the augmented acousmonium as...

6
The Augmented Acousmonium as I nterface Patrick Saint-Denis University of Montreal, Montreal, Canada [email protected] Abstract. This article discusses the Sway Array project, an audio-robotic performance revolving around an interactive electromechanical acousmonium. The performance is examined from its technical aspects namely the design of the robotic loudspeaker array, the software components developed for its operation and the audio interactions. Keywords: physical computing, robotics, acousmonium, arduino, supercollider, openFrameworks. Introduction Motion can be one of the most exciting and expressive tools in the physical computing toolbox. By now, most people are desensitized to motion onscreen, whether it’s a monitor or a movie screen. We respond to it, but only as filtered through our conscious mind. When you see an object that has its own physical move, however, it triggers a more visceral reaction. (O’Sullivan and Igoe 2004) The Sway Array project 1 is rooted in an interest for physical movement and its interaction with sound. At the centre of the work, a matrix of nine robotic-speakers (see figure 1) interacts with sounds and movements of a performer. Each speaker is about 2.5 meters high and also generates sonic actions. Their individual positioning is coupled with different audio processes through a chain of interactions involving the body and performative technology. The first section of the article discusses the electromechanical parts of the loudspeaker array before addressing its software components. Physical and audio interactions are presented and the article ends with a short experimentation report. Physical components and protocols The physical matrix is based on the principle of the Leslie speaker while extending its vocabulary of movements. Traditionally associated with Hammond organs, the Leslie speaker is a rotary speaker whose first applications date back to the 1940s. Named after its inventor Donald Leslie (1911-2004), this speaker can create a tremolo through the doppler effect caused by the rotation (Henricksen 1981). For the project, the rotating speaker is augmented with components enabling movement on the vertical axis (see figure 2). The set includes two DC gearmotors, two rotary encoders and a microcontroller for closed-loop positioning on the two axes of movement. The encoders are attached to rotating parts and are pulled into motion by a pulley system. Limit switches are used to calibrate the device at startup and a total of 4096 rotational positions and about 1000 positions in elevation are possible to achieve. 1 https://vimeo.com/143676764

Upload: lytuong

Post on 08-Sep-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

TheAugmentedAcousmoniumasInterfacePatrickSaint-Denis

UniversityofMontreal,Montreal,[email protected]

Abstract.ThisarticlediscussestheSwayArrayproject,anaudio-roboticperformancerevolvingaroundaninteractiveelectromechanicalacousmonium.Theperformanceisexaminedfromitstechnicalaspectsnamelythedesignoftheroboticloudspeakerarray,thesoftwarecomponentsdevelopedforitsoperationandtheaudiointeractions.

Keywords:physicalcomputing,robotics,acousmonium,arduino,supercollider,openFrameworks.

IntroductionMotioncanbeoneofthemostexcitingandexpressivetoolsinthephysicalcomputingtoolbox.Bynow,mostpeoplearedesensitizedtomotiononscreen,whetherit’samonitororamoviescreen.Werespondtoit,butonlyasfilteredthroughourconsciousmind.Whenyouseeanobjectthathasitsownphysicalmove,however,ittriggersamorevisceralreaction.(O’SullivanandIgoe2004)

TheSwayArrayproject1isrootedinaninterestforphysicalmovementanditsinteractionwithsound.Atthecentreofthework,amatrixofninerobotic-speakers(seefigure1)interactswithsoundsandmovementsofaperformer.Eachspeakerisabout2.5metershighandalsogeneratessonicactions.Theirindividualpositioningiscoupledwithdifferentaudioprocessesthroughachainofinteractionsinvolvingthebodyandperformativetechnology.

Thefirstsectionofthearticlediscussestheelectromechanicalpartsoftheloudspeakerarraybeforeaddressingitssoftwarecomponents.Physicalandaudiointeractionsarepresentedandthearticleendswithashortexperimentationreport.

PhysicalcomponentsandprotocolsThephysicalmatrixisbasedontheprincipleoftheLesliespeakerwhileextendingitsvocabularyofmovements.TraditionallyassociatedwithHammondorgans,theLesliespeakerisarotaryspeakerwhosefirstapplicationsdatebacktothe1940s.NamedafteritsinventorDonaldLeslie(1911-2004),thisspeakercancreateatremolothroughthedopplereffectcausedbytherotation(Henricksen1981).

Fortheproject,therotatingspeakerisaugmentedwithcomponentsenablingmovementontheverticalaxis(seefigure2).ThesetincludestwoDCgearmotors,tworotaryencodersandamicrocontrollerforclosed-looppositioningonthetwoaxesofmovement.Theencodersareattachedtorotatingpartsandarepulledintomotionbyapulleysystem.Limitswitchesareusedtocalibratethedeviceatstartupandatotalof4096rotationalpositionsandabout1000positionsinelevationarepossibletoachieve.

1https://vimeo.com/143676764

Figure1.Aninteractiveroboticloudspeakerarrayof9units.

