valores semelhantes aos obtidos para luz azul apenas,

demonstrando que não houve influência do IR no grau de conversão final do material

resinoso.

Diferentemente do que foi feito em outro estudo reportado na literatura

(Stepuk et. al., 2012), os cristais de NaYF4 do presente estudo foram, exclusivamente,

de fase hexagonal e de tamanho médio de 200nm. Um menor tamanho de partícula

b, apresentaria maior área de superfície (Jana et. al., 2002) e eficiência no efeito UC

(Krämer et. al., 2004; Mai et. al., 2006; Shan et. al., 2007; Xu et. al., 2007; Iwamoto et.

al., 2010), sendo mais adequados para a técnica. Além disso, a incorporação destes

cristais em compósitos restauradores apresentaria os mesmos problemas inerentes a

contração de polimerização, sendo que o compósito seria fotoativado como um todo.

Ao incorporar os nanocristais em um liner, a luz seria emitida a partir da cavidade em

direção ao compósito, aumentando o grau de conversão de uma região próxima a

interface de união, tornando-a mais resistente a contração de polimerização que

ocorrerá em seguida, durante a fotoativação com luz azul do material. Também, a

presença de um pico na região UV representa uma promissora possibilidade de

incorporação fotoiniciadores alternativos em diferentes materiais resinosos. Estudos

devem ser realizados para se avaliar a influência deste liner na resistência de união,

aumento de temperatura intrapulpar (Apêndice, Figuras 23 e 24), interface de união,

biocompatibilidade, entre outras propriedades in vitro e, posteriormente, in vivo.

Page 80: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

80

4. CONCLUSÃO

As seguintes conclusões puderam ser obtidas:

1. Os métodos de síntese e purificação descritos resultaram em um pó de

nanocristais de b-NaYF4:30%Yb,0.5%Tm uniformes, monodispersos, de

fase única, com tamanho médio de 200nm, com propriedades UC em três

comprimentos de onda clinicamente relevantes quando irradiados por um

laser IR a 975nm;

2. A transmissão de IR através de esmalte é maior, quando comparada a luz

azul, enquanto nenhuma diferença foi observada para dentina. A

transmissão de IR é maior que luz azul para compósitos odontológicos, com

exceção de um compósito de cor branca. Uma resina composta com porção

inorgânica de pequenas fibras de vidro apresentou maior razão IR/luz-azul.

Cerâmicas de menor translucidez apresentar maior razão IR/luz-azul

quando comparadas a cerâmicas de baixa translucidez;

3. A incorporação de nanocristais UC de NaYF4 dopados por Yb3+ e Tm+3 em

um material resinoso, a uma concentração ideal de 30%, resulta em um

liner com propriedades UC, com emissão espectral em comprimentos de

onda de luz azul, e energia suficiente para induzir grau de conversão em

um material resinoso, mesmo através de diferentes substratos

odontológicos.

Page 81: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

* De acordo com as normas da UNICAMP/FOP, baseadas na padronização do International Committee of Medical Journal Editors - Vancouver Group. Abreviatura dos periódicos em conformidade com o PubMed.

81

REFERÊNCIAS

1. Ferracane JL. Resin composite—state of the art. Dental materials.

2011;27(1):29-38.

2. Stansbury JW. Curing dental resins and composites by photopolymerization.

Journal of esthetic and restorative dentistry. 2000;12(6):300-8.

3. Rueggeberg FA. State-of-the-art: dental photocuring—a review. Dental

Materials. 2011;27(1):39-52.

4. Harris JS, Jacobsen PH, O'Doherty DM. The effect of curing light intensity and

test temperature on the dynamic mechanical properties of two polymer composites.

Journal of oral rehabilitation. 1999;26(8):635-9.

5. AlQahtani M, Michaud P, Sullivan B, Labrie D, AlShaafi M, Price R. Effect of

High Irradiance on Depth of Cure of a Conventional and a Bulk Fill Resin-based

Composite. Operative dentistry. 2015;40(6):662-72.

