the inverterthe inverter - purdue engineeringvlsi/ece559_fall09/notes/inverter.pdf · the...

124
The Inverter The Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective, J. Rabaey, Prentice Hall © UCB Perspective, J. Rabaey, Prentice Hall © UCB Principles of CMOS VLSI Design: A Systems Perspective, N. H. E. Weste, K. Eshraghian, Addison Wesley

Upload: dangthuy

Post on 03-Sep-2018

221 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

The InverterThe Inverter

References:Adapted from: Digital Integrated Circuits: A Design

Perspective, J. Rabaey, Prentice Hall © UCBPerspective, J. Rabaey, Prentice Hall © UCBPrinciples of CMOS VLSI Design: A Systems Perspective,

N. H. E. Weste, K. Eshraghian, Addison Wesley

Page 2: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Regions of OperationRegions of Operation

Cutoff Non-saturated Saturated

Vgsp < VtpVin < Vtp + VDDVgsp > Vtp

Vgsp = VtpVin < Vtp + VDD

Cutoff Non saturated Saturated

p-devicein tp DD

Vdsp > Vgsp - VtpVout > Vin - Vtp

gsp tp

Vin > Vtp + VDD

in tp DD

Vdsp < Vgsp - VtpVout < Vin - Vtp

Vgsn > Vtn Vgsn > VtngVin > Vtn

Vdsn < Vgs - VtnV V V

Vgsn < Vtn

Vin < Vtn

n-device

gVin > Vtn

Vdsn > Vgs - VtnV V VVout < Vin - Vtn Vout > Vin - Vtn

Page 3: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Digital GatesDigital Gates Fundamental Parameters

• Area and Complexity• Robustness and Reliability• Performance• Power Consumption

Page 4: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Noise in digital Integrated Circuits

unwanted variations of voltages and currents at the logic nodes

v(t)VDD

g g

i (t)

v(t)

(a) Inductive coupling (b) Capacitive coupling (c) Power and ground noise

Page 5: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

DC Operation: V lt T f Ch t i ti (VTC)Voltage Transfer Characteristic (VTC)

Voutout

VOHVout = Vinf

VM Switching Threshold Voltage

VOL

M(≠ Transistor Threshold Voltage)

VOL

VOL VOH Vin

Nominal Voltage Levels

Page 6: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Mapping between analog and digital signals

V(y)

‘1’ VOH

V1H

V(y)

VOHSlope = -1 = )(gain

dVdV

in

out

UndefinedRegion

V outdV‘0’

VIL

VOL VOL

V V

Slope = -1 = indV

VIL VIH V(x)

Undefined Region(Transition width TW)

Page 7: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Definitaion of Noise MarginsDefinitaion of Noise Margins

‘1’NMH = VOH -V

NMVOH

1 VIH

NMH VIH

UndefinedRegion

NMLVI

LVO

L‘0’ NML = VIL - VOL0

Gate InputStage M+1

Gate OutputStage M

NML VIL VOL

Stage M+1Stage M

Page 8: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

The Regenerative Property

V0

V1

V2

V3

V4

V5

V6

A chain of inverters

5

3V

0

1 V1

V2

-10 2 4 6 8 10

Page 9: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Conditions for Regeneration

VVout

f(v) finv(v)

Vout

V3

fi ( )

V1f(V0) V1

V3finv(v)

f(v)

VinVV Vin

(a) Regenerative gate (b) Non-regenerative gate

VinV0V2 V0 V2

Page 10: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Fan-in and Fan-out

( ) F t N(a) Fan-out N

M

N

(b) Fan-in M

Page 11: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

The Ideal Gate

VVout

g = -∞

Ri = ∞

Ro = 0 g = -∞ o

Vin

Page 12: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

VTC of Real Inverter

5.0

VDD

NML4.0

3.0

2 0V out(V

)

NMH

VM

1.0

2.0

0.0 1.0 2.0 3.0 4.0 5.0

V (V)Vin (V)

Page 13: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Delay Definitionsy

Vin

50%

t

tpHLtpLH

V t

90%

50%

Vout

50%

10% t

tf tr

Page 14: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Ring Oscillator

V0 V1 V2 V3 V4 V5

V0 V1 V5

T = 2 x t x NT = 2 x tp x N2Ntp >> tf + tr

Page 15: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Power Dissipation

P(t) = instantaneous power

Ppeak = ipeakVsupply = max (p(t))

∫∫ ==T

ply

T plyav dtti

TV

dttpT

P0 sup0

sup )()(1TT

Power-Delay Product

PDP = tp x Pav

= Energy dissipated per operation= Energy dissipated per operation

Page 16: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Static Load MOS InvertersStatic Load MOS Inverters

Page 17: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Static Load MOS Inverters

Rload Ibias

Vout

Vin

Vout

Vin

Page 18: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Basic Inverter

Vout

VDD

Vin

• Vin < Vth ; NMOS off; Vout pulled to VDDV V NMOS t fl th h R t• Vin > Vth ; NMOS on, current flows through R to ground

• If R is sufficiently large, Vout could be pulled down y g out pwell below Vth;

Page 19: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

St ti L d MOS IN tStatic Load MOS INverter

RIds

Vout

Vout = Vds

Ids.R = VDD-Vds

Page 20: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

VTC of Resistive Load

Page 21: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Resistive Load Device

Rload Voh = 5.0V

Vol = ???Vout

VinI = (Vdd-Vol)/R

Vol ???

