s. n. hom impedance in vacuum … 1 of 40 sasha novokhatski slac, stanford university...

40
1 of 40 S. N. “ HOM Impedance in Vacuum …” Sasha Novokhatski SLAC, Stanford University Machine-Detector Interface Joint Session April 22, 2005 “HOM Impedance in Vacuum Designs”

Upload: mia-miah-mallicoat

Post on 29-Mar-2015

216 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: S. N. HOM Impedance in Vacuum … 1 of 40 Sasha Novokhatski SLAC, Stanford University Machine-Detector Interface Joint Session April 22, 2005 HOM Impedance

1 of 40

S.

N.

“ H

OM

Im

ped

an

ce in

V

acu

um

…”

Sasha NovokhatskiSLAC, Stanford University

Machine-Detector Interface Joint Session April 22, 2005

“HOM Impedance in Vacuum

Designs”

Page 2: S. N. HOM Impedance in Vacuum … 1 of 40 Sasha Novokhatski SLAC, Stanford University Machine-Detector Interface Joint Session April 22, 2005 HOM Impedance

2 of 40

S.

N.

“ H

OM

Im

ped

an

ce in

V

acu

um

…”

Luminosity and wake fields

• We need high current beams of very short bunches to achieve super high luminosity

• These beams carry high intensity electromagnetic fields.

• Any geometric disturbance or even surface roughness of a beam pipe leads to diffraction of these fields.

• The diffracted fields can propagate free in the

beam pipe. We call these field wake fields.

Page 3: S. N. HOM Impedance in Vacuum … 1 of 40 Sasha Novokhatski SLAC, Stanford University Machine-Detector Interface Joint Session April 22, 2005 HOM Impedance

3 of 40

S.

N.

“ H

OM

Im

ped

an

ce in

V

acu

um

…”

Wake fields

• High frequency part of wake fields can penetrate through small holes of shielded fingers to bellows or through RF screens to vacuum pumps.

• These fields can also go outside vacuum chamber through heating wires of NEG pumps or through pump high voltage or BPM connectors.

Page 4: S. N. HOM Impedance in Vacuum … 1 of 40 Sasha Novokhatski SLAC, Stanford University Machine-Detector Interface Joint Session April 22, 2005 HOM Impedance

4 of 40

S.

N.

“ H

OM

Im

ped

an

ce in

V

acu

um

…”

Wake fields

• In a time wake fields are absorbed in conducting chamber walls.

• Main effect from wake fields is temperature rise of different vacuum chamber elements, like shielded bellows, vacuum valves and pumps. In this case wake fields transfer energy to resonance High Order Modes (HOMs) excited in closed volumes.

Page 5: S. N. HOM Impedance in Vacuum … 1 of 40 Sasha Novokhatski SLAC, Stanford University Machine-Detector Interface Joint Session April 22, 2005 HOM Impedance

5 of 40

S.

N.

“ H

OM

Im

ped

an

ce in

V

acu

um

…”

Wake fields

• The amplitude of the HOM electric field can rich the breakdown limit and bring damage to the metal surface

• Other effect can be the interaction of escaped (from the vacuum chamber) short wake field pulses with detector electronics.

Page 6: S. N. HOM Impedance in Vacuum … 1 of 40 Sasha Novokhatski SLAC, Stanford University Machine-Detector Interface Joint Session April 22, 2005 HOM Impedance

6 of 40

S.

N.

“ H

OM

Im

ped

an

ce in

V

acu

um

…”

Resistive-wall wake fields

• Other type of wake fields is excited due to finite conductivity of vacuum chamber walls.

• Resistive-wall wake fields give temperature rise mainly to chamber walls.

• In all cases beams lose energy for wake field production. This energy has to be restored in RF cavities.

Page 7: S. N. HOM Impedance in Vacuum … 1 of 40 Sasha Novokhatski SLAC, Stanford University Machine-Detector Interface Joint Session April 22, 2005 HOM Impedance

7 of 40

S.

N.

“ H

OM

Im

ped

an

ce in

V

acu

um

…”

Wake field Evidence from PEP-II

• Shielded fingers of some vacuum valves were destroyed by breakdowns of intensive HOMs excited in a valve cavity.

Page 8: S. N. HOM Impedance in Vacuum … 1 of 40 Sasha Novokhatski SLAC, Stanford University Machine-Detector Interface Joint Session April 22, 2005 HOM Impedance

8 of 40

S.

N.