6. Versluis A, Tantbirojn D, Douglas W. Do dental composites always shrink

toward the light? Journal of dental research. 1998;77(6):1435-45.

7. Chuang S-F, Huang P-S, Chen TY-F, Huang L-H, Su K-C, Chang C-H.

Shrinkage behaviors of dental composite restorations—The experimental–numerical

hybrid analysis. Dental Materials. 2016.

8. Versluis A, Tantbirojn D. Relationship between shrinkage and stress. Dental

computing and applications: advanced techniques for clinical dentistry: IGI Global,

Hershey; 2009. p. 45-64.

9. Fronza BM, Rueggeberg FA, Braga RR, Mogilevych B, Soares LES, Martin

AA, et al. Monomer conversion, microhardness, internal marginal adaptation, and

shrinkage stress of bulk-fill resin composites. Dental Materials. 2015;31(12):1542-51.

Page 82: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

* De acordo com as normas da UNICAMP/FOP, baseadas na padronização do International Committee of Medical Journal Editors - Vancouver Group. Abreviatura dos periódicos em conformidade com o PubMed.

82

10. Rosatto C, Bicalho A, Veríssimo C, Bragança G, Rodrigues M, Tantbirojn D, et

al. Mechanical properties, shrinkage stress, cuspal strain and fracture resistance of

molars restored with bulk-fill composites and incremental filling technique. Journal of

dentistry. 2015;43(12):1519-28.

11. Bicalho A, Valdívia A, Barreto B, Tantbirojn D, Versluis A, Soares C.

Incremental filling technique and composite material-part II: shrinkage and shrinkage

stresses. Operative dentistry. 2014;39(2):e83-e92.

12. Kalliecharan D, Germscheid W, Price RB, Stansbury J, Labrie D. Shrinkage

stress kinetics of Bulk Fill resin-based composites at tooth temperature and long

time. Dental Materials. 2016;32(11):1322-31.

13. Al Sunbul H, Silikas N, Watts DC. Polymerization shrinkage kinetics and

shrinkage-stress in dental resin-composites. Dental Materials. 2016.

14. Vandewalle KS, Ferracane JL, Hilton TJ, Erickson RL, Sakaguchi RL. Effect of

energy density on properties and marginal integrity of posterior resin composite

restorations. Dental materials : official publication of the Academy of Dental

Materials. 2004;20(1):96-106.

15. Price R, Shortall A, Palin W. Contemporary issues in light curing. Operative

dentistry. 2014;39(1):4-14.

16. Miles RB, Lempert WR, Forkey JN. Laser rayleigh scattering. Measurement

Science and Technology. 2001;12(5):R33.

17. Harlow J, Rueggeberg F, Labrie D, Sullivan B, Price R. Transmission of violet

and blue light through conventional (layered) and bulk cured resin-based composites.

Journal of dentistry. 2016;53:44-50.

Page 83: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

* De acordo com as normas da UNICAMP/FOP, baseadas na padronização do International Committee of Medical Journal Editors - Vancouver Group. Abreviatura dos periódicos em conformidade com o PubMed.

83

18. Bouschlicher M, Rueggeberg F, Wilson B. Correlation of bottom-to-top surface

microhardness and conversion ratios for a variety of resin composite compositions.

Operative dentistry. 2004;29(6):698-704.

19. Auzel F. Upconversion and anti-stokes processes with f and d ions in solids.

Chemical reviews. 2004;104(1):139-74.

20. Li Z, Zhang Y. An efficient and user-friendly method for the synthesis of

hexagonal-phase NaYF4: Yb, Er/Tm nanocrystals with controllable shape and

upconversion fluorescence. Nanotechnology. 2008;19(34):345606.

21. Boyer J-C, Vetrone F, Cuccia LA, Capobianco JA. Synthesis of colloidal

upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via

thermal decomposition of lanthanide trifluoroacetate precursors. Journal of the

American Chemical Society. 2006;128(23):7444-5.