)( VV

I = β.((Vdd-Vt)Vol-0.5Vol2)

)5.0).(()(

2ololtdd

oldd

VVVVVVR

−−−

Page 22: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Sizing for VOL

)5.0).(()(

2ololtdd

oldd

VVVVVVR

−−−

Assume: Vdd = 5.0VVt = 1.0V

4β = 10-4A/V

Proper design: Vol < Vt

Let: Vol = 0.5V

R = 24kΩR = 24kΩ

Page 23: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Resistor and Current-Source Loads

R i t /l th f i i idth li f i• Resistance/length of minimum-width lines of various connecting elements is far less than effective resistance of the switched on MOSFET

• In some memory processes, resistors are implemented by highly resistive undoped polysiliconN ll t i t i CMOS t i l t• Normally use transistors in CMOS to implement resistor and current-source loads

• If biased for use as a resistor called an unsaturatedIf biased for use as a resistor, called an unsaturated load inverter

• If load transistor operates in saturation as a constant current source, called a saturated load inverter

Page 24: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Pseudo NMOS Inverter

Vout

Vin

Ln = 1

Vin

VDD + Vdsp = Vout⇒ Vdsp = Vout - VDDdsp out DD⇒ Vdsp = Vout + Vgsp

∴Vdsp > Vgsp - Vtp or Vout > - Vtpdsp gsp tp out tp⇒ Non-saturated region

Page 25: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

DC Transfer Characteristics

Page 26: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Pseudo-NMOS InverterPseudo-NMOS Inverter

Vout

Vin

• DC current flows when the inverter is turned on unlike• DC current flows when the inverter is turned on unlike CMOS inverter

• CMOS is great for low power unlike this circuit (e.g. watch needs low power lap-tops etc)

• Need to be turned off during IDDQ (VDD Supply Current Quiescent) testingCurrent Quiescent) testing

Page 27: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

PMOST Load with Constant VGS

Voh = 5.0VVoh 5.0V

Vol = ???

I = 0.5βp.(Vdd-Vtp)2

I = βn.((Vdd-Vtn)Vol-0.5Vol2)Vout

)5.0)(()(5.0

2

2

ololtndd

tpdd

p

n

VVVVVV−−

−=

ββ

Vin

))(( ololtnddpβ

Page 28: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Sizing for VOL

)(50 2VV)5.0)((

)(5.02

2

ololtndd

tpdd

p

n

VVVVVV−−

−=

ββ

Assume: Vdd = 5.0VVtn = Vtp = 1.0V

Proper design: Vol < Vth

Let V 0 5VLet: Vol = 0.5V

26.4=nβ 6.pβ

Page 29: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Sizing for Gate Threshold Voltage (Trip Point)Sizing for Gate Threshold Voltage (Trip Point)

N-device: saturated )( tninout VVV −>

2)(2 tninn

dsn VVI −=β

)( tninout

P-device: non-saturated

2

DDgsp VV −=

]2

)())([(2

DDoutDDouttpDDpdsp

VVVVVVI −−−−−= β

Equating the two currents we obtain,Equating the two currents we obtain,

]2

)())([()(2

22 DDout

DDouttpDDptninn VVVVVVVV −

−−−−−=− ββ

Page 30: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Sizing for Gate Threshold Voltage

Solving for VSolving for Vout

CVVVV tpDDtpout −++−= 2)(

Where C = k (Vin - Vtn)2

nk β=

p

=

Also22 )()( tpouttpDDn VVVV +−+βAlso, 2)( tnin

pp

p

n

VV −=

ββ

To make gate threshold voltage = 0.5VDDg g DD

11.6=p

n

ββ

Page 31: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Noise Margin

βn/βp VIL VIH VOL VOH NML NMH

2 3 4 4 5 1 4 5 2 0 0 52 3.4 4.5 1.4 5 2.0 0.54 1.8 3.3 0.6 5 1.2 2.76 1.4 2.8 0.35 5 1.05 3.28 1 1 2 4 0 24 5 0 86 3 68 1.1 2.4 0.24 5 0.86 3.6

100 0.5 1.1 0.00 5 0.5 3.9

Page 32: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

VTC of Pseudo-NMOS Inverter

Page 33: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Unsaturated Load Inverter