“ H

OM

Im

ped

an

ce in

V

acu

um

…”

• All shielded bellows in LER and HER rings have fans for air cooling to avoid high temperature rise.

• All chambers have water cooling against resistive-wall wake fields.

Wake field Evidence from PEP-II

Page 9: S. N. HOM Impedance in Vacuum … 1 of 40 Sasha Novokhatski SLAC, Stanford University Machine-Detector Interface Joint Session April 22, 2005 HOM Impedance

9 of 40

S.

N.

“ H

OM

Im

ped

an

ce in

V

acu

um

…”

HER “resonance” bellows

Resonance at HER current of 1300 mA

Temperature difference9072QUA – 9062QUA

Resonance 1-2 degrees F

~dZ~100 micronQ=10^3

Page 10: S. N. HOM Impedance in Vacuum … 1 of 40 Sasha Novokhatski SLAC, Stanford University Machine-Detector Interface Joint Session April 22, 2005 HOM Impedance

10 of 40

S.

N.

“ H

OM

Im

ped

an

ce in

V

acu

um

…”

HOM leaking from TSP heater connector

Page 11: S. N. HOM Impedance in Vacuum … 1 of 40 Sasha Novokhatski SLAC, Stanford University Machine-Detector Interface Joint Session April 22, 2005 HOM Impedance

11 of 40

S.

N.

“ H

OM

Im

ped

an

ce in

V

acu

um

…”

Effect of absorberinstalled in

antechamber

Temperature

LER current

Nov. 2002-July 2004

Page 12: S. N. HOM Impedance in Vacuum … 1 of 40 Sasha Novokhatski SLAC, Stanford University Machine-Detector Interface Joint Session April 22, 2005 HOM Impedance

12 of 40

S.

N.

“ H

OM

Im

ped

an

ce in

V

acu

um

…”

HOM Power in absorber

Page 13: S. N. HOM Impedance in Vacuum … 1 of 40 Sasha Novokhatski SLAC, Stanford University Machine-Detector Interface Joint Session April 22, 2005 HOM Impedance

13 of 40

S.

N.

“ H

OM

Im

ped

an

ce in

V

acu

um

…”

The source of HOM power: Collimators

Page 14: S. N. HOM Impedance in Vacuum … 1 of 40 Sasha Novokhatski SLAC, Stanford University Machine-Detector Interface Joint Session April 22, 2005 HOM Impedance

14 of 40

S.

N.

“ H

OM

Im

ped

an

ce in

V

acu

um

…”

Beams passing by collimators generate dipole

and quadruple modes.

These modes can easily penetrate though shielded fingers S. Weathersby

Page 15: S. N. HOM Impedance in Vacuum … 1 of 40 Sasha Novokhatski SLAC, Stanford University Machine-Detector Interface Joint Session April 22, 2005 HOM Impedance

15 of 40

S.

N.

“ H

OM

Im

ped

an

ce in

V

acu

um

…”

HOM Power from collimators goes downstream

Page 16: S. N. HOM Impedance in Vacuum … 1 of 40 Sasha Novokhatski SLAC, Stanford University Machine-Detector Interface Joint Session April 22, 2005 HOM Impedance

16 of 40

S.

N.

“ H

OM

Im

ped

an

ce in

V

acu

um

…”

Hottest Bellows 2012 takes HOM power from four Y and X

Collimators

Y and X collimators

Page 17: S. N. HOM Impedance in Vacuum … 1 of 40 Sasha Novokhatski SLAC, Stanford University Machine-Detector Interface Joint Session April 22, 2005 HOM Impedance

17 of 40

S.

N.

“ H

OM

Im

ped

an

ce in

V

acu

um

…”

Collimator Loss Factor

Page 18: S. N. HOM Impedance in Vacuum … 1 of 40 Sasha Novokhatski SLAC, Stanford University Machine-Detector Interface Joint Session April 22, 2005 HOM Impedance

18 of 40

S.

N.

“ H

OM

Im

ped

an

ce in

V

acu

um

…”

Bunch length dependencestraight section collimator

y = 24.755x-2.0628

y = 3.8x-1

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12 14

Bunch length [mm]

Lo

ss

fa

cto

r [V

/pC

]Loss factor [V/pC] Loss factor [V/pC]

Power (Loss factor [V/pC]) Power (Loss factor [V/pC])

Page 19: S. N. HOM Impedance in Vacuum … 1 of 40 Sasha Novokhatski SLAC, Stanford University Machine-Detector Interface Joint Session April 22, 2005 HOM Impedance

19 of 40

S.