22. Scheps R. Upconversion laser processes. Progress in Quantum Electronics.

1996;20(4):271-358.

23. Boyer J-C, Cuccia LA, Capobianco JA. Synthesis of colloidal upconverting

NaYF4: Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals. Nano Letters.

2007;7(3):847-52.

24. Stepuk A, Mohn D, Grass RN, Zehnder M, Kramer KW, Pelle F, et al. Use of

NIR light and upconversion phosphors in light-curable polymers. Dental materials :

official publication of the Academy of Dental Materials. 2012;28(3):304-11.

25. Fried D, Glena RE, Featherstone JD, Seka W. Nature of light scattering in

dental enamel and dentin at visible and near-infrared wavelengths. Applied optics.

1995;34(7):1278-85.

Page 84: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

* De acordo com as normas da UNICAMP/FOP, baseadas na padronização do International Committee of Medical Journal Editors - Vancouver Group. Abreviatura dos periódicos em conformidade com o PubMed.

84

26. Krämer KW, Biner D, Frei G, Güdel HU, Hehlen MP, Lüthi SR. Hexagonal

sodium yttrium fluoride based green and blue emitting upconversion phosphors.

Chemistry of Materials. 2004;16(7):1244-51.

27. Mai H-X, Zhang Y-W, Si R, Yan Z-G, Sun L-d, You L-P, et al. High-quality

sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties.

Journal of the American Chemical Society. 2006;128(19):6426-36.

28. Iwamoto W, Vargas J, Holanda L, Alves E, Moreno M, Oseroff S, et al.

Improved Route for the Synthesis of Colloidal NaYF4 Nanocrystals and Electron Spin

Resonance of Gd3+ Local Probe. Journal of nanoscience and nanotechnology.

2010;10(9):5708-14.

29. Jana NR, Gearheart L, Obare SO, Murphy CJ. Anisotropic chemical reactivity

of gold spheroids and nanorods. Langmuir. 2002;18(3):922-7.

30. Takagi H, Ogawa H, Yamazaki Y, Ishizaki A, Nakagiri T. Quantum size effects

on photoluminescence in ultrafine Si particles. Applied Physics Letters.

1990;56(24):2379-80.

31. Shan J, Qin X, Yao N, Ju Y. Synthesis of monodisperse hexagonal NaYF4:

Yb, Ln (Ln= Er, Ho and Tm) upconversion nanocrystals in TOPO. Nanotechnology.

2007;18(44):445607.

32. Shan S-N, Wang X-Y, Jia N-Q. Synthesis of NaYF 4: Yb 3+, Er 3+

upconversion nanoparticles in normal microemulsions. Nanoscale research letters.

2011;6(1):1.

33. Ferracane JL, Mitchem JC, Condon JR, Todd R. Wear and marginal

breakdown of composites with various degrees of cure. Journal of dental research.

1997;76(8):1508-16.

Page 85: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

* De acordo com as normas da UNICAMP/FOP, baseadas na padronização do International Committee of Medical Journal Editors - Vancouver Group. Abreviatura dos periódicos em conformidade com o PubMed.

85

34. Caldas DB, de Almeida JB, Correr-Sobrinho L, Sinhoreti MA, Consani S.

Influence of curing tip distance on resin composite Knoop hardness number, using

three different light curing units. Operative dentistry. 2003;28(3):315-20.

35. Arikawa H, Kanie T, Fujii K, Ban S, Takahashi H. Light-attenuating effect of

dentin on the polymerization of light-activated restorative resins. Dental materials

journal. 2004;23(4):467-73.

36. Correr AB, Sinhoreti MA, Sobrinho LC, Tango RN, Schneider LF, Consani S.

Effect of the increase of energy density on Knoop hardness of dental composites

light-cured by conventional QTH, LED and xenon plasma arc. Brazilian dental

journal. 2005;16(3):218-24.