Vout

Vinin

• High is n threshold down from VDD

• Used when depletion mode transistors were not availableavailable

• Low noise margin• Might be used in I/O structures where p-transistorsMight be used in I/O structures where p transistors

were not wanted

Page 34: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

VTC of Unsaturated Load Inverters

For k = 4VOL = 0.24VVIH = 2.2VV 3 8VVOH = 3.8VVIL = 0.56V

Page 35: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Current Source LoadCurrent Source Load

Ibias

Vout VoutVout

Vin

out

Vin

Page 36: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Saturated Load Inverter

VoutVVin

• Vout > Vin - Vtn ⇒ driver transistor in saturation– When Vin is small

• Load transistor permanently in saturation• Load transistor permanently in saturation– Vdsp = Vgsp

– ∴Vdsp < Vgsp - Vtp or 0 < - Vtp ⇒ Saturated region

Page 37: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

When Vin is Small

2)( VVI driverβ 2, )(

2tnin VVI driver

driverds −=β

Load in saturation:Load in saturation:

2, )(

2 tpload

loadds VVVI DDout −−−=β

Equating the currents:

)( VVkVVV )( tnintpDDout VVkVVV −++=

where drivenkββ

=loadβ

Page 38: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

VTC of Saturated Load Inverter

For k = 4VOL = 0.24VVIH = 2.1VVOH = 4 4VVOH = 4.4VVIL = 0.5V

Page 39: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

NMOS Inverter

Use depletion mode transistor as pull-up

Vtdep transistor is < 0 VVtdep transistor is 0 Vdiffusion

VDD

Vout

depletion mode transistor (poly)

Vinenhancement modetransistor

out

in

The depletion mode transistor is always ON:gate and source connected ⇒ Vgs = 0

Vin = 0 ⇒ transistor pull down is off ⇒ Vout is high

Page 40: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Vout vs Vin using Graphical Method

V = 0 0

Ids (dep) Ids (enh)

Vgs = 0.0

Vgs = -0.2 VDD

Vds (dep)VDD

IdsIds Ids

Vgs (dep) = 0

Vgs (dep) VDDV VVds (dep) VDD - Vds (dep)

Vds (enh) = VDD - Vds (dep)Vds (enh) = VoutVDD -Vds(dep) = Vds(enh) = Vout

In a steady state, Ids of both transistors are equal

Vds (enh) VoutTherefore Vout = VDD - Vds (dep)

Page 41: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Gate Threshold Voltage

Assume that both driver and load are in saturation with input V

Gate threshold voltage = Vinv= Input voltage at which Vin = Vout

Assume that both driver and load are in saturation with input Vinv

2)( )(

2 tgsdriver

satDS VVI −=β

22 )(2

)(2

2

depload

tinvdriver VVV −=−∴

ββ

V

Hence, loaddeptinv VVV

ββ

−=Vout

VDD

driverβ out

Vin

If βdriver is increased relative to βload then,Vinv decreases

Page 42: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

VTC of NMOS inverter

Sl |G| i V dSlope |G| increases, Vinv decreases

load

driver

ββ

increasing

loadβ

Page 43: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

CMOS INVERTER

Page 44: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

CMOS Inverters

Page 45: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

The CMOS Inverter: A First Glance

S

VD

D

V

CL

Vin D Vout

SS

Page 46: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Switch Model of MOS Transistor

| V| VGS|

| V | | V || VGS | < | VT | | VGS | > | VT |

Page 47: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

CMOS Inverter: Steady State ResponseCMOS Inverter: Steady State ResponseVDDVDD

VOH = VDDV = 0

Ron

Vout

VOL = 0

VM = f(Ronn, Ronp)VM f(Ronn, Ronp)

Vin = VDD Vin = 0

Page 48: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

PMOS Load LinesIDnVin = VDD - VGSp

Idn = -IDPV = V V

Vout

Vout = VDD-VDSp

out

IDp IDn IDnVin = 0

V = 3

Vin = 0

V = 3

VDSp VDSp Vout

Vin = 3 Vin = 3

Vin = VDD + VGSpIDn = - IDp

Vout = VDD - VDSp

VGSp = -2

VGSp = -5

Dn Dp

Page 49: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Construction Of Inverter Curves

Ids

VdsVds

Page 50: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Construction Of Inverter Curves

Ids

VdsVds

Page 51: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Construction Of Inverter Curves

Ids

VdsVds

Page 52: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

CMOS Inverter Load CharacteristicsIn,p V = 5

PMOS

Vin = 0Vin = 5

NMOS

Vin = 1 Vin = 4

Vin = 2

Vin = 3

Vin = 4Vin = 2 Vin = 3

Vin = 5Vin = 3 Vin = 2 Vin = 1

Vin = 0

Page 53: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

5.0

CMOS Inverter VTC

V out

0.0

Vin5.00.0

Page 54: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Inverter Supply Current

ply

n=I dp

=Isu

ppI dn

Page 55: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Small Signal Model for an MOS Transistor

• Vsb = 0• voltage-controlled current source (gm)• output conductance (gds)• interelectrode capacitance