N.

“ H

OM

Im

ped

an

ce in

V

acu

um

…”

Collimator HOM Power

2 bP k IP ar ameter s P E P - I I Super B

B unc h l ength [mm] = 13 1. 8

Los s f ac tor [V / pC ]= 0. 125560171 2. 11111111

LE R c ur r ent [A ] 2. 4 23

B unc h s pac i ng [ns ec ] 4. 2 1. 05

P ower l os s (pul s e) [kW] 3. 04 1172. 62

Low HOM type collimators are needed for super B

Page 20: S. N. HOM Impedance in Vacuum … 1 of 40 Sasha Novokhatski SLAC, Stanford University Machine-Detector Interface Joint Session April 22, 2005 HOM Impedance

20 of 40

S.

N.

“ H

OM

Im

ped

an

ce in

V

acu

um

…”

Special absorber device to capture

collimator HOMsRed line shows absorption in ceramic tiles

S. Weathersby

Page 21: S. N. HOM Impedance in Vacuum … 1 of 40 Sasha Novokhatski SLAC, Stanford University Machine-Detector Interface Joint Session April 22, 2005 HOM Impedance

21 of 40

S.

N.

“ H

OM

Im

ped

an

ce in

V

acu

um

…”

Wake in IP region of PEP-IISimulation model

Page 22: S. N. HOM Impedance in Vacuum … 1 of 40 Sasha Novokhatski SLAC, Stanford University Machine-Detector Interface Joint Session April 22, 2005 HOM Impedance

22 of 40

S.

N.

“ H

OM

Im

ped

an

ce in

V

acu

um

…”

PEP-II Vertex Bellows

Bel

low

sC

avity

bunch field

‘‘Mode Converter”

S. Ecklund measured 500 W dissipated in

vertex bellows

Page 23: S. N. HOM Impedance in Vacuum … 1 of 40 Sasha Novokhatski SLAC, Stanford University Machine-Detector Interface Joint Session April 22, 2005 HOM Impedance

23 of 40

S.

N.

“ H

OM

Im

ped

an

ce in

V

acu

um

…”

Field leakage though bellows fingers

Will be captured by ceramic absorbing tiles in

the new vertex bellows design

Page 24: S. N. HOM Impedance in Vacuum … 1 of 40 Sasha Novokhatski SLAC, Stanford University Machine-Detector Interface Joint Session April 22, 2005 HOM Impedance

24 of 40

S.

N.

“ H

OM

Im

ped

an

ce in

V

acu

um

…”

10 kW HOM power absorbed in ceramic tiles of Q2-

bellows in PEP-II

Stan Ecklund measurements

Page 25: S. N. HOM Impedance in Vacuum … 1 of 40 Sasha Novokhatski SLAC, Stanford University Machine-Detector Interface Joint Session April 22, 2005 HOM Impedance

25 of 40

S.

N.

“ H

OM

Im

ped

an

ce in

V

acu

um

…”

Loss factor for PEP-II IR

Bunch length dependence

changes from

(14-8 mm)

to

-3/2 (6-1 mm)

PEP-II Interaction regionLoss factor and approximations

y = 38.575x-1.967

y = 17.379x-1.4934

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14

Bunch length [mm]

Lo

ss

fa

cto

r [V

/pC

]

Page 26: S. N. HOM Impedance in Vacuum … 1 of 40 Sasha Novokhatski SLAC, Stanford University Machine-Detector Interface Joint Session April 22, 2005 HOM Impedance

26 of 40

S.

N.

“ H

OM

Im

ped

an

ce in

V

acu

um

…”

IP HOM Power

2 2

Incoherent Pow

(

er

) ( )b e eP k I I

P ar ameter s P E P - I I Super B

B unc h l ength [mm] = 13 1. 8

Los s f ac tor [V / pC ]= 0. 248 7. 224

LE R c ur r ent [A ] 2. 4 23

HE R c ur r ent [A ] 1. 5 10

B unc h s pac i ng [ns ec ] 4. 2 1. 05

P ower l os s (pul s e) [kW] 8. 36 4771. 34

Page 27: S. N. HOM Impedance in Vacuum … 1 of 40 Sasha Novokhatski SLAC, Stanford University Machine-Detector Interface Joint Session April 22, 2005 HOM Impedance

27 of 40

S.

N.