37. Lohbauer U, Rahiotis C, Kramer N, Petschelt A, Eliades G. The effect of

different light-curing units on fatigue behavior and degree of conversion of a resin

composite. Dental materials : official publication of the Academy of Dental Materials.

2005;21(7):608-15.

38. Price RB, Murphy DG, Dérand T. Light energy transmission through cured

resin composite and human dentin. Quintessence international. 2000;31(9).

39. Chen Y-C, Ferracane JL, Prahl SA. A pilot study of a simple photon migration

model for predicting depth of cure in dental composite. Dental Materials.

2005;21(11):1075-86.

40. Garcia D, Yaman P, Dennison J, Neiva G. Polymerization shrinkage and depth

of cure of bulk fill flowable composite resins. Operative dentistry. 2014;39(4):441-8.

41. Hollaert T, Gilli M, Leloup G, Leprince J. Quality of cure in depth of bulk-fill

composites: Physico-mechanical properties. Dental Materials. 2016;32:e91.

Page 86: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

* De acordo com as normas da UNICAMP/FOP, baseadas na padronização do International Committee of Medical Journal Editors - Vancouver Group. Abreviatura dos periódicos em conformidade com o PubMed.

86

42. Ayres APA, Andre CB, Pacheco RR, Carvalho AO, Bacelar-Sá RC,

Rueggeberg FA, et al. Indirect restoration thickness and time after light-activation

effects on degree of conversion of resin cement. Brazilian dental journal.

2015;26(4):363-7.

43. Vaarkamp J, Ten Bosch J, Verdonschot E. Propagation of light through human

dental enamel and dentine. Caries research. 1995;29(1):8-13.

44. Xu W, Xu X, Wu F, Zhao G, Zhao Z, Zhou G, et al. Infrared to visible

upconversion fluorescence in Yb, Tm: YAG single crystal. Optics communications.

2007;272(1):182-5.

45. Schneider LFJ, Pfeifer CS, Consani S, Prahl SA, Ferracane JL. Influence of

photoinitiator type on the rate of polymerization, degree of conversion, hardness and

yellowing of dental resin composites. Dental Materials. 2008;24(9):1169-77.

46. Price RB, Labrie D, Rueggeberg FA, Felix CM. Irradiance Differences in the

Violet (405 nm) and Blue (460 nm) Spectral Ranges among Dental Lightght,

hardness and yellowing of dental resin composites. Dental Materials. 2008;2

47. Odor T, Chandler N, Watson T, Ford T, McDonald F. Laser light transmission

in teeth: a study of the patterns in different species. International endodontic journal.

1999;32(4):296-302.

48. Yanagimoto H, Zama Y, Okamoto H, Hosoda T, Abe Y, Nakamura M. Near-

infrared reflecting composite pigments. Google Patents; 2003.

49. Garoushi S, Säilynoja E, Vallittu PK, Lassila L. Physical properties and depth

of cure of a new short fiber reinforced composite. Dental Materials. 2013;29(8):835-4

Page 87: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

* De acordo com as normas da UNICAMP/FOP, baseadas na padronização do International Committee of Medical Journal Editors - Vancouver Group. Abreviatura dos periódicos em conformidade com o PubMed.

87

50. Tsujimoto A, Barkmeier WW, Takamizawa T, Latta MA, Miyazaki M.

Mechanical properties, volumetric shrinkage and depth of cure of short fiber-

reinforced resin composite. Dental materials journal. 2016;35(3):418-24.

51. Benetti A, Havndrup-Pedersen C, Honoré D, Pedersen M, Pallesen U. Bulk-fill

resin composites: polymerization contraction, depth of cure, and gap formation.

Operative dentistry. 2015;40(2):190-200.

52. Li X, Pongprueksa P, Van Meerbeek B, De Munck J. Curing profile of bulk-fill

resin-based composites. Journal of dentistry. 2015.

53. Denry I, Holloway JA. Ceramics for dental applications: a review. Materials.

2010;3(1):351-68.