Cgd

G

D

gdsgmVgsCgs + Cgb Cdb

SS

Page 56: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Output Conductance

2

• By differentiating Ids w.r.t. Vds

• In linear region]

2)[(

2ds

dstgsdsVVVVI −−= β

])[( dstgsds VVVg −−= β)(

1linear VVV

R =β

])[( dstgsdsg β)( dstgs

linear VVV −−β

• In saturation, device behaves like a current source: the current being almost independent of Vdthe current being almost independent of Vds

])(2

[ 2tgsds VVI −=

β

0])(

2[ 2

=−

=ds

tgs

ds

ds

dV

VVd

dVdI

β

I lit d ff t lt i l• In reality, secondary effects result in a slopeλdsds Ig =

Page 57: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Transconductance

• Expresses relationship between output current and input voltage

)(

constant| dsgs

dsm

Vli

VdVdIg ==

β)(.)(

)(

tgsm

dsm

VVsatgVlinearg

−==

ββ

Page 58: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

MOS Transistor Small Signal Model

G+ r0

gmvgsvgs-gs

S

gm rogm o

Linear kVDS [k(VGS-VT-VDS)]-1

Saturation k(VGS-VT) 1/λID( GS T) D

Page 59: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

CMOS InverterVDD

sVout = VDD - Vsdp

d

Vout VDD Vsdp= VDD + Vdsp

Vin = VDD - Vsgp= V + Vd

VinVout

= VDD + Vgsp

s

Vin = Vgsn, Vout = Vdsn

Page 60: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Regions of OperationRegions of Operation

Cutoff Non-saturated Saturated

Vgsp < VtpVin < Vtp + VDDVgsp > Vtp

Vgsp = VtpVin < Vtp + VDD

Cutoff Non saturated Saturated

p-devicein tp DD

Vdsp > Vgsp - VtpVout > Vin - Vtp

gsp tp

Vin > Vtp + VDD

in tp DD

Vdsp < Vgsp - VtpVout < Vin - Vtp

Vgsn > Vtn Vgsn > VtngVin > Vtn

Vdsn < Vgs - VtnV V V

Vgsn < Vtn

Vin < Vtn

n-device

gVin > Vtn

Vdsn > Vgs - VtnV V VVout < Vin - Vtn Vout > Vin - Vtn

Page 61: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

5.0 A: nmost off

Inverter Operating Regions

pmost linear reg.

B: nmost saturatedt li

ut

pmost linear reg.

C: nmost saturatedpmost saturatedV o pmost saturated

D: nmost linear reg.pmost saturated

0.0

Vi 5.00.0

pmost saturated

E: nmost linear reg.pmost offVinp

Page 62: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Inverter Operating Regions

A: nmost offpmost linear region

B: nmost saturatedt li i tpmost linear region

C: nmost saturatedpmost saturated

out out out out out

pmost saturated

D: nmost linear regionpmost saturated

A B C D Epmost saturated

E: nmost linear regionpmost off

Assume infinite ro when a device is in saturation

p

Page 63: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Region ARegion A(0 ≤ Vin ≤ Vtn)

Idsn = 0 ⇒ n-device is cut-offp-device in linear region

VDD

p device in linear region

Idsn = - Idsp = 0, as Idsn = 0VV

Vdsp = Vout - VDD

VoutVin

With Vdsp = 0, Vout = VDD

Page 64: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Region B)

2( DD

intnVVV ≤≤

p-device in non-saturated region (Vds ≠ 0)n-device is in saturation

IIdsp

Vin = Vgsn

VoutIdsn

Page 65: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Region B

)(;2

][ 2nntnin

ndsn LW

tVVI εμββ =

−=

2 nox Lt

Vgsp = (Vin - VDD) & Vdsp = (Vout - VDD)

2

)(

]2

)())([(2

pp

DDoutDDouttpDDinpdsp

Wt

VVVVVVVI

μβ

β −−−−−−=∴

)(p

p

ox

pp Lt

β =

Equating I = -IEquating Idsp = -Idsn

22 )()(2)()( tcin

DDtpDD

intpintpinout VnVVVVVVVVVV −−−−−−+−=β )()

2()()( tci

pDDtpintpintpinout β

Page 66: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Region DRegion D)

2( tpDDin

DD VVVV−≤<

p : saturationn : non-saturated Idsp

)(21

2tpDDinpdsp VVVI −−−= β

Vout

Idsn

2

]2

)[( outouttninndsn

II

VVVVI

−=

−−= β

22 )()()( tpDDinp

tnintninout

dsndsp

VVVVVVVV

II

−−−−−−=∴

−=

ββ

Page 67: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Determining VIH and VIL

Page 68: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

R i ERegion E(Vin >= VDD - Vtp)

p: cut-off Idsp = 0li dn: linear mode

Vgsp = Vin - VDD → more positive than Vtpgsp in DD p tp

Vout = 0

Page 69: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Region C(B th d i i S t ti )(Both devices in Saturation)