“ H

OM

Im

ped

an

ce in

V

acu

um

…”

Additional beam energy loss due to “Cherenkov” radiation

in open ceramic pipes.

02

02

1

2

loss factor 2

loss factor 2

awhen s

cZ L sK

a

when s

cZ LK

a

Loss factorHEACC’92page 537

Page 28: S. N. HOM Impedance in Vacuum … 1 of 40 Sasha Novokhatski SLAC, Stanford University Machine-Detector Interface Joint Session April 22, 2005 HOM Impedance

28 of 40

S.

N.

“ H

OM

Im

ped

an

ce in

V

acu

um

…”

Additional beam power loss in Q2-bellows

PEP-II Super Beps= 30 30L [mm] = 59.2 59.2 Bunch length [mm] = 13 1.8s= 5.385165 5.385165check s/sigma <1 or >1 0.414243 2.991758

Loss factor [V/pC]= 0.069179 0.296

LER current [A] 2.4 23HER current [A] 1.5 10Bunch pattenrt by2 T [nsec] 4.2 1.05

Power loss [kW] (incoherent) 2.3273 195.49

Using this formula for Q2

No open ceramics for Super B!

Page 29: S. N. HOM Impedance in Vacuum … 1 of 40 Sasha Novokhatski SLAC, Stanford University Machine-Detector Interface Joint Session April 22, 2005 HOM Impedance

29 of 40

S.

N.

“ H

OM

Im

ped

an

ce in

V

acu

um

…”

RF screens.NEG chamber and a vacuum

pump flangeTemperature rise in NEG chambersdue to HOM heating changed the vacuum.

M. Sullivan attached a lot of thermocouples to NEG chambers to understand the

problem.

Page 30: S. N. HOM Impedance in Vacuum … 1 of 40 Sasha Novokhatski SLAC, Stanford University Machine-Detector Interface Joint Session April 22, 2005 HOM Impedance

30 of 40

S.

N.

“ H

OM

Im

ped

an

ce in

V

acu

um

…”

RF antenna in a pump HV connector

Page 31: S. N. HOM Impedance in Vacuum … 1 of 40 Sasha Novokhatski SLAC, Stanford University Machine-Detector Interface Joint Session April 22, 2005 HOM Impedance

31 of 40

S.

N.

“ H

OM

Im

ped

an

ce in

V

acu

um

…”

Antenna in other pump

Page 32: S. N. HOM Impedance in Vacuum … 1 of 40 Sasha Novokhatski SLAC, Stanford University Machine-Detector Interface Joint Session April 22, 2005 HOM Impedance

32 of 40

S.

N.

“ H

OM

Im

ped

an

ce in

V

acu

um

…”

Q-value estimation

0

5

10

15

20

25

30

-1 -0.5 0 0.5 1 1.5 2 2.5 3

Delta Frequency [MHz]

Sp

ectr

um

F=4.046119 GHz Breit-Vigner Q=6100

02468

101214161820

-1 -0.5 0 0.5 1

Delta frequency [MHz]

Sp

ectr

um

F=5.236GHz Breit-Vigner Q=12000

Page 33: S. N. HOM Impedance in Vacuum … 1 of 40 Sasha Novokhatski SLAC, Stanford University Machine-Detector Interface Joint Session April 22, 2005 HOM Impedance

33 of 40

S.

N.

“ H

OM

Im

ped

an

ce in

V

acu

um

…”

Moveable collimator changes HOM spectrum in near pump

Page 34: S. N. HOM Impedance in Vacuum … 1 of 40 Sasha Novokhatski SLAC, Stanford University Machine-Detector Interface Joint Session April 22, 2005 HOM Impedance

34 of 40

S.

N.

“ H

OM

Im

ped

an

ce in

V

acu

um

…”

RF screens and coupling

• Screen impedance scales with frequency (inversely to bunch length)

• Holes must be 5 times smaller than for PEP-II, or two times thicker

• Decreasing Q-value of a bellow or NEG cavity by placing absorber

• Low Q additionally decreases field coupling.

10

0

1 022

1 0

0 1

20 1

1

1

in

4(1 )

( )

4 /

(1 / )

cav

waveguide

cav inc inc

cav inc

Reflection from cavity

ZQQ

Z Q

Power a cavity

Q QP P P

Q Q

Q QP P

Q Q

Page 35: S. N. HOM Impedance in Vacuum … 1 of 40 Sasha Novokhatski SLAC, Stanford University Machine-Detector Interface Joint Session April 22, 2005 HOM Impedance

35 of 40

S.