Page 88: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

88

APÊNDICE 1 - Figuras

Figura 1. Síntese das nanopartículas. A- Aparato utilizado para síntese das

nanopartículas; B- Solução contendo trifluoracetato de túlio; C- Solução final, após

adição de octadeceno, ácido olêico, NaCF3COOH, Y(CF3COOH)3 e Yb(CF3COOH)3.

Figura 2. Microtubo de 2,0mL (Eppendorf) contendo 0,01572g de nanopartículas

purificadas, na forma de um pó branco.

Page 89: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

89

Figura 3. Equipamento para uso do laser de 975nm sendo configurado. A-

Controlador de corrente para o diodo (LDC220C); B- Controlador termoelétrico de

temperatura (TED200C).

Figura 4. Thermopile (A) fixado a uma distância de 100mm da fonte de luz (B) para

avaliação da potência de acordo com a corrente. A mesma configuração foi utilizada

para avaliação da potência com a distância movendo o sistema de movimentação

linear.

Page 90: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

90

Figura 5. Sistema para análise do perfil do feixe de luz A– Difusor de vidro

homogêneo opal montado em suporte para lentes Ø2" (LMR2, Thorlabs Inc.); B–

Câmera específica (Spiricon IEE-1394); C and D– Dois sistemas de movimentação

linear (#56-794, Edmund Optics Inc.); E- Suporte (L490, Thorlabs Inc.); E- Placa

óptica (MB1224, Thorlabs Inc.).

Figura 6. Cartão detector de infravermelho (VRC4, Thorlabs Inc.) utilizado para foco

do feixe de luz.

Page 91: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

91

Figura 7. Ajuste da distância focal do feixe de luz 975nm. A– Alta divergência do

feixe (distância focal próxima a “borboleta”); B– Menor divergência do feixe (distância

focal longe da fonte = feixe mais colimado).

Figura 8. Resina hidrófoba fotopolimerizável (Heliobond®, lot#S04976, Ivoclar

Vivadent, Schaan, Liechtenstein) utilizada no estudo.

Figura 9. Método de confecção do disco de resina hidrófoba fotopolimerizável

(Heliobond®, lot#S04976, Ivoclar Vivadent, Schaan, Liechtenstein). A – Inserção da

resina em um molde de polivinilsiloxano; B – Mylar sendo posicionado sobre o

molde; C – Laminula de vidro posicionada sobre o Mylar; D – Aparelho fotoativador

posicionado paralelamente a laminula; E – Fotoativação por 10 segundos; F – Disco

de resina hidrófoba de 6,0x0,5mm sendo removido do molde.

Page 92: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

92

Figura 10. Aparelho fotoativador de luz azul (Bluephase® 16i, serial#1671297,

Ivoclar Vivadent, Schaan, Liechtenstein) utilizado no estudo.

Figura 11. Equipamento de ultrassom (Cavitron® Select™ SPS™, serial#124-

38680, Dentsply Professional, PA, USA) com ponta (Steri-mate®, #04112, Dentsply

Professional, PA, USA) acoplada ao equipamento (Cavitron® 30K™ FSI-SLI-10S,

Dentsply Professional, PA, USA), utilizado no estudo.

Page 93: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

93

Figura 12. Método de incorporação das nanopartículas. A- Nanopartículas

purificadas em eppendorf; B- Clorofórmio adicionado às nanopartículas e agitados

por ultrassom; C- Resina hidrófoba adicionada à suspensão de

clorofórmio+nanopartículas, seguido de agitação ultrassonica; D- Após evaporação

do clorofórmio, suspensão de nanopartículas uniformemente distribuídas em resina

hidrófoba.

Figura 13. Disco de resina contendo nanopartículas em uma concentração de

30,3%wt. A distribuição uniforme resultou em uma aspecto opaco ao disco.