β 2)(2 tpDDin

pdsp VVVI −−−=

β

β

2)(2 tnin

ndsn VVI −=

β

E ti I I

nVVV β++

Equating Idsp = -Idsn

n

ptntpDD

in

VVVV

β

β

+

++

=1

pβ+1

Page 70: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Gate Threshold Voltage

If βn = βp & Vtn = -Vtp

V2DD

inVV =

Region C exists for one value of Ving in

Possible values of Vout in region C

n-channel Vin - Vout < VtnVout > Vin - Vtn

p-channel Vin - Vout > VtpV < V V

saturation conditions

Vout < Vin - Vtp

Vin - Vtn < Vout < Vin - Vtp

In reality, region C has a finite slope - because in reality Ids increases slightly with Vds in saturation

Page 71: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Typical Parameter Values (1μm process)

/1085.89.3

sec/50014

2

××=

−=−

n

cmF

Vcm

ε

μ

A200=oxt

)(LW

tnμεβ =

5

14

102.1085.89.3500

WLW

Ltox

××××

= −

sec/180 2 −≈p Vcmμ

2/5.88 VALW μ=

82

/9.31 2=∴

n

p

p

VALW

β

μβ

8.2=p

n

ββ

(The ratio varies from 2-3)

Page 72: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

βn/βp Ratioβn βp

increasing V

n

ββ

gVout

V

increasing

Vin

n

WW

increasing

Vout

pW

Vin

Page 73: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Effect of βn/βp Ratio βn βp

Vm dependent onp

n

ββ

βwith change in transition still remains sharp and henceswitching performance does not deteriorateIt is desirable to have

p

n

ββ

It is desirable to have

= 1 p

n

ββ

allows capacitance load to change and discharge in equaltimes by providing equal current source & sink capability⇒

Page 74: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Gate Switching Threshold

4.0

3.0

M

2.0

VM

0.1 0.3 1.0 3.2 10.01.0 pβkp/kn

ptntpDD rVVVr

=++

= with)(

n

nM r

rV

β=

+= with

1

Page 75: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Effect of Temperaturep

• Temperature similarly affects mobility of holes and l telectrons

• Temperature increases ⇒ μ decreases ⇒ βdecreasesdecreases

5.1−∝ Tβ

• Ratio βn/βp is independent of temperature to a goodRatio βn/βp is independent of temperature to a good approximation

• Temperature, however, reduces threshold voltages• Extent of region A reduces and extent of region E

increases• VTC shifts to the left as the temperature increases• VTC shifts to the left as the temperature increases

Page 76: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Switching Characteristics

• Switching speed - limited by time taken to charge and discharge, CL

Ri ti t f t i f 10% t 90% f it• Rise time, tr : waveform to rise from 10% to 90% of its steady state value

• Fall time, tf : 90% to 10% of steady state valueFall time, tf : 90% to 10% of steady state value• Delay time, td : time difference between input

transition (50%) and 50% output level

Page 77: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

CMOS Inverter: Transient Responsep

VDD

t f(R C )tpHL = f(RonCL)= 0.69 RonCL

Vout

VDD1

Ron

DD1

0.5

CL

0.36

Vin = VDD tRonCL

Page 78: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

CMOS Inverter Propagation DelayC OS e te opagat o e ay

VDDiLVC 2/

av

swingLpHL I

VCt

2/=

Vout =+==

2)2/()( DDoutDDout

avVVIVVII

Iav

CL

⎟⎟⎠

⎞⎜⎜⎝

⎛−+=

23

287

2

22tnDDtnDDn VVVVβ

Vin = VDD

Page 79: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Inverter Propagation Delay

• Assume n-device still in saturation at Vout = VDD/22β 2)(

2 tnDDn

av VVI −=β

DDLVCt

L

tnDDn

DDLpHL

CVV

−= 2)(

DDnVβ≈

LLH

Ct ≈DDp

pLH Vt

β

⎟⎟⎞

⎜⎜⎛

+≈ LCt 11⎟⎟⎠

⎜⎜⎝

+≈npDD

p Vt

ββ2

Page 80: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Analysis of Fall Time

VDD

Vout(t)Vin(t)

CL

2non-saturated x2

saturated(Vds = Vgs - Vt)Ids

x1

Application of stepinput

x3 Vout (t) VDD

Page 81: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Components of Fall Time

tf = tf1 + tf2 Vout drops from Vdd - Vt to 0.1 VDD

Vout drops from 0.9Vdd to Vdd - VtVout drops from 0.9Vdd to Vdd Vt

V V0.9 VDD

V

VDD - Vt0.1 VDD

VVin Vout

tf

Page 82: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Fall Time for Saturated Region

IP

Ic

Idsn

Input rising

n CL

VoutSaturated, Vout ≥ VDD - Vtn

0)( 2 =+ nout VVdVC β 0)(2

=−+ tnDDL VVdt

C

Integrating from t = t1 (corresponding to Vout = 0.9 VDD) to t = t2( di t V (V V ))(corresponding to Vout = (VDD - Vtn))