N.

“ H

OM

Im

ped

an

ce in

V

acu

um

…”

Resistive Wall Wakefield Losses

1/3

2 00

0

3/ 2

0 02

2 when 1

0.24

z

z

ss a

Z

Z c sK

a

Loss factor asymptotic (M. Sands, K. Bane)

Page 36: S. N. HOM Impedance in Vacuum … 1 of 40 Sasha Novokhatski SLAC, Stanford University Machine-Detector Interface Joint Session April 22, 2005 HOM Impedance

36 of 40

S.

N.

“ H

OM

Im

ped

an

ce in

V

acu

um

…”

Resistive Wall Wakefield Power

pipe Radius [m] 4.50E-02 4.50E-02 4.50E-02Material Cu Al SSresistivity [Ohm m] 1.69E-08 2.86E-08 7.14E-07S0 [m] 5.67E-05 6.75E-05 1.97E-04

bunch length [m] 1.80E-03 1.80E-03 1.80E-03loss factor [V/pC] 0.005 0.006 0.032Bunch spacing [nsec] 1.05 1.05 1.05beam current [A] 23 23 23power [kW/m] 2.894 3.757 18.786

Page 37: S. N. HOM Impedance in Vacuum … 1 of 40 Sasha Novokhatski SLAC, Stanford University Machine-Detector Interface Joint Session April 22, 2005 HOM Impedance

37 of 40

S.

N.

“ H

OM

Im

ped

an

ce in

V

acu

um

…”

Comparison of 2.5, 1, and 0.5 cm pipes.

pipe Radius [m] 2.50E-02 1.00E-02 5.00E-03

Material Cu Cu Curesistivity [Ohm m] 1.69E-08 1.69E-08 1.69E-08S0 [m] 3.83E-05 2.08E-05 1.31E-05

bunch length [m] 1.80E-03 1.80E-03 1.80E-03Loss factor 0.009 0.022 0.045Bunch spacing [nsec] 1.05 1.05 1.05beam current [A] 23 23 23power [kW/m] 5.209 13.022 26.045

This is only resistive-wall power!

Page 38: S. N. HOM Impedance in Vacuum … 1 of 40 Sasha Novokhatski SLAC, Stanford University Machine-Detector Interface Joint Session April 22, 2005 HOM Impedance

38 of 40

S.

N.

“ H

OM

Im

ped

an

ce in

V

acu

um

…”

Total HOM Loss Estimation

LER HER SumCavity loss [MW] 4.35 1.65 6.00

Loss factor [V/ pC] 0.28 0.28Number of cavities 28 56Resisstive Wall [MW] 7.46 1.41 8.87

Al (R-45mm) 13.43 13.43IP region 4.01 0.76 4.77

Loss factor 7.22 7.22Other: collimators, feedback…[MW] 1.11 0.21 1.32

Loss factor 2 2

Currents 23 10Total Sum for HOMs 16.94 4.02 20.96

Comparison withSR power [MW] 17.48 35.5 52.98

loss per turn [MeV] 0.76 3.55Final sum [MW] 34.42 39.52 73.94

Page 39: S. N. HOM Impedance in Vacuum … 1 of 40 Sasha Novokhatski SLAC, Stanford University Machine-Detector Interface Joint Session April 22, 2005 HOM Impedance

39 of 40

S.

N.

“ H

OM

Im

ped

an

ce in

V

acu

um

…”

DESY newsThis thorough analysis led to the conclusion that the backgrounds generated by protons lost in the interaction-region beam correlated with the poor initial vacuum conditions in the new system in the presence of the positron beam. The vacuum recovery was also slowed down by considerable thermal desorption of synchrotron radiation masks inside the beam pipe close to the experiments. This was due to higher-order mode heating at injection energy when the bunches are short.

F. Willeke

Page 40: S. N. HOM Impedance in Vacuum … 1 of 40 Sasha Novokhatski SLAC, Stanford University Machine-Detector Interface Joint Session April 22, 2005 HOM Impedance

40 of 40

S.

N.

“ H

OM

Im

ped

an

ce in

V

acu

um

…”

Summary

• Electron and positron bunches generate electromagnetic fields at any discontinuity of vacuum chamber

• These fields can travel long distance and penetrate inside bellows, pumps and vacuum valves.

• Vacuum chamber must be optimized for minimum wake loss