Page 94: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

94

Figura 14. Metodologia para análise da transmissão de luz. A- Thermopile

conectado a um radiômetro; B- Máscara impressa em polímero branco 3D com 5mm

de abertura; C- Máscara posicionada sobre o thermopile, seguido da amostra a ser

analisada; E- Fonte de luz ativada em uma posição padrão pré-estabelecida.

Figura 15. Substratos dentais utilizados para o estudo. A rugosidade superficial dos

espécimes foi padronizada com auxílio de lixas de carbeto de silício.

Figura 16. Amostras de compósito confeccionadas para este estudo. A- Moldes de

PVS utilizados para a confecção das amostras; B- Aspecto das amostras de

compósito; C- Espessuras utilizadas para a análise.

Page 95: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

95

Figura 17. Micrografia do conteúdo inorgânico do compósito odontológico EverX

(GC) em aumentos de X50 e X1.000 (respectivamente). É possível observar a

presença de fibras de vidro associado a pequenas partículas de carga.

Figura 18. Amostras de cerâmica confeccionadas para este estudo. A- Blocos de

cerâmica para CAD/CAM utilizados; B- Aspecto das amostras de cerâmica.

Page 96: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

96

Figura 19. Configuração para análise do espectro de emissão de luz. A- Disco de

resina posicionado sobre o cosine corrector; B- Equipamento sendo calibrado para

análise.

Figura 20. Metodologia de espectroscopia FTIr. A- Duas tiras de fita adesiva

posicionadas ao lado do diamante na superfície do FTIr; B- Resina pra sendo

aplicada em contato direto com o diamante; C- Tira de Mylar aplicada sobre a resina;

D- Laminula de vidro posicionada sobre o Mylar e pressionada; E- Película de óleo

óptico aplicado sobre o Mylar; F- Posicionamento do disco de resina contendo, ou

não, as nanopartículas, sobre o óleo; G- Interposição dos substratos para atenuação

da luz; H- Configuração final para o teste de FTIr; I- Disco de resina

Page 97: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

97

contendo nanopartículas fluorescendo no comprimento de onda da luz azul, quando

irradiado por um laser de 975nm.

Figura 21. Esquema da configuração utilizada para os testes de FTIr. BL foi

posicionado a uma distância de 5mm do diamante, enquanto o laser foi posicionado

a uma distância de 100mm.

Figura 22. Fotografias realizadas com câmera fotográfica através de filtros

específicos para cada comprimento de onda de luz azul (Thorlabs Inc.) capturando

efeito de upconversion de um disco de resina contendo nanopartículas com

propriedades ópticas de fluorescência. 1A- Espessura de 1mm sem filtro; 1B-

Page 98: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

98

Espessura de 1mm com filtro de 450nm; 1C- Espessura de 1mm com filtro de

460nm; 1D- Espessura de 1mm com filtro de 470nm; 2A- Espessura de 2mm sem

filtro; 2B- Espessura de 2mm com filtro de 450nm; 2C- Espessura de 2mm com filtro

de 460nm; 2D- Espessura de 2mm com filtro de 470nm; 3A- Espessura de 2mm sem

filtro; 3B- Espessura de 3mm com filtro de 450nm; 3C- Espessura de 3mm com filtro

de 460nm; 3D- Espessura de 3mm com filtro de 470nm; 4A- Espessura de 4mm sem

filtro; 4B- Espessura de 4mm com filtro de 450nm; 4C- Espessura de 4mm com filtro

de 460nm; 4D- Espessura de 4mm com filtro de 470nm.

Figura 23. Elemento dental preparado para análise de variação da temperatura

intrapulpar. A- Terceiro molar humano hígido com canaleta vestibular para inserção

do sensor térmico e raiz distal com cilindro metálico preso com resina composta para

simulação de pressão pulpar; B- Radiografia por vista vestibular; C- Radiografia por

vista mesial.

Page 99: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

99

Figura 24. Variação de temperatura do terceiro molar humano hígido, preparado e

restaurado, submetido à fotoativação por 30 segundos com Bluephase 16i, de

acordo com o tempo.