∫= DDV

outL

f dVCt9.0

21 )(2

β ∫ −− tnDD VV outtnDDn

f VV 21 )(β

)1.0(2 DDtnL VVC −2)(

)(

tnDDn

DDtnL

VV −=

β

Page 83: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Fall Time for Non-Saturated Region

p

V

n CL

Vout

Non-saturated : 0 ≤ Vout ≤ VDD - Vtn

=−−+ outouttnDDn

outL

VVVVdt

dVC2

0]2

).[(β

∫ −−−

= DD

tnDD

V

VV

tout

out

tnDDn

Lf

VVdV

VVCt

1.0

22 )(β− out

tnDD

VVV )(2

Page 84: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Fall Time for Non-Saturated Region

∫DDV outL dVCt

1.0

∫ −−

−−

=tnDD VV

outtnDD

out

out

tnDDn

Lf

VVV

VVVt 22

)(2)(β

)2019ln()( V

VVVV

C

DD

tnDD

tnDDn

L −−

)2019ln()1(

)(

nnV

C

DDn

L

DDtnDDn

−−

β

)(DDnβ

where n = tn

VV

DDV

Page 85: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Fall Time Computation

⎥⎤

⎢⎡

−+−

=

+=

)2019ln(1)1.0(2

21

nnC

ttt

L

fff

⎥⎦

⎢⎣

+−−

)2019ln(2)1()1(

2 nnnVDDnβ

C

DDn

Lf V

Cktβ

VVVVk 150d53f43 VVVVk tnDD 1~5.0and5~3for 4~3 ===

Page 86: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Rise Time

⎥⎦

⎤⎢⎣

⎡−+

−−

−= )2019ln(

21

)1()1.0(

)1(2 p

pp

pVCt

DDp

Lr β ⎦⎣ )()( ppDDpβ

with tp

VV

p||

=DDV

Lr V

Cktβ

≈DDpVβ

For equally sized n- and p transistorsβ ≈ 2ββn ≈ 2βp

rtt ≈2ft ≈

Page 87: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Sizing for Identical Rise/Fall Timeg

For same tf and trβ 1=

p

n

ββ

Increase the width of p-device to

WW 32≈ np WW 32 −≈

Page 88: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Delay Time: First Order Approximation

• Gate delay is dominated by the output rise and fall time

2r

drtt =

2f

df

tt =

2f

Page 89: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

General Delay Time Computation

• Similar to the computation of rise/fall timesSimilar to the computation of rise/fall times– Saturation region from t = t1 (corresponding to Vout = VDD) to t

= t2 (corresponding to Vout = (VDD - Vtn))Linear region from t = t (corresponding to V = (V V ))– Linear region from t = t2 (corresponding to Vout = (VDD - Vtn)) to t = t3

∫ −−=− DD

tnDD

V

VV outtnDDn

L dVVV

Ctt 212 )(2

β

2)()(2

tnDDn

tnL

VVVC−

=β )( tnDDnβ

Page 90: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Delay Time Computation

∫V dVC '

∫ −−

−−

=− out

tnDD

V

VV

outtnDD

out

out

tnDDn

L

VVV

VdV

VVCtt

'2'23

)(2)(β

tnDD

)22ln()(

outtnDD

DD

L

VVVV

VVC −−

−=

β

))1(2ln()1(

)(

O

O

DDn

L

outtnDDn

VVn

nVC

VVV−−

−=

β

β

)( ODDn VVβ

where outO

tn

VVV

VVn == ,

DDDD VV

Page 91: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Delay Time

C

DDn

LnDn V

CAtttβ

=−= 13

Delay ∝ CL (optimize CL to decrease delay)

(decrease VDD increases delay)

(if W ↑ or L ↓ delay decreases)DDV1

1 (if W ↑ or L ↓, delay decreases)

Three major parameters for optimizing speed of CMOSβ

Page 92: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Components of CL

Cw = wiring capacitance

Cg = gate capacitance = CoxWL

Page 93: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Miller Effect

• Effective voltage change over the gate-drain capacitor is actually twice the output voltage swingcapacitor is actually twice the output voltage swing

• Contribution of gate-drain capacitor should be counted twice

Page 94: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Junction Capacitancep

• Non-linear capacitor modeled by linear capacitor with the same change in charge for the voltage range of interest

CKC

[ ]mlow

mhigh

m

eq

jeqeq

VVmVV

K

CKC

−− −−−−

=

=

10

10

0

0

)()()1)((

φφφ

lowhigh mVV −− )1)((

• Linearize over the interval {5V, 2.5V} for the high-to-low transition and {0, 2.5V} for the low-to-highlow transition and {0, 2.5V} for the low to high transition

• Correspond to {Vhigh=-5V, Vlow=-2.5V} and {Vhigh=0, V 2 5V} f NMOSVlow=-2.5V} for NMOS