Figure2.Acloserlookatasingleunit’sphysicalparts.

Onepieceofaluminumandonesteelpartweretheonlycomponentsthathadtobedesignedspecificallyforthisproject.Thestandsweredesignedusingaluminumextrusions2andallmechanicalparts(gears,motors,couplers,pulleys,pillowblocks,etc.)arepre-manufacturedaluminumassembliesdistributedbyServocity3.Asteelcounterweightattachedtothebackofeachspeakerwascustombuilttocounterbalancetheweightofthehornandallowtheuseofasmallerandquietermotorforverticalmovement.Finally,a“C”shapealuminumframewasalsocustombuilttosecurethedifferentpartsandholdthebearingsoftheverticalarticulation.Atthecenterofthis“C”shapedpart,aslipringof10conductorstransmitspowertotherotatingspeaker,avoidingtheproblemofentanglementofwires.

2Aluminumextrusionsusuallycomeinasetofpartsthatcanbeassembledincomplexstructures,muchlikemeccanomodels.TheextrusionkitusedintheprojectwasdevelopedbytheKATIMteam(www.katim.biz)basednearMontreal,Canada.3Servocity(www.servocity.com)ascompletelineofmechanicalpartsdesignedforhobbyists.Sourcingmanufacturedpartsisessentialtokeepthecostofaphysicalprojectataminimumascustomdesignedpartscanoftenbe20timesormoreexpensivethanmanufacturedones.

Eachspeakerunitisequippedwithapowersupplyandamotorcontroller4formanagingthepolarityandvoltagesuppliedtothemotors.AnArduinoethernet5andateensy6cardcompletethesetandenabletwo-waycommunicationbetweenthespeakersandacentralcomputer.Thecentralcomputercontinuouslysendspositioningtargetsatarateof10timespersecondandreceivestherealpositioningofeveryunitatthesametemporalresolution.Thecommunicationbetweenthecentralcomputerandthespeakersisbuiltontwocommunicationprotocols.First,thepositioningtargetsaresentbyOpenSoundControl(OSC)7fromthemainframetothearduinoethernettowhomareassignedstaticIPaddresses.ThenthedataissentfromtheArduinoboardstotheteensiesovertheserialport.Thedataastotherealpositionofthespeakersgoestheoppositeway,startingfromtheteensytothearduinoovertheserialportbeforereturningtothecentralcomputeroverOSC.

Althoughitispossibletohavethemotorcontrolroutinesdoneonthearduinoboard,theteensyprovedamoreeffectivesolutionbecauseitallowsbetterreceptionofpulsessentbytherotaryencoders.Theprocessorspeedontheteensyandthehighnumberofinputsenablinginterruptroutines8havemadeofthismicrocontrollerboardabetterchoicethanthearduino.Thatsaid,theefficiencywithwhichthearduinoethernetboardallowsIPcommunication9hasensuredthatthiscomponentisalsoessentialtotheproject.

Figure3.Thischartsummarizesallthephysicalcomponentsandcommunicationprotocolsinvolvedintheproject.

SoftwarecomponentsThecommunicationbetweenthecentralcomputerandthespeakerspassesthroughasimulationprogramcodedinopenFrameworks.10Thisprogramallowscompositionofmovementswithoutthephysicaldeviceandfacilitatesthemanagementofpositionswiththeuseofavirtualspeaker.Initially,targetpositionsinelevationandrotationaredeterminedforavirtualloudspeaker.Apositioningdelayisappliedtotherealspeakersasafunctionofthedistancebetweenthemandthevirtualspeaker.Figure4illustratesthisprocesswherethemastervirtualspeakeriswhiteand

4TheSabertoothdual12Amotordriverwaspreferredforitspricingandabilitytobecontrolleddigitallyovertheserialportwithasimpleprotocol.Thecontrollercanachieve127differentspeedsinthetwodirections.5Thearduinoethernetisamicrocontrollerboardthatcomeswithabuild-inethernetportfacilitatingIPcommunicationwiththemicrocontroller.ThisboardisparticularlyhandywhendistancebetweenthemicrocontrollerandthecomputerbecomesanissueorwhenIPlikecastings(multicast,broadcast,etc.)aredesired.6TheteensyisamicrocontrollerboardcompatiblewiththearduinoIDE.It’sprocessorisfasterthanmostarduinosandhasinterruptsoneverypins.7OpenSoundControlisaprotocolfortransmittingdataconceivedforrealtimeapplications.Itismostlyusedinnetworkcontexts.8Aninterruptserviceroutine(ISR)isafunctionthathasahigherprioritythanthemainloop.Itgetstriggeredbyapulsereceivedontheportit’sattachedto.9OnecandostandardOSCcommunicationwithcontributedlibrariessuchasArdOSC(https://github.com/recotana/ArdOSC)10openFrameworks(www.openframeworks.cc)isaC++toolkitforcreativecoding.

therealspeakersareyellow.Movementsareinitiatedonthevirtualspeakerandechoedontherealspeakerswithadelaycalculatedinnumberofframespersecondtimesthedistancefromthevirtualspeaker.11

Figure4.Imagefromthesimulationprogram.Thevirtualspeakerisinwhiteandleadstheotherspeakersinyellowforphysicalmovement.Virtualspeakerismobileandcanitselfbepositionedanywherewithinthematrixlimits.