Figura 25. Variação de temperatura do terceiro molar humano hígido, preparado e

restaurado, submetido à fotoativação por 10 minutos com laser infravermelho 975nm

de 1 W, de acordo com o tempo.

0"

2"

4"

6"

8"

10"

12"

0" 60" 120" 180" 240" 300" 360"

TEMPE

RATU

RE(VAR

IANCE

((oC)(

TIME((s)(

TEMPERATURE(VARIANCE((oC)(THIRD(MOLAR(AT(32oC(BLUEPHASE(16i(FOR(30(SECONDS(

BLUEPHASE"16i"10sec"5"RESTORED" BLUEPHASE"16i"10sec"5"PREPARED" BLUEPHASE"16i"10sec"5"HIGID"

0"

2"

4"

6"

8"

10"

12"

0" 60" 120" 180" 240" 300" 360" 420" 480" 540" 600" 660" 720" 780" 840" 900"

TEMPE

RATU

RE(VAR

IANCE

((oC)(

TIME((s)(

TEMPERATURE(VARIANCE((oC)(THIRD(MOLAR(AT(32oC(USING(975nm(LASER(FOR(10(MINUTES(+(AIR(COOLING(

975nm"LASER"10min"4"RESTORED" 975nm"LASER"10min"4"PREPARED" 975nm"LASER"10min"4"HIGID"

Page 100: Rafael Rocha Pacheco, Desenvolvimento de nanopartículas ...repositorio.unicamp.br/bitstream/REPOSIP/331170/1/Pacheco_Rafael... · rafael rocha pacheco “desenvolvimento de nanopartÍculas

100

Dear Dr. Pacheco, Thank you for sending your manuscript Synthesis and characterization of upconverting nanocrystals of <beta>-NaYF4 doped with Yb+3 and Tm+3 for consideration to Materials Science and Engineering B. Please accept this message as confirmation of your submission. When should I expect to receive the Editor's decision? We publicly share the average editorial times for Materials Science and Engineering B to give you an indication of when you can expect to receive the Editor's decision. These can viewed here: http://journalinsights.elsevier.com/journals/0921-5107/review_speed What happens next? Here are the steps that you can expect as your manuscript progresses through the editorial process in the Elsevier Editorial System (EES). 1. First, your manuscript will be assigned to an Editor and you will be sent a unique reference number that you can use to track it throughout the process. During this stage, the status in EES will be ''With Editor". 2. If your manuscript matches the scope and satisfies the criteria of Materials Science and Engineering B, the Editor will identify and contact reviewers who are acknowledged experts in the field. Since peer-review is a voluntary service, it can take some time but please be assured that the Editor will regularly remind reviewers if they do not reply in a timely manner. During this stage, the status will appear as "Under Review". Once the Editor has received the minimum number of expert reviews, the status will change to "Required Reviews Complete". 3. It is also possible that the Editor may decide that your manuscript does not meet the journal criteria or scope and that it should not be considered further. In this case, the Editor will immediately notify you that the manuscript has been rejected and may recommend a more suitable journal. For a more detailed description of the editorial process, please see Paper Lifecycle from Submission to Publication: http://help.elsevier.com/app/answers/detail/a_id/160/p/8045/ How can I track the progress of my submission? You can track the status of your submission at any time at http://ees.elsevier.com/MSB Once there, simply: 1. Enter your username: Your username is: [email protected] If you need to retrieve password details, please go to: http://ees.elsevier.com/MSB/automail_query.asp 2. Click on [Author Login]. This will take you to the Author Main Menu 3. Click on [Submissions Being Processed] Many thanks again for your interest in Materials Science and Engineering B. Kind regards, Professor Prashant N. Kumta If you require further assistance, you are welcome to contact our Researcher Support team 24/7 by live chat and email or 24/5 by phone: http://support.elsevier.com

ANEXO 1 – Comprovante de Submissão do Artigo