Page 95: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Delay in function of VDD

Page 96: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Sizing of Inverter Loaded by an Identical GateS g o e te oaded by a de t ca Gate

Load cap. of first gate:p gCL = (Cdp1 + Cdn1) + (Cgp2 + Cgn2) + CW

where Cdp1, Cdn1 → diffusion capacitance of first gatepCgp2, Cgn2 → gate capacitance of second gate

Cw → wiring capacitance

If PMOS d i ti l th th NMOSIf PMOS devices are α times larger than the NMOS ones,

pLW

LW)/(

)/(=α

all transistor capacitances will scale in approximately the same way nLW )/(

Page 97: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Sizing of Inverter

gngp

dndp

CC

CC

22

11

α

α

fr ttt

+= )( pnL AAC

+=

wgndnL CCCC +++=∴ ))(1( 21α

2pt =

)(2

)(2

ββ

β

ββ

npn

L

pnDD

AA

VC

V

+=

+=

))/()/(.(

2

)(.2

μμ

β

ββ

nnpn

L

pn

nDD

LWLWA

AV

C

V

+=

)(.2

)/(.2

αμμ

β

μβ

p

npn

nDD

L

ppnDD

AA

VC

LWV

+=μβ pnDD

Page 98: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Sizing of Inverter

)(.2 αμ

μβ p

npn

nDD

Lp

AA

VCt +=

).

(.2

))(1( 21

αμμ

βα

p

npn

nDD

Wgndn AA

VCCC

++++

=

αα

optimalget to0Let =∂

∂ pt

CAμ )1(21 gndn

W

n

p

p

nopt CC

CAA

++=

μμα

If CW << Cdn1 + Cgn2, Ap = An

731nμC t t t 3 hi h i ll d73.1≈≈

p

nopt μ

μα Contrast to 3 which is normally usedin the non-cascaded case

Page 99: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Impact of Rise Time on Delay

22 )2/()()( rpHLPHL tsteptactualt +=

Minimum-size inverter with fanout of a single gate

Page 100: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Velocity Saturation

• Under long channel model, saturation current ∝ VDD2

• In small-geometry devices, this no longer holds: Iav ∝ VDD

SATL WCvkCt )11( κ=+≈

av DD

• Therefore, for VDD >> VT we have,

pnoxSATpnnp

p WCvkkk

t ,, )(2

κ+

• Running velocity saturated devices fat high VDD is not beneficial

• Lowering VDD below 2VT sharply increases delay

Page 101: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Source/Drain Resistance

• In small-geometry devices, source and drain resistance affects switching currents

Source of the transistor is no longer grounded body effect– Source of the transistor is no longer grounded, body effect increases threshold voltage

– Vgs is also reduced– Current is reduced

Page 102: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Power Consumption

• Static Power– Leakage current

Sub threshold conductance– Sub-threshold conductance

• Dynamic Power– Capacitive Power due to charging/discharging of capacitive p g g g g p

load– Short-circuit power due to direct path currents when there is

a temporary connection between power and groundp y p g

Page 103: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Static Power Consumption

VVDD

V = V

VDD

Vout = VDD

Diode leakage

)1( / kTVqiISub-threshold current

/)( kTVV

)1( / −= kTVqsO eiI

)1( //)( kTqVnkTqVVD

dstgs eeKI −⋅= −

Pstatic = Ileakage. VDD

Page 104: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Static Consumptionp• Leakage current through the reverse biased diode

junctions• For typical devices it is between 0.1nA - 0.5nA at

room temperatureFor a die with 1 million devices operated at 5 V this• For a die with 1 million devices operated at 5 V, this results in 0.5mW power consumption → not much

• Junction leakage current is caused by thermally g y ygenerated carriers -> therefore is a strong function of temperature M i t t i b th h ld l k h• More important is sub-threshold leakage when threshold voltage is close to 0

Page 105: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Dynamic Consumption due to CL

VDD

Vout

l hi h i i- low-to-high transition- Assume 0 rise and fall times

Page 106: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Dynamic Power due to CL

Vout

t

VDD

iVDD

t

CL

in

tdischargedischarge

charge

Define:E t k f l d i t itiEVDD : energy taken from supply during a transitionEC: energy stored on capacitor at the end of transition

Page 107: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Energy Consumed and Stored

dtdt

dVCVdtVtiE outLDDDDVDDVDD

.)(0 0∫ ∫∞ ∞

==V

∫)(2

0

DDDDL

V

outDDL

QVVC

dVVC DD

==

= ∫

dtVdt

dVCdtVtiE outout

LoutVDDC ∫ ∫∞ ∞

==0 0

)(V

. 20

DDL

out

V

outDDL

VC

dVVVC DD

=

= ∫

2=

Half the energy is stored in Capacitor ! Other half is dissipated in the PMOS transistor !!the PMOS transistor !! For each switching cycle ( L → H & H → L), amount of energy dissipated in CL. VDD