Aninertialmeasurementunit(IMU)placedontheheadoftheperformerrecoversancillarymovements(seefigure5).TheorientationdatacollectedbytheIMUissentwirelesstothemainframeviatheuseofanXBeeantenna12.Thisdataisthenusedtocontrolthevirtualspeakersothatheadmovementsareeventuallyechoedonthephysicaldevice.

Figure5.AnIMUsendstheorientationoftheheadwhichisechoedontheloudspeakerarray.Performer:SarahAlbu.

AudiointeractionsandcompositionofphysicalmovementsaremadeinSuperCollider(Wilson,Cottle,andCollins2011).Inthisaudioprogrammingenvironment,managementoflocationdata(headpositioningviaIMU,desiredpositioningviathesimulatorandrealpositioningviamicrocontrollers)isassociatedwithdifferentaudioprocesses.Thus,

11https://vimeo.com/12182124612DigiInternational’sXBeeisaradiomodulethatfacilitateswirelessserialcommunication.

interactionsbetweenthephysicalmovementoftheperformerandthoseoftheloudspeakerarrayareexpandedtosound.

Duringtheintroduction(6min15sec)13,aseriesofheadmovementsareinitiatedbytheperformer.Thesemovementsarethenechoedontheroboticmatrixandtheverticalpositioningofeachspeakerissentbacktocontrolalowpassfilter.Laterintheperformance(10min45sec),thisdataisassociatedwithalivetranspositionofthevoice.Inthelastsection(12min45sec),anaudiogranulationprocessisassociatedwitheachspeakerbasedonthefollowingmapping:

• Elevationofspeaker:rateofgrainsandnumberofgrainspersecond.• Rotationofspeaker:grainlength(azimuthspreadovertwocompleterotations).• Distancefromthevirtualspeakerinthesimulator:Graintriggerdelay.

SummarychartThefollowingchartsummarizesthedataflow.UpstreamanIMUissendingdataastothepositioningoftheperformer’shead.ThisdataisreceivedandhandledinSuperColliderbeforebeingsenttothesimulatorbyOSC.PositioningtargetsarethensentbackfromthesimulatortoSuperColliderandtransmitteddirectlytothearduinoethernetofeachspeakerinOSC.Targetsarethenpassedtotheteensiesovertheserialport.Controlcommandsaresenttoamotorcontrolleroveranotherserialportavailableontheteensy.Realpositionsareroutedbacktothecentralcomputerusingthereversechainofprotocols10timespersecond.Finally,whenthedatareturnstoSuperCollider,itismappedtoparametersofaudioprocessesthuscompletingthechainofinteractions.

Figure6.Dataflowdiagram

ConclusionTheloudspeakerarrayallowscompositionofphysicalmovementsbutitsuseisalsoorientedtowardssymboliccontent.Inaway,thisstrangeaugmentedacousmoniumbecomesacharacterinitself.Itsvisualappearancecreatesimagesthatcanevokedifferentnaturalphenomena.Allusionstomassphenomenasuchasbirdflocking,fishschools,swayingwheatandtelescopearraysarealmostinherenttoitsvisualaspect.Theinteractionsbetweentheperformer’sheadandthematrixalsogivestheloudspeakersananthropomorphicqualitywhichaddsareferentiallayertoitsuse.Furtherresearchsurroundingthesymbolicresonanceoftheloudspeakerarrayneedstobedoneduringthenextcreativecycleoftheproject.

Finally,thespeakershaveacertaininertiaandconsequentlysignificantspeedlimitationintermsofmovement.Researchneedstobedoneregardingthisaspectinordertoupgradethemotorization.Strongerandfastermotorsneedtobesourced.Thiswillbeaparticularchallengesinceacompromisebetweenpricing,speedandmotor/gearnoise

13https://vimeo.com/143676764andhttps://vimeo.com/130647157

needstobefound.Thisspeedlimitationparticularlyfavorslargesonicgesturesovershortsoundswhenitcomestodesigningtheaudiointeractionsandcomposition.Inthisway,thisaugmentedacousmoniumcanalsobeseenasamusicalinterfaceinitself,withitsspecificitiesandlimitations,offeringasingularperspectiveonsoundcreation.

ReferencesHenricksen,CliffordA.1981.“UnearthingtheMysteriesoftheLeslieCabinet.”RecordingEngineer/ProducerMagazine,April.

O’Sullivan,Dan,andTomIgoe.2004.PhysicalComputing.CourseTechnology.

Wilson,S.,D.Cottle,andN.Collins.2011.TheSuperColliderBook.MITPress.