2

Page 108: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Pdynamic = CL.VDD2.f

• Example– 1.2μ CMOS chip– 100 MHz clock rate100 MHz clock rate– Average load capacitance of 30 fF/gate– 5V power supply

• Power consumption/gate = 75 μWPower consumption/gate 75 μW• Design with 200,000 gates: 15W !• Pessimistic evaluation: not all gates switch at the full rate

H t id th ti it f t Eff ti it hi• Have to consider the activity factor α: Effective switching capacitance = αCL

• Reducing VDD has a quadratic effect on Pdynamic

Page 109: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Direct Path Current

• inputs have finite rise and fall times• Direct current path from VDD to GND while PMOS and

NMOS are ON simultaneously for a short periodPsc = Imean.VDD

tftrVDD + Vtp

T

Vtn

Imax

Imean

t1 t2 t3

Page 110: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Symmetrical Inverter Without Load

⎥⎦⎤

⎢⎣⎡ += ∫∫

3

2

2

1

)(1)(12t

t

t

tmean dttIT

dttIT

I⎦⎣

2 β

If Vtn = -Vtp=VT and βn = βp = β and that the behavior around t2 is symmetrical

dtVtVT

I tin

t

tmean2))((

222 2

1

−×= ∫β

with DD tVtV =)(with

rt

rin

tVVt

tt

tV

=

=

.

)(

1

r

DD

tt

V

=22

rffr ttt ==

Page 111: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Symmetrical Inverter Without Load

2/

/

2)(2 t

VVt trf

DDmean dtVt

tV

TI rf

DDTrf

−⋅= ∫β

2/

/

3)(3

2t

VV

trf

DD

DD

rf Vtt

VVt

T

rf

⎥⎥⎦

⎢⎢⎣

⎡−⋅=

β

3

/

)2

(32

tDD

DD

rf

VVtrfDD

VVVT

tDDTrf

−⋅=

⎥⎦⎢⎣

β

3)2(12

23

tDDDD

rf

DD

VVVT

tVT

−⋅=β

DD

tVVP rf3)2( −=

βT

VVP tDDsc )2(12

=

Page 112: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Short Circuit Current with LoadsShort Circuit Current with Loads

Page 113: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Output Transitions under Different Loads

Page 114: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

CL Power vs. SC Power under Different Loads

Page 115: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

CL Power vs. SC Power under Different Inputs

Page 116: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Impact of Load Capacitance on SC Currentp p

• Large capacitance– Fast input transition, slow output transition– Input moves through the transient region before output

begins to changeg g– Short-circuit current close to zero

• Small capacitance– Relatively slower input transition, fast output transition– Both devices in saturation during most of the transition– Maximum short-circuit current

• [Veendrick84]: rise/fall times of all signals should be kept constant within a range to keep SC power minimal 10%~20% of total dynamic powerminimal, 10%~20% of total dynamic power

Page 117: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Technology Evolution

Page 118: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Technology Scaling (1)

Minimum Feature Size

Page 119: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Technology Scaling

108p

mosfet

bipolar105

106

107

onen

ts/C

hip bipolar

transistor

mesfet104

105

Com

po

bipolarTransistor

enhancementmosfet

101

102

103

IC

11950 1960 19801970 1990

YEAR

101 IC

YEAR

Number of components per chip

Page 120: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Propagation Delay Scalingp g y g

1n

500p

1n

e)

F/O = 1R.T. Operation

100p

200p

Dd(

sec/

stag

e

Ref.[4]3.5V

Ref.[5]3.5V

50p

100p

te D

elay

: τD Present Results

Reported Results

3.5V

3.3V2.5VRef.[7]

2.5V

20p

0 5 1 0 5 0 10 0

Gat VDD

ScalingVDD=5V

10p0.5 1.0 5.0 10.0

Channel Length : Left (μm)

0.1

Page 121: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Technology Scaling Models

• Full Scaling (Constant Electrical Field)• Full Scaling (Constant Electrical Field)ideal model — dimensions and voltage scaletogether by the same factor S

• Fixed Voltage Scalingmost common model until recently —only dimensions scale, voltages remain constant

• General Scalingmost realistic for todays situation —voltages and dimensions scale with different factors

Page 122: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Scaling Relationships for Long channel DevicesScaling Relationships for Long channel Devices

Page 123: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Scaling of Short Channel Devices

Page 124: The InverterThe Inverter - Purdue Engineeringvlsi/ECE559_Fall09/Notes/Inverter.pdf · The InverterThe Inverter References: Adapted from: Digital Integrated Circuits: A Design Perspective,

Homework Problem (due next Thursday)

• Design a static CMOS inverter with 0.4pF load capacitance. Make sure that you have equal rise and fall times. Layout the inverter using the Mentor tools, extract parasitics, and simulate the extracted circuit on HSPICE t k th t d i f t th ifi tiHSPICE to make sure that your design conforms to the specification.

• Do the same analysis for a three input NAND gate.